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Hölder regularity Hölder exponent

Hölder exponent

Definition
Let f be a signal and x0 a real number. Then f belongs to the Hölder space
Cα(x0) if there exists a polynomial Px0,α of degree at most α, a positive
constant C and a neighborhood Vx0 of x0 satisfying

|f (x)−Px0,α(x)| ≤ C|x− x0|
α

for all x ∈ Vx0 .
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Hölder regularity Hölder exponent

Hölder exponent

Definition
Let f be a signal and x0 a real number. Then f belongs to the Hölder space
Cα(x0) if there exists a polynomial Px0,α of degree at most α, a positive
constant C and a neighborhood Vx0 of x0 satisfying

|f (x)−Px0,α(x)| ≤ C|x− x0|
α

for all x ∈ Vx0 .

Definition

The Hölder exponent h(x0) of f at x0 is defined as the supremum of the
exponents α such that f belongs to Cα(x0) :

h(x0) = sup{α : f ∈ Cα(x0)}.
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Hölder regularity Hölder exponent

Monofractality

Hölder exponent changes from point to point : f multifractal

Constant Hölder exponent : f monofractal, i.e. f is regularly irregular

Example of a monofractal function : fractional Brownian motion

Fractional Brownian motions with Hölder exponents 0.2, 0.4, 0.6 almost surely.
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Hölder regularity Spectrum of singularities

Spectrum of singularities

How to characterize the global regularity of a signal ?

Definition
The spectrum of singularities of f is the Hausdorff dimension of the set of
points sharing the same Hölder exponent :

df : h 7→ dimH ({x0 ∈ R : h(x0) = h}),

where dimH (X) denotes the Hausdorff dimension of the set X .

Corollary : f is monofractal if and only if its spectrum of singularities is reduced
to a single point.
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Hölder regularity Wavelet leaders method (WLM)

Wavelets

Definition

We say that ψ is a wavelet with n ∈ N vanishing moments if ψ ∈ L∞(R), the
function x 7→ xk ψ(x) belongs to L1(R) with

∫
R

xk ψ(x)dx = 0 for all k ∈N such
that k < n and if ψ̂(0) = 0 (where ψ̂ denotes the Fourier transform of ψ).

We use Daubechies smooth and compactly supported wavelets.
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Hölder regularity Wavelet leaders method (WLM)

Wavelet leaders method (WLM)

1) Wavelet decomposition of the signal :

f (x) = ∑
j,k∈Z

cj,k ψ(2−jx− k) = ∑
λ∈Λ

cλψλ

where ψ is a wavelet and cj,k is the wavelet coefficient associated to the
dyadic interval λ at scale j and position k :

λ = λj,k = [2jk ,2j(k +1)[

and

cj,k = 2−j
∫
R

f (x)ψ(2−jx− k)dx .

2) For each λ, compute the wavelet leaders

dλ = sup
λ′⊂λ
|cλ′ |
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Hölder regularity Wavelet leaders method (WLM)

Wavelet leaders method (WLM)

3) Remove the null wavelet leaders and compute

S(q, j) = 2j ∑
λ∈Λj

dq
λ ,

where Λj is the set of dyadic intervals at scale j.

4) Compute the function τ defined as

τ(q) = limj→−∞
log(S(q, j))

log2j
,

which is numerically obtained through the slopes of linear regressions at
small scales of log(S(q, j)) seen as a function of j.

5) One can hope to obtain the spectrum of singularities as

d(h) = inf
q
{qh− τ(q)}+1.
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Hölder regularity Wavelet leaders method (WLM)

Wavelet leaders method (WLM)
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log(S(q, j)) for a fractional Brownian motion with Hölder exponent 0.5 with q
ranging from -1 to 1.
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Hölder regularity Wavelet leaders method (WLM)

Wavelet leaders method (WLM)
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τ function associated to the previous signal. Linear regression gives a slope of
0.494021.

6) Remark : if τ is a straight line, then f is monofractal, in which case the
Hölder exponent of f is the slope of τ.
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Hölder regularity Wavelet leaders method (WLM)

Wavelet leaders method (WLM)

Remark : if τ is a straight line, then f is monofractal, in which case the
Hölder exponent of f is the slope of τ.
If f is a monofractal signal with Hölder exponent H, then f belongs to the
uniform Hölder space CH , and a “norm” in this space is defined by

‖f‖CH = sup
j,k
{|cj,k |/2jH} := N

=⇒ Application to surface air temperature signals !

Adrien DELIÈGE (University of Liège) Multifractal analysis of temperature signals ULg, June 2014



Hölder regularity Application to surface air temperature signals

Analyzed data

Daily mean temperature data from 1951 to 2003, calculated as average of
minimum and maximum daily temperatures
Weather stations located below 1000 meters of altitude
115 stations selected
Missing data up to 7%, less than 1% for 97 stations
Temperature profile used for more stable numerical results (i.e. xn

replaced by ∑n
j=1 xj .)
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Hölder regularity Application to surface air temperature signals

Analyzed data (Rome)

1950 1960 1970 1980 1990 2000

0

200

−100

100

300

−50

50

150

250

350

time

T
em

pe
ra

tu
re

 [0
.1

 °
C

el
si

us
]

(a)

1951 1952 1953 1954 1955 1956

0.5e05

1e05

1.5e05

2e05

2.5e05

time

T
em

p.
 p

ro
fil

e 
[0

.1
°C

el
si

us
]

(b)

2 3 4 5 6

0

−20

−10

10

−25

−15

−5

5

15

j

lo
g 

S
(q

,j)

(c)

Adrien DELIÈGE (University of Liège) Multifractal analysis of temperature signals ULg, June 2014



Hölder regularity Application to surface air temperature signals

Monofractal nature of the signals
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(orange), with respective slopes 1.156, 1.218, 1.358.
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Hölder regularity Application to surface air temperature signals

Hölder exponents and norms

τ linear =⇒ signals are monofractal

Mean coefficient of determination : R2 = 0.9975±0.0028

Hölder exponents ranging from 1.093 to 1.43

Norms ranging from 8.23 to 30.45

Comparison with the detrended fluctuation analysis ?
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Comparison beween WLM and DFA Detrended fluctuation analysis

Description of the method

Another method to define a notion of regularity.

Seasonal variation of the temperature signal f have to be removed first.
If d is a calendar date (e.g. May 22nd), then 〈f 〉(d) is the average over
the years of the values f (t) such that t corresponds to the calendar date d
(May 22nd 1951, May 22nd 1952,...).
The corresponding trend is

∆f (t) = f (t)−〈f 〉(d).

"Trend profile" used to reduce the noise, i.e. f (t) replaced by ∑t
u=1∆f (u).
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Comparison beween WLM and DFA Detrended fluctuation analysis

Description of the method

For a given length l , divide the signal in n segments of length l .

For each i = 1, ...n, determine the best linear fit of segment i and
computes the standard deviation Fi(l) of the profile from that straight line.

Compute the standard deviation of the profile as

F(l) =

√

∑n
i=1 Fi(l)

n
.

For monofractal signals of exponent γ, we have F(l)∼ lγ.
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Comparison beween WLM and DFA Comparison of the methods

Comparison bewteen WLM and DFA

First simulation : Gaussian noise associated to LRC with index 0.65 +
7sin( 2π

365 t− π
2 )
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Left : WLM. Slope = 0.651104 . Right : DFA. Slope = 0.657925
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Comparison beween WLM and DFA Comparison of the methods

Comparison bewteen WLM and DFA

Second simulation : Gaussian noise associated to LRC with index 0.65 +
7sin( 2π

365 t− π
2 −

1
20 log(t +1))
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Comparison beween WLM and DFA Comparison of the methods

Comparison bewteen WLM and DFA

On synthetic examples : DFA seems less accurate than WLM.
On real temperature signals ?
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How to check the "interest" of the results ?
Idea : temperature variability linked with standard deviation of pressure
anomalies.
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Comparison beween WLM and DFA Relation with pressure anomalies

Relation with pressure anomalies

Normalize the Hölder exponents from WLM between 0 and 1, as well as
those from DFA, and standard deviation of pressure anomalies.

Consider these values as matrices representing Europe (Mw ,Md ,Mp).
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Comparison beween WLM and DFA Relation with pressure anomalies

Relation with pressure anomalies

Normalize the Hölder exponents from WLM between 0 and 1, as well as
those from DFA, and standard deviation of pressure anomalies.

Consider these values as matrices representing Europe (Mw ,Md ,Mp).

Compute the Frobenius distance between these matrices :

d(M,N) =
√

∑
i,j

(Mi,j −Ni,j)2.

We get d(Mw ,Mp) = 2.68 and d(Md ,Mp) = 4.67.

Are these distances significant ? Confirmation that Mw and Mp are
correlated and Md and Mp are not ?
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Comparison beween WLM and DFA Relation with pressure anomalies

Relation with pressure anomalies

Mw and Md shuffled 1000 times and distance with Mp measured.
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Correlation probable between Mw and Mp but not between Md and Mp. Hölder
exponents seem to be linked to climate variability.
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Distribution of the exponents and norms

Link with climate types ? What do you think ?
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Köppen-Geiger climate classification

Classification based on maximum and minimum monthly mean temperatures
(references fixed at 22◦C and 0◦C). Stations close to 0.5◦C of another type of
climate were also associated to this second category. Here, precipitations were
not taken into account.
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Climate distribution
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Distribution of the exponents and norms
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Distribution of the exponents and norms
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Distribution of the exponents and norms
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Hölder spaces-based climate classification and results

Maximum matching with Köppen-Geiger classification if

H1 = 1.186

H2 = 1.275

N1 = 14.81

N2 = 16.18

Result : 93.9% correctly associated

Remark : without the norm, 89.6% correctly associated.
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Results on the map

Stations marked with a brown cross are the ones whose type of climate was
erroneously predicted. The others were correctly predicted ; green discs stand

for Oceanic climate, blue triangles correspond to continental stations and
orange orange diamonds are the Mediterranean ones.
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Blind test

69 other stations

40 years of data between 1951 and 2003
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Blind test

Result : 88.4% correctly associated

Remark : without the norm, 84.1% correctly associated.
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Link between Hölder exponents and climate types Hölder spaces-based classification and blind test

Results on the map

The first 115 weather stations are represented with diamonds, the 69 stations
used for the blind test are represented with triangles. Each of them is colored

as follows: Oceanic stations (Cb-type) in green, continental stations (D-type) in
blue, Mediterranean stations (Ca-type) in orange, and brown diamonds and

triangles are used for stations for which the climate type is erroneously
predicted by the Hölder-based classification.
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Link between Hölder exponents and climate types Discussion and conclusions

Discussion of the results

Results

Oceanic stations ←→ Lowest Hölder exponents

Continental stations ←→ Intermediate Hölder exponents

Mediterranean stations ←→ Largest Hölder exponents

Discussion

On a daily basis, Oceanic climate is more irregular than the Continental
weather, which is less regular than Mediterranean climate.

Explanation could be the North Atlantic Oscillation (NAO), anticyclonic
conditions in Southern Europe, ...
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Link between Hölder exponents and climate types Discussion and conclusions

Conclusions and future work

Conclusions

WLM shows surface air temperatures signals are monofractal signals

WLM seems to be more accurate than DFA

Their belonging to functional spaces reflects their temperature-based
Köppen-Geiger climate type

Algorithm and results confirmed through blind tests

Future work

Checking of the validity of current climatic models

Analysis of other climate indices (pressure, precipitation,...)

Generalization to global temperatures

Adrien DELIÈGE (University of Liège) Multifractal analysis of temperature signals ULg, June 2014



Link between Hölder exponents and climate types Discussion and conclusions
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