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Multilabel classification

Given a set of n samples of input-output pairs ((xi, yi) ∈ (X ×Y))ni=1, a supervised learning
task is defined as searching for the function f : X → Y in a hypothesis space that minimizes
some loss function over the joint distribution of input-output pairs.
In multi-label classification, yi is a subset of the label space Y of size p.

Input X 800× 600 pixel Output Y labels

This image can be labelled with “car”,“person”,
“mountain”, but not with “house” or “elephant”.

If each label corresponds to a wikipedia article, then
we have around 4 million labels.

Random forest

Randomized trees are built on a bootstrap copy of the samples by recursively maximizing
the reduction of impurity, here the variance Var. At each node, the best split is selected
among k randomly selected features.
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High dimensional output space Y is a bottleneck of random forest

Easy to have a very high number of labels. . . →
Tree growing algorithm requires the computation of the sum of the variance
• over the label space
• at each tree node and
• for each candidate split.

Solution Multi-output regression trees in randomly projected output space
Methods

We propose to approximate the computation of the variance by using random projection of
the output space.

Theorem
Given ε > 0, a sample (yi)ni=1 of n points y ∈ Rd, and a projection matrix Φ ∈ Rm×d such
that for all pairs of points the Jonhson-Lindenstrauss lemma holds, we have also

(1− ε) Var
(
(yi)ni=1

)
≤ Var

(
(Φyi)ni=1

)
≤ (1 + ε) Var

(
(yi)ni=1

)
.

Single tree
1. Randomly project the output space

Φ
yi

=

2. Grow the tree on the projected output space
(xi,Φyi)ni=1

3. Label leaves using (yi)ni=1

Ensemble of randomized trees
Shared subspace Individual subspace

(xi,Φyi)ni=1 (xi,Φ1yi)ni=1 (xi,Φ2yi)ni=1

Bias-variance analysis
Averaging over the learning set LS, algorithm randomization ε and output subspace ran-
domization Φ, the square error Err of t multi output tree models can be decomposed
into:
Single shared subspace (Algo 1)

ELS,Φ,εt{Err(f1(x;LS,Φ, εt))} = σ2
R(x) + B2(x) + VLS(x) + VAlgo(x)

t
+ VProj(x).

Individual subspace (Algo 2)

ELS,Φt,εt{Err(f2(x;LS,Φt, εt))} = σ2
R(x)︸ ︷︷ ︸

residual error
+B2(x)︸ ︷︷ ︸

bias
+VLS(x) + VAlgo(x) + VProj(x)

t︸ ︷︷ ︸
variance

.

If the additional computational burden needed to generate a different random projection for
each tree is not problematic, then individual subspace should always be preferred to single
shared subspace.

Conclusion

• Lower computing time, without affecting accuracy.
• Optimizing input and output randomization could improve prediction performance.

Source code is available @ github.com/arjoly.

Future work

Develop efficient technique to adjust random output space parameters so to reach the best
accuracy and computing time trade-off.

Experiments

Label ranking average precision to assess performance

LRAP(f̂ ) = 1
|TS|

∑
i∈TS

1
|yi|

∑
j∈{k:yik=1}

|Lij(yi)|
|Lij(1d)|

, with Lij(q) =
{
k : qk = 1 and f̂ (xi)k ≥ f̂ (xi)j

}
where f̂ (xi)j is the probability (or the score) associated to the label j by the learnt model
f̂ applied to xi, 1d is a d-dimensional row vector of ones. Higher score if true labels have a
higher probability (score) than the false labels.

“Delicious” dataset (983 labels, 100 trees, k = √p, no pruning)
Randomly projecting the output space reduces computing time of random forest from 3458
seconds (no projection) to 311 seconds (m = 25, Gaussian individual subspace) without
accuracy degradation.
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Decision tree
Decision tree on Gaussian subspace (Algo 2)

(a) Decision tree performance converges with m = 200
Gaussian random output projections
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Random forest
Random forest on Gaussian subspace (Algo 2)
Random forest on fix-Gaussian subspace (Algo 1)

(b) Faster convergence with ensemble of randomized
trees on individual output space (m = 25).
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Random forest
Random forest on random output subspace (Algo 2)

Random forest on sparse Rademacher (s=
√
d ) subspace (Algo 2)

Random forest on sparse Rademacher (s=3) subspace (Algo 2)

(c) Sparse random projection output sub-space yield
better average precision than on the original output
space.

Systematic analysis on 24 datasets
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(100 trees, no pruning, k = √p)

Output randomization could be more
effective than input randomization.
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Random forest
Random forest on Gaussian subspace (Algo 2) with m= 1
Random forest on Gaussian subspace (Algo 2) with m= 7
Random forest on Gaussian subspace (Algo 2) with m=14

Drug-interaction dataset
(1554 labels, 100 trees, no pruning)

github.com/arjoly

