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Multilabel classification Random forest
(;:1ven a set of n Samples of jnput_output pajrg ((gj@7 yz) - (X X y))?:b a Super\/jsed 1earnjng Randomized trees are built on a bootstrap COpY of the Samples by fGCUISiVGly maximizing
task is defined as searching for the function f : X — Y in a hypothesis space that minimizes the reduction of impurity, here the variance Var. At each node, the best split is selected
some loss function over the joint distribution of input-output pairs. among k randomly selected features.
In multi-label classification, y* is a subset of the label space Y of size p.
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If each label corresponds to a wikipedia article, then
we have around 4 million labels.

High dimensional output space ) is a bottleneck of random forest

Tree growing algorithm requires the computation of the sum of the variance

RN » over the label space
Easy to have a very high number of labels. . . . at each tree node and

» for each candidate split.

Solution Multi-output regression trees in randomly projected output space

Methods Experiments
We propose to approximate the computation of the variance by using random projection of [.abel ranking average precision to assess performance
the output space.
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that for all pairs of points the Jonhson-Lindenst 1 hold h 1 .\
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(1 —€) Var ((yi)?zl) < Var ((bei)?zl) < (1+¢€) Var ((yz)?zl) - f applied to 2', 14 is a d-dimensional row vector of ones. Higher score if true labels have a
higher probability (score) than the false labels.

: — :
Single tree FEnsemble of randomized trees P |
| N Delicious” dataset (983 labels, 100 trees, k = /p, no pruning)
1. Randomly project the output space Shared subspace Individual subspace C , ,
_ & - Randomly projecting the output space reduces computing time of random forest from 3458
Y (2. Dy (o Dy L (D seconds (no projection) to 311 seconds (m = 25, Gaussian individual subspace) without
X _ X o X . .
/<Z ! |’ =1 ’| =1 accuracy degradation.
.| 2. Grow the tree on the projected output space 0.205,
(2, !
Y )i=1 0.378]
- 0.200}
| 0.375}
3. Label leaves using (y")!_, 0195 N
S < 0.372|
= 0.190] -
0.369}
0.185} Random forest
. B . . Decision tree 0.366 | Random forest on Gaussian subspace (Algo 2)
Blas Varlance aﬂalySIS Decision tree on Gaussian subspace (Algo 2) Random forest on fix-Gaussian subspace (Algo 1)
Averaging over the learning set LS, algorithm randomization € and output subspace ran- .-— —_—
domization ®, the square error Err of t multi output tree models can be decomposed " "
nto: (a) Decision tree performance converges with m = 200 (b) Faster convergence with ensemble of randomized
Single shared subspace (AlgO 1) Gaussian random output projections trees on individual output space (m = 25).
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If the additional computational burden needed to generate a different random projection for O T
each tree is not problematic, then individual subspace should always be preferred to single "
shared subspa,ce. (c) Sparse random projection output sub-space yield
better average precision than on the original output
space.
Conclusion Systematic analysis on 24 datasets Output randomization could be more
3 : effective than input randomization.
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