VEROLOG 2014

VEROLOG 2014

Th. Pirone HEC-ULg QuantOM

Outilles

Aulti-perio

Vehicle

Assignme

Bound

....

Instances and results

Robustness

Conclusion

"Multi-period vehicle assignment with stochastic load availability"

Y. Crama and Th. Pironet

HEC-Management School of the University of Liège

Research Group QuantOM

contact: thierry.pironet@ulg.ac.be

"Multi-period vehicle assignment with stochastic load availability"

VEROLOG 2014

Th. Pirone HEC-ULg QuantOM

Outline

Multi-perio

Vehicle Assignmen

Bound

Instances an

Instances and results

Robustness

Conclus

Vehicle assignment

To maximize profit: select loads to be transported by trucks (FTL-PDP) References: W.B. Powell

Multi-period

Confirmed and projected loads provided over some periods Repetitive decision process period per period over an horizon

Stochastic load availability

Projected loads realize or vanish

Outlines

VEROLOG 2014

Th. Pironet HEC-ULg QuantOM

Outlines

Multi-perio

Vehicle

, toolgillic

Bouna

Aigoritiiii

Instances and results

Robustness

Conclusions

- Multi-period information and decision framework
- The Deterministic Vehicle Assignment Problem
- Bounds
- Algorithms
- Instances and Results
- Robustness Analysis
- Conclusions

Multi-period: Rolling horizon

VEROLOG 2014

Th. Pirone HEC-ULg QuantON

Outline

Multi-period

Vehicle

Assignmen

Bound

Algorithm

Instances and results

Robustness

Conclusions

Decision : in t and t = 1, 2, ..., T - H => Policy

t t+1,...,t+RH t+RH+1,...,t+H t+H+1,...,T

Deterministic Stochastic Tail

Parts: decision, deterministic, stochastic

- **1** Rolling horizon H = 4P = 4 days
- 2 Deterministic RH = 1P, Stochastic 3P

Dynamism of the system:

- Decision and actions in t (info out)
- 2 Roll-over 1 period, updates (info in) $t \rightarrow t + 1$
 - stochastic gets deterministic $t + RH + 1 \rightarrow t' + RH$
 - 2 new stochastic info in $t + H + 1 \rightarrow t' + H$
- 3 Go to 1 with $t \rightarrow t+1$

Vehicle Assignment Problem : Description

VEROLOG 2014

Th. Pirone HEC-ULg QuantOM

Outline

Multi-perio

Vehicle Assignment

Bound

r tigoritiiiii

Instances and results

Robustness

Conclusions

Full truckload selection

Data: Cities, Distances, Periods, Loads, Trucks

Actions: Carry, Wait, Move unladen

Objective function: maximize Profit (Gains-Costs) **Constraints**: Space, Time, Max 1 Load per Truck

Stochastic data: Stochastic Load Availability in one period

Discrete and finite Bernoulli distribution for load L_j

$$P(q_j = x) = \begin{cases} p_j & \text{if } x = 1\\ 1 - p_j & \text{if } x = 0 \end{cases}$$

Single scenario model

VEROLOG 2014

Th. Pirone HEC-ULg QuantOM

Outlines

Multi perio

Vehicle

Assignment

Bound

Algorithr

Instances and results

Robustness

Conclusion

Deterministic formulation: Network flow structure

Polynomially solvable

Feasible links: time and space aggregated

$Specific \ Scenarios => Bounds$

VEROLOG 2014

Th. Pirone HEC-ULg QuantON

Outline

Multi-perio

Vehicle Assignmen

Bounds

Algorithm

Instances and results

Robustness

Conclus

```
t t+1,...,t+RH t+RH+1,...,t+H t+H+1,...,T
```

Deterministic

Stochastic

Tail

Bounds : fully revealed information scenarios

- Myopic or a-priori policy over $RH: O_{RH}^*$
- ② Oracle or a-posteriori policy over $H: O_H^*$
- **3** Oracle or a-posteriori solution over $T: O_T^*$

Stochastic problem

Expected Value Scenario => Expected Value 'Solution' EVS

Optimal policy for the stochastic problem : E*

Maximization : $O_T^* \ge O_H^* \ge E^* \ge EVS \ge O_{RH}^*$

Value of information:

VPI: Value of the Perfect Information O_T^* - $E^* \ge 0$

A picture : maximization

VEROLOG 2014

Th. Pirone HEC-ULg QuantOM

Outline

Multi-peri

Vehicle

Assignmer

Bounds

Algorithr

Instances and results

Robustness

Conclusions

Problem : Found E^* the optimal policy

Approximate models and algorithms

VEROLOG 2014

Th. Pirone HEC-ULg QuantOM

Outline

Multi-perio

Vehicle Assignmen

Assignme

Algorithms

Instances and

Robustness

Conclusio

Bounds: Fully revealed information

 O^* , O_H^* (UB=100%), O_{RH}^* (LB=0%)

Mono scenario approximation

EVS expected reward, Modal and Optimist (all loads)

Multiple scenario approaches: 10 to 30 scenarios

- Consensus: Aggregate per action in t and per city
 Allocate action per truck decreasingly
- Restricted Expectation: Cross-evaluation of decisions in t inserted in other scenarios, highest cumulated gain
- **Subtree**: Non-anticipativity constraints in *t*, Tractable

Instances and Results

VEROLOG 2014

Th. Pirone HEC-ULg QuantOM

Outlines

Aulti-perio

Vehicle

_

Algorith

Instances and results

Robustness

Conclusions

Instances: 10 Trucks, 10-15-20-25 Cities, 150-200 Loads, 20 P Probability of availability (p_j) linked to distance or city sizes

Info		LB	EVS			UB
Inst./Alg.	O*	O*RH	EVS	Cs	ST	O ₄ *
5-15-25 A	222.0	0	73.6	80.0	79.2	100
6-15-25 A	156.1	0	78.6	90.8	89.7	100
7-15-25 A	171.0	0	57.2	68.0	70.7	100
8-15-25 A	187.3	0	54.3	13.8	53.4	100
5-15-25 B	153.1	0	57.7	61.2	81.6	100
6-15-25 B	165.7	0	55.8	42.8	60.3	100
7-15-25 B	194.7	0	56.5	60.4	61.0	100
8-15-25 B	201.4	0	86.7	60.8	100.0	100
5-15-25 C	192.4	0	64.1	53.8	78.8	100
6-15-25 C	125.9	0	62.7	78.3	88.0	100
7-15-25 C	179.2	0	63.9	49.6	70.4	100
8-15-25 C	192.0	0	47.0	20.0	63.5	100
5-20-25 A	195.1	0	63.9	45.2	65.9	100
6-20-25 A	153.8	0	52.1	54.4	74.3	100
7-20-25 A	253.9	0	38.6	32.1	44.5	100
8-20-25 A	225.7	0	7.3	-36.5	21.9	100
5-20-25 B	141.9	0	62.9	33.2	68.4	100
6-20-25 B	147.4	0	62.7	53.4	74.2	100
7-20-25 B	176.7	0	52.1	52.7	66.1	100
8-20-25 B	165.1	0	49.8	25.6	54.2	100
5-20-25 C	171.7	0	51.4	61.2	67.7	100
6-20-25 C	215.3	0	39.1	23.6	56.1	100
7-20-25 C	142.9	0	53.6	54.0	61.3	100
8-20-25 C	150.3	0	67.3	41.7	71.3	100
Average	178.4	0	56.6	46.7	67.6	100

Results analysis

VEROLOG 2014

Th. Pironet HEC-ULg QuantOM

Outlines

Multi-perio

Vehicle Assignment

_ .

Algorithr

Instances and

Robustness

Conclusions

Observations:

- High value of EVMPM
- Graphs or distributions do not seem to influence the results
- EVTI, EVPI are high on average (e.g. 78.4%, 110.7%)
- ST is mostly μ_{π^*} rarely Cs or EVS
- ST never under-performs and closes 2/3 of the gap $O_{RH}^* O_H^*$
- *EVS* performs "well" (e.g **EVSS**=+/-11%)

Robustness analysis

VEROLOG 2014

Th. Pirone HEC-ULg QuantOM

Outlines

Multi-perio

Vehicle

_ .

Algorithm

Instances and results

Robustness

Conclusio

Robustness:

forecast availabilities based on a probability p in algorithm ST^p compared with real availabilities p'

Reality/Forecast	EVS	Low	Medium	High
Alg.	EVS ⁵⁰	ST ³⁰	ST ⁵⁰	ST ⁷⁰
Reality Low 20%	23.8	55.0	48.1	20.1
Reality High 80%	60.4	67.0	84.9	87.6
Alg.	EVS ⁵⁰	ST ²⁰	ST ⁵⁰	ST ⁸⁰
Reality Medium 50%	36.4	31.9	55.1	30.2

Aim:

to be independent from distribution

Conclusions

VEROLOG 2014

Th. Pironet HEC-ULg QuantOM

Outlines

Multi-perio

Vehicle Assignmen

Bound

Aigorithn

Instances and results

Robustness

Conclusions

Conclusions

- Importance of stochastic multi-period models
- VPI, VMPM, VSS are relevant information values
- ST is the best algo and others under-perform
- § ST⁵⁰ (calibrated with a 50% availability) is robust
- ST solvable by a LP solver
- e.g Independent of graph shape, size or distribution laws

Perspectives:

- Repositioning strategy
- Investigate the VTI