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Abstract

The use of component analysis on fMRI data allows to extract
some interesting hidden components out of the data such as neuronal
networks. While independent component analysis (ICA) is currently
preferred in this application, we try to know whether sPCA could give
better results than ICA when applied to fMRI data by highlighting
the strengths and weaknesses of both techniques. Indeed, the neuronal
networks are mostly intrinsically very sparse and it could thus be
interesting to include explicitely this feature in the decomposition
technique.

In the experimental section we first show on simulated fMRI
data that in an ideal example of fMRI data, sPCA gives better results
than ICA when the sparsity of the networks composing the simulated
data is higher than approximately 80%. However, using the same
model it appears that sPCA seems to be less robust than ICA to some
perturbations that we can find in real fMRI data such as the motion of
the patient during acquisition of the data.

We then use real fMRI data and we design three different experi-
ments in order to evaluate the decomposition performed by both tech-
niques. In each experiment ICA gives better results than sPCA. We
can retain two important drawbacks of sPCA compared to ICA. First,
the neuronal networks extracted through sPCA appear to be more af-
fected by perturbations such as the motion of the patient, making the
extraction of neuronal components from one subject to another less ro-
bust than with ICA. Second, sPCA does not seem to be able to isolate
neuronal information in a few components only, whereas ICA does.
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1 Introduction
The topic of this master thesis is composed of two active research topics in the domain
of bioengineering and engineering. On the one hand component analysis is a powerful
mathematical tool to analyze large datasets recovering several variants, some of which
have been developed for more than a century. Through the years the approaches pre-
sented in the literature have evolved as well as applications or even nomenclature, making
their understanding not always straightforward. On the other hand the biomedical facet
of this work is the application of those techniques to the domain of neuroscience, more
particularly to functional Magnetic Resonance Imaging (fMRI).

As suggested in the acknowledgements, another student, Mr. Sunny Mahajan, already
got into this topic during an internship under Prof. R. Sepulchre’s guidance. To make a
clear separation between his work and this master thesis we explicitely mention in Ap-
pendix B the codes used in this work and written by Mr. Mahajan. The other algorithms
and results are of course personal productions unless otherwise specified.

In the first part we develop different variants of component analysis, in particular
sparse principal component analysis that has met an increasing interest in the recent
years. We try to deeply understand and clearly present the techniques and we do our best
to draw coherent parallels between them in order to build a global view of component
analysis as well as a highlight of the specificities of each technique.

The second section theoretically presents fMRI data and explains to what extent com-
ponent analysis techniques can be relevant to analyze such type of data. We try to
emphasize the features of the component analysis techniques that are desirable in this
application.

After completing the theoretical bases, the next chapters develop experimental ap-
proaches aiming to evaluate the relevance of each component analysis technique in fMRI
data analysis with a particular focus on sparse principal component analysis. In the first
part we try to keep a high level of abstraction in the experiments in order to derive the
most general conclusions. This is done by the application of the component analysis
techniques on a toy example. We then present several experiments looking for quanti-
tative results and a way to verify the relevance of the first part of the experimental section.

In the conclusion sections we highlight the main results by gathering outcomes from
the different sections and we give some ideas about future directions that could be studied.
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2 Component Analysis
Finding an optimal representation of a set of data has been a key-question for a long
time and in a very large range of domains going from economics to database treatment
or medical imaging. This optimal representation has a dual aim : reducing the dimension
of the dataset and/or finding any interesting structure hidden in the initial data.

Let us consider xi(t) a dataset with i ∈ {1, . . . ,m} and t ∈ {1, . . . , T}. This dataset
can be considered as a set of m initial random variables with T observations for each
of them. Given this dataset component analysis is looking for a better representation of
the set according to one of the aforementioned criteria. For computational reasons and
in order to build on all the results of matrix theory, the best representation is searched
among the linear transformations of the data :

yi(t) =
∑
j

wijxj(t) for i = 1, . . . , n and j = 1, . . . ,m (1)

where the wij are the coefficients that determine the linear transformation and n the
number of variables in the new space of representation. We can rewrite (1) in a matrix
form as follows :

Y(n,T ) = W(n,m)X(m,T ) (2)

where X(m,T ) is the initial dataset in a m-dimensional space, Y(n,T ) is the new represen-
tation of the dataset in a n-dimensional space with n ≤ m since we want to reduce the
dimensions of the data, and W(n,m) is the matrix that expresses the base changement
from the m to n-dimensional space.

The question is now to find an optimality criterion to determineW. Depending on the
criterion several variants of component analysis have been developped. I will here present
two familiar techniques : principal component analysis (PCA), independent component
analysis (ICA) and a more recent alternative to PCA : sparse principal component analysis
(sPCA).

2.1 Principal Component Analysis

Starting from m possibly correlated pre-centered signals in Xm,T , PCA aims to decorre-
late those signals through an orthonormal transformation1 of the initial data matrix, as

1An orthonormal tranformation is a multiplication by an orthogonal matrix



2 COMPONENT ANALYSIS 9

shown in (2). This technique also allows to reduce efficiently the dimensionality of the
data (n << m), if wanted.

Remark : Two random variables x1 and x2 are said to be uncorrelated if we have :

E{x1x2} = E{x1}E{x2} (3)

Since the data are pre-centered in this case this relation will become E{x1x2} = 0 : x1

and x2 are orthogonal. �

We must here make things clear about PCA nomenclature. The question is to know
what are the principal components in the matrix representation given in (2) : the lines
of Wn,m or the lines of Yn,T ? Some authors (see for example [7]) call the lines of Wn,m

the principal directions whereas the lines of Yn,T are called the principal components.
This vocabulary seems quite consistent with the nature of the matrices we are dealing
with. Indeed, as suggested in the first paragraph of this section the lines of Wn,m are
orthonormal, they indicate directions. However, the large majority of authors ([43],[27])
call the lines of Wn,m the principal components without really giving a name to the lines
of Yn,T . In order to use the most common terms we will adopt this nomenclature :

• The lines of Wn,m are the principal components.

• The lines of Yn,T are the principal projections.

Let us motivate the choice of the word projection. The matrix product (2) has several
interpretations. Geometrically, it can be seen [43] as a rotation and a stretching of the
initial data matrix Xm,T into Yn,T . We can also see Yn,T as the projection of Xm,T on
the n first principal components. Indeed, if we call wi, xi and yi the ith line of Wn,m, the
ith column of Xm,T and ith line of Yn,T , respectively, (2) can be rewritten as :

Yn,T =


w1

w2
...
wn

(x1 x2 · · · xT
)

=

w1x1 · · · w1xT
... . . . ...

wnx1 · · · wnxT

 (4)

Each line of Yn,T can thus be seen as the projection of the initial dataset on the cor-
responding principal component.

The dimensionality reduction has to be done while preserving as much information as
possible. Naturally, information is related to variance for sufficiently high SNR signals.
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The first principal component is thus the direction along which the data has maximum
variance. The next principal components are obtained by looking for the component,
orthogonal to all the previous principal components, along which the variance of the data
is maximum.

Thus, after centering the data vectors xi by substracting their means to simplify the
computations, the first step is to maximize the variance of the first principal projection
y1 = wT1 X. Its variance is given by :

var(y1) = E{y2
1} = E{(wT1 X)2} = wT1 E{XXT}w1 = wT1 Cxw1 (5)

where Cx is the m ×m covariance matrix of Xm,T . Since that amount increases indefi-
nitely with w1 we must impose a condition on the principal component w1 to make that
maximization problem relevant and we impose wT1 w1 = 1.

We have to maximize wT1 Cxw1 subject to wT1 w1 = 1. Using Lagrange multiplier
techniques ([27] pp.4-9) this optimization problem leads to maximize

wT1 Cxw1 − λ(wT1 w1 − 1) (6)

Taking the derivative of (6) with respect to w1 gives

(Cx − λIm)w1 = 0 (7)

where Im is the m×m identity matrix. We see from (7) that the Lagrange multiplier is
an eigenvalue of Cx related to the eigenvector w1. There are thus as many local maxima
as there are eigenvalues of Cx. The quantity to be maximized is

wT1 Cxw1 = wT1 λw1 = λwT1 w1 = λ (8)

Since we want to find the maximum value of (8), w1 must be the eigenvector of Cx

related to the highest eigenvalue of Cx. Furthermore the variance of the data expressed
by that first component is λ.

It is further shown in [27] (Chap.1) that for k > 1 the kth principal component is
wk = ek where ek is the eigenvector of Cx corresponding to the kth largest eigenvalue of
Cx, and that the variance of the data along that principal component is equal to that
eigenvalue. The rationale is the same as for the first component but it includes the ad-
ditional condition that wk must be orthogonal to all the previous components wl with
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l < k. We finally have :

max var(yk) = maxE{y2
k} = λk (9)

The first principal projection explains most of the variance in the data. Then, the kth
principal projection explains most of the variance of the data projected on the subspace
formed by the k− 1 first principal components. Keeping only the first few principal com-
ponents is thus relevant only in the case of data with a SNR high enough. Indeed, if it is
not the case the first components will account for noise and not for the signal. Here is an
example with a high SNR signal :

Figure 1: Principal components of a high SNR signal

The first principal component points along the expected informative direction and the
second one goes in the direction of noise. In this example the second component could be
omitted because it accounts for noise and does not give more information on the initial
data. This example shows us that more than just reducing the dimensionality of the data,
PCA also allows to eliminate noise. This can be done only if we know to what level of
variance a noisy component corresponds.

Finally, we can check that doing so decorrelates the data, i.e. the principal projections
are uncorrelated. Showing that amounts showing that the correlation matrix Cy (which
is equal to the covariance matrix because the data are centered) of Yn,T is diagonal :
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Cy =
1

T
YYT (10)

=
1

T
(WX)(WX)T (11)

= WCxWT (12)

And if we consider the fact that W is composed of the eigenvectors of Cx (hence the
spectral decomposition of Cx is Cx = WTDW where D is a diagonal matrix containing
the eigenvalues ofCx andW is an orthogonal matrix containing its eigenvectors), we have :

Cy = (WWT )D(WWT ) (13)
= (WW−1)D(WW−1) (14)
= D (15)

where we also used the fact that W is orthogonal.

2.1.1 Link with the singular value decomposition

The singular value decomposition is a result from matrix theory that states that any ma-
trix Xm,T can be rewritten as :

Xm,T = Um,rLr,rAT
r,T (16)

where

• U and A are orthogonal matrices, that is UTU = ATA = Ir

• L is a (r × r) diagonal ordered matrix containing the singular values

• r is the rank of X

We can thus rewrite the covariance matrix as :

Cx =
1

T
XXT = UL2UT (17)
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And by comparing this to the spectral decomposition of any real symmetric matrix
A = UΛUT where U is an orthogonal matrix whose columns are the eigenvectors of A
and Λ is a diagonal matrix containing the eigenvalues of A, we can say that the columns
of U are the eigenvectors of Cx and L contains the square roots of the eigenvalues of Cx.
The columns of U are thus the directions of the principal components and each element
of L is the standard deviation of the data along the corresponding direction.

2.1.2 Number of principal components

As explained in the introductory part of this section, it can be interesting to find d the
optimal number of principal components to be selected. As we saw in (9) we can write
E{y2

k} = λk. The variances of the different principal components are expressed by the
eigenvalues of Cx or, as shown in the previous section by the square of the singular values
of the decomposition of X, the data matrix.

Besides, the variance of the data explained by the principal components (or the sin-
gular values) often follows a characteristic curve :

Figure 2: Variance for the ordered singular values, from [32]

Based on those results, a usual way ([25] pp 129-131, [32]) to determine d is to consider
the number of components where the variance explained by the components (or value of
the singular value of the data matrix) becomes quite constant, those components will
account typically for noise. In this case d would be set at around twelve components.
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2.1.3 Pros and cons of PCA

PCA is a powerful tool in data dimensionality reduction and deals well with noise in the
case of high SNR signals. We here resume the main advantages and disadvantages of this
approach :

• The new representation is a linear combination of all the initial variables. This can
yield some difficulties in the interpretation of the results.

• PCA uses only statistical moments of order lower or equal to two. This leads to the
hypothesis that the data can be described using only those quantities (mean and
variance). This is not true in the case of non-gaussian data.

• The signal needs to have SNR high enough for the first components to describe the
directions of interest and not noise.

• PCA gives a natural ordering of the components based on the amplitude of the
variance explained.

2.2 Independent Component Analysis

Whereas PCA aims to find an uncorrelated representation of the data so that the new
variables are orthogonal, ICA seeks to find a linear transformation of the data that makes
the new variables as independent as possible.

Remark : Let us here briefly define statistical independence. Intuitively, it means that
knowing one of the two variables does not give any information on the other variable :

Figure 3: Example of independent variables (left) and dependent variables (right), from
[26]

From a mathematical point of view, considering two random variables X and Y with
fX(x) and fY (y) their probability density functions, they are said to be statistically inde-
pendent if and only if the combined variable X,Y has a joint probability density function
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fX,Y (x, y) that is factorable in fX,Y (x, y) = fX(x)fY (y). Another important property of
independent random variables X and Y is that for two functions f and g we have [26]:

E{f(X)g(Y )} = E{f(X)}E{g(Y )} (18)

If we take f(X) = X and g(Y ) = Y we see that statistical independence of two
variables implies uncorrelatedness of those variables (see equation (3) for a definition of
uncorrelatedness). �

For the ICA approach we can also start from the matrix formulation given in (2).
We will see further that ICA is not designed for dimensionality reduction, hence we can
consider m = n and write (2) as:

Y(m,T ) = W(m,m)X(m,T ) (19)

If we relate this formulation to the classical cocktail-party problem, X(m,T ) would here
be the m unknown sources, W(m,m) the unknown mixing matrix and Y(m,T ) the m ob-
servations of the microphones in the cocktail-party problem. The goal is to recover the
original signals X(m,T ) from the observations Y(m,T ) which is known as blind source sep-
aration. This can be done if we make some assumptions ([25] pp152-153) on the initial
signals :

• They are statistically independent.

• They have non-gaussian distributions.

The original signals X(m,T ) are unknown and only Y(m,T ) is known. Practically we
will thus start from Y(m,T ) to compute the independent components. If we suppose that
W(m,m) is invertible we can write :

X(m,T ) = B(m,m)Y(m,T ) (20)

where B(m,m) is the unmixing matrix and is equal to W−1. Considering (20) we may once
again clarify the nomenclature used in this section :

• The lines of X(m,T ) are the independent components.

• The lines of B(m,m) are the unmixing components.
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2.2.1 Pre-Processing

The first preprocessing step is to basically center the observed data by substracting the
mean. Once centering has been done, the second preprocessing step is whitening of the
observed matrix, or in other words making its components uncorrelated and with unity
variance. This step is done by linearly transforming the observed matrixY by a whitening
matrix V such that all the components of the whitened data matrix Ỹ are uncorrelated
and have unit variance. In other words that means that the covariance matrix of Ỹ is
equal to the identity matrix.

One method to do so is to take V = ED−
1
2ET ([25] p. 159) where E and D are

the matrices resulting from the spectral decomposition of the covariance matrix of Y :
E{YYT} = EDET . We have then :

Ỹ = VY = VWX (21)
= W̃X (22)

where W̃ is the whitened mixing matrix. We can check that the covariance matrix of the
whitened data is equal to the identity matrix :

E{ỸỸ
T} = ED−

1
2ETE{YYT}ED−

1
2ET (23)

= ED−
1
2ETEDETED−

1
2ET = I (24)

using the fact that E is an orthogonal matrix and hence ETE = I. The interest of whiten-
ing comes from the fact that the new mixing matrix W̃ is orthogonal (and thus has less
degrees of freedom) :

E{ỸỸ
T} = W̃E{xxT}W̃T

= W̃W̃
T

= I (25)

W̃ is thus an orthogonal matrix. Hence, [26], its number of degrees of freedom is led
from m2 to determine all the parameters of W in (2) to m(m− 1)/2 of W̃ in (22).

Note that (20) can be rewritten as :

X = B̃Ỹ (26)

where B̃ = BV−1 is the whitened unmixing matrix.
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2.2.2 The fastICA algorithm

There are two widely used algorithms designed to perform ICA. The first one, Infomax,
aims to maximize the information transferred from the mixed signals to the independent
signals [4]. The second one, fastICA, maximizes non-gaussianity of the components to
achieve statistical independence of the components [24]. We here describe this latter al-
gorithm.

As just mentioned, the key idea of fastICA is to maximize non-gaussianity as a mea-
sure of independence. This link intuitively comes from the central limit theorem that
states that under certain conditions the distribution of the sum of independent random
variables tends to a gaussian distribution. From there, it can be shown ([25] pp. 166-167)
that if we extract variables of the sum by maximizing their non-gaussianity we recover
in fact the independent variables. This is also why we can not consider random variables
with a gaussian distribution.

The question is now to estimate non-gaussianity. Several quantities can be used to do
this :

• Kurtosis of the random variable y is defined by

kurt(y) = E{y4} − 3E2{y2} (27)

If y has a gaussian distribution, we have kurt(y) = 0. For non-gaussian variables,
the kurtosis is in general different from zero and when it is negative, the random
variable is called subgaussian and in the other case, supergaussian.
However, the fourth power in the expression (27) makes kurtosis highly non-robust
to outliers and that’s why another measure of non-gaussianity is sometimes used.

• Negentropy is based on the notion of entropy coming from information theory. An
important result from this theory states that among all random variables of equal
variance, the gaussian variable has the largest entropy. Negentropy of y is thus
defined as the difference between the entropy (H) of a gaussian variable ygauss with
the same covariance matrix as y, and the entropy of y :

J(y) = H(ygauss)−H(y) (28)

The difficulty here comes from the computation of entropy. A usual way to approx-
imate negentropy is [26] :



2 COMPONENT ANALYSIS 18

J(y) ≈ (E{G(y)} − E{G(ygauss)})2 (29)

where G is a non-quadratic function.

Once the preprocessing steps have been done, the goal is to find the linear combination
of the data that has the highest negentropy. If we consider the formulation given in (26)
we can denote by b̃ a line of B̃. b̃ is thus what we call a whitened unmixing component
and since all the b̃ will be requested to be orthonormal, we can say that the "linear com-
bination" mentioned before is in fact a projection of the data on b̃ : b̃

T
Ỹ.

The quantity we want to maximize is J(b̃
T
Ỹ). Considering (29) we see that we are

looking for an optimum of E{G(b̃
T
Ỹ)} and as in the PCA approach, we impose a con-

dition on the whitened unmixing component b̃ : |b̃| = 1. Starting from there, using the
Kuhn-Tucker conditions [31] to solve this constrained optimization problem and then the
Newton Raphson’s method [26], we obtain the fastICA fixed-point iteration that is here
represented in a global view of the fastICA algorithm :

Algorithm 1 Global fastICA algorithm inspired from [47] and [26]
1: Centering of the data Ym,T

2: Whitening of the data
3: Random initialization of b̃
4: for each whitened unmixing component b̃i with i = 1 to m do
5: // Fixed point iteration
6: b̃i

+
= E{ỸG(b̃i

T
Ỹ)} − E{g(b̃i

T
Ỹ)}b̃;

7: Decorrelation of b̃i
+
relatively to the previous vectors

8: Normalization of b̃i
+

9: If b̃i
+
did not converge, back to step 6

10: end for
11: De-Whitening of the whitened unmixing components
12: De-Centering of the independent components

where g denotes the derivative of G and decorrelation is achieved by projecting b̃i
+
on

the subspace orthogonal to all the previous whitened unmixing components.

This detailed structure allows to answer two questions. The first one is related to a
common result used to show the difference between the ICA and the PCA approaches :



2 COMPONENT ANALYSIS 19

Figure 4: ICA vs PCA approach and whitening

On the first and the third pictures we see that the arrows match the data in the case
of ICA but not in the case of PCA. Indeed, the PCA components must be orthogonal and
this is why it is not possible for those to match such type of data. The question is then to
understand why independent component analysis allows the arrows to be non-orthogonal
(as shown before independence implies uncorrelatedness which implies othogonality for
centered data). In fact this is just because the arrows represent the unmixing compo-
nents that are not requested to be independent. However, we saw in Algorithm 1 that
the whitened unmixing components are requested to be orthogonal and that is why we
represented the central figure. Indeed, the whitened unmixing components are orthogonal
and match well the whitened signal. It is in fact the dewhitening step that allows the
unmixing components to be non-orthogonal.

The second question is related to the fact that experimentally the independent com-
ponents are sometimes non-orthogonal. And unlike the unmixing components, the in-
dependent components are supposed to be independent. This comes from the fact that
independence is achieved by maximizing non-gaussianity through high-order statistical
moments as shown in Algorithm 1. Indeed, we saw that the fixed point algorithm 1 re-
leases on two approximations. The first one is the quantification of independence through
non-gaussianity and the second one is the approximation of non-gaussianity by negentropy
expressed in (29).

The following picture shows an example of behaviour of the fastICA algorithm for two
components :
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Figure 5: Example of fastICA iterations

On the left side of this figure, the first whitened unmixing component is computed.
Since it is the first one, step 7 in algorithm 1 has no effect and after the fixed point iteration
only normalization is performed that means projection on the unit circle. On the right
side, the computations for the second whitened unmixing component are presented. The
red point is the initial random unmixing component that is immediately normalized. The
directions resulting from either the random initialization or the fixed point iteration are
first projected on the subspace orthogonal to the first whitened unmixing component
before being normalized.

2.2.3 Pros and cons of ICA

We have seen that the ICA approach has differences and complementarities with the PCA
approach. We here summarize the main advantages and drawbacks of this approach.

• Contrarily to PCA, ICA deals with data that has non-gaussian distributions.

• ICA uses high-order statistical moments to achieve independence whereas PCA uses
statistical moments of order one and two to achieve uncorrelatedness, that can be
better or not depending on the type of data and the features in the data we want
to highlight.

• FastICA does not provide the same solution for different runs because the initial-
ization is random.
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2.2.4 Limitations of ICA ?

We often read that a problematic limitation of ICA is that the components can be de-
termined only up to a multiplicative constant (see for example [25] or [26]). Indeed since
both X and W are unknown, a multiplication by a scalar of the source X could be can-
celled by a division of the corresponding column of W making impossible to determine
the variances of the different components. However, this limitation appears also in the
PCA approach and we have to impose a constraint either on X or W as explained in
section 2.1. We can do exactly the same in ICA (and fastICA does it), keeping in mind
that considering the same constraint as in PCA : wT1 w1 = 1 still allows a multiplication
of both X and W by −1.

Another limitation mentioned in [25] is that it is not possible to order the components
as in PCA. Indeed the principal components are naturally ordered based on the variance
they explain. As we have seen, the ICA algorithms do not use variance and in consequence
it is not straightforward to use variance to classify the components. However, this could
be done to measure an energy of each component (see [34]) but the question is then to
know whether this classification is relevant and this question is still open in litterature
[52]. We could for example use non-gaussianity of the components or alignment of the
independent components with the unmixing components as a classification tool.

2.2.5 The fixed point iteration

This section was written because in our efforts to better understand the fastICA algorithm
some interesting features appeared concerning the fixed point iteration.

We start from the same dataset as the one represented in figure 4. The iteration
process to obtain the two whitened unmixing components is quite the same as the one
showed on figure 5 :

Figure 6: Fixed point iteration for the data of figure 4
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However, the first component requested a high number of iterations and we can guess
a shape in this left part of figure 6. As explained on the previous example the projection
step does not change anything for the first whitened unmixing component since no com-
ponent has been determined yet. Only remain the fixed point iteration (step 6) and the
normalization step.

If we mark the outputs of step 6 with red dots, we get the next figure (the iterations
for the second component are not represented anymore) :

Figure 7: Outputs of step 6

There is definitely a link between the outputs of the fixed point iteration. Let us try
to find out which analytical formula this curve corresponds to and why.

Let us denote by Ỹ2,N the whitened data considered in this case with N the number of
points represented on figure 4. In the default configuration of fastICA, we have G(y) = y3.
The fixed point iteration (step 6 of Algorithm 1) can thus be written as :

b̃
+

=
Ỹ(b̃

T
Ỹ)3

N
− 3b̃E{(b̃T Ỹ)2} (30)

Since Ỹ has been whitened, its components are centered, orthogonal and of unit vari-
ance. Hence the following properties hold :
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1
N
E{Ỹi,.} = 0 for i = 1, 2

1
N
E{Ỹ2

i,.} = 1 for i = 1, 2

Ỹ1,. · Ỹ2,. = 0

(31)

The second property implies that 1
N
E{(b̃T Ỹ)2} = b̃

T 1
N
E{Ỹ2

i,.}b̃ = b̃
T
b̃ = |b̃|2 = 1

and we finally get :

b̃
+

=
Ỹ(b̃

T
Ỹ)3

N
− 3b̃ (32)

Since at each iteration b̃ is normalized before the fixed point iteration, this vector
points towards a point on the unit circle. We will thus rewrite (32) using polar coordi-
nates for b̃ : b̃ = (cos θ, sin θ)T :

(
b+

1

b+
2

)
=

1

N

(∑N
i=1 y1,i(y1,i cos θ + y2,i sin θ)

3∑N
i=1 y2,i(y1,i cos θ + y2,i sin θ)

3

)
− 3

(
cos θ
sin θ

)
(33)

Before developing the cubic terms, let us show that in this case we have :

1

N

N∑
i=1

y3
1,iy2,i ≈

1

N

N∑
i=1

y1,iy
3
2,i ≈ 0 (34)

We can see this on the central picture of figure 4. y1,i is the vector containing the
x-coordinates of the points and y2,i contains their y-coordinates. Since the points are
equally distributed around the two bissectors and N is quite large, we can say2 that (34)
holds. Experimentally we get a value of ≈ 0.01 allowing us to neglect those terms in our
analysis, writing (33) as :

2It is tempting to try to demonstrate (34) with the strict equality to zero using the relations (31).
In fact we can demonstrate this result for N = 3 but for N = 4 we have the following counter-example
y1,. = ( 2√

50
, −12√

50
, 6√

50
, 4√

50
) and y2,. = ( 2√

6
, 0, 2√

6
, −4√

6
) showing that (31) does not always imply (34) with

a strict equality to zero.
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(
b+

1

b+
2

)
=

(
cos3 θ 1

N

∑N
i=1 y

4
1,i + 3 cos θ sin2 θ 1

N

∑N
i=1 y

2
1,iy

2
2,i − 3 cos θ

sin3 θ 1
N

∑N
i=1 y

4
2,i + 3 sin θ cos2 θ 1

N

∑N
i=1 y

2
1,iy

2
2,i − 3 sin θ

)
(35)

=

(
cos3 θq1 + 3 cos θ sin2 θq12 − 3 cos θ
sin3 θq2 + 3 sin θ cos2 θq12 − 3 sin θ

)
(36)

=

(
cos θ((1− sin2 θ)q1 + 3 sin2 θq12 − 3)
sin θ((1− cos2 θ)q2 + 3 cos2 θq12 − 3)

)
(37)

=

(
cos θ(kurt(y1,.) + sin2 θ(3q12 − q1)
sin θ(kurt(y2,.) + cos2 θ(3q12 − q2)

)
(38)

where q1 = 1
N

∑N
i=1 y

4
1,i, q2 = 1

N

∑N
i=1 y

4
2,i, q12 = 1

N

∑N
i=1 y

2
1,iy

2
2,i and kurt(yi,.) = qi − 3 is

the kurtosis of the ith component.

If we plot the curves given in (38) on the previous picture, we get the result of figure 8 :

Figure 8: Theoretical curve and graphical interpretation of the kurtosis of the two com-
ponents

It is easy to check that the kurtosis of the first component can be read on the red stars
and the kurtosis of the second component on the green stars plotted on the right picture.
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We will stop here the investigations on that topic because it is not directly related to the
object of this master thesis. However, it could be interesting to study for example in which
conditions the assumption (34) is valid or how the kurtosis of the whitened components
Ỹi influences convergence of fastICA.

2.3 Sparse Principal Component Analysis

When considering a traditionnal PCA approach for the problem (2), the new variables
are linear combinations of all the initial variables. That makes the interpretation of the
results sometimes difficult. In response to that drawback a variant of PCA for which the
new variables are linear combinations of only few of the original ones has arisen : sparse
PCA (sPCA).

Remark : a vector a = (a1, · · · , aN) is sparse if a large number of its entries ai are
equal to zero. Note that this notion is basis-dependent. �

The notations of this section are inspired from [28] because we will use the algorithm
presented in that paper. The initial formulation of (2) is slightly different than the one
adopted for PCA and ICA and it is important to notice that when using the matlab codes
related to that article for example. In [28] the matrix formulation is in fact the transpose
of (2) :

Y(T,n) = X(T,m)W(m,n) (39)

where the columns of W are the sparse principal components (that we denote w) and the
columns of Y the principal projections.

The PCA optimization problem (5) can be rewritten [28] as :

Find w∗ = argw max
wwT≤1

wTCxw (40)

where Cx is the sample covariance matrix of the data matrix XT,m.

In the sPCA single-unit approach this optimization problem is modified and contains
a penalization term to induce sparsity in w [28] :

φl1(γ) = max
w∈Bm

√
wTCxw − γ||w||1 (41)
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where Bm is the unit ball, l1 indicates that the norm-1 of w is used (l0 is also possible,
norm-0 or cardinality of w is then used) and γ is the sparsity-controlling parameter.

In fact there are four formulations of the algorithm and hence of the optimization
problem (41) : using single-unit or block sPCA and using the l1 or l0 norm. We here
present the case of a single-unit approach using l1 norm in order to understand the sPCA
approach.

The solution of the opimization problem (41) is denoted by w∗(γ). If γ is equal to
zero, w∗ is the first principal component of the data matrix X with (a priori) no sparsity
in w∗. On the other hand, the following relation shows that if γ is too high the solution
w∗(γ) is zero :

max
w 6=0

||Xw||2
||w||1

= max
w 6=0

||
∑

iwixi||2
||w||1

≤ max
w 6=0

∑
i |wi| · ||xi||2∑

i |wi|
= max

i
||xi||2 = ||xi∗||2 (42)

Thus, if γ > ||xi∗ ||2 = γmax we have φl1(γ) < 0 for all w 6= 0 and w = 0 would then be
a better solution because in that case we have φl1(γ) = 0. So if γ = 0 we have no sparsity
in w∗ and if γ > γmax we have total sparsity in w∗ (since in that case w∗ = 0). From now
on we will thus consider 0 < γ < γmax and we see that this parameter can be adjusted to
induce more or less sparsity in w∗.

Let us come back to the optimization problem (41). This function is neither convex
nor concave. Hence, we will relax the constraints on the problem to make it convex [28] :

φl1(γ) = max
w∈Bm

||Xw||2 − γ||w||1 (43)

= max
w∈Bm

max
z∈BT

zTXw − γ||w||1 (44)

= max
z∈BT

max
w∈Bm

m∑
i=1

wi(x
T
i z)− γ|wi| (45)

= max
z∈BT

max
w̄∈Bm

m∑
i=1

|w̄i|(|xTi z| − γ) (46)

with w̄i = sign(xTi z)wi. If we fix some z ∈ BT such that |xTi z| > γ the inner maximization
problem has the following solution :
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w∗i (γ) =
sign(xTi z)[|xTi z| − γ]+√∑m

k=1[|xTk z| − γ]2+
, for i = 1, · · · ,m (47)

This formulation leads to the final optimization problem, by replacing w∗i in (46) and
then taking the square of this relation:

φ2
l1

(γ) = max
z∈ST

m∑
i=1

[|xTi z| − γ]2+ (48)

This function is convex which has two interesting consequences : first the search space
for z is lead from a T -dimensional ball to a sphere ST in a T -dimensional space and second
we can now apply efficient gradient methods to solve this problem, as explained in the
next section. Moreover, the search space is interestingly reduced in the common case
where T << m, compared to (41).

The solution x∗ of (48) induces sparsity in the component w. Indeed, considering (47)
the elements wi of w are different from zero only if |xTi z| > γ, the other elements of w
being zero. Hence, the degree of sparsity in w increases with the value of γ.

2.3.1 Algorithm for sPCA

This section presents a gradient method for maximizing a convex function on a compact
set. This method leads to the developement of an algorithm for sPCA with two steps :

1. A pattern-finding step that consists of distinguishing the entries of w that are zero
from the others

2. Considering the non-zero entries of w, performing a classical principal component
analysis on the corresponding subdata of X

The optimization problem can be written as :

f ∗ = max
y∈Q

f(x) (49)

where f is the convex function and Q the compact set. In the particular case of Q being a
sphere of radius r, it is shown in [28] that the fixed point iteration af the gradient method
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can be expressed as :

xk+1 = r
∇f(xk)

||∇f(xk)||
(50)

In our case r = 1 and the gradient method algorithm designed to determine the pat-
terns can be written :

Algorithm 2 Single-unit sPCA method with l1-penalty [28]
input : Data matrix XT,m

Sparsity-controlling parameter γ ≥ 0
Initial iterate z ∈ ST

output : A locally optimal sparsity pattern P
repeat
z =

∑m
i=1[|xTi z| − γ]+sign(xTi z)xi

z = z/||z||
until a stopping criterion is satisfied

Construct a vector P ∈ Rm such that
{
pi = 1 if |xTi z| − γ > 0
pi = 0 otherwise

Once the pattern has been filled in we have to compute non-zero entries by maximiz-
ing the variance of the initial data matrix explained by those entries, as in classical PCA.
This can be done [28] by solving the optimization problem :

(Z∗,W∗) = arg max
Z∈STn ,W∈[Sm]n

Tr(ZTXWN) (51)

where N is a diagonal matrix composed of strictly positive terms. This optimization
problem [28] has a solution in the single-unit case :

Z∗ = u (52)
W∗ = v for the non-zero entries of W∗ (53)

where u and v result from the rank one singular value decomposition of the matrix XP , a
submatrix of the data matrix X from which the columns related to the zero entries have



2 COMPONENT ANALYSIS 29

been removed. In other words we perform here classical PCA on the data, ignoring the
variables that have been judged not significant enough in the pattern-finding step.

Finally, a classical deflation scheme [28] is used to compute the following components
by ensuring that the consecutive sparse principal components are orthonormal [16].

2.3.2 Pros and cons of sPCA

The same conclusions as the one done for PCA hold here except for two points :

• The new variables are linear combinations of only few of the original variables which
simplifies interpretation.

• As in the case of ICA, different runs of this algorithm can result in different outputs
since we try to maximize a convex function and there is a random initialization step.
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3 Component analysis in fMRI data
In this section we present the theoretical background related to fMRI data and how com-
ponent analysis can be applied to such type of data.

3.1 fMRI data and BOLD signal

Functional magnetic resonance imaging (fMRI) is a widely used technique to explore the
functional behaviour of the brain. It allows to highlight regions of the brain that have
more or less neuronal activity during a task or at rest. Here is an example of raw fMRI
data obtained with a patient at rest and at the MNI coordinates3 (0,-22,-26) :

Figure 9: Example of fMRI data. Left : intensity of the signal at several points for one
time sample. Right : intensity of the signal as a funtion of time, for one point in the brain

The dimensions of the data are the following :

• 298 time samples.

• 58 ∗ 40 ∗ 46 = 106720 voxels of size 3 ∗ 3 ∗ 3 mm3.

fMRI uses the magnetic properties of an element contained in the brain : deoxyhe-
moglobin. It is known that neuronal activity is related to the blood oxygenation in the
brain [42]. In regions of high neuronal activity, the consumption of glucose and oxygen
is modified and that results in a significant change in the ratio of hemoglobin to deoxy-
hemoglobin in the local blood flow. Since those two elements have different magnetic
properties [37], it is possible to measure a signal through magnetic resonance : the BOLD
(Blood Oxygen Level Dependent) signal.

3The Montreal Neurological Institute coordinates system was designed to facilitate the comparison
between different brains. It allows to characterize the brain structures independently from their particular
sizes or global shapes.
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However, the metabolic processes related to neuronal activity seem to be quite com-
plex and the relevance of the BOLD signal is questioned by some authors [15], [29]. Others
argue that BOLD signal is sometimes affected by non-neuronal activity [1], or that the
interpretation of positive and negative BOLD responses is difficult [44].

We will thus make our analysis considering that the BOLD signal reflects satisfactorily
the neuronal activity in the brain, keeping in mind the pre-mentioned limitations.

3.2 Neuronal networks

Starting from data such as the one represented in figure 9 the idea is now to decompose
that total signal into several correlated signals called neuronal networks. [38] gives the
following definition : "neuronal networks are distant regions that share anatomical con-
nections and functional interactions". From a mathematical point of view, the total initial
data can be represented by a matrix ST,NV where T codes for the time and NV for the
3-dimensional space. Figure 9 (left) is for instance the representation of the tenth line of
S because it represents the functional activity of the patient at the 10th time sample. The
right part of this same figure is a representation of a column of S.

The global functional structure of the brain has been widely discussed but we can ex-
tract two important features to qualify its organization [51] : segragation and integration.
The first one refers to the fact that the different parts of a same network are sometimes
dispersed all over the brain whereas the latter refers to the unification of those parts.

The total signal is thus supposed to be the superposition of all the neuronal networks
(visual, sensorimotor, default mode, dorsal attentional, etc.) and noise. An example of
network, the default mode network, is shown on the following picture :

Figure 10: Default Mode network
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The default mode network has been a quite discussed topic in the recent years but it is
now agreed that this network is relevant [39],[41] and [30]. It is active when the brain is at
rest and deactivates when the brain is involved in a specific task, confirming the fact that
the energy consumption of the brain is the same whether it is involved in a task or not [40].

The sparsity of the default mode network varies among the subjects between ≈ 70%
and ≈ 80%.

3.3 Statistical tools

To perform the wanted decomposition and bring neuronal networks out of the initial data,
two categories of approaches were used. The first one needed to include prior information
on the network (correlation methods) whereas with the development of powerful algo-
rithms unsupervised methods can now be used to extract neuronal network without any
information on those networks.

3.3.1 Correlation methods

These methods compute correlation of the whole map with a specific region of the brain.
This initial region or voxel, often called seed region is delimited by a specialist. After
that, by computing the correlation of other regions of the brain across time, it is possible
to detect other regions belonging to the same network [6],[23].

3.3.2 Unsupervised methods

With the oncoming of efficient algorithms to perform different kinds of component ana-
lysis or clustering, the use of those tools was prefered because it allows to consider all
the brain when looking for networks and not only focusing on a region. Also, the use
of unsupervised methods does not request prior information on the networks we want
to study. We can mention here hierarchical clustering presented in [13], K-means [22],
principal component analysis [2], [50] or [53], independent component analysis [35],[10] or
[3] and more recently sparse principal component analysis [45] or [46].

For the component analysis techniques (PCA, ICA and sPCA), we can see it as a
decomposition4 of the initial matrix ST,NV :

ST,NV = TCT,NC ∗ CNC ,NV (54)
4This decomposition is a spatial decomposition since the lines of C represent spatial maps. We will

see in sections 3.4.1 and 4.3 that it is also possible to perform temporal decompositions.
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where T is the number of time samples, NV is the number of voxels and NC is the number
of components extracted and :

• TC is the time courses matrix, each of the NC columns is a time course

• C is the components matrix, each of the NC lines is a component (a potential
network)

We can further decompose this product in a sum of NC terms, each term being the product
of a network and its corresponding time course. This is shown on the following picture :

Figure 11: Decomposition in a sum of NC terms, from [48]

This reformulation is important because it highlights the correspondance between a
network and its time course. Indeed, we know that the frequency spectrum of the time
courses of neuronal networks have some particular properties, this will be discussed in the
next section.

Concretely, the matrix of the time courses is obtained by a matricial multiplication
between the initial signal ST,NV and the inverse5 of the components matrix CNC ,NV .

3.3.3 What is neuronal ?

When looking at the decomposition given on figure 11 it could be interesting to determine
a criteria telling whether a component is a neuronal component (due to neuronal activity)
or not. This could a priori be determined based on the spatial map or on the related time
course.

According to [21] or [5] the criteria is based on the power spectrum of the time course
related to a component. If the frequency bands between ≈ 0.01 Hz and ≈ 0.1 Hz have

5In matlab we use the function pinv() since CNC ,NV
is not a square matrix.
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high contributions the component is likely to be due to neuronal activity.

3.4 Why is ICA commonly used ?

For a few years independent component analysis has been the most used tool to study
fMRI data. Two arguments seem reasonable to explain this fact : first the ICA approach
allowed to extract easily recognizable networks and in a quite robust manner i.e. the
same networks were obtained among plenty of subjects [38]. The second is related to the
validity of two hypothesis underlying the use of ICA : the components are independent
and added linearly. These hypothesis have been shown to be relevant in the case of fMRI
data [36].

3.4.1 Spatial or Temporal independence ?

Coming back to section 2.2, we can see that the usual way to present ICA is by using
temporal ICA (TICA). It is for example the case in the cocktail-party problem where the
data matrix is composed of few signals over a large number of time samples. FastICA
then aims to maximize non-gaussianity of the lines of X as represented in (20), the inde-
pendent components. Non-gaussianity is computed for each independent component along
a temporal subscript, that is why we call this variant temporal ICA.

However, in our case we have proportionally a small number of time samples (≈ 300)
with respect to the number of voxels (≈ 100000). In order to compute independence on
the largest number of elements we will use spatial ICA (SICA) that basically just trans-
poses the data matrix :



3 COMPONENT ANALYSIS IN FMRI DATA 35

Figure 12: SICA vs. TICA inspired from [10]

3.5 Could sPCA give better results than ICA ?

In the more recent years, the sparse PCA approach has become a potential competitor
of ICA. The main reason is that the networks, such as the one shown in figure 10, are
usually intrinsically highly sparse and sPCA algorithms manage to "isolate relevant sparse
effects" [46]. Moreover, a recent paper [17] argues that ICA works well because the
"true" components are sparse and sparse vectors are often close to independance. So
ICA algorithms work well only indirectly due to the independence of the components, the
initial reason being that the components are sparse. Therefore, always according to these
authors, the algorithms used in fMRI data analysis should include sparseness as a crucial
factor.
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4 Simulation of fMRI data and decomposition
The difficulty of evaluating the results given by either sPCA or ICA algorithms on real
fMRI data comes from the fact that the true networks are unknown. Therefore, as in [8]
for example we create a toy example to simulate fMRI data and study the results given
by the algorithms knowing the true initial networks. To simplify visual analysis of the
results we consider a 2-dimensional case with the same properties as the real fMRI data :
300 time samples, and a 58*40 pixels map. As suggested in the formulation given in (54)
we build ST,NV by explicitly computing the matrix product TCT,NC ·SNC ,NV with T = 300,
NV = 58× 40 = 2320, and with four components (NC = 4).

Reexpressing this product as suggested in figure 11, our example is in fact a superpo-
sition of four components each one associated with a specific time course. The total signal
is thus composed of a cross network associated with a square time course, mimicking a
task related activation. The second network is a line following a sawtooth time course,
the third network is a corner varying with a random time course and the last network is
a disk with sinusoidal fluctuations as can be seen on the following picture :

Figure 13: Composition of the total signal
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Some noise has been added to the networks6 and we will see in a further section that
we can also simulate motion of the patient or the presence of a global physiological related
signal.

The total signal is the sum of those four networks each one following a different time
course. The classical approach was used to extract the components, either by ICA or
sPCA :

Figure 14: Approach to extract components

It is common to use PCA as a dimensionality reduction step (see for example [11], [49],
[18] or [12]) using the variance explained by the components to retain only the ones that
explain most of the variance in the initial data. Then, ICA or sPCA is used to achieve
independence of the components in the first case or to induce sparsity in the components
in the second case. The number of components is chosen manually, in this case it is nat-
urally chosen equal to four, and the analysis of the singular values can help in this choice
as explained in section 2.1.1. Note that it is also possible to determine automatically the
number of components to be selected in the dimensionality reduction step (see [14] or [9]).

4.1 Default configuration and results

Here are the characteristics of the default configuration :

• The networks are very sparse to allow an optimized result for the sPCA algorithm.

• T1, T2 and T4, the periods of the time courses represented on figure 13 are chosen such
that they guarantee the independence between the initial networks. Indeed if one
of those periods is equal to or a multiple of another period, we can experimentally

6A video of this model can be displayed by running the Matlab code toy_example (see Appendix B).
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observe that the ICA algorithm won’t work efficiently. We thus choose sufficiently
large coprime numbers T1 = 2π · 5, T2 = 2π · 7 and T4 = 2π · 13 to ensure there is
no repetition of the same template in the 300 time samples.

• The amplitudes of the default time courses are 8, 30, 10 and 8 respectively for
the four networks described in figure 13. It is to note that the amplitudes do not
influence the results of the algorithms, as long as they are significantly larger than
noise.

• A gaussian noise of mean zero and unity variance is added to each network.

• The number of components extracted in the PCA dimensionality reduction phase
is equal to the number of networks : four.

• The values of the sparsity parameters are 0.01 and norm l1 is used.

Here are the results after the different steps of the approach exposed in figure 14. If
we apply a PCA algorithm only, we obtain the following results for the four extracted
components :

Figure 15: Networks and related time courses after PCA only

If we then apply the ICA algorithm the result is the following :
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Figure 16: Networks and related time courses after PCA followed by ICA

And if we apply sPCA instead of ICA after the dimensionality reduction step we get :

Figure 17: Networks and related time courses after PCA followed by sPCA
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The results are significantly better if sPCA or ICA is applied after PCA. We can see it
clearly in the time courses : in the PCA case the square time course seems to be affected
by the sinusoidal time course and by some noise. The sinusoidal time course is also quite
noisy and the second step of the treatment must thus be done to obtain the best results.

We will now focus our attention on the comparison between the ICA and sPCA algo-
rithms. By comparing the last two figures, we can see two main differences between the
two approaches :

1. The sPCA algorithm seems to eliminate noise whereas the independent components
are still noisy. The pattern-finding step of sPCA probably allowed to set the values
of unsignificant voxels to zero, removing noise from those voxels.

2. The sinusoidal time course is still very noisy and affected by other perturbations in
the ICA case whereas the same time course with the sPCA approach is very close
to the initial one.

In this case, sPCA gives better results than ICA from a qualitative point of view.
But the question is now to find a way to compare quantitatively the results. Several
techniques are exposed in [8] and [17] such as the use of the Kullback-Leibler divergence
to evaluate the independence of the resulting components, or the comparison between the
true mixing matrix and the algorithms estimated mixing matrices. Since this toy example
is quite simple, we choose to compare the resulting time courses. This technique is both
computationally efficient and allows an easy comparison of two time courses. Concretely
the steps to compare two time courses TCa and TCb are the following :

Algorithm 3 Compare TCa and TCb
TCa,b = TCa −mean(TCa,b)

TCa,b =
TCa,b

norm(TCa,b)

D2 = (abs(TCa) − abs(TCb))2 // Due to the limitations of ICA we have to consider
both TCa − TCb and TCa + TCb, hence we use abs()
return D

Dr. P. Geurts proposed another measure of distance : D′ = min(TCa − TCb, TCa +
TCb). This measure is better than D because it allows to deal with more complex time
courses such as a comparison between sin(x) and |sin(x)|. However, in this case D and
D′ are equivalent and give the same results.
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In the default configuration, we have the following results7 to compare ICA and sPCA
for varying values of the width of the simulated networks and after averaging over six
simulations :

Figure 18: Measure of the quality of the reconstruction in the default configuration

For comparison, a sparseness of 90% is used in this section and that gives the results
presented in figures 16 and 17.

We can see that the error on the reconstruction is a decreasing function of sparseness
for the sPCA algorithm, which means that the quality of reconstruction is the best when
the networks are the sparsest. On the other hand, in the case of ICA the reconstruction
seems less linked to the sparseness of the networks. For high sparseness of the networks
(greater than ≈ 80%) the sPCA approach gives better results whereas for networks with
less sparsity ICA is better.

4.2 Sensitivity analysis

We are now studying the impact of the variation of some parameters on the quality of the
reconstruction. The results are to be compared with the default configuration results.

7Note that the random time courses are not compared, and the other distances are computed as the
distance to the nearest initial time course. There are thus in each case three distances considered to
obtain the measure of the error on the reconstruction.
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4.2.1 Presence of a perturbation

In the fMRI data acquisition, the data are often noised by motion of the patient. We tried
here to simulate motion during the acquisition by adding a component that has the same
amplitude on the whole map and which time course is composed by successive peaks. In
this case we get :

Figure 19: Measure of the quality of the reconstruction in the case of a perturbed signal

Even in the case of high sparseness of the networks, sPCA gives worse results than
ICA which seems less affected than sPCA. We can see this by looking at the interval of
sparseness of the networks for which sPCA gives better results than ICA in the default
configuration and in this case. Here this interval is between 82% and 88% whereas it is
between 78% and 95% in the default configuration. sPCA reconstruction seems thus less
robust to the perturbation than ICA.

4.2.2 Overdecomposition

In the default configuration there are four networks and we are looking for four networks.
In the case of real data we don’t know the number of networks. We simulated here the
case of overdecomposition, that is the algorithms seek for more components (five) than
there are (four) :
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Figure 20: Measure of the quality of the reconstruction in the case of overdecomposition

In this case, sPCA seems affected even for networks with very high rates of sparseness
whereas ICA keeps better results. This latter fact is probably due to fastICA automat-
ically reducing the dimensionality of the data if the singular value corresponding to the
component is too low (see section 2.1.2). The number of components extracted with ICA
is thus equal to four, avoiding overdecomposition. We can also note that surprisingly the
quality of the reconstruction increases when sparsity decreases in the case of sPCA.

4.2.3 Underdecomposition

The opposite case is when the algorithms are looking for less components (three) than
there are (four) :

Figure 21: Measure of the quality of the reconstruction in the case of Underdecomposition
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In the case of high sparseness of the networks sPCA deals well with underdecomposi-
tion. In fact it separates correctely two out of the four networks and mixes the last two
networks in the last sparse principal components. In some cases (90% of sparseness), it
even omits the less significant network (according to the amplitude) and keeps the three
other networks. On the other hand ICA seems to mix more generally the components
even at quite high levels of sparseness.

4.2.4 Simulation of a global signal

A part of the total BOLD signal is composed of fluctuations over the whole brain : the
global signal [20]. This signal is characterized by low frequency fluctuations and a high
mean and can be simulated by a function of the form :

GS = A1 + A2 sin(2πft) (55)

with A1 >> A2 and a small f .

In order to get rid of this signal we can apply two techniques :

1. Substract the mean over each line from the initial data [20].

2. [33] suggested that this could also be done by ignoring the first principal component
obtained in the decomposition represented in figure 14 for the further processing.

Those two techniques were tested on our example :

Figure 22: Comparison of two techniques used to remove a global signal
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The results from ICA are once again significantly better than the ones given by sPCA.
Moreover, substracting the mean seems more or less equivalent to removing the first prin-
cipal component for both ICA and sPCA.

4.2.5 Amplitude of noise

We here show the influence of the amplitude of noise on the reconstruction processes. We
considered the case of a sparseness giving similar results for ICA and sPCA : 95%.

Figure 23: Measure of the quality of the reconstruction as a function of noise

Both algorithms deal with noise in the same way, the error increasing slightly with
noise.

4.3 Isolating the perturbation

We have seen in section 3.4.1 that independence had to be achieved within the spatial
components. In the case of sPCA, it seems natural to induce sparsity in the spatial com-
ponents.

However, we have seen in section 4.2.1 that the presence of a perturbation deteriorates
the decomposition of both sPCA and ICA techniques. The perturbation being composed
of some peaks it is very sparse in time. The question is thus here to see whether sPCA
could be used in order to induce sparsity in the time domain. Doing so could allow to
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isolate the perturbation and possibly to remove it from the initial data matrix.

We use the actual motion of a patient to simulate the perturbation that is introduced
in the same way as presented in section 4.2.1 and we get :

Figure 24: Spatial (left) and temporal (right) sparsity

The results are not very different. One can verify that there is slightly more sparsity in
the time course represented on the right side of the picture. However, the spatial map as-
sociated to that time course still mixes with the other components and makes the removal
of the motion component a difficult issue. This topic would need a specific attention and
since it is not directly related to our master thesis we will let it as a future direction to
explore.

4.4 Determining the number of components

As explained in section 2.1.1, it is possible to have an estimation of the number of com-
ponents based on the values of the singular values. Let us just here show what we get in
this ideal case :
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Figure 25: Evolution of the singular value as a function of the number of the component

We clearly see that in this case there are four networks to be extracted from the data.
Unfortunately, we will see that with real data the conclusions are not so clear anymore.

4.5 Independence of the components

In this section we compute the kurtosis of the components as defined in (27) before and
after treatment by the algorithms in the default case with a sparseness of the networks of
90% as shown on figures 13,15,16 or 17. After centering and normalizing all the compo-
nents we get the following results :

Algorithm \Network Line Cross Disk Corner
True networks 3.11 7.12 46.56 139.88
PCA 3.04 7.08 35.87 112.94
PCA+ICA 3.02 7.08 44.53 134.85
PCA+sPCA 3.11 7.21 46.64 139.98

Table 1: Kurtosis of the components in several cases

We can see that the kurtosis of the components after PCA+sPCA is the highest. That
comes from the fact that sPCA, more than finding the right networks, also eliminates noise
allowing higher values in the network patterns after normalization. This results in an in-
crease of the fourth power term in the definition of kurtosis (27). Noise also seems to be
the reason why kurtosis is higher in the sPCA results than for the true networks.

ICA also gives good results, increasing the kurtosis of each component compared to
PCA except for the line. This is probably due to the fact that fastICA uses another
measure of independence than kurtosis.
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5 Applications
We here first define the methodology adopted in each of the three following experiments.
We then present those experimentations that aim to verify the results of the toy example
analysis exposed in the previous section.

To make things clear we summarize in the following tab the patients and software that
are used in the three experiments :

Experiment Number of patients Software used
Analysis of a "half brain"
patient

1 Matlab 7.0 for the computational
part and BrainVoyager Viewer 1.8
for the display of the results

Extracting the default mode 5 Controls and 2 LIS pa-
tients (and the 9 patients of
the next experiment for fi-
gure 37)

Matlab 7.0 for the computational
part and BrainVoyager Viewer 1.8
for the display of the results

From fMRI to PET 9 Matlab 7.0 and SPM5 for both
the computation and the display
of the results

Table 2: Patients and software in the three experiments

5.1 Methodology

We follow the classical scheme presented in figure 14 and the approach presented in sec-
tion 3.1 but adapted to the dimensionality of real fMRI data. In this case, we have :

• NV = 40× 46× 58 = 106720.

• T = 298 time samples at a sampling rate of 2 seconds, the highest detectable
frequency is thus 0.25 Hz.

• The number of components is fixed at NC = 30.

This last value is motivated by the singular value decomposition of the data matrix.
The values of the singular values associated to the components are represented on the
following graph :
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Figure 26: Values of the singular values of the components

The choice of NC = 30 seems to be a reasonable tradeoff between computational effi-
ciency and considering most of the variance in the retained data. This choice also gives
good experimental results.

We mentioned the issue of removing the global signal in section 4.2.4 and presented
two solutions. Let us present here why it is important to remove this signal properly. It
is important to first introduce the neuronal coefficient.

As explained before, each extracted component is related to a time course and we saw
in section 3.3.3 that the power spectrum analysis theoretically allows to say whether a
component is due to neuronal activity. A typical power spectrum of a time course related
to a principal component is given on the following picture :
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Figure 27: Typical power spectrum

The bars represent the contributions of the signal in each frequency band. The neu-
ronal coefficient, that we denote η, is based on the values of A,B,C,D and E and Dr. A.
Soddu proposed the following definition :

η =
B + C

A+D + E
(56)

If η is greater than a certain value, the component can be considered to be neuronal.
In fact, the different frequency bands can be associated to different phenomena :

• A is the low frequency band which, as explained in section 4.2.4 can be associated
to the global signal.

• E is the high frequency band, typically corresponding to vascular noise.

• B, C and even D can be considered as the neuronal contributions even if B and
D are at the boarders with A and E and thus also contain some contribution of
the phenomena expressed in A and E. It seems that E is more affected than B
which explains why B is at the numerator in equation (56) whereas D is at the
denominator.
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Let us now come back to the problem of removing the global signal. Here is the typical
time course and power spectrum of a global signal :

Figure 28: Typical global signal

The amplitude of the time course is huge and the signal is quite constant. Hence it
is normal to get the power spectrum represented on the right part of the figure. Indeed
if we suppose that the time course is constant : x[n] = C and of length N , we get the
following relation to express the power spectrum φ(k) of the time course :

φ(k) = |
N−1∑
n=0

x[n] exp(
−2πi

N
kn)|2 for 0 ≤ k ≤ N (57)

=

{
|
∑N−1

n=0 C|2 if k = 0

C2|
∑N−1

n=0 exp(−2πi
N
kn)|2 for 1 ≤ k ≤ N

(58)

=

{
N · C2 if k = 0

C2|1−exp(−2πi
N

kN)

1−exp(−2πi
N

k)
|2 = 0 for 1 ≤ k ≤ N

(59)

The only non-zero value of the power spectrum is in k = 0 and that non-zero value is
high (N ≈ 300 and C ≈ 100000). Hence the power spectrum has a very high contribution
in the low frequency band. This contribution is so high that it perturbes the analysis of
the time courses of all the components obtained with sPCA or ICA because the first band
contribution is very high and the other contributions are nearly irrelevant. We give for



5 APPLICATIONS 52

example here the power spectrum of all the components in the case of a PCA followed by
a sPCA treatment :

Figure 29: Impact of the removal of the global signal

We can see on the right part of this figure that nearly all the components are affected
by the presence of the global signal and that the removal of this signal allows to highlight
the other features of the components, making the computation of η more relevant. Ap-
pendix A.1 provides the time courses corresponding to those power spectra.

We mentioned in section 4.2.4 two ways to remove the global signal : removing the
mean from the initial fMRI data or removing the first principal component once PCA has
been performed [33]. Those methods experimentally showed to be more or less equivalent
in the case of our model. However, experimentally the latter seems to better favour the
expression of the neuronal frequency bands. We thus choose to get rid of the first principal
component in order to remove the global signal. Concretely, here are the steps that we
follow in order to derive the proper ICA and sPCA components and related time courses
:

1. Removal of the first principal component (drop the first line of the principal com-
ponents matrix).

2. Application of ICA and sPCA on that modified matrix.

3. As explained in section 3.3.2 the time courses are obtained by multiplying the initial
data matrix with the inverse of the components matrix. In order to compute the
correct time courses related to the ICA or sPCA components we have to remove
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the contribution of the first principal component in the initial fMRI data. This
contribution is equal to the product between the first principal component and its
related time course. The computation of the modified total signal is mathematically
expressed by :

S∗T,NV = ST,NV − TC
PC1
T,1 ∗ C

1
1,NV

(60)

where C1 and TCPC1 are the first principal component and its related time course,
respectively.

4. Computation of the time courses matrix related to the ICA and sPCA components :

TCT,NC−1 = S∗T,NV ∗ C
−1
NC−1,NV

(61)

5.2 Analysis of a "half brain" patient

The only tool we have up to now to determine if a component is neuronal or not is the
analysis of the power spectrum of the time course related to that component. However,
we had the opportunity to get the data coming from a patient whose brain is active only
in the right hemisphere. In that case we have another tool to determine whether a com-
ponent is neuronal or not. Indeed, the neuronal components are those that show activity
only in the right hemisphere. If a component shows activity all over the brain for example,
that component is certainly related to a non-neuronal source. Here is an example of a
neuronal component for this patient :

Figure 30: Neuronal component of the "half brain" patient

In this experiment we follow the scheme represented in figure 14 and the steps given
in the previous methodology section to extract the components with ICA and sPCA. The
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idea is to underline some properties of the power spectrum of the time courses related to
neuronal activity and in particular to check the validity of the neuronal coefficient η.

In order to quantify asymmetry of the components, we introduce the asymmetric coef-
ficient χ defined by:

χ =
R− L
R + L

(62)

where R (L) denotes the sum of the absolute values of the voxels located in the right
(left) hemisphere of the brain. Based on those two coefficients η and χ we can place each
component on a map for ICA and for sPCA :

Figure 31: Neuronal maps of the components with ICA and sPCA

Those results are not very concluding. Indeed, we expected the neuronal components
according to one criteria to be neuronal according to the other. Here it is obviously not
the case : the components with the largest asymmetric coefficient χ does not have the
largest neuronal coefficients η (see for example component 1 or 19 in the ICA map or 20
in the sPCA map).



5 APPLICATIONS 55

By visual inspection of the power spectra of the components and the components
themselves we had the idea to introduce a new version of the neuronal coefficient defined
by :

η′ =
C

A+B +D + E
(63)

If we use this variant of the neuronal coefficient we get the following maps :

Figure 32: Neuronal maps of the components with ICA and sPCA and the new variant
of the neuronal coefficient

The dispatching of the components on these maps are more satisfactory. The com-
ponents with the highest neuronal coefficients are effectively the ones with the highest
asymetric coefficients and η′ thus seems to be a more reliable measure of the "neurona-
lity" of a component. In this case components 7 and 19 with ICA and 17 and 20 with
sPCA are neuronal. If we look only to η′ which is the only criteria we can rely on to
measure "neuronality" of the components in the case of regular brains, ICA seems to
draw a better separation between neuronal and non-neuronal components. In particular,
we can see this at the range of values taken by the neuronal coefficient. This range is
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significantly wider in the case of ICA than sPCA.

However the trap in introducing the new neuronal coefficient was to overfit the data
in order to have a proper separation of the maps presented in figure 32. In fact when
looking for a new version of η we imposed ourselves to find a very easy new formulation
and the one presented in equation (63) appeared naturally. For example we did not try
to change the bounds of the frequency bands which probably could have improved the
separation between the neuronal and non-neuronal components.

In conclusion this new formulation of η gives good results in this case but we will have
to test this new formulation in other configurations to confirm this.

5.3 Extracting the default mode

As in the toy example presented in the previous section, we will here try to extract a
neuronal network from fMRI data. Following the scheme presented in figure 14 we want
to extract the default mode (see figure 10) from some patients and evaluate the quality of
the extracted network. The data used in this experiment consist of five control patients
and two Locked-In Syndrom (LIS) patients’ fMRI. The LIS patients moved a lot but still
present a default mode and the interest is thus to see how both techniques deal with the
motion of those patients.

The difficulty here is that we do not know what the real default mode exactly looks
like even if this network was highlighted with the use of ICA in several studies (see [39]
or [30]). We do not want here to compare the results obtained with sPCA to the ones
obtained with ICA because we do not know a priori which decomposition technique is the
best.

First, both techniques are used on the control data in order to build an average tem-
plate of the default mode by averaging the five default modes that have been extracted.
Afterwards, the default modes are extracted from the LIS-patients data and we compare
those default modes to the average templates as shown here :
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Figure 33: Scheme of the experiment

We have seen in section 2.2 that the networks extracted by ICA could be multiplied by
−1. Then, we take the absolute values of the values in each voxel to derive the average.
This is the reason why there is only one color on the resulting templates.

Taking the average8 euclidean distance between the default mode templates and the
LIS-patients default modes we have :

Algorithm \Patient MJ-LIS DD-LIS
sPCA 282 273
ICA 244 203

Table 3: Distances between the DM templates and the LIS-patients’ DMs

The results are thus significantly better in the case of ICA than in the case of sPCA.
Since the LIS patients moved a lot, we could explain this result at the light of figure 19
where we showed that sPCA seemed less robust than ICA to motion perturbations.

Using the average default mode just computed, we build a map similar to the ones pre-
sented on figures 31 and 32 with the neuronal coefficient η on the y-axis but on the x -axis
instead of the assymetric coefficient χ we defined δ as the euclidean distance between a
component and the average default mode template presented at the center of figure 33 for
both ICA and sPCA. Plotting the 29 components of a control subject on such a map, we

8Average over different runs of the decomposition.
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expect to find the neuronal components high on the graph and the default mode should
be both high on the map (high η) and on the left of the map (low δ). Here is what we
get for both ICA and sPCA in the case of a representative control :

Figure 34: Dispatching map according to δ and η for ICA (left) and sPCA (right)

We can see that the separation along the horizontal axis is much better in the case of
ICA. That means that the default mode is extracted in one component with ICA whereas
in sPCA several components can be labelled as default mode according to δ. This seems
to show that the spatial decomposition of ICA is better than the decomposition performed
by sPCA. We can compare this result to the one presented on figure 20 in section 4.2.2
that concludes that sPCA deals worse with overdecomposition than ICA does. Moreover,
the absolute value of η for the components supposed to be neuronal is much higher for
ICA (at least for components 19 and 24), meaning that ICA is more able to extract neu-
ronal information.

It could also be interesting to look at the power spectra (PS) of the time courses
related to the default modes. As we explained in section 3.3.3 the neuronal components
have higher contributions in the frequency band going from ≈ 0.01 Hz to ≈ 0.1 Hz. We
compute the average power spectrum of the default modes extracted from the controls
and we compare it to those of the LIS-patients and with the average power spectrum of
the controls over all the components for ICA :
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Figure 35: Comparison of the power spectra for ICA : average power spectrum (PS) over
all the components (left), average PS of the default mode (center) and PS of the default
mode of a LIS patient (right)

And for sPCA :

Figure 36: Comparison of the power spectra for sPCA : average power spectrum (PS)
over all the components (left), average PS of the default mode (center) and PS of the
default mode of a LIS patient (right)

First, we can see that the average PS over all the components is equivalent in both
cases. Moreover, for both ICA and sPCA the second and third bars in the graphs, that
account for neuronal activity, have higher contributions than in the average power spec-
trum. However, the average PS of the default modes show different features. In the case
of sPCA, the highest frequency band corresponding to vascular noise is still present. As
we explained in section 3.3.3, this band does not contain neuronal information and this
is clearly a bad point for sPCA. That means that sPCA seems to be less able than ICA
to extract neuronal information out of the components.

In this experiment we use five control patients. We will now use the nine subjects
of the next experiment to compute more reliable statistical quantities about the default
modes. As explained in section 5.4 below, the data of that section have not exactly the
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same features than in this experiment and that is the reason why we did not use those
results in a comparison with the LIS patients of this experiment. However, the compari-
son of the ICA vs sPCA extraction of the default modes is relevant in this section. Here
is thus the average and standard deviation of the default modes extracted by ICA and
sPCA for the nine subjects used in the next experiment :

Figure 37: Comparison of the extraction of the DMs with ICA and sPCA

The observations concerning the means are the same as the ones done about figures
35 and 36. Moreover, the standard deviations of the contributions in each frequency band
are significantly greater in the case of sPCA, showing that sPCA seems more unstable in
extracting the default mode. This seems to confirm constancy of the extracted networks
with ICA, which precisely was a reason of its success [38].

In conclusion we can note two trends outlined with this experiment :

1. ICA seems more robust to motion and environment changes than sPCA. In the
case of motion and overdecomposition this point is supported by the simulation of
a perturbation in the toy example.

2. Considering the contributions of each frequency band in all the power spectrum
graphs suggests that ICA is more able to extract neuronal information whereas the
neuronal components extracted by sPCA also include high frequency noise.

However we can have some reservations about the small number of patients used in
this experiment that does not allow to verify the underlined trends.
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5.4 From fMRI to PET

PET or positron emission tomography is a 3D nuclear medicine imaging technique that
allows to study the functional processes in a specific region. When the brain is the organ
that is studied, this method allows to localize the precise regions of the brain where glu-
cose is consumed and thus reflects metabolic activity in a reliable way, more reliable than
fMRI. However, the delay needed to get a whole PET map is quite important and does
not allow to have the temporal precision requested to perform studies such as a power
spectrum analysis of a time course.

This experiment requested to acquaint us with the SPM (Statistical Parametric Map-
ping) software. This is a powerful tool to analyze fMRI or PET maps but we had to
transpose our codes in this new environment.

In this section we select the neuronal components in the classical decomposition per-
formed either by ICA or sPCA. Then, starting from those components we build up a
map, the model map, supposed to reflect the neuronal activity of the patient. We finally
compare it to the PET map of the patient as explained on the following scheme :

Figure 38: Methodology to compare the model map and the PET map

The steps to build the model map are deliberately not detailed because it will be soon
the object of a publication by Dr. A. Soddu. However, we can discuss some parameters
of the building of the model map. We selected the neuronal components based on the
analyses of their power spectra and using the neuronal coefficient η defined in equation
(56).

If we sort the components according to η, the first one being the one with the highest
neuronal coefficient, it could be interesting to see how good the model is correlated to the
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PET map when the number of selected components varies. The following picture shows
the link between number of components and quality of the model map :

Figure 39: Correlation between the model map and the PET map for ICA and sPCA, as
a function of the number of selected components

This graph gives a lot of information about the content of the different components.
Considering the curve obtained using ICA, the fact that there is a maximum at around
six9 components is important. That means that up to that component, adding a compo-
nent improves the model map and we can thus suppose that the neuronal information is
concentrated in the first components, as expected. On the contrary the sPCA curve is a
monotonous increasing function. That seems to show that there is still neuronal informa-
tion in the further components and that the sPCA approach does not allow to isolate the
neuronal information wheras ICA does. Appendix A.2 provides the same curve for two
other subjects, leading to quite the same conclusions.

Here is a sagital view of the model map obtained using ICA compared to the PET map :

9This number varies between ≈ 6 and ≈ 12 for most of the nine subjects, see Appendix A.2.
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Figure 40: Comparison between the PET map (left) and the Model map (right)

The result is quite satisfactory and in this case we have a correlation10 of 94%.

Let us now consider the other variant of the neuronal coefficient, η′, to order the com-
ponents. If we build the model map based on this ranking, we get the following results
for the relation between the number of components used to build the model map and the
quality of that map:

Figure 41: Correlation between the model map and the PET map for ICA and sPCA
using η′, as a function of the number of selected components

The global shape of the curve is the same as the one presented in figure 39 but one
10The correlation is computed as defined for the default configuration of the function corr() in Matlab,

that is with the Pearson’s correlation defined by ρX,Y = cov(X,Y )
σXσY

where σ denotes the standard variation
of the random variables X and Y .
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detail must retain our attention. The third component for the ICA construction and with
the use of η is clearly not neuronal since the quality of the contruction decreases if we
consider that component to build the model (see figure 39, upper curve). On the other
hand the third component selected using η′ seems to be neuronal since in that case the
function increases until the sixth component and than decreases. Hence the separation
between neuronal and non-neuronal components seems to be better when using η′ rather
than η. However this difference does not result in a difference of the maximum correlation
using η or η′, which is quite surprising.

This experiment tends once again to show that ICA is better than sPCA in extract-
ing the neuronal information out of the total data. The argumentation holds on two
observations :

• The curves presented on figures 39 and 41 both present a maximum in the case
of ICA showing that the first components ordered according to η or η′ account for
neuronal activity and the last ones does not. The curves obtained with sPCA on
the contrary are always increasing when adding components, meaning that each
component adds neuronal information to the model and that the separation be-
tween neuronal and non-neuronal components does not allow to isolate neuronal
information.

• Not very surprisingly with respect to the first point, the absolute value of the quality
of the model map (or correlation with the PET map) is better for the ICA curves
and for every number of components.

Here is finally a table representing the correlation between the model map and the
PET map with the optimal number of components for ICA and the same number for
sPCA, for eight other subjects and using η. This result confirms the last point of the
argumentation that we just developed :

Algorithm \Subject 1 2 3 4 5 6 7 8
Correlation between the maps (%)

sPCA 82.1 90.4 91.6 92.0 93.0 91.8 91.4 91.8
ICA 84.5 91.8 93.4 93.7 93.6 92.9 92.2 93.9

Table 4: Maximum correlation between the maps for ICA and sPCA
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6 Future Directions and questions
In the previous sections we presented simulations and experiments that allowed us to ad-
dress the very topic of this master thesis : what are the fundamental features of sPCA in
general and as a tool to analyze fMRI data. We also presented several results allowing to
compare sPCA to ICA. This whole work raised questions and sometimes led to conceive
new trails that could be interesting to explore.

In this section we develop some of those topics and possible improvements that we
believe could be further studied.

6.1 Increasing the number of subjects

In our experiments we use from one to nine subjects. This allows us to give a good idea
of the qualitative and quantitative behaviour of sPCA and ICA. However, increasing the
number of subjects could improve the quality of some statistical results given in the ap-
plication section. For example, the mean default mode represented in figures 35 and 36
is obtained by averaging over five default modes, making this template quite uncertain
(high variance). In particular, we were not able to classify correctly the default modes
among the components using K-means, a basic classification algorithm.

More generally, increasing the number of subjects might allow to use machine learning
as a tool to select the neuronal components.

6.2 Improving the model

The model presented in section 4 can of course be improved. This could be done for ex-
ample through simulating more realistic time courses rather than sawtooth or sinusoidal
time courses. Realistic time courses would allow to analyze their power spectra, which
was not relevant in our model.

However, it seems that realistic time courses (hence more complex) should be analyzed
and compared with another technique than the one used in this master thesis (euclidean
distance between the true and the extracted time course). Some authors presented other
tools (see [8] or [17]) that might allow a richer interpretation of the results.
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6.3 Distribution of the values of η

The results shown on figures 31 and 32 show a certain distribution of the values of η for
each component, the highest values of η resulting in a high probability for the component
to be neuronal. Using the nine subjects of the experiment presented in section 5.4, we
compute the distribution of the values of η for either ICA or sPCA among all the subjects
and components. Our expectation is here to be able to build a model, such as a gaussian
mixture model for example (see [19]) of the distribution of the values of η for both the
neuronal and the non-neuronal components. Here is the distribution we get for ICA11 and
η :

Figure 42: Distribution of the values of η and η′

Let us remark that the y-axes do not have the same scales because since the interval
of variation of η is larger than the one of η′ the interval of constant width in both graphs
are proportionnaly wider in the case of η′ and thus contain more elements. Besides, there
does not seem to be a clear separation in any of the graphs.

If we suppose that it could be relevant to classify the components in two categories
based on the value of the neuronal coefficient we can try to model those distributions
by the mixture of two gaussians using an expectation maximization algorithm ([19] and
Appendix B for the Matlab code). Here are the models in both cases :

11We choose ICA because as explained before the range of values of η is wider in the case of ICA
compared to sPCA.
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Figure 43: Modeling the distributions of the values of η and η′ with two gaussians

Up to a scaling factor the results are quite the same. If we suppose that the gaussians
correctly model the distributions of η for neuronal and non-neuronal components, we can
remark a substantial overlapping between the gaussians that could explain why it is dif-
ficult to discern the neuronal component from the other based on η (or η′). Let us finally
note that the algorithm used to compute the model did not find any result when looking
for a model with three or four gaussians.

We can retain three questions and remarks out of those first elements :

• Is it reasonable to consider that η allows to split the data into only two categories?
Indeed, even if η was built to highlight the "neuronality" of the components, this
does not mean that in fact η does not separate the components according to some
other criteria.

• Why did the algorithm [19] not find a solution for three or four gaussians? Is there
a statistical property of the data that could explain this result?

• It could be interesting to perform the same kind of analysis with more subjects in
order to have more reliable results.

In conclusion, if we take some precautions this approach could lead to a better under-
standing of the separation between neuronal and non-neuronal components performed by
a specific decomposition technique.
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6.4 Improving sPCA ?

One of the main drawbacks of sPCA compared to ICA seems to be its non-robustness to
some perturbations. A first step to address this problem could be to characterize more
precisely what kind of perturbation is the cause of this non-robustness. If it is possible to
isolate some features that cause sPCA to be non robust, it might be possible to take this
feature into account in the formulation of the sPCA optimization problem by modifying
(41).

Moreover, we can expect a good choice of the sparsity parameter γ to improve the
results of the sPCA algorithm. Our choice was to set values of the sparsity parameters
lower than γmax (see comments of equation (42)) in order to obtain non-zero solutions
but we did not further tune the parameters. This choice was motivated by the fact that
fastICA is also tunable through the function G for example and we did not want to pro-
mote a decomposition technique over the other. It could thus be interesting to compare
the results of optimally tuned versions of both ICA and sPCA algorithms.

Another way to address the problem of non-robustness to overdecomposition of sPCA
highlighted in figure 34 could also be to decrease the number of components selected in
the dimensionality reduction step.
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7 Conclusions
The conclusions of this master thesis are multiple. From a personal point of view I dis-
covered a new way of addressing problems, of learning, of searching. The fact that we
have a lot of time to work on our master thesis allows to deepen some topics and to have
a better understanding of the underlying theories. This is important and allows us to
make our own vision of the problems, to build the problems from their beginning instead
of just trying to solve them.

After giving some ideas of future trails that could be explored in the previous section
we now present the concrete results of the master thesis.

In the theoretical part we give a global view of component analysis, drawing parallels
between the different techniques whereas the link between those concepts is often unclear
because done too fast, without satisfying explanation. One key to do so was to adopt
a constant and clear nomenclature in each case. Moreover, the exploratory theoretical
section 2.2.5 gives a geometrical link between the statistical properties of the independent
components and the structure of the fixed point iteration, perhaps allowing a better un-
derstanding of fastICA.

In the second part of this master thesis, our model of fMRI data presented in section
4 can be used to verify experimental results. In particular, the results presented in figure
19 seem to confirm the ones of section 5.3 : sPCA seems less robust to motion pertur-
bations than ICA and the results of the simulation exposed in section 4.2.2 also seem to
confirm the higher sensibility of sPCA to overdecomposition presented in the comments
of figure 34. The first result of the simulations, with the default parameters (figure 18)
confirms the expectations expressed in [17] for example : sPCA gives better results when
the networks are very sparse. Hence, sPCA could give good results in the extraction of
neuronal network in some ideal configurations (without perturbation). However, most of
the results of the simulations including some kind of perturbation (motion, overdecom-
position, presence of a global signal) tend to show that ICA is globally more robust than
sPCA to those perturbations (figures 19, 20, and 22).

In the experiments of the last section, the formulation of a new neuronal coefficient in
equation (63) seems to give better results and to be more relevant. Two elements support
this argument : the separation of the components of the "half brain" patient presented
in figure 32 using η′ is clearly better than the separation using η presented at figure 31
and in the building of the model map of section 5.4, all the first components increase the
quality of the model map when sorted with η′ (figure 41) whereas this is not the case with
η (figure 39).
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In addition to the global non-rubustness of sPCA compared to ICA already mentioned,
the other main result of this last section is that sPCA seems to be less able than ICA to
isolate neuronal information. We can mention three results of the experimental section as
arguments. First, when extracting the default modes in section 5.3, we saw that the av-
erage power spectrum of the default modes extracted with sPCA contains a much higher
vascular noise contribution (frequency band E) than in the case of ICA (figures 35 and
36). The second result is obtained in the experiment with the "half brain" patient data
(section 5.2) : on the figures 31 and 32 representing the dispatching of the components ei-
ther using η or η′ we can see that the level of threshold value that separates neuronal from
non-neuronal components is much higher in the case of ICA than in the case of sPCA.
That means that the neuronal components extracted with ICA contain more neuronal
information, are more "neuronal" than the ones extracted with sPCA. The last result is
the quality of the model map built using ICA or sPCA : as explained in section 5.4 in the
comments of figures 39 and 41, the fact that for each sPCA component the add of this
component improves the quality of the model map seems to show that there is neuronal
information in most of the components, hence neuronal information is not gathered in
few components as in the case of ICA.

As a final conclusion, we can say that even if conceptually sparsity is an interesting
feature to incorporate to the decomposition techniques, sPCA seems to be non-robust to
the perturbations inherent to experimental fMRI data and less able to extract and gather
neuronal information in a few components, compared to ICA.
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Appendices
A Additional figures

A.1 Time courses of the components

Figure 29 shows the effect of removing the first principal component on the power spectra
of the time courses of the components for one subject : LA. Here are the time courses of
the same components without the removal of the first principal component :

Figure 44: Time courses of the sPCA components

And with the removal of the first principal component :
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Figure 45: Time courses of the sPCA components after removal of the first principal
component

Similar graphs can be obtained by running Rem_TC_PS on the other subjects.

A.2 Quality of the model map for other subjects

In the last experimental section we presented the quality of the model map as a function
of the number of components used to build the model map (see figure 39). Here are the
curves for two other subjects and using η.
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Figure 46: Correlation between the maps as a function of the number of selected compo-
nents

We can see that the first sPCA components seem to contain more neuronal informa-
tion than the ICA components. However, when more components are selected ICA gives
a better model map than sPCA, as in all the other subjects. In this case there seems to
be approximately ten neuronal components.

We finally show the case of a decomposition where the correlation for the ICA curve
is oscillating, which seems to indicate a decomposition of lower quality :

Figure 47: Correlation between the maps as a function of the number of selected compo-
nents
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B List of matlab codes and additional data
On the additional electronic support we furnish the data of one patient from each of the
three experiments as well as the Matlab saves related to those patients. "LA_CONTROL"
and "DD_LIS" are a control and a LIS patient of the second experiment (section 5.3),
"MF_MCS" is the data related to the "half brain" patient (section 5.2) and "BL" con-
tains the data related to one subject of the last experiment (section 5.4). Note that only
the initials of the patients’ names are available.

We now give a list of the Matlab codes used in each section and for each experiment.
Those codes are also included in the additional electronic support.

Section or Ex-
periment

Name Description

Component
Analysis

GPower Computation of PCA and sPCA (author see
[28]).

fastica, whitenv,
fpica, remmean,
pcamat

Computation of fast ICA (author see [25]).

fpicaM Modified version of fpica in order to be able
to follow the trajectory of the fixed point it-
eration, look for w_rand for the changes.

show_trajectory Shows the trajectory of the fixed point iter-
ation. (Figures 5, 6, 7 and 8).

PCA_comprehension Application of PCA on a toy example and
comparison with ICA. (Figure 4).

ICA_comprehension Example of ICA decomposition.
Toy Example toy_example Construction of the fMRI data model and

computation of ICA and sPCA decomposi-
tions. (Figures 13, 15, 16 and 17).

t_e_analysis Analysis of the quality of a decomposition.
t_e_analysis_next Uses toy_example1 and

toy_example_analysis to compute the
quality of the decomposition as a function
of a varying parameter. (Figures 18 and all
the figures of section 4.2).

t_e_remove_motion Attempts to extract the motion from the ini-
tial data. (Figure 24).

compute_kurtosis Computes the kurtosis.
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Analysis of a
"half brain"
patient

MCS Computes the ICA and sPCA analysis of the
"half brain" patient.

Correlation_neur Computes the positions of the extracted
components on a map as presented on figures
31 and 32.

Methodology freq_analysis Highly inspired from Mr. Mahajan’s
publish5bandPS code. Allows to compute
the power spectrum of a given time course.

Rem_TC_PS Based on the results of Extract_DM1 and
Extract_DM1_rem_1st (see codes just be-
low), gives the power spectra and time
courses of each component for a subject.
(Figures 29, 44 and 45).

Extracting the
default mode

Extract_DM1 Computes ICA and sPCA decompositions on
the five controls and two LIS patients and
compares the default modes properties.

Ex_DM1_rem_1st Same as Extract_DM1 with the first principal
component that has been removed. (Figures
35 and 36).

Final_DM Computes the average and standard devia-
tions of the DMs of the nine subjects pre-
sented in figure 37.

From fMRI to
PET

load_nii, make_nii,
save_nii

Allows to deal with nii files. Downloaded
from MatlabCentral website, author : Jimmy
Shen.

Final_init Loads the nii data (3D) and performs lin-
earization.

Final_treatment Performs the ICA and sPCA decompositions
on the data.

Final_for,
Final_to_pet,
Final_mask

Not furnished because contains information
about a future publication of Dr. A. Soddu.
Computes the model map and the results of
figures 39, 40 and 41.
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Future direc-
tions

em_1dim Computes a mixture of gaussians model
based on the expectation maximization
principle (see [19]). Downloaded from
Aquaphoenix website, Matlab, Lecture 10.

Final_Gaussian Computation of the mixture of gaussians
models for the results of figure 42. (Figure
43).

Codes written
by Mr. S. Ma-
hajan and used
in this thesis

vtc2matrix,
vtcMoveToAHP,
writeVMP,
createvmpfromvector,
inflateMatX3

Allows to import and export data from Mat-
lab to formats that are readable with Brain-
Voyager Viewer and conversely.

publish5bandPS Computes the power spectrum of a given
time course.

Table 5: List of Matlab codes


