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Abstract. We adapt the idea of random projections applied to the out-
put space, so as to enhance tree-based ensemble methods in the context
of multi-label classification. We show how learning time complexity can
be reduced without affecting computational complexity and accuracy of
predictions. We also show that random output space projections may be
used in order to reach different bias-variance tradeoffs, over a broad panel
of benchmark problems, and that this may lead to improved accuracy
while reducing significantly the computational burden of the learning
stage.

1 Introduction

Within supervised learning, the goal of multi-label classification is to train mod-
els to annotate objects with a subset of labels taken from a set of candidate
labels. Typical applications include the determination of topics addressed in a
text document, the identification of object categories present within an image,
or the prediction of biological properties of a gene. In many applications, the
number of candidate labels may be very large, ranging from hundreds to hun-
dreds of thousands [2] and often even exceeding the sample size [12]. The very
large scale nature of the output space in such problems poses both statistical
and computational challenges that need to be specifically addressed.

A simple approach to solve multi-label classification problems, called binary
relevance, is to train independently a binary classifier for each label. Several
more complex schemes have however been proposed to take into account the
dependencies between the labels (see, e.g. [28,19,9,33,10,39]). In the context of
tree-based methods, one way is to train multi-output trees [4,18,23], ie. trees
that can predict multiple outputs at once. With respect to single-output trees
[7], the score measure used in multi-output trees to choose splits is taken as
the sum of the individual scores corresponding to the different labels (e.g., vari-
ance reduction) and each leaf is labeled with a vector of values, coding each
for the probability of presence of one label. With respect to binary relevance,
the multi-output tree approach has the advantage of building a single model
for all labels. It can thus potentially take into account label dependencies and



reduce memory requirements for the storage of the models. An extensive experi-
mental comparison [25] shows that this approach compares favorably with other
approaches, including non tree-based methods, both in terms of accuracy and
computing times. In addition, multi-output trees inherit all intrinsic advantages
of tree-based methods, such as robustness to irrelevant features, interpretabil-
ity through feature importance scores, or fast computations of predictions, that
make them very attractive to address multi-label problems. The computational
complexity of learning multi-output trees is however similar to that of the bi-
nary relevance method. Both approaches are indeed O(pdn log n), where p is the
number of input features, d the number of candidate output labels, and n the
sample size; this is a limiting factor when dealing with large sets of candidate
labels.

One generic approach to reduce computational complexity is to apply some
compression technique prior to the training stage to reduce the number of out-
puts to a numberm much smaller than the total number d of labels. A model can
then be trained to make predictions in the compressed output space and a pre-
diction in the original label space can be obtained by decoding the compressed
prediction. As multi-label vectors are typically very sparse, one can expect a dras-
tic dimensionality reduction by using appropriate compression techniques. This
idea has been explored for example in [19] using compressed sensing, and in [10]
using bloom filters, in both cases using regularized linear models as base learners.
This approach obviously reduces computing times for training the model. At the
prediction stage however, the predicted compressed output needs to be decoded,
which adds computational cost and can also introduce further decoding errors.

In this paper, we explore the use of random output space projections for large-
scale multi-label classification in the context of tree-based ensemble methods. We
first explore the idea proposed for linear models in [19] with random forests: a
(single) random projection of the multi-label vector to anm-dimensional random
subspace is computed and then a multi-output random forest is grown based on
score computations using the projected outputs. We exploit however the fact
that the approximation provided by a tree ensemble is a weighted average of
output vectors from the training sample to avoid the decoding stage: at training
time all leaf labels are directly computed in the original multi-label space. We
show theoretically and empirically that whenm is large enough, ensembles grown
on such random output spaces are equivalent to ensembles grown on the original
output space. When d is large enough compared to n, this idea hence may
reduce computing times at the learning stage without affecting accuracy and
computational complexity of predictions.

Next, we propose to exploit the randomization inherent to the projection of
the output space as a way to obtain randomized trees in the context of ensem-
ble methods: each tree in the ensemble is thus grown from a different randomly
projected subspace of dimension m. As previously, labels at leaf nodes are di-
rectly computed in the original output space to avoid the decoding step. We
show, theoretically, that this idea can lead to better accuracy than the first idea
and, empirically, that best results are obtained on many problems with very low



values of m, which leads to significant computing time reductions at the learn-
ing stage. In addition, we study the interaction between input randomization (à
la Random Forests) and output randomization (through random projections),
showing that there is an interest, both in terms of predictive performance and
in terms of computing times, to optimally combine these two ways of random-
ization. All in all, the proposed approach constitutes a very attractive way to
address large-scale multi-label problems with tree-based ensemble methods.

The rest of the paper is structured as follows: Section 2 reviews properties
of multi-output tree ensembles and of random projections; Section 3 presents
the proposed algorithms and their theoretical properties; Section 4 provides the
empirical validations, whereas Section 5 discusses our work and provides further
research directions.

2 Background

We denote by X an input space, and by Y an output space; without loss of
generality, we suppose that X = Rp (where p denotes the number of input
features), and that Y = Rd (where d is the dimension of the output space). We
denote by PX ,Y the joint (unknown) sampling density over X × Y.

Given a learning sample
(
(xi, yi) ∈ (X × Y)

)n
i=1

of n observations in the form
of input-output pairs, a supervised learning task is defined as searching for a
function f∗ : X → Y in a hypothesis space H ⊂ YX that minimizes the expec-
tation of some loss function ` : Y ×Y → R over the joint distribution of input /
output pairs: f∗ ∈ argminf∈HEPX ,Y {`(f(x), y)} .

NOTATIONS: Superscript indices (xi, yi) denote (input, output) vectors of
an observation i ∈ {1, . . . , n}. Subscript indices (e.g. xj , yk) denote components
of vectors.

2.1 Multi-output tree ensembles

A classification or a regression tree [7] is built using all the input-output pairs
as follows: for each node at which the subsample size is greater or equal to a
pre-pruning parameter nmin, the best split is chosen among the p input features
combined with the selection of an optimal cut point. The best sample split
(Sr, Sl) of the local subsample S minimizes the average reduction of impurity

∆I((yi)i∈S , (y
i)i∈Sl

, (yi)i∈Sr
) = I((yi)i∈S)−

|Sl|
|S|

I((yi)i∈Sl
)−|Sr|
|S|

I((yi)i∈Sr
).

(1)

Finally, leaf statistics are obtained by aggregating the outputs of the samples
reaching that leaf.

In this paper, for multi-output trees, we use the sum of the variances of the
d dimensions of the output vector as an impurity measure. It can be computed



by (see Appendix A, in the supplementary material1)

Var((yi)i∈S) =
1

|S|
∑
i∈S
||yi − 1

|S|
∑
i∈S

yi||2, (2)

=
1

2|S|2
∑
i∈S

∑
j∈S
||yi − yj ||2. (3)

Furthermore, we compute the vectors of output statistics by component-wise
averaging. Notice that, when the outputs are vectors of binary class-labels (i.e.
y ∈ {0, 1}d), as in multi-label classification, the variance reduces to the so-
called Gini-index, and the leaf statistics then estimate a vector of conditional
probabilities P (yj = 1|x ∈ leaf), from which a prediction ŷ can be made by
thresholding.

Tree-based ensemble methods build an ensemble of t randomized trees. Un-
seen samples are then predicted by aggregating the predictions of all t trees.
Random Forests [6] build each tree on a bootstrap copy of the learning sample
[6] and by optimising the split at each node over a locally generated random
subset of size k among the p input features. Extra Trees [17] use the complete
learning sample and optimize the split over a random subset of size k of the p
features combined with a random selection of cut points. Setting the parameter
k to the number of input features p allows to filter out irrelevant features; larger
nmin yields simpler trees possibly at the price of higher bias, and the higher t
the smaller the variance of the resulting predictor.

2.2 Random projections

In this paper we apply the idea of random projections to samples of vectors
of the output space Y. With this in mind, we recall the Johnson-Lindenstrauss
lemma (reduced to linear maps), while using our notations.

Lemma 1. Johnson-Lindenstrauss lemma [20] Given ε > 0 and an integer n,
let m be a positive integer such that m ≥ 8ε−2 lnn. For any sample (yi)ni=1 of n
points in Rd there exists a matrix Φ ∈ Rm×d such that for all i, j ∈ {1, . . . , n}

(1− ε)||yi−yj ||2 ≤ ||Φyi−Φyj ||2 ≤ (1+ ε)||yi−yj ||2. (4)

Moreover, when d is sufficiently large, several random matrices satisfy (4)
with high probability. In particular, we can consider Gaussian matrices which
elements are drawn i.i.d. in N (0, 1/m), as well as (sparse) Rademacher matrices
which elements are drawn in

{
−
√

s
m , 0,

√
s
m

}
with probability

{
1
2s , 1−

1
s ,

1
2s

}
,

where 1/s ∈ (0, 1] controls the sparsity of Φ [1,24].
Notice that if some Φ satisfies (4) for the whole learning sample, it obviously

satisfies (4) for any subsample that could reach a node during regression tree
growing. On the other hand, since we are not concerned in this paper with the
‘reconstruction’ problem, we do not need to make any sparsity assumption ‘à la
compressed sensing’.
1 static.ajoly.org/files/ecml2014-supplementary.pdf



3 Methods

We first present how we propose to exploit random projections to reduce the com-
putational burden of learning single multi-output trees in very high-dimensional
output spaces. Then we present and compare two ways to exploit this idea
with ensembles of trees. Subsection 3.3 analyses these two ways from the
bias/variance point of view.

3.1 Multi-output regression trees in randomly projected output
spaces

The multi-output single tree algorithm described in section 2 requires the com-
putation of the sum of variances in (2) at each tree node and for each candidate
split. When Y is very high-dimensional, this computation constitutes the main
computational bottleneck of the algorithm. We thus propose to approximate
variance computations by using random projections of the output space. The
multi-output regression tree algorithm is modified as follows (denoting by LS
the learning sample ((xi, yi))ni=1):

– First, a projection matrix Φ of dimension m× d is randomly generated.
– A new dataset LSm = ((xi, Φyi))ni=1 is constructed by projecting each learn-

ing sample output using the projection matrix Φ.
– A tree (structure) T is grown using the projected learning sample LSm.
– Predictions ŷ at each leaf of T are computed using the corresponding outputs

in the original output space.

The resulting tree is exploited in the standard way to make predictions: an
input vector x is propagated through the tree until it reaches a leaf from which
a prediction ŷ in the original output space is directly retrieved.

If Φ satisfies (4), the following theorem shows that variance computed in
the projected subspace is an ε-approximation of the variance computed over the
original space.

Theorem 1. Given ε > 0, a sample (yi)ni=1 of n points y ∈ Rd, and a projection
matrix Φ ∈ Rm×d such that for all i, j ∈ {1, . . . , n} condition (4) holds, we have
also:

(1− ε)Var((yi)ni=1) ≤ Var((Φyi)ni=1) ≤ (1 + ε)Var((yi)ni=1). (5)

Proof. See Appendix B, supplementary material.

As a consequence, any split score approximated from the randomly projected
output space will be ε-close to the unprojected scores in any subsample of the
complete learning sample. Thus, if condition (4) is satisfied for a sufficiently
small ε then the tree grown from the projected data will be identical to the tree
grown from the original data2.
2 Strictly speaking, this is only the case when the optimum scores of test splits as
computed over the original output space are isolated, i.e. when there is only one
single best split, no tie.



For a given size m of the projection subspace, the complexity is reduced
from O(dn) to O(mn) for the computation of one split score and thus from
O(dpn log n) to O(mpn log n) for the construction of one full (balanced) tree,
where one can expect m to be much smaller than d and at worst of O(ε−2 log n).
The whole procedure requires to generate the projection matrix and to project
the training data. These two steps are respectively O(dm) and O(ndm) but they
can often be significantly accelerated by exploiting the sparsity of the projection
matrix and/or of the original output data, and they are called only once before
growing the tree.

All in all, this means that when d is sufficiently large, the random projection
approach may allow us to significantly reduce tree building complexity from
O(dtpn log n) to O(mtpn log n+ tndm), without impact on predictive accuracy
(see section 4, for empirical results).

3.2 Exploitation in the context of tree ensembles

The idea developed in the previous section can be directly exploited in the
context of ensembles of randomized multi-output regression trees. Instead of
building a single tree from the projected learning sample LSm, one can grow a
randomized ensemble of them. This “shared subspace” algorithm is described in
pseudo-code in Algorithm 1.

Algorithm 1 Tree ensemble on a single shared subspace Φ
Require: t, the ensemble size
Require: ((xi, yi) ∈ (Rp × Rd))ni=1, the input-output pairs
Require: A tree building algorithm.
Require: A sub-space generator
Generate a sub-space Φ ∈ Rm×d;
for j = 1 to t do

Build a tree structure Tj using ((xi, Φyi))ni=1;
Label the leaves of Tj using ((xi, yi))ni=1;
Add the labelled tree Tj to the ensemble;

end for

Another idea is to exploit the random projections used so as to introduce
a novel kind of diversity among the different trees of an ensemble. Instead of
building all the trees of the ensemble from a same shared output-space projection,
one could instead grow each tree in the ensemble from a different output-space
projection. Algorithm 2 implements this idea in pseudo-code. The randomization
introduced by the output space projection can of course be combined with any
existing randomization scheme to grow ensembles of trees. In this paper, we will
consider the combination of random projections with the randomizations already
introduced in Random Forests and Extra Trees. The interplay between these
different randomizations will be discussed theoretically in the next subsection



by a bias/variance analysis and empirically in Section 4. Note that while when
looking at single trees or shared ensembles, the size m of the projected subspace
should not be too small so that condition (4) is satisfied, the optimal value of m
when projections are randomized at each tree is likely to be smaller, as suggested
by the bias/variance analysis in the next subsection.

Algorithm 2 Tree ensemble with individual subspaces Φj
Require: t, the ensemble size
Require: ((xi, yi) ∈ (Rp × Rd))ni=1, the input-output pairs
Require: A tree building algorithm.
Require: A sub-space generator

for j = 1 to t do
Generate a sub-space Φj ∈ Rm×d;
Build a tree structure Tj using ((xi, Φjy

i))ni=1;
Label the leaves of Tj using ((xi, yi))ni=1;
Add the labelled tree Tj to the ensemble;

end for

From the computational point of view, the main difference between these
two ways of transposing random-output projections to ensembles of trees is that
in the case of Algorithm 2, the generation of the projection matrix Φ and the
computation of projected outputs is carried out t times, while it is done only
once for the case of Algorithm 1. These aspects will be empirically evaluated in
Section 4.

3.3 Bias/variance analysis

In this subsection, we adapt the bias/variance analysis carried out in [17] to
take into account random output projections. The details of the derivations are
reported in Appendix C (supplementary material).

Let us denote by f(.; ls, φ, ε) : X → Rd a single multi-output tree obtained
from a projection matrix φ (below we use Φ to denote the corresponding random
variable), where ε is the value of a random variable ε capturing the random
perturbation scheme used to build this tree (e.g., bootstrapping and/or random
input space selection). The square error of this model at some point x ∈ X is
defined by:

Err(f(x; ls, φ, ε))
def
= EY |x{||Y − f(x; ls, φ, ε})||2},

and its average can decomposed in its residual error, (squared) bias, and variance
terms denoted:

ELS,Φ,ε{Err(f(x;LS,Φ, ε))} = σ2
R(x) +B2(x) + V (x)



where the variance term V (x) can be further decomposed as the sum of the
following three terms:

VLS(x) = VarLS{EΦ,ε|LS{f(x;LS,Φ, ε)}}
VAlgo(x) = ELS{EΦ|LS{Varε|LS,Φ{f(x;LS,Φ, ε)}}},
VProj(x) = ELS{VarΦ|LS{Eε|LS,Φ{f(x;LS,Φ, ε)}}},

that measure errors due to the randomness of, respectively, the learning sample,
the tree algorithm, and the output space projection (Appendix C, supplementary
material).

Approximations computed respectively by algorithms 1 and 2 take the fol-
lowing forms:
– f1(x; ls, ε

t, φ) = 1
t

∑t
i=1 f(x; ls, φ, εi)

– f2(x; ls, ε
t, φt) = 1

t

∑t
i=1 f(x; ls, φi, εi),

where εt = (ε1, . . . , εt) and φt = (φ1, . . . , φt) are vectors of i.i.d. values of the
random variables ε and Φ respectively.

We are interested in comparing the average errors of these two algorithms,
where the average is taken over all random parameters (including the learning
sample). We show (Appendix C) that these can be decomposed as follows:

ELS,Φ,εt{Err(f1(x;LS,Φ, εt))}

= σ2
R(x) +B2(x) + VLS(x) +

VAlgo(x)

t
+ VProj(x),

ELS,Φt,εt{Err(f2(x;LS,Φt, εt))}

= σ2
R(x) +B2(x) + VLS(x) +

VAlgo(x) + VProj(x)

t
.

From this result, it is hence clear that Algorithm 2 can not be worse, on the
average, than Algorithm 1. If the additional computational burden needed to
generate a different random projection for each tree is not problematic, then
Algorithm 2 should always be preferred to Algorithm 1.

For a fixed level of tree randomization (ε), whether the additional random-
ization brought by random projections could be beneficial in terms of predictive
performance remains an open question that will be addressed empirically in the
next section. Nevertheless, with respect to an ensemble grown from the original
output space, one can expect that the output-projections will always increase the
bias term, since they disturb the algorithm in its objective of reducing the errors
on the learning sample. For small values of m, the average error will therefore
decrease (with a sufficiently large number t of trees) only if the increase in bias
is compensated by a decrease of variance.

The value of m, the dimension of the projected subspace, that will lead
to the best tradeoff between bias and variance will hence depend both on the
level of tree randomization and on the learning problem. The more (resp. less)
tree randomization, the higher (resp. the lower) could be the optimal value of
m, since both randomizations affect bias and variance in the same direction.



4 Experiments

4.1 Accuracy assessment protocol

We assess the accuracy of the predictors for multi-label classification on a test
sample (TS) by the “Label Ranking Average Precision (LRAP)” [25], expressed
by

LRAP(f̂) =
1

|TS|
∑
i∈TS

1

|yi|
∑

j∈{k:yik=1}

|Lij(yi)|
|Lij(1d)|

, (6)

where f̂(xi)j is the probability (or the score) associated to the label j by the
learnt model f̂ applied to xi, 1d is a d-dimensional row vector of ones, and

Lij(q) =
{
k : qk = 1 and f̂(xi)k ≥ f̂(xi)j

}
.

Test samples without any relevant labels (i.e. with |yi| = 0) were discarded prior
to computing the average precision. The best possible average precision is thus
1. Notice that we use indifferently the notation | · | to express the cardinality of
a set or the 1-norm of a vector.
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Fig. 1. Models built for the “Delicious” dataset (d = 983) for growing numbers m of
Gaussian projections. Left: single unpruned CART trees (nmin = 1); Right: Random
Forests (k =

√
p, t = 100, nmin = 1). The curves represent average values (and standard

deviations) obtained from 10 applications of the randomised algorithms over a same
single LS/TS split.

4.2 Effect of the size m of the Gaussian output space

To illustrate the behaviour of our algorithms, we first focus on the “Delicious”
dataset [32], which has a large number of labels (d = 983), of input features
(p = 500), and of training (nLS = 12920) and testing (nTS = 3185) samples.

The left part of figure 1 shows, when Gaussian output-space projections are
combined with the standard CART algorithm building a single tree, how the



precision converges (cf Theorem 1) when m increases towards d. We observe
that in this case, convergence is reached around m = 200 at the expense of a
slight decrease of accuracy, so that a compression factor of about 5 is possible
with respect to the original output dimension d = 983.

The right part of figure 1 shows, on the same dataset, how the method be-
haves when combined with Random Forests. Let us first notice that the Random
Forests grown on the original output space (green line) are significantly more
accurate than the single trees, their accuracy being almost twice as high. We
also observe that Algorithm 2 (orange curve) converges much more rapidly than
Algorithm 1 (blue curve) and slightly outperforms the Random Forest grown on
the original output space. It needs only about m = 25 components to converge,
while Algorithm 1 needs about m = 75 of them. These results are in accordance
with the analysis of Section 3.3, showing that Algorithm 2 can’t be inferior to
Algorithm 1. In the rest of this paper we will therefore focus on Algorithm 2.

4.3 Systematic analysis over 24 datasets

To assess our methods, we have collected 24 different multi-label classification
datasets from the literature (see Section D of the supplementary material, for
more information and bibliographic references to these datasets) covering a
broad spectrum of application domains and ranges of the output dimension
(d ∈ [6; 3993], see Table 1). For 21 of the datasets, we made experiments where
the dataset is split randomly into a learning set of size nLS , and a test set of size
nTS , and are repeated 10 times (to get average precisions and standard devia-
tions), and for 3 of them we used a ten-fold cross-validation scheme (see Table
1).

Table 1 shows our results on the 24 multi-label datasets, by comparing Ran-
dom Forests learnt on the original output space with those learnt by Algorithm 2
combined with Gaussian subspaces of size m ∈ {1, d, ln d}3. In these experi-
ments, the three parameters of Random Forests are set respectively to k =

√
p,

nmin = 1 (default values, see [17]) and t = 100 (reasonable computing budget).
Each model is learnt ten times on a different shuffled train/testing split, except
for the 3 EUR-lex datasets where we kept the original 10 folds of cross-validation.

We observe that for all datasets (except maybe SCOP-GO), taking m = d
leads to a similar average precision to the standard Random Forests, i.e. no
difference superior to one standard deviation of the error. On 11 datasets, we
see thatm = 1 already yields a similar average precision (values not underlined in
column m = 1). For the 13 remaining datasets, increasing m to ln d significantly
decreases the gap with the Random Forest baseline and 3 more datasets reach
this baseline. We also observe that on several datasets such as “Drug-interaction”
and “SCOP-GO”, better performance on the Gaussian subspace is attained with
high output randomization (m = {1, ln d}) than with m = d. We thus conclude

3 ln d is rounded to the nearest integer value; in Table 1 the values of ln d vary between
2 for d = 6 and 8 for d = 3993.



that the optimal level of output randomization (i.e. the optimal value of the
ratio m/d) which maximizes accuracy performances, is dataset dependent.

While our method is intended for tasks with very high dimensional output
spaces, we however notice that even with relatively small numbers of labels, its
accuracy remains comparable to the baseline, with suitable m.

To complete the analysis, Appendix F considers the same experiments with
a different base-learner (Extra Trees of [17]), showing very similar trends.

4.4 Input vs output space randomization

We study in this section the interaction of the additional randomization of the
output space with that concerning the input space already built in the Random
Forest method.

To this end, we consider the “Drug-interaction” dataset (p = 660 input fea-
tures and d = 1554 output labels [38]), and we study the effect of parameter k
controlling the input space randomization of the Random Forest method with
the randomization of the output space by Gaussian projections controlled by
the parameter m. To this end, Figure 2 shows the evolution of the accuracy for
growing values of k (i.e. decreasing strength of the input space randomization),
for three different quite low values of m (in this casem ∈ {1, ln d, 2 ln d}). We ob-
serve that Random Forests learned on a very low-dimensional Gaussian subspace
(red, blue and pink curves) yield essentially better performances than Random
Forests on the original output space, and also that their behaviour with respect
to the parameter k is quite different. On this dataset, the output-space randomi-
sation makes the method completely immune to the ‘over-fitting’ phenomenon
observed for high values of k with the baseline method (green curve).
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Fig. 2. Output randomization with Gaussian projections yield better average precision
than the original output space on the “Drug-Interaction” dataset (nmin = 1 , t = 100).

We refer the reader to a similar study on the “Delicious” dataset given in the
Appendix E (supplementary material), which shows that the interaction between
m and k may be different from one dataset to another. It is thus advisable to
jointly optimize the value of m and k, so as to maximise the tradeoff between
accuracy and computing times in a problem and algorithm specific way.



4.5 Alternative output dimension reduction techniques

In this section, we study Algorithm 2 when it is combined with alternative
output-space dimensionality reduction techniques. We focus again on the “Deli-
cious” dataset, but similar trends could be observed on other datasets.

Figure 3(a) first compares Gaussian random projections with two other dense
projections: Rademacher matrices with s = 1 (cf. Section 2.2) and compres-
sion matrices obtained by sub-sampling (without replacement) Hadamard ma-
trices [8]. We observe that Rademacher and subsample-Hadamard sub-spaces
behave very similarly to Gaussian random projections.

In a second step, we compare Gaussian random projections with two (very)
sparse projections: first, sparse Rademacher sub-spaces obtained by setting the
sparsity parameter s to 3 and

√
d, selecting respectively about 33% and 2%

of the original outputs to compute each component, and second, sub-sampled
identity subspaces, similar to [34], where each of the m selected components
corresponds to a randomly chosen original label and also preserve sparsity. Sparse
projections are very interesting from a computational point of view as they
require much less operations to compute the projections but the number of
components required for condition (4) to be satisfied is typically higher than for
dense projections [24,8]. Figure 3(b) compares these three projection methods
with standard Random Forests on the “delicious” dataset. All three projection
methods converge to plain Random Forests as the number of components m
increases but their behaviour at low m values are very different. Rademacher
projections converge faster with s = 3 than with s = 1 and interestingly, the
sparsest variant (s =

√
d) has its optimum at m = 1 and improves in this case

over the Random Forests baseline. Random output subspaces converge slower but
they lead to a notable improvement of the score over baseline Random Forests.
This suggests that although their theoretical guarantees are less good, sparse
projections actually provide on this problem a better bias/variance tradeoff than
dense ones when used in the context of Algorithm 2.

Another popular dimension reduction technique is the principal component
analysis (PCA). In Figure 3(c), we repeat the same experiment to compare PCA
with Gaussian random projections. Concerning PCA, the curve is generated in
decreasing order of eigenvalues, according to their contribution to the explana-
tion of the output-space variance. We observe that this way of doing is far less
effective than the random projection techniques studied previously.

4.6 Learning stage computing times

Our implementation of the learning algorithms is based on the scikit-learn Python
package version 0.14-dev [27]. To fix ideas about computing times, we report
these obtained on a Mac Pro 4.1 with a dual Quad-Core Intel Xeon processor
at 2.26 GHz, on the “Delicious” dataset. Matrix operation, such as random pro-
jections, are performed with the BLAS and the LAPACK from the Mac OS X
Accelerate framework. Reported times are obtained by summing the user and
sys time of the time UNIX utility.
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Fig. 3. “Delicious” dataset, t = 100, k =
√
p, nmin = 1.

The reported timings correspond to the following operation: (i) load the
dataset in memory, (ii) execute the algorithm. All methods use the same code to
build trees. In these conditions, learning a random forest on the original output
space (t = 100, nmin = 1, k =

√
d) takes 3348 s; learning the same model

on a Gaussian output space of size m = 25 requires 311 s, while m = 1 and
m = 250 take respectively 236 s and 1088 s. Generating a Gaussian sub-space
of size m = 25 and projecting the output data of the training samples is done
in less than 0.25 s, while m = 1 and m = 250 takes around 0.07 s and 1 s
respectively. The time needed to compute the projections is thus negligible with
respect to the time needed for the tree construction.

We see that a speed-up of an order of magnitude could be obtained, while at
the same time preserving accuracy with respect to the baseline Random Forests
method. Equivalently, for a fixed computing time budget, randomly projecting
the output space allows to build more trees and thus to improve predictive
performances with respect to standard Random Forests.



5 Conclusions

This paper explores the use of random output space projections combined with
tree-based ensemble methods to address large-scale multi-label classification
problems. We study two algorithmic variants that either build a tree-based en-
semble model on a single shared random subspace or build each tree in the
ensemble on a newly drawn random subspace. The second approach is shown
theoretically and empirically to always outperform the first in terms of accuracy.
Experiments on 24 datasets show that on most problems, using gaussian projec-
tions allows to reduce very drastically the size of the output space, and therefore
computing times, without affecting accuracy. Remarkably, we also show that
by adjusting jointly the level of input and output randomizations and choosing
appropriately the projection method, one could also improve predictive perfor-
mance over the standard Random Forests, while still improving very significantly
computing times. As future work, it would be very interesting to propose effi-
cient techniques to automatically adjust these parameters, so as to reach the
best tradeoff between accuracy and computing times on a given problem.

To best of our knowledge, our work is the first to study random output
projections in the context of multi-output tree-based ensemble methods. The
possibility with these methods to relabel tree leaves with predictions in the
original output space makes this combination very attractive. Indeed, unlike
similar works with linear models [19,10], our approach only relies on Johnson-
Lindenstrauss lemma, and not on any output sparsity assumption, and also
does not require to use any output reconstruction method. Besides multi-label
classification, we would like to test our method on other, not necessarily sparse,
multi-output prediction problems.
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Table 1. High output space compression ratio is possible, with no or negligible average
precision reduction (t = 100, nmin = 1, k =

√
p). Each dataset has nLS training

samples, nTS testing samples, p input features and d labels. Label ranking average
precisions are displayed in terms of their mean values and standard deviations over 10
random LS/TS splits, or over the 10 folds of cross-validation. Mean scores in the last
three columns are underlined if they show a difference with respect to the standard
Random Forests of more than one standard deviation.
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A Proof of equation (3)

The sum of the variances of n observations drawn from a random vector y ∈ Rd
can be interpreted as a sum of squared euclidean distances between the pairs of
observations

Var((yi)ni=1) =
1

2n2

n∑
i=1

n∑
j=1

||yi − yj ||2. (a.1)

Proof.

Var((yi)ni=1)

def
=
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(a.9)

=
1
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||yi − yj ||2. (a.10)

B Proof of Theorem 1

Theorem 1 Given ε > 0, a sample (yi)ni=1 of n points y ∈ Rd and a projection
matrix Φ ∈ Rm×d such that for all i, j ∈ {1, . . . , n} the Johnson-Lindenstrauss
lemma holds, we have also:

(1− ε)Var((yi)ni=1) ≤ Var((Φyi))ni=1)

≤ (1 + ε)Var((yi)ni=1). (a.11)



Proof. This result directly follows from the Johnson-Lindenstrauss Lemma and from
eqn. (a.1).

From the Johnson-Lindenstrauss Lemma we have for any i, j

(1− ε)||yi − yj ||2 ≤ ||Φyi − Φyj ||2 ≤ (1 + ε)||yi − yj ||2. (a.12)

By summing the three terms of (a.12) over all pairs i, j and dividing by 1/(2n2) and
by then using eqn. (a.1), we get eqn. (a.11).

C Bias/variance analysis

In this subsection, we adapt the bias/variance analysis of randomised supervised
learning algorithms carried out in [17], to assess the effect of random output
projections in the context of the two algorithms studied in our paper.

C.1 Single random trees.

Let us denote by f(.; ls, φ, ε) : X → Rd a single multi-output (random) tree
obtained from a projection matrix φ (below we use Φ to denote the corresponding
random variable), where ε is the value of a random variable ε capturing the
random perturbation scheme used to build this tree (e.g., bootstrapping and/or
random input space selection). Denoting by Err(f(x; ls, φ, ε)) the square error
of this model at some point x ∈ X defined by:

EY |x{||Y − f(x; ls, φ, ε})||2}.

The average of this square error can decomposed as follows:

ELS,Φ,ε{Err(f(x;LS,Φ, ε))}
= σ2

R(x) + ||fB(x)− f̄(x)||2 + VarLS,Φ,ε{f(x;LS,Φ, ε)},

where
f̄(x)

def
= ELS,Φ,ε{f(x;LS,Φ, ε)}, fB(x) = EY |x{Y },

and
VarLS,Φ,ε{f(x;LS,Φ, ε)} def

= ELS,Φ,ε{||f(x;LS,Φ, ε)− f̄(x)||2}

The three terms of this decomposition are respectively the residual error, the bias,
and the variance of this estimator (at x).

The variance term can be further decomposed as follows using the law of total
variance:

VarLS,Φ,ε{f(x;LS,Φ, ε)}
= VarLS{EΦ,ε|LS{f(x;LS,Φ, ε)}}

+ELS{VarΦ,ε|LS{f(x;LS,Φ, ε)}}. (a.13)

The first term is the variance due to the learning sample randomization and the second
term is the average variance (over LS) due to both the random forest randomization



and the random output projection. By using the law of total variance a second time,
the second term of (a.13) can be further decomposed as follows:

ELS{VarΦ,ε|LS{f(x;LS,Φ, ε)}}
= ELS{VarΦ|LS{Eε|LS,Φ{f(x;LS,Φ, ε)}}}

+ ELS{EΦ|LS{Varε|LS,Φ{f(x;LS,Φ, ε)}}}. (a.14)

The first term of this decomposition is the variance due to the random choice of a
projection and the second term is the average variance due to the random forest ran-
domization. Note that all these terms are non negative. In what follows, we will denote
these three terms respectively VLS(x), VAlgo(x), and Vproj(x). We thus have:

VarLS,Φ,ε{f(x;LS,Φ, ε)} = VLS(x) + VAlgo(x) + VProj(x),

with

VLS(x) = VarLS{EΦ,ε|LS{f(x;LS,Φ, ε)}}
VAlgo(x) = ELS{EΦ|LS{Varε|LS,Φ{f(x;LS,Φ, ε)}}},
VProj(x) = ELS{VarΦ|LS{Eε|LS,Φ{f(x;LS,Φ, ε)}}},

C.2 Ensembles of t random trees.

When the random projection is fixed for all t trees in the ensemble (Algorithm 1),
the algorithm computes an approximation, denoted f1(x; ls, φ, εt), that takes the
following form:

f1(x; ls, φ, ε
t) =

1

t

t∑
i=1

f(x; ls, φ, εi),

where εt = (ε1, . . . , εt) a vector of i.i.d. values of the random variable ε. When a
different random projection is chosen for each tree (Algorithm 2), the algorithm
computes an approximation, denoted by f2(x; ls, φt, εt), of the following form:

f2(x; ls, φ
t, εt) =

1

t

t∑
i=1

f(x; ls, φi, εi),

where φt = (φ1, . . . , φt) is also a vector of i.i.d. random projection matrices.
We would like to compare the average errors of these two algorithms with the

average errors of the original single tree method, where the average is taken for
all algorithms over their random parameters (that include the learning sample).

Given that all trees are grown independently of each other, one can show that the
average models corresponding to each algorithm are equal:

f̄(x) = ELS,Φ,εt{f1(x;LS,Φ, εt)}
= ELS,Φt,εt{f2(x;LS,Φt, εt)}.

They thus all have the exact same bias (and residual error) and differ only in their
variance.



Using the same argument, the first term of the variance decomposition in (a.13),
ie. VLS(x), is the same for all three algorithms since:

EΦ,ε|LS{f(x;LS,Φ, ε)}
= EΦ,εt|LS{f1(x;LS,Φ, εt)}
= EΦt,εt|LS{f2(x;LS,Φt, εt)}.

Their variance thus only differ in the second term in (a.13).
Again, because of the conditional independence of the ensemble terms given the ls

and projection matrix φ, Algorithm 1, which keeps the output projection fixed for all
trees, is such that

Eεt|LS,Φ{f1(x;LS,Φ, εt)} = Eε|LS,Φ{f(x;LS,Φ, ε)}

and
Varεt|LS,Φ{f1(x;LS,Φ, εt)} =

1

t
Varε|LS,Φ{f(x;LS,Φ, ε)}.

It thus divides the second term of (a.14) by the number t of ensemble terms.
Algorithm 2, on the other hand, is such that:

VarΦt,εt|LS{f2(x;LS,Φ, εt)} =
1

t
VarΦ,ε|LS{f(x;LS,Φ, ε)},

and thus divides the second term of (a.13) by t.
Putting all these results together one gets that:

ELS,Φ,ε{Err(f(x;LS,Φ, εt))}
= σ2

R(x) +B2(x) + VLS(x) + VAlgo(x) + VProj(x),

ELS,Φ,εt{Err(f1(x;LS,Φ, εt))}

= σ2
R(x) +B2(x) + VLS(x) +

VAlgo(x)

t
+ VProj(x),

ELS,Φt,εt{Err(f2(x;LS,Φt, εt))}

= σ2
R(x) +B2(x) + VLS(x) +

VAlgo(x) + VProj(x)

t
.

Given that all terms are positive, this result clearly shows that Algorithm 2 can
not be worse than Algorithm 1.

D Description of the datasets

Experiments are performed on several multi-label datasets: the yeast [16] dataset
in the biology domain; the corel5k [15] and the scene [5] datasets in the image
domain; the emotions [35] and the CAL500 [36] datasets in the music domain; the
bibtex [21], the bookmarks [21], the delicious [32], the enron [22], the EUR-Lex
(subject matters, directory codes and eurovoc descriptors) [26] the genbase [14],
the medical4, the tmc2007 [31] datasets in the text domain and the mediamill [30]
dataset in the video domain.
4 The medical dataset comes from the computational medicine center’s 2007 med-
ical natural language processing challenge http://computationalmedicine.org/
challenge/previous.



Several hierarchical classification tasks are also studied to increase the diver-
sity in the number of label and treated as multi-label classification task. Each
node of the hierarchy is treated as one label. Nodes of the hierarchy which never
occured in the training or testing set were removed. The reuters [29], WIPO [29]
datasets are from the text domain. The Diatoms [13] dataset is from the image
domain. SCOP-GO [11], Yeast-GO [3] and Expression-GO [37] are from the bio-
logical domain. Missing values in the Expression-GO dataset were inferred using
the median for continuous features and the most frequent value for categorical
features using the entire dataset. The inference of a drug-protein interaction net-
work [38] is also considered either using the drugs to infer the interactions with
the protein (drug-interaction), either using the proteins to infer the interactions
with the drugs (protein-interaction).

Those datasets were selected to have a wide range of number of outputs d.
Their basic characteristics are summarized at Table 2. For more information on
a particular dataset, please see the relevant paper.

Table 2. Selected datasets have a number of labels d ranging from 6 up to 3993 in
the biology, the text, the image, the video or the music domain. Each dataset has nLS
training samples, nTS testing samples and p input features.

Datasets nLS nTS p d

emotions 391 202 72 6
scene 1211 1196 2407 6
yeast 1500 917 103 14
tmc2007 21519 7077 49060 22
genbase 463 199 1186 27
reuters 2500 5000 19769 34
medical 333 645 1449 45
enron 1123 579 1001 53
mediamill 30993 12914 120 101
Yeast-GO 2310 1155 5930 132
bibtex 4880 2515 1836 159
CAL500 376 126 68 174
WIPO 1352 358 74435 188
EUR-Lex (subject matters) 19348 10-cv 5000 201
bookmarks 65892 21964 2150 208
diatoms 2065 1054 371 359
corel5k 4500 500 499 374
EUR-Lex (directory codes) 19348 10-cv 5000 412
SCOP-GO 6507 3336 2003 465
delicious 12920 3185 500 983
drug-interaction 1396 466 660 1554
protein-interaction 1165 389 876 1862
Expression-GO 2485 551 1288 2717
EUR-Lex (eurovoc descriptors) 19348 10-cv 5000 3993



E Experiments with Extra trees

In this section, we carry out experiments combining Gaussian random projec-
tions (with m ∈ {1, ln d, d}) with the Extra Trees method of [17] (see Section 2.1
of the paper for a very brief description of this method). Results on 23 datasets5
are compiled in Table 3.

Like for Random Forests, we observe that for all 23 datasets taking m = d
leads to a similar average precision to the standard Random Forests, ie. no dif-
ference superior to one standard deviation of the error. This is already the case
with m = 1 for 12 datasets and with m = ln d for 4 more datasets. Interest-
ingly, on 3 datasets with m = 1 and 3 datasets with m = ln d, the increased
randomization brought by the projections actually improves average precision
with respect to standard Random Forests (bold values in Table 3).

F Input vs output space randomization on “Delicious”

In this section, we carry out the same experiment as in Section 4.4 of the main
paper but on the “Delicious” dataset. Figure 4 shows the evolution of the accu-
racy for growing values of k (i.e. decreasing strength of the input space random-
ization), for three different values of m (in this case m ∈ {1, ln d, 2 ln d}) on a
Gaussian output space.

Like on “Drug-interaction” (see Figure 2 of the paper), using low-dimensional
output spaces makes the method more robust with respect to over-fitting as k
increases. However, unlike on “Drug-interaction”, it is not really possible to im-
prove over baseline Random Forests by tuning jointly input and output random-
ization. This shows that the interaction between m and k may be different from
one dataset to another.

0 100 200 300 400 500
k

0.364

0.368

0.372

0.376

0.380

LR
A

P

Random forest
Random forest on Gaussian subspace (Algo 2) with m= 1
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Random forest on Gaussian subspace (Algo 2) with m=14

Fig. 4. “Delicious” dataset: nmin = 1; t = 100.

5 Note that results on the “EUR-lex” dataset were not available at the time of sub-
mitting the paper. They will be added in the final version of this appendix.



Table 3. Experiments with Gaussian projections and Extra Trees ((t = 100, nmin = 1,
k =
√
p). See Section 4.3 and Table 1 in the paper for the protocol. Mean scores in the

last three columns are underlined if they show a negative difference with respect to the
standard Random Forests of more than one standard deviation. Bold values highlight
improvement over standard RF of more than one standard deviation.

Datasets Extra trees Extra trees on Gaussian sub-space

m = 1 m=b0.5+ln dc m = d

emotions 0.81 ±0.01 0.81 ±0.014 0.80 ±0.013 0.81 ±0.014
scene 0.873 ±0.004 0.876 ±0.003 0.877 ±0.007 0.878 ±0.006
yeast 0.757 ±0.008 . . . . . .0.746 ±0.004 0.752 ±0.009 0.757 ±0.01
tmc2017 0.782 ±0.003 . . . . . .0.759 ±0.004 . . . . .0.77 ±0.002 0.779 ±0.002
genbase 0.987 ±0.005 0.991 ±0.004 0.992 ±0.001 0.992 ±0.005
reuters 0.88 ±0.003 0.88 ±0.003 0.878 ±0.004 0.88 ±0.004
medical 0.855 ±0.008 0.867 ±0.009 0.872 ±0.006 0.862 ±0.008
enron 0.66 ±0.01 0.65 ±0.01 0.663 ±0.008 0.66 ±0.01
mediamill 0.786 ±0.002 . . . . . .0.778 ±0.002 . . . . . .0.781 ±0.002 0.784 ±0.001
Yeast-GO 0.49 ±0.009 . . . . .0.47 ±0.01 0.482 ±0.008 0.48 ±0.01
bibtex 0.584 ±0.005 . . . . . .0.538 ±0.005 . . . . . .0.564 ±0.004 0.583 ±0.004
CAL500 0.5 ±0.007 0.502 ±0.008 0.499 ±0.007 0.503 ±0.009
WIPO 0.52 ±0.01 . . . . . .0.474 ±0.007 . . . . .0.49 ±0.01 0.515 ±0.006
EUR-Lex (subj.) 0.845 ±0.006 . . . . . .0.834 ±0.004 . . . . . .0.838 ±0.003 0.845 ±0.005
bookmarks 0.453 ±0.002 . . . . . .0.436 ±0.002 . . . . . .0.444 ±0.003 0.452 ±0.002
diatoms 0.73 ±0.01 . . . . .0.69 ±0.01 . . . . .0.71 ±0.01 0.73 ±0.01
corel5k 0.285 ±0.009 0.313 ±0.011 0.309 ±0.009 0.285 ±0.011
EUR-Lex (dir.) 0.815 ±0.007 . . . . . .0.805 ±0.006 . . . . . .0.807 ±0.009 0.815 ±0.007
SCOP-GO 0.778 ±0.005 0.782 ±0.004 0.782 ±0.006 0.778 ±0.005
delicious 0.354 ±0.003 0.36 ±0.004 0.358 ±0.004 0.355 ±0.003
drug-interaction 0.353 ±0.011 0.375 ±0.017 0.364 ±0.014 0.355 ±0.016
protein-interaction 0.299 ±0.013 0.307 ±0.009 0.305 ±0.012 0.306 ±0.017
Expression-GO 0.231 ±0.007 . . . . . .0.218 ±0.005 0.228 ±0.005 0.235 ±0.005


