"Multi-period vehicle assignment with stochastic load availability”

Y. Crama and Th. Pironet

HEC-Management School of the University of Liège

Research Group QuantOM

contact : thierry.pironet@ulg.ac.be
"Multi-period vehicle assignment with stochastic load availability"

Vehicle assignment
To maximize profit: select loads to be transported by trucks (FTL-PDP) References: W.B. Powell

Multi-period
Confirmed and projected loads provided over some periods
Repetitive decision process period per period over an horizon

Stochastic load availability
Projected loads realize or vanish
Outlines

- Multi-period information and decision framework
- The Deterministic Vehicle Assignment Problem
- Bounds
- Algorithms
- Instances and Results
- Robustness Analysis
- Conclusions
Multi-period : Rolling horizon

Decision: in \(t \) and \(t = 1, 2, \ldots, T - H \) \(\Rightarrow \) Policy

- \(t \)
- \(t+1, \ldots, t+RH \)
- \(t+RH+1, \ldots, t+H \)
- \(t+H+1, \ldots, T \)

Deterministic \quad **Stochastic** \quad **Tail**

Parts: decision, deterministic, stochastic

1. Rolling horizon \(H = 4P = 4 \) days
2. Deterministic \(RH = 1P \), Stochastic \(3P \)

Dynamism of the system:

1. Decision and actions in \(t \) (info out)
2. Roll-over 1 period, updates (info in) \(t \rightarrow t + 1 \)
 1. stochastic gets deterministic \(t + RH + 1 \rightarrow t' + RH \)
 2. new stochastic info in \(t + H + 1 \rightarrow t' + H \)
3. Go to 1 with \(t \rightarrow t + 1 \)
Vehicle Assignment Problem: Description

Full truckload selection

Data: Cities, Distances, Periods, Loads, Trucks
Actions: Carry, Wait, Move unladen
Objective function: maximize Profit (Gains-Costs)
Constraints: Space, Time, Max 1 Load per Truck

Stochastic data: Stochastic Load Availability in one period
Discrete and finite Bernoulli distribution for load L_j

$$P(q_j = x) = \begin{cases}
p_j & \text{if } x = 1 \\
1 - p_j & \text{if } x = 0 \end{cases}$$
Single scenario model

Deterministic formulation: Network flow structure

Polynomially solvable
Feasible links: time and space aggregated

<table>
<thead>
<tr>
<th></th>
<th>t-1</th>
<th>t</th>
<th>t+1</th>
<th>t+2</th>
<th>t+3</th>
<th>t+4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁ Truck 1</td>
<td>Wait</td>
<td>Wait</td>
<td></td>
<td>Wait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂</td>
<td></td>
<td></td>
<td>Wait</td>
<td></td>
<td>Wait</td>
<td></td>
</tr>
<tr>
<td>C₃</td>
<td>Carry L₁</td>
<td>Wait</td>
<td></td>
<td>Unladen</td>
<td>Wait</td>
<td>Unladen</td>
</tr>
<tr>
<td>C₄ Truck 2</td>
<td>Carry L₂</td>
<td>Unladen</td>
<td>Carry L₃</td>
<td>Wait</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specific Scenarios => Bounds

Bounds: fully revealed information scenarios

1. Myopic or a-priori policy over RH: \(O_{RH}^* \)
2. Oracle or a-posteriori policy over H: \(O_H^* \)
3. Oracle or a-posteriori solution over T: \(O_T^* \)

Stochastic problem

Expected Value Scenario => Expected Value 'Solution' \(EVS \)

Optimal policy for the stochastic problem: \(E^* \)

Maximization: \(O_T^* \geq O_H^* \geq E^* \geq EVS \geq O_{RH}^* \)

Value of information:

\(VPI : \) Value of the Perfect Information \(O_T^* - E^* \geq 0 \)
Problem: Found E^* the optimal policy
Approximate models and algorithms

Bounds: Fully revealed information

\[O^*, O_H^* \text{ (UB=100%)}, O_{RH}^* \text{ (LB=0%)} \]

Mono scenario approximation

EVS expected reward, Modal and **Optimist** (all loads)

Multiple scenario approaches: 10 to 30 scenarios

- **Consensus**: Aggregate per action in \(t \) and per city
 \[\Rightarrow \text{Allocate action per truck decreasingly} \]

- **Restricted Expectation**: Cross-evaluation of decisions in \(t \) inserted in other scenarios, highest cumulated gain

- **Subtree**: Non-anticipativity constraints in \(t \), Tractable
Instances and Results

Instances: 10 Trucks, 10-15-20-25 Cities, 150-200 Loads, 20 P
Probability of availability (p_j) linked to distance or city sizes

<table>
<thead>
<tr>
<th>Info</th>
<th>Inst./Alg.</th>
<th>O^*_T</th>
<th>LB</th>
<th>EVS</th>
<th>Cs</th>
<th>ST</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-15-25 A</td>
<td>222.0</td>
<td>0</td>
<td>73.6</td>
<td>80.0</td>
<td>79.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>6-15-25 A</td>
<td>156.1</td>
<td>0</td>
<td>78.6</td>
<td>90.8</td>
<td>89.7</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7-15-25 A</td>
<td>171.0</td>
<td>0</td>
<td>57.2</td>
<td>68.0</td>
<td>70.7</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8-15-25 A</td>
<td>187.3</td>
<td>0</td>
<td>54.3</td>
<td>13.8</td>
<td>53.4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5-15-25 B</td>
<td>153.1</td>
<td>0</td>
<td>57.7</td>
<td>61.2</td>
<td>81.6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>6-15-25 B</td>
<td>165.7</td>
<td>0</td>
<td>55.8</td>
<td>42.8</td>
<td>60.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7-15-25 B</td>
<td>194.7</td>
<td>0</td>
<td>56.5</td>
<td>60.4</td>
<td>61.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8-15-25 B</td>
<td>201.4</td>
<td>0</td>
<td>86.7</td>
<td>60.8</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5-15-25 C</td>
<td>192.4</td>
<td>0</td>
<td>64.1</td>
<td>53.8</td>
<td>78.8</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>6-15-25 C</td>
<td>125.9</td>
<td>0</td>
<td>62.7</td>
<td>78.3</td>
<td>88.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7-15-25 C</td>
<td>179.2</td>
<td>0</td>
<td>63.9</td>
<td>49.6</td>
<td>70.4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8-15-25 C</td>
<td>192.0</td>
<td>0</td>
<td>47.0</td>
<td>20.0</td>
<td>63.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5-20-25 A</td>
<td>195.1</td>
<td>0</td>
<td>63.9</td>
<td>45.2</td>
<td>65.9</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>6-20-25 A</td>
<td>153.8</td>
<td>0</td>
<td>52.1</td>
<td>54.4</td>
<td>74.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7-20-25 A</td>
<td>253.9</td>
<td>0</td>
<td>38.6</td>
<td>32.1</td>
<td>44.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8-20-25 A</td>
<td>225.7</td>
<td>0</td>
<td>7.3</td>
<td>-36.5</td>
<td>21.9</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5-20-25 B</td>
<td>141.9</td>
<td>0</td>
<td>62.9</td>
<td>33.2</td>
<td>68.4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>6-20-25 B</td>
<td>147.4</td>
<td>0</td>
<td>62.7</td>
<td>53.4</td>
<td>74.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7-20-25 B</td>
<td>176.7</td>
<td>0</td>
<td>52.1</td>
<td>52.7</td>
<td>66.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8-20-25 B</td>
<td>165.1</td>
<td>0</td>
<td>49.8</td>
<td>25.6</td>
<td>54.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5-20-25 C</td>
<td>171.7</td>
<td>0</td>
<td>51.4</td>
<td>61.2</td>
<td>67.7</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>6-20-25 C</td>
<td>215.3</td>
<td>0</td>
<td>39.1</td>
<td>23.6</td>
<td>56.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7-20-25 C</td>
<td>142.9</td>
<td>0</td>
<td>53.6</td>
<td>54.0</td>
<td>61.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8-20-25 C</td>
<td>150.3</td>
<td>0</td>
<td>67.3</td>
<td>41.7</td>
<td>71.3</td>
<td>100</td>
</tr>
<tr>
<td>Average</td>
<td>178.4</td>
<td>0</td>
<td>56.6</td>
<td>46.7</td>
<td>67.6</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Results analysis

Observations:

- High value of **EVMPM**
- Graphs or distributions do not seem to influence the results
- **EVTI, EVPI** are high on average (e.g. 78.4%, 110.7%)
- **ST is mostly** μ_{π^*} rarely Cs or **EVS**
- **ST** never under-performs and closes 2/3 of the gap

 $O_{RH}^{*} - O_{H}^{*}$

- **EVS** performs "well" (e.g. $\text{EVSS} = +/\text{-11\%}$)
Robustness analysis

Robustness :

forecast availabilities based on a probability p in algorithm ST^p compared with real availabilities p'

<table>
<thead>
<tr>
<th>Reality/Forecast</th>
<th>EVS</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg.</td>
<td>EVS^{50}</td>
<td>ST^{30}</td>
<td>ST^{50}</td>
<td>ST^{70}</td>
</tr>
<tr>
<td>Reality Low 20%</td>
<td>23.8</td>
<td>55.0</td>
<td>48.1</td>
<td>20.1</td>
</tr>
<tr>
<td>Reality High 80%</td>
<td>60.4</td>
<td>67.0</td>
<td>84.9</td>
<td>87.6</td>
</tr>
<tr>
<td>Alg.</td>
<td>EVS^{50}</td>
<td>ST^{20}</td>
<td>ST^{50}</td>
<td>ST^{80}</td>
</tr>
<tr>
<td>Reality Medium 50%</td>
<td>36.4</td>
<td>31.9</td>
<td>55.1</td>
<td>30.2</td>
</tr>
</tbody>
</table>

Aim :

to be independent from distribution
Conclusions

1. Importance of stochastic multi-period models
2. VPI, VMPM, VSS are relevant information values
3. ST is the best algo and others under-perform
4. ST^{50} (calibrated with a 50% availability) is robust
5. ST solvable by a LP solver
6. e.g Independent of graph shape, size or distribution laws

Perspectives:
1. Repositioning strategy
2. Investigate the VTI