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Abstract Micro-electro-mechanical systems (MEMS) made
of polycrystalline silicon are widely used in several engi-
neering fields. The fracture properties of polycrystalline sil-
icon directly affect their reliability. The effect of the ori-
entation of grains on the fracture behaviour of polycrys-
talline silicon is investigated out of the several factors. This
is achieved, firstly, by identifying the statistical variation of
the fracture strength and critical strain energy release rate,
at the nanoscopic scale, over a thin freestanding polycrys-
talline silicon film, having mesoscopic scale dimensions. The
fracture stress and strain at the mesoscopic level are found to
be closely matching with uniaxial tension experimental re-
sults. Secondly, the polycrystalline silicon film is considered
at the continuum MEMS scale, and its fracture behaviour is
studied by incorporating the nanoscopic scale effect of grain
orientation. The entire modelling and simulation of the thin
film is achieved by combining the discontinuous Galerkin
method and extrinsic cohesive law describing the fracture

Shantanu S. Mulay, Ludovic Noels
University of Liege, Department of Aerospace and Mechanical
Engineering, Computational & Multiscale Mechanics of Materials,
Chemin des Chevreuils 1, B-4000 Liège, Belgium. Tel.: +32-43669503
E-mail: ssmulay@ae.iitm.ac.in, E-mail: L.Noels@ulg.ac.be

Gauthier Becker
Massachusetts Institute of Technology, Department of Aeronautics and
Astronautics, 77, Massachusetts Avenue, Cambridge, MA 02139-
4307, United States

Renaud Vayrette, Jean-Pierre Raskin, Thomas Pardoen
Université catholique de Louvain, Institute of Mechanics, Materials
and Civil Engineering, Place Sainte Barbe 2, 1348 Louvain-la-Neuve,
Belgium.

Montserrat Galceran
CIC Energigune, Albert Einstein 48, 01510 Miñano (Álava), Spain

Stéphane Godet
Université Libre de Bruxelles, Materials Engineering, characterization,
synthesis and recycling,
50 Av. FD Roosevelt CP194/03, 1050 Brussels, Belgium.

process.

Keywords polysilicon fracture · Discontinuous Galerkin
method · multiscale framework ·MEMS fracture

1 Introduction

Polycrystalline silicon (polySi) is the most common mate-
rial in use for the manufacturing of MEMS. However, sev-
eral factors, such as the grain size, grain orientation, and
nano scale defects or flaws, affect the mechanical proper-
ties of thin polySi films, such as the Young’s modulus E,
fracture strength σc, and critical energy release rate Gc [1].
Apart from this, a specific manufacturing process adopted to
produce MEMS also further affects the run-time fracture be-
haviour of MEMS. There is thus a need to develop numerical
models accounting for these probabilistic nano-scale effects
to predict the properties, including the strength, of MEMS
components.

It is pertinent at first to clearly define the relevant length
scales to illustrate the problem addressed in the present work.
The length dimension ranging from 1 nm to 100 nm is re-
ferred as the nanoscopic scale, from 100 nm (0.1 µm) to
1000 nm (1.0 µm) is referred as the mesoscopic or micro-
scopic scale, and higher than 1.0 µm is referred as the MEMS
or macroscopic scale. Thus, an average single grain size of
polySi (≈ 100 nm) falls under the nanoscopic scale, the
size of the simulation model of a thin polySi film consisting
of several grains fall under the mesoscopic or microscopic
scale (size of representative or microstructural volume el-
ement), and finally the size of the simulation model of a
thin polySi film having a continuum structure, i.e., without
the explicit representation of the underlying micro-structure,
falls under the macroscopic length scale. The length scales
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will be correspondingly referred in the subsequent sections
of this paper.

Several advanced techniques based on micro-mechanical
tests [2, 3] have been developed over the years to correctly
measure the mechanical properties E,σc, and Gc of a bulk
polySi and single crystal silicon presenting a preferred out of
plane orientation, such as <1 0 0> or <1 1 0> or <1 1 1>, in-
volving the statistical aspects. These researches report some
variations in the mean values of E and σc at both, the mi-
cro and macroscopic levels. This could be explained by the
random orientation of grains at the mesoscopic level leading
to a statistical strength distribution at the macroscopic level,
and thus two samples may have completely different crack
paths (trans-granular or inter-granular) as well as different
fracture strengths. The literature also reports a decrease of
the fracture strength with respect to an increase in the thick-
ness of the test sample [4]. This could be explained by the
presence of more surface flaws across the thickness in the
thicker specimens. The presence of wanted or unwanted for-
eign elements in the polySi can also have a first order effect
on the fracture strength. Thus all these reasons warrant a ro-
bust design procedure of MEMS, made up of polySi, linking
the probabilistic nature of the fracture behaviour of polySi
at the mesoscopic level with the macroscopic level.

The fracture of a thin polySi film involves the nanoscopic
scale corresponding to the grain size, as well as the macro-
scopic scale corresponding to the specimen dimensions. The
fracture properties (σc, Gc and crack path) of polySi vary at
the nanoscopic scale due to the several factors mentioned
earlier. Therefore, the prediction of the fracture behaviour
at the MEMS scale is a particularly challenging task as it
strongly depends on the lower scale effects. One of the pri-
mary motivations behind this study is that the finite ele-
ment size of the discretized micro-structure is constrained
by the smallest grain size present in the model. Indeed, a
large number of elements, varying in size, are generated
even for a fewer number of grains in a model of the polySi
film. Therefore, very small load increments are required in
order to achieve a stable quasi-static simulation. In fact, an
average grain size of approximately 100 nm leads to a time
step around ≈ 1× e−15 sec., resulting in an unaffordable
computational time even within a scalable parallel imple-
mentation, and preventing the direct numerical simulation
of polycrystalline MEMS structures. This problem requires
to be addressed using 2-scale methods in order to have a
much larger finite element size at the macroscopic length.

Different techniques have been proposed in the litera-
ture to account for a lower scale when simulating the frac-
ture process. Multi-scale computational homogenization (or
FE2) methods separate the resolution at the two scales, al-
lowing to keep coarse meshes at the higher scale where a
macro-crack is introduced at the expense of the concurrent
resolution of many micro-scale problems. However com-

putational multiscale fracture mechanics remains challeng-
ing, mainly because discontinuities have to be propagated
through the different scales. One problem linked to this prop-
agation is the loss of representative nature of the micro-
problem [5–7]. This can be solved by using appropriate bound-
ary conditions [5], with the concept of failure zone aver-
aging [6], for periodic structures [7], or by propagating the
discontinuities to the macro-level by characterizing the loss
of ellipticity at the sub-scale [8]. In [9], the reaction forces
of the micro-scale boundary value problem, which embeds
crack propagation, are used to characterize the fracture prop-
erties of a crack at the macro-scale. Clearly the concurrent
resolution of the multiple non-linear micro-scale problems
with the non-linear macro-scale problem induces prohibitive
costs. A multi-resolution strategy using a combination of a
damage model and of a generalized micro-continuum has
recently been proposed to capture zig-zag fracture of het-
erogeneous ductile materials [10, 11]. This multi-resolution
method requires an increase of the number of degrees of
freedom but the two scales are solved at once. In [12] a re-
duced order modelling technique based on the domain parti-
tioning method was used to refine locally the discretization
in the zones of damage evolution. Finally the evolution of
micro-scale cracks was accounted for at the macro-scale by
using the projection method [13].

In this work we intend to take advantage of the brittle
behaviour of the material by replacing the concurrent res-
olution of the two scales by statistical mesoscopic fracture
properties, while solving an unmodified macro-scale prob-
lem. To this end, finite element simulations of the micro-
structure, explicitly modelling the different grains, are con-
ducted from which the statistical mesoscopic fracture prop-
erties can be extracted following the method described in
[9, 14] to feed the finite element simulation of the MEMS
structure on which scale the grains are thus implicitly mod-
elled. The main objective is to link the effect of the grains
orientation at the nanoscopic level to the fracture of MEMS
at the macroscopic level to contribute to more robust design
tools.

At both the mesoscopic and macroscopic levels, the fi-
nite element simulations, accounting for the fracture pro-
cess of a thin polySi film, have recourse to the cohesive
zone method (CZM). The CZM considers a cohesive zone
(process zone) ahead of the crack tip, such that the force on
the crack lips within the cohesive zone progressively van-
ishes, leading to a fully open crack [15, 16]. The total en-
ergy released per unit of the newly created crack surface
area (J/m2) during the crack opening is equal to the fracture
energy or critical strain energy release rate Gc. The CZM
has extensively be used in fracture mechanics. The cohe-
sive zone can be integrated using the extended finite element
method (xFEM) [17,18], the embedded localization method
(EFEM) [19], or with interface elements inserted between
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the usual bulk finite elements. For the two first approaches,
the crack can be represented in an arbitrary existing FE mesh
through global or local enrichments [20]. When having re-
course to cohesive elements, the CZM can be implemented,
on the one hand, using intrinsic cohesive laws (ICLs) mod-
elling the elastic response prior to the fracture onset [21]
or, on the other hand, using extrinsic cohesive laws (ECLs)
inserted in the model at the fracture onset only [22, 23]. In-
trinsic laws have been firstly preferred to extrinsic ones due
to their easier implementation. Nevertheless, intrinsic cohe-
sive laws lead to an inconsistent pure penalty method. On
the contrary, ECLs preserve the consistency but they are
more complicated to implement in the case of continuous
Galerkin methods as some topological mesh modifications
are required during the simulation.

To avoid these topological mesh modifications, in this
work we consider the combination of the extrinsic cohesive
laws to the discontinuous Galerkin (DG) method to integrate
the CZM. The DG method takes into account the disconti-
nuities (jumps) in the field variable distribution within the
interior of the problem domain, and the ECL approach per-
forms the unloading of the force on the newly created frac-
ture surfaces. The weak form of the DG method is developed
similarly to the classical finite element method (FEM), ex-
cept that the boundary integral terms do not vanish, e.g. [24].
The integration by parts is restricted to the sub-domains,
thus the boundary integral terms arising from it across the
sub-domain boundaries are retained and used to capture the
discontinuities across the element interfaces. This makes it
suitable to integrate the ECL upon the onset of fracture since
the interface elements are present before the insertion of the
cohesive element, as in the intrinsic approach [25]. Nonethe-
less, contrarily to the pure penalty intrinsic method, the DG-
/ECL framework ensures the consistency of the method by
adequate flux terms at the interfaces. The detailed discussion
and formulation of the DG/ECL method can be found in the
references [26] for 3D formulations while [27,28] discussed
DG shell formulations. The DG/ECL method offers impor-
tant advantages. Indeed, besides being consistent and ensur-
ing convergence with respect to the mesh size, the method
does not require complex modifications of the FE code, in-
cluding in the 3D parallel case, as recently discussed in the
cases of in-house and commercial software [29, 30]. More-
over, the method remains scalable for a high number of pro-
cessors (a few thousands [26]), ensuring its computational
efficiency. Finally the DG/ECL method does not require cri-
teria for cracks bifurcation, merge and propagation direc-
tion, allowing for multiple cracks to propagate and interact
in the structures.

Firstly, the fracture of freestanding polySi thin films is
simulated at the mesoscopic level by meshing explicitly sev-
eral grains present in the RVE. A plane-stress 2-D assump-
tion is made, reducing the computational cost since there

is no explicit discretization across the film thickness. The
values of σc and Gc at the nanoscale are experimentally
available for a single crystal silicon with preferred out of
plane grain orientations < 1 0 0 >,< 1 1 0 > and < 1 1 1 >.
However, with finite element simulations the crack direc-
tion is constrained by the element boundaries, which are
not aligned with these particular planes. A new formula-
tion is thus proposed that computes the effective values of
σc and Gc for an arbitrary orientation of the crack from the
three reference values. Furthermore, several grains are ex-
perimentally observed over the thickness of a thin polySi
film [3,31–33]. For these reasons the fracture path is not per-
pendicular to the MEMS surface and is not uniform across
the thickness. Even in the case of a single grain across the
thickness, the fracture surface does not necessarily remain
perpendicular to the film surface as a weaker plane can exist.
Thus the thickness of a thin polySi film is implicitly consid-
ered in our 2D plane-stress simulations while identifying the
weakest fracture plane for the through-the-thickness frac-
ture. These simulation results (fracture strength and strain)
are compared with corresponding experiments. In the exper-
iments, the films have been tested freestanding by etching
the underneath sacrificial layer [34–39] so that they undergo
pure uniaxial tension conditions. A plane-stress condition
in thus considered in the 2D-numerical simulations. More-
over in this considered experimental setup, the fracture of
the polySi film does not interact with the substrate.

Several sets of the micro-structure simulation results can
thus be obtained by assigning each time, a random orienta-
tion to the grains. A mesoscopic cohesive law is then ex-
tracted for each set of results [9,14], and the mean and stan-
dard deviation values of σc and of the maximum crack tip
opening displacement are computed. An average mesoscopic
cohesive law is then developed based on these values. The
fracture of a polySi thin film can then be performed at the
macroscopic level using this average cohesive law, for a much
larger model without the explicit representation of the un-
derlying micro-structure.

This paper is organised as follows. The formulations of
both DG and ECL methods are given in Section 2. The de-
scription of the micro-model, including the formulations to
account for a general orientation of crack direction and for
the effect of the thickness of polySi thin film is reported in
Section 3. This Section also reports the extraction of statis-
tical mesoscopic cohesive law using this micro-model and
the comparison with experimental data. The fracture studies
of a thin polySi film is thus performed at the macroscale in
Section 4. The conclusions are finally drawn in Section 5.
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Fig. 1: Interface element with local basis vectors in-between
the two 2D bulk elements, “minus” and “plus”, in the DG
method

2 Discontinuous Galerkin method and extrinsic
cohesive law framework

In this section, the DG/ECL framework of the weak formu-
lation accounting for fracture is summarised as well as the
constitutive bulk and cohesive model behaviours.

2.1 Weak formulation

The thin polySi film is first treated as a continuum at the
mesoscopic level with a discretization of the grains, and then
at the macroscopic level with homogenised properties, fol-
lowing the DG method and assuming small deformations.

Let Ω⊂R2 be a body subjected to a force per unit mass
bbb (N/Kg). Its boundary surface Γ includes two parts: the
Dirichlet boundary denoted by ΓD, where the displacement
uuu is prescribed by ūuu, and the Neumann boundary denoted
by ΓT, where the traction is prescribed by t̄tt. One always has
Γ = ΓD ∪ΓT and ΓD ∩ΓT = /0. The continuum mechanical
equilibrium equations in the material form are stated as

∇ ·σσσT +ρ bbb = ρ üuu in Ω (1)

uuu = ūuu on ΓD and (2)

σσσ n̂nn = t̄tt on ΓT (3)

where ρ is the density, σσσ is the Cauchy stress tensor, and
n̂nn is the outward normal to the unit surface in the current
configuration.

The 2D finite element discretization of the body Ω is ex-
pressed as Ω =

⋃
e Ω̄e, where Ω̄e is the union of the open do-

main Ωe with its boundary Γe. Here the symbol Ω is used to
represent the whole body and its discretization for simplic-
ity. The mesh of the geometry contains bulk elements and
all the boundaries in-between them are treated as interface
elements, as shown in Figure 1. The weak form of Equa-
tions (1-3) arises by seeking a polynomial approximation uuu
of the displacement field over the discretization Ω. Contrar-
ily to a continuous Galerkin approximation, which requires
uuu∈C0 (Ω), the DG approach requires only an element–wise
continuous polynomial approximation, i.e., uuu∈C0 (Ωe). Con-
sequently, for a DG formulation the trial functions wwwu are

also discontinuous across the element interfaces on the in-
ternal boundary of the body ΓI = [

⋃
e Γe]\Γ.

The new weak formulation of the problem is obtained in
a similar way as for the continuous Galerkin approximation.
The linear momentum balance is enforced in a weighted av-
erage sense by multiplying the strong form (1) by a suitable
trial function wwwu and by integrating by parts in the domain.
However, since both test and trial functions are discontinu-
ous, the integration by parts is not performed over the whole
domain but on each element instead. Using established DG
considerations, see [24] for details, this leads to∫

Ω

(ρ üuu ·wwwu +σσσ : ∇wwwu) dv+
∫

ΓI

[[wwwu]] · 〈σσσ〉 · n̂nn− ds

=
∫

Ω

ρ bbb ·wwwu dv+
∫

ΓT

wwwu · t̄tt ds

 (4)

where n̂nn− is the outward normal to the unit surface of the
“minus” element on one side of the interface. The Equation
(4) contains all the usual terms from the classical Galerkin
method with an extra terms accounting for the discontinu-
ities of the field at inter element boundaries. In this equation
we have considered the jump and average operators, which
are defined on an interface of two bulk elements of the dis-
cretized geometry, arbitrarily denoted “plus” and “minus” as
shown in Figure 1, respectively, as

[[•]] =
[
•+−•−

]
and 〈•〉= 1

2
[
•++•−

]
(5)

In the formulation (4) so far, neither the displacement
continuity in-between the elements, nor the stability of the
method are enforced. Moreover one should account for the
interfaces ΓIU corresponding to uncracked surfaces, and for
the interfaces ΓIC corresponding to cracked surfaces, with
ΓIC∪ΓIU = ΓI.

On cracked surfaces ΓIC, the surface traction 〈σσσ〉 · n̂nn−
arises from a cohesive zone model and reads t̄tt− ([[uuu]]), yield-
ing∫

ΓIC

[[wwwu]] · 〈σσσ〉 · n̂nn− ds =
∫

ΓIC

[[wwwu]] · t̄tt− ([[uuu]]) ds (6)

On uncracked surfaces ΓUC, the compatibility equation
uuu+−uuu−= 0 is enforced through a so–called symmetrization
term in [[uuu]] and a (sufficiently large) quadratic stabilisation
term in [[uuu]] and [[wwwu]]. We thus use the classical substitution
inherent to consistent DG interior penalty methods [24]∫

ΓIU

[[wwwu]] · 〈σσσ〉 · n̂nn− ds→

∫
ΓIU

[[wwwu]] · 〈σσσ〉 · n̂nn− ds+∫
ΓIU

{
[[uuu]] · 〈C : ∇wwwu〉 · n̂nn−

}
ds+∫

ΓIU

{
[[wwwu]]⊗ n̂nn− :

〈
βs

hs
C
〉

: [[uuu]]⊗ n̂nn−
}

ds

(7)
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where C is the (anisotropic) elasticity tensor. In this substi-
tution, the first term ensures the consistency of the method
and is kept unchanged, the second term is the symmetriza-
tion term, which ensures the displacement compatibility and
leads to an optimal convergence rate with respect to the mesh
size hs, and the third term is the quadratic stabilisation term,
ensuring that the general displacement jumps are stabilised
in the numerical solution. The penalty parameter βs has to
be larger than a constant that depends on the polynomial
approximation for the DG interior penalty method to be sta-
ble [26, 27].

The small deformation material response is thus prop-
erly considered for the final weak formulation of the prob-
lem obtained by substituting Equations (6) and (7) into Equa-
tion (4), and which consists of finding uuu such that∫

Ω

(ρüuu ·wwwu +σσσ : ∇ wwwu) dv+
∫

ΓIU

[[wwwu]] · 〈σσσ〉 · n̂nn− ds+∫
ΓIU

{
[[wwwu]]⊗ n̂nn− :

〈
βs

hs
C
〉

: [[uuu]]⊗ n̂nn−
}

ds+∫
ΓIU

{
[[uuu]] · 〈C : ∇wwwu〉 · n̂nn−

}
ds+

∫
ΓIC

[[wwwu]] · t̄tt− ([[uuu]]) ds =∫
Ω

ρ bbb ·wwwu dv+
∫

ΓT

wwwu · t̄tt ds, ∀ wwwu


(8)

The weak form (8) is discretized following the finite-
element method. To this end, the domain Ω is discretized
into several bulk finite elements Ωe and into several inter-
face elements Γs

I inserted in-between these bulk elements.
The displacement field uuu and the trial function wwwu are ap-
proximated by considering the polynomial approximations

uuu(XXX) = ∑
a

Na(XXX)uuua and wwwu(XXX) = ∑
a

Na(XXX)δuuua (9)

where Na is the shape function corresponding to the node a.
As both the test and trial functions are discontinuous across
the interface elements Γs

I , the shape functions N ought to
represent this discontinuity, and the degrees of freedom are
thus duplicated for each bulk element comprising the node a.
Considering the interface separating the two elements “mi-
nus” and “plus” as in Figure 1, the node a has the degrees
of freedom uuua− associated to the “minus”-element and the
degrees of freedom uuua+ associated to the “plus”-element.

The finite-element forces are obtained by introducing the
polynomial approximations (9) into the weak form (8), lead-
ing to the set of governing equations to be integrated in the
time interval T :

MMMabüuub + fff a
int + fff a

I = fa
ext ∀t ∈ T (10)

In this equation MMMab is the discretized mass matrix, fff a
int is

the internal force vector at node a, which is obtained from
the elementary bulk forces following

fff a
int = ∑

e

∫
Ωe

σσσ ·∇∇∇NadV (11)

fa
ext is the external force vector at node a, which is obtained

from the elementary bulk forces following

fff a
ext = ∑

e

∫
Ωe

ρbbbNadV +
∫

ΓT

Nat̄ttds (12)

These two force vectors are computed using classical bulk
finite elements Ωe. In this paper we use quadratic triangles
integrated using 3 Gauss points.

Finally, fff a
I , the last left hand side term in Equation (10)

is the interface (including the un-cracked and cracked parts
of ΓI) force vector at node a, which is obtained from the
elementary interface forces following

fff a±
I =



±∑
s

∫
Γs

IC

t̄tt− ([[uuu]])Na±ds±

∑
s

∫
Γs

IU

〈σσσ〉 · n̂nn−Na±ds+

1
2 ∑

s

∫
Γs

IU

∇∇∇Na± ·
[(
[[uuu]]⊗ n̂nn−

)
: C̄±

]
ds±

∑
s

∫
Γs

IU

[
〈βs

hs
C̄〉 : [[uuu]]⊗ n̂nn−

]
· n̂nn−Na±ds

(13)

This interface force vector arises from the DG/ECL formu-
lation. It is integrated by considering an interface element
Γs

I between the two “plus” and “minus” bulk elements, see
Figure 1. In this work, the interface elements are quadratic
lines integrated using 3 Gauss points [40]. The resulting
force vector (13) has a contribution to the degrees of free-
dom belonging to both the “plus” and “minus” neighboring
bulk elements, hence the use of the a± superscript and of the
notation “±”, which holds for “+” for the degree of freedom
a+, and for “-” for the degree of freedom a−. In Equation
(13) the shape functions Na± are volume shape functions
evaluated at the integration points of the interface elements.
Due to the symmetrization terms all the nodes of the 2 neigh-
boring bulk elements have force contributions, and not only
the nodes of the common interface.

Details on the parallel implementation of the method can
be found in [14, 28]. Moreover, recent works have focused
on the practical implementation of the method in in-house
and commercial software [29, 30].

The set of equations (10) is completed by the initial con-
ditions uuua(t = 0) = 0 and u̇uua(t = 0) = vvva

0, where vvva
0 are the

initial nodal velocities. The time interval of interest T is dis-
cretized into time steps and the integration is accomplished
through an incremental solution procedure in each time in-
terval [tn, tn+1]. To this end, an explicit time integration as
the Hulbert-Chung time integration [41], which exhibits nu-
merical dissipation, is considered. Note that due to the DG
terms, the critical explicit time step is reduced by

√
βs [40].

What remain now to be defined are the constitutive be-
haviour of the bulk material, as well as the initiation and the
evolution of the crack cohesive law.



6 Shantanu S. Mulay et al.

2.2 Constitutive material model

In the weak form (8), the discretized Cauchy stress tensor
σσσ results from the strain tensor εεε = (1/2)(∇⊗ uuu+ uuu⊗∇)

through a constitutive material law. At the nanoscale, as the
grains of polySi are orthotropic in nature, anisotropic mate-
rial tensor expressed in the 2D plane-stress state is used such
that σσσ = C : εεε. At the macroscale the material is considered
as homogeneous and isotropic.

2.3 Initiation of the crack

The evaluation of the stress tensor at the Gauss points of the
uncracked interfaces ΓIU follows previous works by Cama-
cho and Ortiz [22], and Ortiz and Pandolfi [23]. This models
the fracture in mode I, in mode II or in a combination of both
using an effective stress,

σeff =



√
(σn)2 +(β )−2(τr)2, if σn ≥ 0

1
β
� |τr|−µc |σn| �, if σn < 0

(14)

where β = (KIIc/KIc) and µc are shear stress factor and fric-
tion coefficient of the material, respectively, and where the
operator�•� is defined by

�•�=


•, if • ≥ 0

0, if •< 0
(15)

In Equation (14), σn = n̂nn ·σσσ · n̂nn and τr =

√
‖σσσ · n̂nn‖2− (σn)2

are respectively the normal and tangential components of
the surface traction at the interface. The criterion σeff ≥ σc
checks the fracture onset. When it is reached at a Gauss point
part of ΓIU, this Gauss point becomes part of the cracked
interfaces ΓIC on which the extrinsic cohesive law t̄tt ([[uuu]]) is
integrated.

2.4 Extrinsic cohesive law

Linearly decreasing ECL, as shown in Figure 2, is consid-
ered in the present work to model the crack opening between
the two fracture surfaces. As long as the ECL is monotoni-
cally decreasing, the shape of the curve does not affect the
solution for brittle materials [23]. Herein σc,Gc,∆

∗ and ∆∗c
are the fracture strength, critical strain energy release rate,
crack tip opening displacement, and the critical crack tip
opening displacement, respectively. If an unloading of the
forces occurs during the crack opening, the ECL follows
a reversible path connecting the origin with the unloading
point on curve (∆∗max, t̄max) with a straight line, where t̄ =

 


t

Gc 


c




max

tmax

c 

Fig. 2: Linearly decreasing extrinsic cohesive law

‖t̄tt‖ , ∆∗, and t̄max represent the surface traction amplitude
between the crack lips, the opening of the crack, and the sur-
face traction amplitude at the maximum crack opening ∆∗max
reached during the fracture process, respectively. The criti-
cal opening displacement ∆∗c is computed, as ∆∗c = [(2Gc)/σc]

to ensure that the correct amount of energy is released at the
end of the complete fracture process.

Once the fracture is detected at a specific interface Gauss
point, the ECL is used to compute the traction vector t̄tt be-
tween the two crack lips in terms of the effective opening
displacement ∆∗. The effective opening displacement ∆∗ is
computed from the surface opening vector ∆∆∆∗, which is a
combination of two effective openings ∆∗n and ∆∗t given by

∆
∗ =

√
� ∆∗n�2 +β2(∆∗t )

2 (16)

where ∆∗n and ∆∗t are the separations along the normal n̂nn and
tangential t̂tt directions, respectively, of the interface element.
The computation of ∆∗ is explained in details by Wu et al.
[14]. The amplitude of the effective cohesive traction, shown
in Figure 2, can then be computed by linear interpolation as

t̄ = σc

(
1− ∆∗

∆∗c

)
for ∆̇

∗ ≥ 0, and ∆
∗ = ∆

∗
max (17)

t̄ = t̄max
∆∗

∆∗max
for ∆̇

∗ < 0, or ∆
∗ < ∆

∗
max (18)

whereas the cohesive traction vector t̄tt can be evaluated as a
function of the effective cohesive traction t̄, following

t̄tt = t̄
(

∆∗n
∆∗ n̂nn+β

|∆∗t |
∆∗ t̂tt

)
for σn ≥ 0 (19)

t̄tt = t̄ β
|∆∗t |
∆∗ t̂tt for σn < 0 (20)

The values of σc and Gc are the two minimum param-
eters required for the characterisation of the ECL. In this
work, we will evaluate these values at the macroscopic scale,
where the material is considered as isotropic and homoge-
neous, from the micro-scale simulations. At the microscopic
scale (through mesoscopic RVEs) a method is developed ac-
counting for the anisotropy and heterogeneity (due to the
different out of plane orientation of the grains) of the polySi.
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3 Microscale fracture of RVE model of polySi material

At first, we study RVE of polySi at the mesoscopic (micro-
scopic) scale. A RVE consists of several grains with a com-
pletely general distribution. At the nanoscale, the constitu-
tive material law follows a 2D plane-stress anisotropic elas-
tic model. The 2D cohesive laws are developed to account
for the anisotropic and heterogeneous nature of the polySi
due to a general out-of-plane orientation of the grains. In
particular as the interfaces of the finite element mesh do not
follow the crystallographic planes of the Si, effective val-
ues of σc and Gc are at first computed for a general orien-
tation of the interface. Secondly the weakest plane is identi-
fied over the thickness of a thin polySi film so that the cor-
rect amount of energy is released at the end of the fracture
process. This allows simulating in 2D through-the-thickness
fracture along weak planes not perpendicular to the film.

With a view toward the simulation of macroscale MEMS
structures, the values of the resulting mesoscale effective σc
and Gc can then be evaluated from the microscale simula-
tions so that the crystallographic nature of the PolySi is im-
plicitly accounted for.

As the RVEs are not rigorously representative (the num-
ber of grains considered in a RVE cannot be large enough
for MEMS structures without becoming of comparable size
with the macroscale) a set of realisations is considered to
extract a statistical distribution of these resulting mesoscale
effective values, σc and Gc. To be rigorous when the volume
element involves fracture, it looses its representative nature
and should be called micro-structural volume element [5].

The predictions are finally compared with the experi-
mental results.

3.1 Effective fracture strength at the nano-scale

The polySi is a cubic crystal exhibiting different material
properties, such as Young’s modulus, Poisson ratio, fracture
strength, along the crystal planes with Miller indices (1 0 0),
(1 1 0), and (1 1 1), shown in Figure 3 as n̂nn1, n̂nn2, and n̂nn3,
respectively. The 2D interface (cohesive) elements, located

between two bulk elements, in a discretized model are not
exactly aligned with any of the crystal planes. Thus a model
to compute the effective fracture strength at each interface
based on the available fracture strength experimentally mea-
sured along the three possible cleavage planes (1 0 0), (1 1
0), and (1 1 1) [2, 42, 43] is required. The length of a sin-
gle interface element being several times larger than the sin-
gle crystal lattice spacing of polySi, the approach presented
here to compute the values of effective σc is valid for a cer-
tain “average” direction. For a cubic crystal, the Miller in-
dices (hkl) are normal to the surface vector [hkl], i.e., Miller
indices directly give the coefficients of the surface normal
vector for a cubic crystal. This information provides the ef-
fective σc for any random orientation of a polySi grain as
explained further. The same approach applies to compute
the effective Gc as well.

Let σ100,σ110, and σ111 be the experimental values of
the fracture strength that are respectively measured along
the three possible cleavage planes (1 0 0), (1 1 0), and (1 1
1) [2,42,43]. The normal vectors to these planes are given as
n̂nn1 = êee1, n̂nn2 = (1/

√
2)(êee1 + êee2), and n̂nn3 = (1/

√
3)(êee1 + êee2 +

êee3), respectively, where êeei are the unit basis vectors of the
global Cartesian axes as shown in Figure 3. Let there be an
interface (cohesive) element, having a surface normal vector
nnn, along which σc has to be determined.

The surface normal vector nnn can be represented in the
contravariant form as nnn = ni n̂nni, where the n̂nni are treated as
the local basis vectors. As the vectors n̂nn1, n̂nn2, and n̂nn3 are not
orthogonal to one another, their dual vectors are computed
at first. The total volume contained within the local basis
vectors is

v = (n̂nn1× n̂nn2) · n̂nn3⇒ v =
1√
6

(21)

The dual basis vectors are then computed as

nnn1 =
[ n̂nn2× n̂nn3

v

]
⇒ nnn1 = êee1− êee2

nnn2 =
√

2
(
êee2− êee3

)
, and nnn3 =

√
3 êee3

 (22)

such that nnni · nnn j = δ
j
i is satisfied. The projection of nnn in the

dual basis vectors is given as

n100 = nnn ·nnn1, n110 = nnn ·nnn2, n111 = nnn ·nnn3 (23)

Therefore, the effective fracture strength vector σσσc along nnn
can be constructed as

σσσc = σ100 n100 n̂nn1 +σ110 n110 n̂nn2 +σ111 n111 n̂nn3⇒

σσσc =
(

σ100 n100 + σ110 n110
√

2
+ σ111 n111

√
3

)
êee1 +(

σ110 n110
√

2
+ σ111 n111

√
3

)
êee2 +

(
σ111 n111
√

3

)
êee3

 (24)
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The magnitude σc of σσσc is thus given as

σc =

√(
σ100 n100 + σ110 n110

√
2

+ σ111 n111
√

3

)2
+(

σ110 n110
√

2
+ σ111 n111

√
3

)2
+
(

σ111 n111
√

3

)2

 (25)

This equation is applicable only when nnn is in between the
solid angle formed by n̂nn1, n̂nn2, and n̂nn3, where these are the sur-
face normal vectors corresponding to the orientation planes
(1 0 0), (1 1 0), and (1 1 1), respectively, which may not
always be true. The symmetry property of the cubic crystal
is used to enable the applicability of Equation (25) for any
orientation of nnn. Due to the symmetry of the cubic crystal,
there are 26 symmetry planes distributed in 8 quadrants as

{100}= (100),(010),(001),(1̄00),(01̄0),(001̄)
{110}= (110),(1̄10),(1̄1̄0),(11̄0),(011),(01̄1),

(01̄1̄),(101),(101̄),(1̄01̄),(1̄01),(011̄)
{111}= (111),(1̄11),(1̄1̄1),(11̄1),(111̄),(1̄11̄),

(1̄1̄1̄),(11̄1̄)

 (26)

The magnitude of the fracture strength is equal along all
the planes within each family of planes {100},{110}, and
{111}. These symmetry planes (26) give a total of 48 sets of
solid angles (6 solid angles per quadrant). This information
is used while determining the correct solid angle in which
the vector nnn lies. At first, each set of solid angles is consid-
ered, and the corresponding dual basis vectors are computed.
The vector nnn is then projected in these dual basis vectors. If
all the projections are≥ 0 for a specific solid angle it is con-
cluded that the vector nnn lies within this solid angle formed
by the set of 3 corresponding surface normal vectors. Fi-
nally, the correctly identified set of the surface normal vec-
tors is used while computing the effective σc along the plane
normal to the vector nnn, as given in Equation (25). In order to
test the correctness of Equation (25), the Cartesian coordi-
nates of nnn are constructed by the polar coordinates (by pro-
gressively increasing the angles θ ∈ [0,2 π] and φ ∈ [0,π]),
and the corresponding effective σc is computed by Equation
(25). The results are presented in Figure 4 for specific values
σ100 = 1.53 ,σ110 = 1.21 , and σ111 = 0.87 GPa of a single
crystal silicon [2, 42, 43]. It can be seen that the effective
σc passes through the three values used along the symmetry
planes with the symmetric distribution in all the 8 quadrants
of a unit length cubic crystal, which is an expected result.
This model is also applied to compute the effective Gc along
the interface plane with surface normal nnn as shown in Figure
5.

3.2 Thickness effect

The fracture process of a thin polySi film is modelled using
2D plane-stress conditions, thus the surface normal vector n̂nn
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Fig. 4: Distribution of σc within a unit cube of polySi

of the cohesive element always lies in the plane. Nonethe-
less, the fracture surface normal nnn may be oriented with a
certain angle with respect to the thickness of the film, where
the effective value of σc could be lower as compared with the
plane-stress situation. This leads to a weakest crystal plane
not necessarily perpendicular to the film. Furthermore, sev-
eral grains can be along the thickness of a thin polySi film.
This 3D nature of the problem is then taken into account
following the approach described in Figure 6.

Let us assume an interface (cohesive) element, and let
t̂tt, t̂tt0, and n̂nn be the in-plane surface tangent, out-of-plane sur-
face normal vectors, and cohesive element normal, respec-
tively, as shown in Figure 6. These 3 vectors form a set of
local basis vectors, and the Cauchy stress tensor σσσ is repre-
sented in terms of these local basis vectors. This interface
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Fig. 5: Distribution of Gc within a unit cube of polySi

element is now rotated by an angle θ around t̂tt. Thus, the lo-
cal basis vectors transform to t̂tt

′
, t̂tt
′

0, and n̂nn
′
, respectively. The

transformation equations are given as

n̂nn
′
= cos(θ) n̂nn+ sin(θ) t̂tt0

t̂tt
′
= t̂tt

t̂tt
′

0 =−sin(θ) n̂nn+ cos(θ) t̂tt0

 (27)

The Cauchy stress tensor σσσ is already available along the
interface element. Also the effective values of σc(θ) and
Gceff(θ) are computed in the direction n̂nn

′
, as explained in

Section 3.1. Now, the magnitudes of the stresses acting on
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Fig. 6: Rotation of an interface element along the thickness
of the thin polySi film, where n̂nn is shown along Y axis for an
illustration purpose.

the rotated plane are computed from σσσ and n̂nn
′
, t̂tt
′

0, and t̂tt
′

as

σn = (σσσ n̂nn
′
) · n̂nn′ ,τ = (σσσ n̂nn

′
) · t̂tt

′
,τ0 = (σσσ n̂nn

′
) · t̂tt

′

0

τr =
√

(τ)2 +(τ0)2

 (28)

The effective stress σeff(θ) along the rotated plane is com-
puted from σn and τr using Equation (14). The σc(θ),Gc(θ),

and σeff(θ) are computed with θ varying from -90 to + 900

with a fixed increment to check whether the fracture crite-
rion σeff(θ)≥ σc(θ) is satisfied. This σeff(θ) value is used to
compute the maximum effective crack tip opening ∆∗c(θ) =
(2 Gc(θ)/σeff(θ)). The in-plane crack tip opening is com-
puted as ∆∗c = {∆∗c(θ)/cos(θ)}, such that the correct amount
of energy is released by the ECL method. The σeff(θ) value
corresponding to θ = 0 is used in the cohesive law, shown in
Figure 2, as a starting point (∆∗ = 0,σc) in order to maintain
the continuity of the distribution of the stress field between
the unfractured and fractured stages.

3.3 Results and discussion

The simulation of the fracture of a tensile test performed
on a thin polySi film RVE is performed on aas follows. At
first, a model of a thin polySi film is developed by Voronoï
tessellation with each Voronoï polygon treated as a grain.
The size of each grain is approximately maintained equal
to 100 nm, and a random orientation (random Euler angles)
is assigned as shown in Figure 7a. However, the preferen-
tial orientations as experimentally observed can also be as-
signed as demonstrated in Section 3.3.2. The dimensions of
the model are chosen as to ensure a stable fracture process,
i.e., the total strain energy stored in a body should be less
than or equal to the total fracture energy required to be re-
leased. The following approach has been followed to satisfy
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Fig. 7: A representative volume element model of a thin
polySi film with (a) 112 grains and (b) a mesh containing
874 elements

this requirement. At first, the dimensions of the model are
fixed with certain length l, height h and thickness t, and one
sample simulation is performed by an appropriate value of
the load step that approximately gives a quasi static load-
ing. Based on the mesoscopic stress vs strain plot obtained
at the end of the simulation, the correct length of the model
is computed by l ≤ (Gc/(0.5σc εc)), where Gc,σc and εc are
the critical strain energy release rate, obtained fracture stress
and strain, respectively. The model is then regenerated with
this new value of length l to approximately ensure that the
stable through-the-thickness fracture is obtained. The final
dimensions of the model are l = 1.15,h = 1 and t = 0.05
µm. The typical finite element mesh size is decided with ref-
erence to the smallest edge of the grains present in a model
as shown in Figure 7b. This ensures that at least one ele-
ment is present along the grain boundaries, see Figure 7b.
Experimentally, the fracture strength of a single crystal sil-
icon is highly affected by the micro-machining process and
the silicon etchant used, thus a wide variation is observed
in its value [2, 42]. It is difficult to exactly incorporate the
actual surface roughness of a polySi film in the present sim-
ulation. The standard values for typical silicon crystals pro-

duced by the standard micro-machining process are used in
the present study.

The values of fracture strength along the (1 0 0), (1 1
0) and (1 1 1) orientation planes for the single crystal silicon
are used as σ100 = 1.53,σ110 = 1.21 and σ111 = 0.87 GPa [2,
42, 43], respectively. The values of Gc are similarly used as
Gc100 = 5.08,Gc110 = 4.2 and Gc111 = 2.56 J/m2, [44, 45],
respectively1. In order to ensure that the fracture is prefer-
ably detected at a single location at the beginning, the com-
puted value of the effective fracture strength at a specific
Gauss point along the interface element is varied within ±
10 %. The anisotropic material model in each grain has a
cubic symmetry, with as material parameters in the (1 0 0)
direction a Young’s modulus E = 144 GPa, a Poisson ratio
ν = 0.28, and a shear modulus µ = 80 GPa [2, 42, 43, 46].
The value of the density is ρ = 2.33 g/cm3.

This model is loaded in uniaxial tension as in the ex-
periments. The force (computed) and displacement (applied)
values along the loading edge are archived. The dynamic ex-
plicit time integration is performed to ensure convergence,
and the value of the load step is decided to ensure that a
quasi-static regime is achieved. As soon as a fracture is de-
tected at any Gauss point along an interface element, the
monotonically decreasing linear ECL is applied to compute
the stress. The interface elements are present at two loca-
tions, viz. within a grain and along the grain boundaries.
The fracture strength and effective stress along the interface
elements, that are present within a grain, are computed as
explained in Sections 3.1 and 3.2, respectively. The value of
the fracture strength along the interface elements, that are
present along the grain boundaries, is assigned correspond-
ing to the (1 0 0) orientation, and the effective stress is com-
puted without the thickness effect. This adopted approach
in the present work is based on the experimentally observed
fact that the polySi mainly undergoes the transgranular frac-
ture, so the grain boundaries are stronger than the grains.

In order to capture the spread of fracture strength asso-
ciated to the probabilistic orientation of grains, 10 different
sets of the fracture results are obtained with each time new
Euler angles assigned to the grains. For each of the 10 sets,
a mesoscopic ECL is extracted from the microscopic force
vs. displacement plot [9,14], as uM = um− [(l/E) ( f m/(ht)]
where f m,um and uM are the microscopic force, displace-
ment and macroscopic displacement, respectively, and E is
the slope of microscopic stress vs. strain plot till the frac-
ture stress is reached. The mean and standard deviation of
the macroscopic effective crack tip opening displacement ∆∗

and fracture stress σc are computed based on the 10 sets of
the extracted mesoscopic ECL from the simulation results.
An average mesoscopic cohesive law is thus developed that
incorporates the statistical variation of σc and ∆∗. This is

1 These units are modified in the simulation setup to avoid bad con-
ditioning numbers
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Fig. 8: Stereographic projection of the surface normal of the
orientation of grains without any average preferred orienta-
tion

first conducted for a general distribution of the grain orien-
tation before considering the case of preferred orientation.

3.3.1 Fracture of a thin polySi film RVE without preferred
grain orientation

Different sets (10) of the fracture results are now obtained
for this model by each time assigning a random out-of-plane
orientation to the grains. The results from one of the sets are
provided here for reference. The random out-of-plane orien-
tation of 112 different grains is shown by the stereographic
projection of the surface normal of their orientations in Fig-
ure 8. There is no preferential out-of-plane orientation in this
case.

The mesoscopic stress vs. strain plot is shown in Fig-
ure 9a, and the extracted mesoscopic cohesive law is shown
in Figure 9b. The external load steps could be seen in Fig-
ure 9a for the pre-fracture state that are caused by the dy-
namic effects. A smooth loading can be obtained by further
reducing the time step. The through-the-thickness fracture
is shown in Figure 10. It is also seen in Figure 10 that the
crack is initiated at both ends of the polySi RVE. This could
be explained by the fact that no notches are present along the
edges, so there is an equal probability of the crack occurring
at several places, along the height of the model, at the same
time. The more important aspects are that both cracks fi-
nally meet, and that fracture is transgranular. Few elements
could be disturbed during the crack propagation, as there is
no stress concentration at the onset of crack so the fracture
may be detected at more than one Gauss point along the in-
terface elements belonging to the same bulk element.

The effective Gc = (0.5∆∗c σc) is computed by the meso-
scopic cohesive law given in Figure 9b and obtained as Gc =

2.97 J/m2, where ∆∗c = 5.6×10−3 µm and σc = 1.0 GPa.
The results obtained by all the 10 simulated sets are anal-

ysed, as explained above, and one mesoscopic cohesive law
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Fig. 9: (a) Stress vs. strain evolution of the RVE, (b) meso-
scopic cohesive law when the grains in the polySi film are
assigned a random orientation
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is extracted for each realisation. Because of the random na-
ture of the grain orientation, each realisation leads to the
different values of σc and Gc. The values of mean σ̄c and
standard deviation σσc of σc are computed as

σ̄c =
1
n

n

∑
i=1

(σc)i, σσc =

√
1

(n−1)

n

∑
i=1

[(σc)i− σ̄c]2 (29)

where n = 10 is our samples number. The values of mean
∆̄∗c and standard deviation σ∆∗c of ∆∗c are also computed sim-
ilarly. These values are obtained as σ̄c = 0.99 GPa and σσc =

4.04×10−2 GPa, and ∆̄∗c = 5.98×10−3 µm and σ∆∗c = 4.96×
10−4 µm. The average mesoscopic cohesive law is thus de-
veloped based on these values as shown in Figure 11. It is
worth mentioning these values are linked with the size of the
polySi RVE, and will change with a change in the size of the
RVE. In this paper, we assume that a size of the RVE compa-
rable to the size of the finite elements that will be used at the
macroscale is meaningful [47, 48]. A more evolved analysis
should account for the correlation distance [49].

All the simulation results at the microscopic level show
that the first fracture always occurs at the value of effec-
tive stress σeff(θ), as explained in Section 3.2, in between
the fracture strengths along the (1 1 0) and (1 1 1) orienta-
tion planes. This means that, irrespective of the orientation
of grains, there will be at least one interface element whose
surface normal will be closely aligned, due to the thickness
effect, to the normal of the (1 1 1) orientation plane. This im-
plies that the crack will always propagate in the average di-
rection of the (1 1 1) orientation plane. This is clearly seen in
Figure 12, where the stereographic projection is given only
for the grains that are involved in the fracture process where
an average preferred out of plane orientation is in-between
the (1 1 0) and (1 1 1) orientations. A similar behaviour has
also been experimentally observed [45]. The average value
of Gc ≈ 2.96 J/m2 is also between the values correspond-
ing to the (1 1 0) and (1 1 1) orientation planes. All the re-
sults at the microscopic level have different crack paths, as
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Fig. 12: Stereographic projection of the surface normal of
the out-of-plane orientation of the grains that are involved in
the fracture process shown in Figure 10, where an average
preferred orientation is in between (1 1 0) and (1 1 1)
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Fig. 13: Stereographic projection of the surface normal of
the orientation of grains with an average (1 1 0) orientation

each time different out of plane orientation is assigned to the
grains. The orientation of grains thus affects the crack path,
while may not drastically affect the fracture stress at which
the crack initiation is detected.

3.3.2 Fracture of a highly textured thin polySi film RVE
with all grain orientations close to (1 1 0)

This section contains the simulation results when all the
grains in Figure 7a are assigned an out-of-plane orientation
close to (1 1 0) plane. The objective of this simulation is to
make comparisons with several experimental results in the
open literature, as well as in-house experiments performed
as explained later. The average (1 1 0) orientation of grains
is shown by their stereographic projection in Figure 13. The
microscopic stress vs. strain plot and the mesoscopic cohe-
sive law are shown in Figures 14a and 14b, respectively, and
the crack path is shown in Figure 15. The value of effec-
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Fig. 14: (a) Stress vs. strain plot, (b) mesoscopic cohesive
law for an average out-of-plane (1 1 0) grain orientation
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tive Gc is computed by the cohesive law as well as by the
energy balance as equal to 2.77 and 3.0 J/m2, respectively.
These values are approximated as they are computed by as-
suming a complete mode-I fracture, such that the fracture
surface area is assumed to be a normal cross-section (h× t).
The crack path shows that the actual fracture surface is not
exactly along the normal cross-section.

The overall fracture strength is equal to σc ≈ 1.0 GPa,
which is close to the average value obtained by Yi et al.
[42] but slightly lower than the input value σ110 = 1.21 GPa
for a single crystal silicon with a preferred (1 1 0) out-of-
plane orientation. The reason behind this was explained at
the end of Section 3.3.1. The present results closely match
with Suwito et al. [2] for <1 1 0> silicon T-structures hav-
ing sharp 90o corner at the point of the reduction of cross-
sectional area. This is an important test case as it mimics
the actual transitions occuring in the micromechanical struc-
tures. The value of fracture strain is εc ≈ 0.56%, which is
very close to the average value obtained by Sato et al. [43]
for a single crystal silicon film having <1 1 0> preferred ori-
entation.

3.4 Experimental observations

The micro-structure and the roughness of a thin polySi film
have been experimentally analysed, in the context of this re-
search, to have a consistent comparison between the exper-
iment and simulation results. For these experiments, a 240
nm-thick polySi layer has been deposited on top of an oxi-
dised Si substrate. In order to extract the Young’s modulus
as well as the fracture strain of the deposited polySi layer,
on-chip tensile test structures have been manufactured. The
principle and process of the preparation of samples are elab-
orated in [34–39]. During the tensile test there are no longer
interactions between the substrate and the film.

Automated crystallographic orientation mapping in a trans-
mission electron microscope (ACOM - TEM) is a newly de-
veloped technique attached to TEM, which is used in the
present work to determine the local orientation of polySi
grains. The electron diffraction (ED) patterns, in place of
Kikuchi patterns, are collected with an external charge cou-
pled digital (CCD) camera. The acquired ED pattern is then
stored in a computer and compared (off-line) with the pre-
calculated templates and the best match is selected [50].
The experimental measurements were performed by Philips
CM20 operating at 200 kV and equipped with a LaB6 gun
and an external source device, DigiSTAR (R) developed by
NanoMEGAS for ACOM-TEM experiments [50]. Figure 16
shows ACOM-TEM orientation mapping recorded by a 20
nm step size and an acquisition frequency of around 100
frames per second for all the sample surface analysis. In or-
der to increase the quality of the orientation map and to high-
light the micro-structure of the sample, the step size was de-
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Fig. 16: Top view of the out-of-plane orientation map of
a 240 nm-thick and 4 µm-wide polySi sample. Orientation
maps of 20 and 8 nm as step size and 111 pole figure.

creased to 8 nm and 60 frames per second. The average grain
size is estimated to be≈ 110 nm with a standard deviation of
90 nm. The large standard deviation is due to the log-normal
distribution of the grain size. The micro-structure is com-
posed of a large number of small grains with a size smaller
than 100 nm and also few larger grains characterised by a di-
ameter larger than 500 nm. The sample exhibits a preferen-
tial (110) out-of-plane fiber texture and no specific in-plane
orientation is emerged, as seen in Figure 16. The manufac-
tured samples are thus comparable to the the RVEs studied
in the previous section.

The scanning electron microscope (SEM) observation of
the sidewall shows the presence of one or two grains through
the thickness (Figure 17a) as used in the simulated geome-
try (Section 3.2). Concerning the fracture process, the crack
path appears to be clearly transgranular, as shown in Figure
17b, which is in good agreement with our numerical studies.
The fracture strain extracted from this test structure is 0.96%
(± 0.07%). It corresponds to a fracture stress of about 1.41
GPa (± 0.1) for Young’s modulus of 147 GPa [34]. These
values are higher than the ones obtained in Section 3.2. This
can be explained by the different preparation process com-
pared to the experiments in references [2, 42, 43] used to
calibrate σ100, σ110, and σ111 of our numerical model.

The fracture of a brittle polySi film is initiated from crit-
ical flaws located along the external surfaces, i.e., the side-
walls, top and bottom surfaces [51]. These flaws are gen-
erated by the micromachining processes during the sample
preparation. They might be microstructural defects as grain
boundary grooves that emerge on external surfaces and/or
geometrical imperfections directly generated by the prepa-
ration process, as shown in Figure 17a. The nature and lo-
cation of the critical flaws depend on the preparation pro-
cess and on the sample thickness, as their micro-structure is

(a)

(b)

Fig. 17: (a) SEM image of the sidewall of the 240 nm-thick
polySi sample, (b) SEM image of the top view of fracture
zone for 900 nm-wide polySi sample

governed by both. The fracture is initiated at the flaw cor-
responding to the highest stress concentration which is gov-
erned by several factors, such as the morphology, density,
size of the flaw, local grain orientation, local fracture tough-
ness, and the local residual stress state. In this specific case,
the sidewall roughness appears larger than that of the top and
bottom surfaces. Thus, the critical flaws are most probably
located on the sidewalls. Nevertheless, although the grain
boundary grooves emerge on the sidewalls and are visible, it
is not possible to precisely conclude that they constitute the
critical flaws for the initiation of the fracture. More in-depth
studies of the effect of sidewall roughness on the fracture be-
haviour of thin polySi films have to be performed to identify
and characterise the population of the main critical flaws.

These results could be used to prepare an accurate mod-
elling of the MEMS fracture process. As a first step, in the
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Fig. 18: (a) Stress vs. strain plot, (b) complete fracture of
a thin polySi film at the macroscopic level for the model
discretized by 504 finite elements

next section we will study a macro-structure in which the
flaws are modelled by a notch.

4 Fracture of a thin polySi film at the macroscopic level

In this section, a new model of the thin polySi film is cho-
sen to perform the simulation at the macroscopic or MEMS
length scale where the domain of the model is treated as
a continuum, i.e., without the explicit discretization of the
underlying micro-structure. The average mesoscopic cohe-
sive law given in Figure 11 is imposed, for the Gauss points
where the fracture is detected, by specifying the values of
σc and Gc at each node within their lower and upper limits
obtained from the RVE simulations conducted in the pre-
vious Section. This ECL is implemented by randomly as-
signing the σc and Gc bounded by their lower and upper
limits (obtained in Section 3.3.1) at each Gauss point, such
that the critical crack tip opening displacement ∆∗c is auto-
matically bounded by its lower and upper limits. Thus σ−c =

0.948,σ+
c = 1.03 GPa, and Gc

−= 2.8297,Gc
+= 2.955 J/m2

values are used such that (∆∗c)
−= 5.5×10−3,(∆∗c)

+ = 6.5×
10−3 µm values are obtained.

The simulations at the macroscopic scale implicitly as-
sume that the underlying micro-structure of the MEMS is
closely represented by the RVE at the mesoscopic length
scale, such that the statistical variation of the fracture strength
obtained by the RVE closely represents the actual scenario
at the MEMS length scale. This is achieved firstly without
considering any defect, and secondly with considering an
edge defect at the centre of the length l of a thin polySi film.

4.1 Fracture of a thin polySi film without notch at the
macroscopic level

A new model is considered with l = 3.45,h = 3 and t =
0.05 µm at the macroscopic length scale. This model is dis-
cretized such that the size of the finite elements is approx-
imately equal to the size of the RVE considered in Sec-
tion 3.3.1. The results of the simulation are as follows. The
stress vs. strain plot and the fracture are shown in Figure 18.
The total surface or fracture energy for this model Usurf ≈
(3.0 × 0.05 × 3×10−6) ≈ 4.5× 10−1 J is well achieved at
the end of the fracture. The fracture in the present case is
unstable, evident from Figure 18a, as the total strain energy
Uint at the beginning of the fracture is much higher than the
required fracture energy.

In order to test the correctness of the mesoscopic cohe-
sive law as well as DG/ECL framework implementation, the
length l is modified, such that the stable fracture is obtained,
as explained in Section 3.3. The values of σc and εc are taken
from Figure 18a and an average Gc = 2.9 N/m2 is used to
compute the new length l ≈ 0.9 µm. The new model is built
again and simulated with all the parameters as before. The
simulation results show that a prefect stable mode-I fracture
is obtained and all the vital values are correctly recovered.
The stress vs. strain plot and the cohesive law are given in
Figure 19, and the complete mode-I fracture is given in Fig-
ure 20. The total potential energy at the end of fracture is
Upot = 4.2× 10−1 J, which gives Gc = 2.8 J/m2 for a nor-
mal cross-section (3.0×0.05) µm2. The total area under the
cohesive law also equals to Gc = 2.8 J/m2. The maximum
internal strain energy Uint = 4.37× 10−1 J, which is close
to the total required fracture energy Usurf = 4.5× 10−1 J,
results in a stable crack propagation.

4.2 Fracture of a thin polySi film with an edge defect at the
macroscopic level

All the simulation results presented so far correspond to the
geometry of a thin polySi film with smooth edges. In real-
ity, several defects (notches) are generated along the edges
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Fig. 19: (a) Stress vs. strain plot, (b) global cohesive law
of a thin polySi film for the stable crack propagation at the
macroscopic level

of MEMS due to the micromachining process, thus consid-
erably affecting the fracture behaviour of MEMS. Therefore
it is pertinent to study such a model of a polySi film having
at least one edge defect.

The macroscopic model from Section 4.1 is modified at
first and a defect in the form of a small notch is created at
the centre of a top edge, such that the height at the centre
became hc = 2.52 µm. The simulation is performed keeping
all the parameters as before. Figures 18a and 21a show that
the fracture stress (computed from the reaction force and
from the MEMS section at the notch part in the second case)
is reduced by at least 20% due to the presence of the defect.
The obtained crack path can also be physically observed as
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X
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Z3.46e-07 0.00384 0.00767

displacement (6.26e-09)

X

Y

ZFig. 20: Complete mode-I fracture for the stable crack prop-
agation at the macroscopic level

there will be a stress concentration at the tip of a notch. As
the Upot is much higher than Usurf, the fracture is unstable.

Secondly, the length of the model is further increased to
l = 23.0 µm to have a more realistic size and discretized with
a much larger number of finite elements without changing
any other parameters, such that the size of the elements is
approximately equal to the size of RVE in Section 3.3.1. It
is purposefully avoided to have a refined mesh in the central
region to have a more general simulation results without any
influence of the mesh density. The stress vs. strain plot and
fracture are shown in Figure 22. The stress concentration at
the tip of the defect is reduced due to a decrease in the notch
angle (the stress is computed from the reaction force and
from the MEMS section at the notch part), thus resulting in
a slightly higher value of the fracture stress in Figure 22a as
compared with Figure 21a.

5 Conclusions

The fracture of a thin polySi film has been simulated by a
2-scale approach.

At the lower scale, the mesoscale RVEs are studied in
which the grains are explicitly meshed. In order to apply
the cohesive zone method, a novel model to compute the ef-
fective fracture strength σc of an anisotropic material along
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Fig. 21: (a) Stress vs. strain plot, and (b) complete fracture
of a polySi film, having a notch, at the macroscopic level

arbitrary interfaces is proposed, which also satisfies the sym-
metry requirement of the unit cube of silicium. In order to
use 2D simulations, the thickness effect is accounted for by
allowing a through-the-thickness fracture to occur along ar-
bitrary orientation planes. The results obtained by the nu-
merical simulations are broadly in accordance with the ex-
perimentally observed fact that irrespective of the orienta-
tion of crystals, a crack eventually occurs and propagates
along an approximately (1 1 1) cleavage plane, as the sur-
face energy of this orientation plane is smaller than the (1
0 0) and (1 1 0) planes. The simulation of a uniaxial load-
ing of a thin polySi film at the mesoscopic level results in
the fracture stress and strain of≈ 1.0 GPa and 0.6%, respec-
tively, and Gc ≈ 3.0 J/m2. All these values are between the
values corresponding to the out-of-plane grain orientations
(1 1 0) and (1 1 1). This means that, the fracture is always
propagated along the weakest cohesive element with an out-
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Fig. 22: (a) Stress vs. strain plot, and (b) complete fracture
of a thin polySi film having l = 23 µm at the macroscopic
level

of-plane orientation close to the orientation of (1 1 0) or (1
1 1) planes.

From the RVEs studied, a mesososcopic cohesive law
can be extracted to be used as an input for the macroscale
simulations. As the RVEs are not rigorously representative
(the number of grains considered in a RVE cannot be large
enough for MEMS structures without becoming of compa-
rable size with the macroscale) a set of realisations is con-
sidered to extract a statistical distribution of these resulting
mesoscale effective values, σc and Gc. At the macroscale,
the polySi film at the MEMS length scale can thus be stud-
ied as a homogeneous isotropic continuum, which reduces
the computational resources.

The fracture simulations at both scales are achieved us-
ing the combined DG/ECL method. In this framework the
interface (cohesive) elements are inserted between the bulk
elements from the beginning of the simulation itself. As the
ECL is activated only at the interface where the effective
stress reaches the fracture strength, the method remains con-
sistent. Moreover no a priori knowledge of crack path as
well as the remeshing of the geometry are required. This
advantage of the suggested framework allows the scalable
parallelization of the code.

The fracture of a polySi thin film is experimentally per-
formed in-house by the on-chip fracture test, with (1 1 0) av-
erage local preferential orientation of the sample in the out-
of-plane direction. The in-plane orientations are random, but
based on the symmetry-equivalent cleavage planes, (1 0 0)
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and (1 1 0) orientations influence the fracture behaviour of
this particular sample of polySi. The values of fracture strain
and stress are found to be 0.96% (± 0.07%) and 1.41 GPa (±
0.1) with this setup. Thus the fracture stress, as predicted, is
between the fracture strengths along the (1 0 0) and (1 1 0)
cleavage planes. The comparison between the simulations
and in-house experiments show that the fracture stress ob-
tained by the simulations is close to, but slightly lower than,
the experimental values. This can be explained by the differ-
ent preparation process than for the experiments considered
to calibrate σ100, σ110, and σ111 of our numerical model.
The crack path of the fracture is found to be transgranular
by both the experiments and simulations. The present work
can be extended in the future by studying and incorporating
the influence of the side wall roughness and other flaws on
the fracture behaviour of a polySi film.
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