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Abstract  

In this survey, we studied the response of plant functional traits to calcareous grassland 

restoration in the Calestienne region, Southern Belgium (restoration protocol: forest clear-

cutting followed by grazing at all sites). We considered traits related to dispersal, 

establishment, and persistence that integrate the main challenges of plants to re-establish and 

survive in restored areas. Functional traits were compiled from databases and compared among 

(i) pre-restoration and young restoration forests; (ii) restoration areas of different ages; and 

(iii) old restorations and reference grasslands. The following questions were addressed: (i) What 

is the early response (2-4 years) in terms of plant functional trait following one restorative 

clear-cut event? (ii) What plants functional trait responses occur from restorative management 

(i.e. sheep and goat grazing)? (iii) Which differences still persist between the oldest restored 

parcels (10-15 years), and the historical reference grasslands? Forest clear-cuts induced several 

changes among functional traits, including decreased mean seed mass and certain vegetative 

traits (i.e. decreased phanerophytes, branching species; and increased short lifespan species i.e. 

annuals and biennials). During restorative management, clonal, epizoochorous and autumn 

germinating species were favored. Despite numerous other changes during this phase, many 

differences remained compared to reference grasslands. In particular, geophytes, mycorrhizal 

and evergreen species abundance were not approaching reference grassland values. The 

observed pattern helped to draw inferences on the possible mechanisms operating under 

vegetation recovery following restorative forest clear-cut and subsequent management were 

identified and described in this study. Results indicated grazing was an important factor, which 

increased epizoochorous species, and autumn germinating taxa that filled niches in vegetation 

opened by summer grazing animals. Finally, differences between old restoration and reference 

grasslands emphasized that management should focus on reduction in soil fertility, and geophyte 

rhizomatous grasses. Long-term monitoring is vital to assess if management plans are effective 

in the complete restoration of species functional trait assemblages. 

 

Keywords: Belgium; Calcareous grasslands; Forest clear-cut; Functional traits; Restoration 

monitoring. 
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Introduction  

Semi-natural calcareous grasslands historically developed across Europe from sheep-

grazing practices, resulting in unique, species-rich habitats (Korneck et al. 1998; WallisDeVries 

et al. 2002). They had their maximum extensions during the Roman period, the Medieval age and 

the early Modern Times (Poschlod et al. 2008; Poschlod & Baumann 2010), but locally also 

starting from the Neolithic age on (Dutoit et al. 2009). Since the end of the 19th century, semi-

natural calcareous grasslands have undergone dramatic decline and fragmentation in European 

countries (WallisDeVries et al. 2002; Krauss et al. 2010; Piqueray et al. 2011a). Following 

abandonment of traditional agro-pastoral practices that were responsible for their maintenance, 

these unique communities were replaced by arable land, afforestations, or spontaneous 

encroachment and succession from adjacent forest communities (Poschlod & WallisDeVries 

2002). In Belgium, over 90% of calcareous grasslands have been lost since the 19th century 

(Bisteau & Mahy 2005; Adriaens et al. 2006; Piqueray et al. 2011c). A large proportion were 

afforested at the end of the 19th century with Pinus sylvestris L. and Pinus nigra Arnold. 

(Vandermotten & Decroly 1995). Other areas experienced natural successional processes 

following grazing abandonment, and were progressively replaced by oak woodlands. The 

maintenance and enhancement of calcareous grassland networks is now recognized as a priority in 

European biodiversity conservation policies, as cited in the Habitat Directive 92/43/EEC 

(habitat type 6210). Therefore, since the 1990s restoration practices were applied to redevelop 

the grasslands, including clear-cutting of trees and shrubs, top-soil removal or cutting regimes 

to impoverish nutrients as well as sowing or hay spreading (e.g. Kiefer & Poschlod 1996; Poschlod 

et al. 1998; Hutchings & Stewart 2002; Kiehl et al. 2006; Edwards et al. 2007; Dzwonko & Loster 

2008; Fagan et al. 2008; Piqueray et al. 2011b). 

In many cases calcareous grassland restoration has been assessed using plant community 

responses such as diversity and/or species composition (e.g. Kiefer & Poschlod 1996; Ruiz-Jaen & 

Aide 2005; Karlík & Poschlod 2009; Piqueray & Mahy 2010). These responses were in some cases 

related to local environmental conditions, but did not explicitly relate species recovery to 

ecological processes, and/or morphological and physiological mechanisms. Functional traits are a 

reasonable tool in this respect (van Noordwijk et al. 2012; Lewis et al. 2014). They can either be 

useful to determine effects of plants on ecosystem functions (effect traits) or to understand 

the response of plants to environmental changes such as disturbances (response traits) (Lavorel 

& Garnier 2002). Among response traits, those reflecting dispersal, establishment, and 

persistence mechanisms integrate the main challenges of plants to survive and re-establish and 

may therefore play a considerable role in understanding and predicting changes in calcareous 

grassland composition and structure (Weiher et al. 1999; Poschlod et al. 2000; Lavorel & Garnier 

2002). They are also recognized as tools for the monitoring of grassland communities (Ansquer 

et al. 2009). Therefore, functional traits may be used to evaluate vegetation recovery during and 
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following restoration (Poschlod et al. 1998; Weiher et al. 1999; Poschlod et al. 2000). By 

understanding how plant functional traits respond to ecological processes (e.g. disturbance, 

natural succession following restoration), it becomes possible to predict what species 

assemblages might naturally occur or be successfully restored (Poschlod et al. 1998).  

Plant community dynamics following species-rich grassland restoration from secondary 

forest or ecosystems by clear-cutting has seldom been studied from a functional point of view 

(but see, Dzwonko & Loster 2007; Helsen et al. 2013). Dzwonko and Loster (2007) showed that 

traits related to establishment were a major driver of the plant success in restored grasslands. 

Also, dispersal traits both in space and time may be relevant for species success in restored 

habitats (Poschlod et al. 1998; Helsen et al. 2013). After several years, differences between 

restored and reference grasslands may still remain (see e.g. Zobel et al. 1996; Piqueray et al. 

2011b). However, this may depend on management practices following restoration, affecting trait 

composition of the successional stages after clear-cut (Poschlod et al. 2000; Kahmen & Poschlod 

2008b).  

In this study, we analyzed the functional response of vascular plants to calcareous 

grassland restoration by woodland clear-cutting in the following set of questions: (i) What is the 

early response (2-4 years) in terms of plant functional trait following one restorative clear-cut 

event? (ii) What plants functional trait responses occur from restorative management (i.e. sheep 

and goat grazing)? (iii) Have all functional traits been re-established in the oldest restored 

parcels (10-15 years), or do the traits still differ from historical reference grasslands? 

Methods  

Study sites and field surveys 

The study area included two Belgian regions, the Viroin Valley, and the Lesse and Lomme 

Valleys, both located in Calestienne, a narrow Devonian limestone strip traversing Southwest to 

Northeast. Both regions support large expanses of grasslands, and are considered the most 

important regions for calcareous grassland conservation in Belgium. Different grassland 

communities occur within the two regions, with Mesobromion communities the most widespread. 

Mesobromion grasslands are semi-natural calcareous grasslands developing on gentle slopes or on 

plateaus, dominated by grasses such as Bromus erectus and Brachypodium pinnatum. They host 

the highest species richness among the calcareous grasslands communities occurring in Belgium 

(Piqueray et al. 2007). Both regions have similar species pools (Butaye et al. 2005; Piqueray et al. 

2007). They are separated by a distance of only 40km and have similar land-use histories 

(Adriaens et al. 2006; Piqueray et al. 2011a). Due to the large-scale loss of these ecosystems 

throughout Belgium, more than 100 ha of calcareous grasslands (ca. equivalent to the remaining 
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surface) have been restored over the last 25 years in the study area. All restored sites were 

derived from 40-100 year old forests established on former calcareous grasslands. Restoration 

protocols included tree and shrub clearing, followed by sheep and goat grazing (André & 

Vandendorpel 2004; Graux 2004; Delescaille 2006).  

Table 1: Description of the 28 experimental parcels. Site is the name of the site where the parcel is 

located, with its geographical coordinates (Localization) and its Region (L=Lesse and Lomme; 

V=Viroin). Condition is the parcel type (Forest=Pre-restoration forest; Grassland=Reference 

grasslands). For Forest and restored parcels, the type of forest stand (Pine=P.sylvestris/P.nigra 
plantations; Oak=shrub coppices intermingled with Q.robur trees) is provided. For restored parcels, 
age classes, as well as real age since restoration is given. 

Parcel Site Localization Region Condition 
Forest 

stand 

Age 

class 

(years) 

Real age 

(years) 

1 Tienne des Vignes 50°06’N – 5°10’E L Forest Pine / / 

2 Lorinchamps 50°06’N – 5°14’E L Forest Oak / / 

3 Tienne d'Aize 50°07’N – 5°09’E L Forest Oak / / 

4 Les Pairées 50°06’N – 5°11’E L Forest Pine/Oak / / 

5 Niémont 50°06’N – 4°42’E V Forest Pine / / 

6 Montagne-aux-Buis 50°05’N – 4°34’E V Forest Oak / / 

7 Rivelottes 50°05’30’’N – 4°40’E V Forest Pine / / 

8 Abannets 50°04’30’’N – 4°34’E V Forest Pine/Oak / / 

9 Tienne des Vignes 50°06’N – 5°10’E L Restored Pine 2-4 2 

10 Lorinchamps 50°06’N – 5°14’E L Restored Oak 2-4  2 

11 Tienne des Vignes 50°06’N – 5°10’E L Restored Pine 5-8 8 

12 Tienne d'Aize 50°07’N – 5°09’E L Restored Oak 5-8  8 

13 Les Pairées 50°06’N – 5°11’E L Restored Oak 10-15 10 

14 Les Pairées 50°06’N – 5°11’E L Restored Pine 10-15 10 

15 Niémont 50°06’N – 4°42’E V Restored Pine 2-4 2 

16 Montagne-aux-Buis 50°05’N – 4°34’E V Restored Oak 2-4 4 

17 Rivelottes 50°05’30’’N – 4°40’E V Restored Pine 5-8 5 

18 Montagne-aux-Buis 50°05’30’’N – 4°34’E V Restored Oak 5-8 7 

19 Abannets 50°04’30’’N – 4°34’E V Restored Pine 10-15 15 

20 Abannets 50°04’30’’N – 4°34’E V Restored Oak 10-15 15 

21 Tienne des Vignes 50°06’N – 5°10’E L Grassland / / / 

22 Lorinchamps 50°06’N – 5°14’E L Grassland / / / 

23 Tienne d'Aize 50°07’N – 5°09’E L Grassland / / / 

24 Les Pairées 50°06’N – 5°11’E L Grassland / / / 

25 Montagne-aux-Buis 50°05’30’’N – 4°34’E V Grassland / / / 

26 Montagne-aux-Buis 50°05’N – 4°34’E V Grassland / / / 

27 Rivelottes 50°05’30’’N – 4°40’E V Grassland / / / 

28 Abannets 50°04’30’’N – 4°34’E V Grassland / / / 
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Eight sites, four in the Viroin Valley and four in the Lesse and Lomme Valleys were 

selected for the present study (Table 1). The eight study sites support old grasslands, as well as 

afforested abandoned grasslands. At each site, some afforested parcels were clear-cut in 

grassland restoration efforts. 

Since 2003, all sites have been managed by grazing using migrating sheep flocks (duration: 

2-3 weeks/year, resulting to a grazing intensity of 1-2 sheep/ha*year; restored parcels are 

grazed each year, reference parcels every 2 or 3 years depending on site) (Piqueray et al. 2013). 

 We conducted thorough analyses of historical maps, aerial photographs, and ground field 

surveys and identified 28 parcels (2 to 5 per site) representing a range of grassland conditions 

(Table 1). In particular we selected the following:  

1) Reference parcels (n = 8, four per region). Calcareous grasslands reported as 

undisturbed historic sites, in existence for more than two centuries. They harbor Mesobromion 

plant community. This is considered the reference ecosystem for restoration purposes. 

2) Restored parcels (n = 12, six per region). Afforested abandoned grasslands, recently 

(i.e. in the last 15 years) clear-cut forests managed primarily through grazing for grassland 

restoration. The time elapsed since restorative clear-cut (in years) was known for each restored 

parcel. The parcels were chosen to be representative of three age classes since restoration: 2-4 

years, 5-8 years, and 10-15 years; 4 parcels per age class, 2 per region. Six of the parcels were 

restored from pine stands, and six from oak coppices. P. nigra or P. sylvestris plantation stands 

were aged up to 100 years. The species composition of dense shrub oak coppices (> 40 years old) 

primarily included Prunus spinosa, Crataegus monogyna and Corylus avellana, with sparsely 

intermingled Quercus robur trees. Clear-cut included elimination of trees and shrubs, but tree 

stumps remained. 

3) Forest parcels (n = 8, four per region). Forests established at least 40 years ago on 

former grasslands.  

Mesobromion grasslands (reference parcels) and forest parcels were adjacent to restored 

parcels under similar topographic conditions. Floristic surveys and species cover (%) were 

recorded in 20 1-m² quadrats in each restored parcel, i.e. total number of quadrats was 80 per 

age class. Quadrats were located in cardinal directions 1 m from five randomly selected tree 

stumps. The same parameters were recorded in eighty quadrats, distributed in the Mesobromion 

grasslands, and eighty in forests for herbaceous and shrub species only (< 2 m height). 

Grasslands and forest sampling quadrats were randomly placed and equally distributed among 

regions. Nomenclature follows Lambinon et al. (2004). 
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Functional traits 

We investigated a set of functional traits with different outcomes for colonization of new 

habitats, i.e. dispersal, establishment, and persistence (Weiher et al. 1999; Poschlod et al. 

2000)(Appendix 1). Temporal and spatial dispersal were assessed through traits relative to seed 

bank (dispersal in time), and traits relative to spatial dispersal capacity (seed dispersal mode, 

seed releasing height). Traits evaluated to assess establishment strategies included dormancy, 

light requirements for germination, and seedling emergence time. In addition, species ability to 

establish in a competitive or environmentally stressful habitat was tested through the inclusion 

of establishment-related traits. Persistence traits were relative to plant persistence once 

established. These traits included vegetative characters that provide species adaptations to 

successfully remain in a community, i.e. life form, clonal growth, branching, and canopy height, 

among other traits; or reproduce in fragmented habitats, and/or within small populations 

(autofertility, autogamy). The traits were classified based on their main function, following 

Weiher et al. (1999) and Poschlod et al. (2000). It is worth noting that a classification among 

dispersal, establishment, and persistence is not absolute. Furthermore, some traits may be 

involved in several processes. Trait values were derived from the BIOPOP database (Poschlod et 

al. 2003; Jackel et al. 2006) (Appendix 1). 

Data analysis 

In all quadrats, we proceeded to the following data computation. (1) For binary traits, we 

calculated trait abundance (e.g. abundance of clonal species) as the proportion of quadrat cover 

occupied by species exhibiting the trait. (2) For numeric traits, we computed the community 

weighted mean (CWM, Díaz et al. 2007) of trait values (weight was species cover). (3) Nominal 

traits were dummy-transformed to as many binary traits as there were values for the trait, and 

subsequently treated as in (1). Species cover data were log-transformed prior to analyses to 

improve normality.  

Correlations among trait abundances/CWM were computed using a Principal Components 

Analysis (PCA) in the R package “ade4” (Chessel et al. 2004). Phanerophyte abundance was not 

considered in this analysis in order to remove the influence of restoration action itself (clear-

cut). 

Calcareous grassland restoration was analyzed based on functional traits in three 

different stages assessed independently. We first analyzed the functional response to clear-

cutting by comparing the characteristics of functional traits between forests and young 

restored grasslands (2-4 years). Second, functional change in restored grasslands was evaluated 

by testing the effects of restoration age (fixed continuous effect: real age, Table1) on specific 
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traits represented in restored sites. Third, we compared 10-15 year old restored grasslands 

with Mesobromion reference grasslands. This component of the study served to identify the 

remaining functional differences between restored and reference grasslands, and therefore, 

predictions for the future of calcareous grasslands. Comparisons were computed on arcsin-

transformed species representations for nominal and binary traits. Using the R-package ‘”nlme” 

(Pinheiro et al. 2010), Linear Mixed Effects (LME) was applied for quantitative analyses with 

parcel as a random grouping effect. This random effect was introduced in order to take into 

account the non-independence of quadrats from a same parcel. The lmmfit package (Maj 2011) 

was used to calculate R² values for the mixed effects models. 

 

 

Figure 1: Trait variation distribution along PCA axes 1 (horizontal, 24.2% explained), and 2 (vertical, 

17.4% explained) (a) quadrats of the following types: 0 = pre-restoration forests; 1 = 2-4 years 

restoration; 2 = 5-8 years restoration; 3 = 10-15 years restoration; 4 = reference grasslands; 95% 

confidence ellipses, and (b) measured traits (see appendix 1 for abbreviations). 
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 Results  

The first two PCA axes respectively explained 23.3% and 18.6% of the total trait variation 

(Fig. 1). The first axis distinguished pre-restoration forests, characterized by a higher canopy 

height, and plants with germination in spring and reference grasslands, typified by 

hemicryptophytes, and species with nitrogen fixation ability. The second axis differentiated 

restored parcels of different ages. Young restorations were characterized by evergreen 

species, requiring long daylight periods to germinate. Old restorations exhibited inverse results, 

distinguished by geophytes, epizoochorous, and palatable species. Graphically, the older the 

restoration the closer it was placed to reference grasslands. All values (mean trait 

representation) and LME test results are provided in Table 2.  

Dispersal 

Following the clear-cut, no increase of species with long-term seed banks was observed 

(R²=0.03; P = 0.472). These species showed however the highest representation in recent 

restorations. Abundance of species with short-term seed banks significantly increased following 

clearcut (from 6% to 13%, R²=0.22; P < 0.05). Thereafter, it showed a significant decrease with 

increasing time since restoration (R²=0.18; P < 0.05); and reached the lowest abundance in old 

restorations (4%), significantly lower than in reference grasslands (9%, R²=0.15; P < 0.05). 

Abundance of species with transient seed banks progressively and significantly increased during 

the restoration period (R²=0.20; P < 0.05), and was equally represented in old restorations and 

reference grasslands (respectively, 80% and 79%, R²<0.01; P = 0.562). Spatial dispersal was 

important in the restoration phase that included sheep and goat grazing, where a significant 

increase in epizoochorous species abundance was detected (from 61% (2-4 year old) to 79% (10-

15 year old), R²=0.15;  P < 0.05). 
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Table 2: Trait CWM (numeric traits) or trait abundances (binomial traits) in forest parcels, 2-4 years/5-8 years/10-15 years following clear-cut, and 

reference grassland parcels (values in brackets are the between parcel SD). R² indicates the R² of the LME models for differences between forests, and 2-

4 year clear-cut parcels (R²-clear-cut), effect of time following the clear-cut (R²-restoration), and difference between 10-15 year clear-cut parcels, and 

reference grassland parcels (R²-reference). Significant values are in bold: * P<0.05, ** P<0.01, *** P<0.001. 

Trait Pre-

restoration 

forest 

Young 

restorations 

(2-4 years) 

Middle-aged 

restorations 

(5-8 years) 

Old 

restorations 

(10-15 years) 

Reference 

grasslands 

R² 

(clearcut) 

R² 

(restoration) 

R² 

(reference) 

Traits related to dispersal in time and space 

        Seed bank 

        Species with transient seed bank 0.72 (0.13) 0.64 (0.06) 0.75 (0.09) 0.80 (0.02) 0.79 (0.05) 0.09 0.20* <0.01 

Species with short-term seed bank 0.06 (0.08) 0.13 (0.03) 0.09 (0.04) 0.04 (0.02) 0.09 (0.04) 0.22* 0.18* 0.15* 

Species with long-term seed bank 0.24 (0.18) 0.26 (0.06) 0.19 (0.09) 0.17 (0.03) 0.14 (0.05) 0.03 0.06 0.04 

Dispersal type 
        

Meteorochorous species 0.45 (0.15) 0.44 (0.08) 0.53 (0.10) 0.49 (0.02) 0.50 (0.06) <0.01 0.02 <0.01 

Endozoochorous species 0.58 (0.17) 0.67 (0.15) 0.61 (0.05) 0.62 (0.08) 0.69 (0.06) 0.04 <0.01 0.12 

Epizoochorous species 0.68 (0.11) 0.61 (0.11) 0.73 (0.07) 0.79 (0.04) 0.75 (0.06) 0.03 0.15* 0.06 

Mean releasing height (m) 3.51 (2.73) 1.29 (0.40) 1.20 (0.39) 0.99 (0.34) 0.72 (0.29) 0.18 0.06 0.04 

 

  



11 

 

 

 

 

Table 2: continued 

Trait Pre-

restoration 

forest 

Young 

restorations 

(2-4 years) 

Middle-aged 

restorations 

(5-8 years) 

Old 

restorations 

(10-15 years) 

Reference 

grasslands 

R² 

(clearcut) 

R² 

(restoration) 

R² 

(reference) 

Traits related to establishment                 

Mean seed mass (mg) 66.07 (39.66) 16.45 (13.32) 20.38 (9.62) 24.29 (13.01) 14.58 (10.53) 0.13* <0.01 0.03 

Species with seed exhibiting dormancy 0.36 (0.23) 0.45 (0.12) 0.43 (0.06) 0.39 (0.06) 0.41 (0.06) 0.03 0.01 0.01 

Species with seed requiring Light>Dark for germination 0.20 (0.18) 0.54 (0.13) 0.31 (0.10) 0.22 (0.04) 0.33 (0.07) 0.33* 0.19* 0.22* 

Seedling emergence 
        

Seedling emergence in spring 0.66 (0.21) 0.61 (0.09) 0.42 (0.02) 0.41 (0.04) 0.24 (0.05) 0.04 0.23** 0.39*** 

Seedling emergence in autumn 0.02 (0.03) 0.02 (0.02) 0.04 (0.02) 0.05 (0.03) 0.06 (0.02) 0.02 0.11 0.01 

Seedling emergence all year 0.32 (0.20) 0.37 (0.11) 0.54 (0.04) 0.54 (0.03) 0.70 (0.06) 0.04 0.16* 0.39*** 

Mean SLA (mm²/mg) 22.27 (2.75) 22.65 (1.66) 22.78 (1.28) 22.53 (0.88) 22.20 (0.57) <0.01 0.01 0.02 

Mycorrhizal species 0.84 (0.12) 0.84 (0.03) 0.85 (0.05) 0.80 (0.02) 0.88 (0.05) 0.01 0.02 0.21* 

Species with nitrogen fixation ability 0.00 (0.00) 0.04 (0.03) 0.04 (0.03) 0.05 (0.02) 0.08 (0.04) 0.31** 0.04 0.09 

Evergreen species 0.31 (0.07) 0.40 (0.15) 0.28 (0.06) 0.19 (0.02) 0.35 (0.09) 0.07 0.22* 0.38** 

Palatable species 0.62 (0.25) 0.62 (0.08) 0.82 (0.07) 0.90 (0.02) 0.91 (0.04) <0.01 0.33** <0.01 
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Table 2: continued 

Trait Pre-

restoration 

forest 

Young 

restorations 

(2-4 years) 

Middle-aged 

restorations 

(5-8 years) 

Old 

restorations 

(10-15 years) 

Reference 

grasslands 

R² 

(clearcut) 

R² 

(restoration) 

R² 

(reference) 

Traits related to persistence                 

Branching species 0.97 (0.04) 0.88 (0.04) 0.91 (0.04) 0.88 (0.06) 0.85 (0.04) 0.36** 0.02 0.04 

Mean canopy height (m) 3.74 (2.73) 1.34 (0.37) 1.16 (0.40) 0.96 (0.34) 0.68 (0.32) 0.19 0.07* 0.04 

Clonal species 0.68 (0.28) 0.77 (0.04) 0.83 (0.01) 0.88 (0.02) 0.87 (0.05) 0.02 0.13** <0.01 

Autofertile species 0.42 (0.18) 0.47 (0.06) 0.46 (0.07) 0.40 (0.07) 0.48 (0.09) <0.01 <0.01 0.13 

Autogamous species 0.02 (0.05) 0.03 (0.02) 0.01 (0.01) 0.01 (0.01) 0.04 (0.04) 0.04 0.02 0.07 

Life-form 
        

Chamaephytes 0.03 (0.05) 0.03 (0.02) 0.07 (0.01) 0.07 (0.02) 0.12 (0.05) <0.01 0.17** 0.13 

Geophytes 0.25 (0.16) 0.23 (0.08) 0.30 (0.13) 0.32 (0.03) 0.21 (0.06) <0.01 0.03 0.27* 

Hemicryptophytes 0.18 (0.16) 0.48 (0.11) 0.44 (0.11) 0.48 (0.06) 0.61 (0.08) 0.41** 0.02 0.19* 

Phanerophytes 0.52 (0.27) 0.22 (0.05) 0.15 (0.03) 0.11 (0.04) 0.04 (0.03) 0.28 0.20*** 0.24** 

Therophytes 0.02 (0.03) 0.04 (0.02) 0.02 (0.02) 0.02 (0.01) 0.02 (0.03) 0.15* 0.03 <0.01 

Short lifespan species 0.02 (0.03) 0.09 (0.05) 0.03 (0.02) 0.02 (0.01) 0.02 (0.03) 0.34** 0.16* <0.01 
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Establishment 

Clear-cut forests favored the establishment of species with light seeds. Pre-restoration 

forests and young restoration species showed a significant difference in mean respective seed 

weight CWM at 66.07 mg and 16.45 mg (R²=0.13; P < 0.05). Clear-cut parcels also supported 

increased abundance of species requiring long light periods to germinate (R²=0.33; P < 0.05), and 

species exhibiting symbiotic relationships with nitrogen fixing bacteria (R²=0.31; P < 0.01). 

During the restoration phase, we observed a decreasing abundance of plants with germination in 

spring (from 61% to 41%, R²=0.23; P < 0.01), and the reference grassland level (24%) was not 

reached in old restorations (R²=0.39; P < 0.001). In addition, species requiring increased light 

periods to germinate decreased in abundance (from 54% to 22%, R²=0.19; P < 0.05), and were 

measured at levels below the reference grasslands (33%) in old restorations (R²=0.22; P < 0.05). 

Concurrently, evergreen species decreased, and palatable (to grazing animals) species increased 

(from 40% to 19%, R²=0.22; P < 0.05, and from 62% to 90%, R²=0.33; P < 0.01, respectively). 

Mycorrhizal and evergreen species were more abundant in reference grasslands than in old 

restorations (R²=0.21; P < 0.05 and R²=0.38; P < 0.01 respectively). 

Persistence 

Changes in life-form proportions were observed at the different restoration phases. 

Forests parcels were dominated by phanerophytes (52%), which significantly decreased with 

increasing restoration age (R²=0.20; P < 0.001), but remained more abundant in old restorations 

(11%) than in reference grasslands (4%, R²=0.24; P < 0.01). Hemicryptophytes abundance showed 

a significant increase following the clear-cut restoration plan (from 18% to 48%, R²=0.41; P < 

0.01). Subsequently, it stabilized and remained significantly lower than the reference grassland 

hemicryptophytes abundance level (61%, R²=0.19; P < 0.05). Geophyte abundance was 32% in old 

restoration, which was significantly different from reference grasslands (21%, R²=0.27; P < 

0.05). Chamaephytes significantly increased from young restoration stages to old restorations 

(3% to 7%, R²=0.17; P < 0.01). Reference grasslands supported an increased abundance of 

chamaephyte species (12%), but the difference was not significant (R²=0.13; P = 0.093). Short 

lifespan species (annuals and biennials) exhibited the highest abundance in young restorations 

(9%). Other changes in persistence traits included a significant decrease in branching species 

abundance following the clear-cut (from 97% to 88%, R²=0.36; P < 0.01), significant decrease in 

canopy height CWM, and a significant increase in clonal species abundance with restoration age 

(R²=0.07; P < 0.05 and R²=0.13; P < 0.01, respectively). 
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 Discussion  

Global evolution of plant traits during the different restoration 
phases 

Our data showed that plant traits means and abundances were strongly influenced by the 

different restoration phases (clear-cut, grazing). The observed evolution was far from a linear 

progression from forest to grassland values. Indeed the clear-cut action induced strong changes 

that sometimes drove trait abundances/means away of the target values (see e.g. short lifespan 

species). In the subsequent years, under grazing management, values approached reference 

grassland values, but these were not always reached and not all values tended to approach the 

target, suggesting that management could be improved. However, the comparison with the 

results of Dzwonko and Loster (2007), where no grazing was introduced after clear-cut resulting 

in a rapid re-encroachment, highlights the importance of management following restoration by 

clear-cut. 

Functional trait shifts immediately following the clear-cut 

Trait variation observed among forests and post 2-4 years clear-cut parcels was clearly 

related to the change from closed woodland to open herbaceous. There was a decrease in canopy 

height, and phanerophyte abundance, which correspond to the direct effect of restoration 

actions itself (clear-cut). These were replaced primarily by hemicryptophytes. 

Additional changes in trait abundances or CWM were the consequence of another 

substantial modification of the environmental conditions resulting from the clear-cut, i.e. bare 

ground cover. Bare ground is common in the first years following any clear-cut event (Piqueray et 

al. 2011b), and may explain some observed effects. In recent clear-cut parcels, Piqueray et al. 

(2011b) reported a high occurrence of ruderal species, many with short life spans (therophytes 

and biennial hemicryptophytes). Therophytes and biennial hemicryptophytes are dependent on 

sexual reproduction, and likely favored the bare ground, which provided abundant and suitable 

sites for germination (Rusch 1988; Hillier 1990). These conditions may also be advantageous for 

species with small seeds, that may be restricted in more competitive environments (Turnbull et 

al. 1999), and for species requiring light for germination. 

Poschlod et al. (1998) discussed the important role of a seed bank in the early phases of 

the restoration process. In the present study, the relationship between seed bank viability and 

species presence at young restoration sites was not perfectly clear. Abundance of species with 

long-term seed banks did not increase significantly following the clear-cut. However, these 

species were well represented in young restorations, and 17 of the 21 species with long-term 
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seed banks in our species pool were recorded in young restorations (for comparison 6 were in 

forests, and 12 in reference grasslands; results not shown). Species with long-term seed banks, 

thought they were present, did not occupy a substantial area; therefore species abundance 

increase was not significant. Other observed trends supported that some species emerged from 

seed banks. We found a significant decrease in seed mass CWM following the clear-cut, and 

increased abundance of species requiring long day light periods to germinate. Seed banks may 

influence both trends. Indeed, species producing small seeds exhibit longer soil viability 

(Thompson et al. 1993; Bekker et al. 1998). A requirement for long day light periods may also be 

an advantage for soil persistence by preventing germination under unfavorable light conditions 

(Poschlod et al. 2000). Therefore, the role of persistent seed banks for the plant species 

composition of young restoration stages was only weakly confirmed by our results. 

Wind dispersal of seeds can also serve an integral role in rapid colonization of new sites 

(Poschlod et al. 1998). Lower seed mass CWM in young restoration quadrats confirmed this 

hypothesis. Poschlod et al. (2000) demonstrated that small-seeded species were more likely to 

be wind dispersed. However, we did not detect a significant increase in meteorochorous species 

abundance following clear-cutting. Tackenberg et al. (2003) showed that the wind dispersal 

potential of meteorochorous species can be very low, therefore this result is not surprising. 

Trait change trends under grazing management 

Following the clear-cut, the temporal sequence exhibited a continuous trend from 

woodland vegetation to grassland vegetation, which is in accordance with Helsen et al. (2013). A 

significant decrease in phanerophytes and increase in chamaephytes toward the reference 

grassland level was observed. These results were however in sharp contrast to Dzwonko and 

Loster (2007) where grazing was not reintroduced following clear-cutting. 

One of the most important trends observed during the restoration period was an increase 

in clonal species abundance. Clonality may be an advantageous competitive strategy as clonal 

species increase in frequency and subsequently cover, under both sexual and asexual 

reproduction (Weiher et al. 1999; Poschlod et al. 2000). The higher persistence ability of clonal 

species once established (Fischer & Stöcklin 1997; Weiher et al. 1999; Poschlod et al. 2000) was 

likely determinant in the success of these species at colonizing restored sites. Römermann et al. 

(2009) showed clonal species were often better adapted to grazing,  which was the management 

protocol introduced following the clear-cut. 

Grazing is also likely to influence other functional traits, including changes in seedling 

emergence during restoration. Autumn germination may be promoted in the event of 

environmental perturbations such as summer grazing (Eriksson & Eriksson 1997; Kahmen et al. 

2002). In our study, we found that species exhibiting autumn (or year round) germination 
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increased, congruent with results of Kahmen et al. (2002). In another study, Kahmen and 

Poschlod (2008a) revealed an inverse pattern. However, grazing in this study primarily occurred 

during the winter months. Therefore plant cover was most strongly reduced in spring, which 

promoted spring germination. At our study sites, grazing occurred during the vegetative season 

(i.e. spring to late summer). Therefore, plant cover was the most reduced in autumn. A notable 

unexpected result was the increased abundance of palatable (to sheep and goats) species under 

grazing management, where we anticipated unpalatable species would have the advantage, and 

increase in abundance. Results indicated Mesobromion grasslands were characterized by an 

abundance of palatable species (abundance > 90%). Clearly, these results indicate the current 

management practices are showing success in calcareous grassland restoration. Grazing was also 

expected to increase species dispersal through epi- and endozoochory (Poschlod et al. 1998). In 

our study, a significant increase in epizoochorous species abundance was detected. This confirms 

the important role of sheep in seed dispersal (Fischer et al. 1996; Poschlod et al. 1996; Couvreur 

et al. 2004). 

Differences between 10-15 year clear-cut parcels and reference 
grasslands 

Other interesting differences in traits abundances or CWM were observed between 10-15 

year clear-cut parcels, and Mesobromion reference grasslands. During restoration, some traits 

abundances were approaching the reference grassland values, but had not reached it yet. 

Phanerophytes remained more abundant in the 10-15 year restored parcels relative to the 

reference Mesobromion parcels. However, hemicryptophytes and species with year round 

seedling emergence were less abundant in the 10-15 year restored parcels compared with the 

reference Mesobromion parcels. The restoration processes are far from complete (10-15 years 

following the clear-cuts), and the grassland community structure can pre-date the species 

meeting the functional trait abundances of the reference grassland. If management of the 

restored parcels remains adequate, it is expected the functional trait abundances will continue 

to approach Mesobromion grassland values; however the grasslands must undergo continued 

monitoring. 

The incomplete grassland re-establishment of the 10-15 year clear-cut parcels was also 

indicated by the minor abundance of mycorrhizal species, which indicates successful integration 

among different ecosystem components. Mycorrhizal fungal communities are known to exhibit 

sharp differences between grasslands and forests (Öpik et al. 2006). Trees notably differ from 

herbaceous species as ectomycorrhizal taxa (Haris 2009). Mycorrhizal fungi are known to 

determine plant diversity (Van der Heijden et al. 1998). Richter and Stutz (2002) provided 

evidence that restoration of mycorrhizal fungal communities is a prerequisite for target plant 



17 

 

community establishment. However, Haris (2009) reported that microbial arrival follows plant 

establishment and the debate is therefore ongoing. 

Finally, some trait abundances were not approaching vegetation values of the reference 

grasslands during the restoration process. First, we observed a decrease in evergreen species, 

which were underrepresented in 10-15 year old restorations.  Aerts (1995) reported the 

evergreen habit is primarily an adaptation to nutrient-poor environments. In the years following 

clear-cuts, litter decomposition may increase nutrient availability (Ouro et al. 2001), and 

therefore be detrimental to evergreen species. Evidence of an increase in soil nutrient content 

was not detected by Piqueray et al. (2011b) in the same study site. However, they did not 

completely exclude that such a fertility increase may exist, and decreased evergreen species in 

restored parcels could support this hypothesis. Second, results found geophytes 

overrepresented in 5-8 and 10-15 year restoration parcels. This was probably due to the 

increased cover/frequency of Brachypodium pinnatum, as the proportion of geophyte species did 

not highly increase in restored parcels (in average, 13% and 15% of species were geophytes, 

respectively in 2-4 year and 10-15 years restored parcels, result not shown). In a former study, 

Piqueray et al. (2011b) showed B. pinnatum gained dominance 10-15 years following restoration in 

the study sites. This species is able to persist even in afforestations and therefore has an 

advantage to spread after clear-cutting. Furthermore, the species is known to be competitive 

through decreasing light penetration at ground level due to litter accumulation (Hurst & John 

1999), but also through its dense root system (Kutschera & Lichtenegger 1982) restricting 

establishment rates (Poschlod et al. 2011). This can explain the low occurrence of species 

requiring light to germinate in old restorations parcels or being low-competitive in the 

establishment stage, such as light seeded species. 

These last results showed trait abundances that obviously progress away from the desired 

status (i.e. reference grasslands values). They are therefore useful to draw recommendations 

for the management, in order to reverse this tendency. Geophytes dominance in old restorations 

suggests management should pay particular attention to B. pinnatum control. In our study, 

geophytes dominance in restored grasslands was not only due to this species, but also due to 

Carex flacca and an addition of species with lower cover. However, B. pinnatum is known to be a 

problem for the conservation of calcareous grasslands (Bobbink & Willems 1987), although the 

case of C. flacca would be worth studying too. Mowing, in addition to grazing, could be 

implemented. Mowing may be efficient in controlling B. pinnatum, and assist in reducing soil 

nutrient content (Bobbink & Willems 1991; Bakker & Berendse 1999). However, mowing induces 

different trait selection than grazing. It could therefore lead to the establishment of different 

plant assemblages, although possibly interesting from a conservation point of view (Kahmen et al. 

2002). Another solution could be an increase in grazing intensity during the B. pinnatum growing 

period, although the regeneration capacity of Brachypodium may be due to the buds in the 

underground. This last solution also seems adequate in order to re-target the progresses of 
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evergreen species and species requiring light to germinate. Indeed, Pakeman (2004) showed high 

grazing intensity may be favorable to evergreen species in temperate grasslands. This would also 

permit increased light to reach the soil, and promote germination in species requiring light to 

germinate. A special attention should however be paid not to fall into overgrazing, that is also 

known to be detrimental to grassland conservation (Reitalu et al. 2010). Finally, this study 

provided quantitative evidence that after more than a decade, functional differences remain 

between restored and reference calcareous grasslands. Therefore, restoration measures must 

be followed over long time periods to determine efficacy in different spatial and temporal 

methodologies. 
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Appendix 1: Trait selection for analyses. Source BIOPOP database (Jackel et al. 2006). 1 

The Abbreviations column gives the abbreviations used in Figure 1 2 

Trait Values Variable type Abbreviations 

Traits related to dispersal in time and space 

Seed bank 1:transient,  

2:short-term,  

3:long-term 

Nominal 1:Transient.sb, 

2:Short.term.sb, 

3:Long.term.sb 

Dispersal type 1:Epizoochory, 

2:Endozoochory, 

3:Meteorochory 

Nominal, non-

exclusive 

1:Epizoochory, 

2:Endozoochory, 

3:Meteorochory 

Releasing height Value [m] Numeric Releasing.height 

Traits related to establishment  

Seed mass Value [mg] Numeric Seed.mass 

Dormancy 1:True, 2:False Binary Dormancy 

Germination requirement: 

Light > Dark 

1:True, 2:False Binary Long.daylight.ge

rmination 

Seedling emergence 1:spring,  

2:autumn,  

3:all year 

Nominal 1:Emer.spring, 

2:Emer.aut, 

3:Emer.all.year 

SLA Value [mm²/mg] Numeric SLA 

Mycorrhizal species 1:True, 2:False Binary Mycorrhizal 

Nitrogen fixation ability 1:True, 2:False Binary Nitrogen.fixing 

Evergreen 1:True, 2:False Binary Evergreen 

Palatable species 1:True, 2:False Binary Palatable 

Traits related to persistence  

Branching species 1:True, 2:False Binary Branching 

Canopy height Value [m] Numeric Canopy.height 

Clonal growth 1:True, 2:False Binary Clonal 

Autofertility 1:True, 2:False Binary Autofertile 

Strict autogamy 1:True, 2:False Binary Autogamous 

Life-form 1:Phanerophyte, 

2:Chamaephyte, 

3:Hemicryptophyte, 

4:Geophyte, 

5:Therophyte  

Nominal 1:Phanero, 

2:Chamae, 

3:Hemi,  

4:Geo,  

5:Thero 

Short lifespan species 

(annual or biennial) 

1:True, 2:False Binary Short.lifespan 

 3 


