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Holder regularity Holder exponent

Hélder exponent

Definition

Let f be a signal and xg a real number. Then f belongs to the Holder space
C%(xo) if there exists a polynomial Py, o of degree at most a, a positive
constant C and a neighborhood Vy, of X satisfying

[f(%) = Pxo.a(x)] < Clx —xo|*

for all x € Vy,.
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Holder regularity Holder exponent

Hélder exponent

Definition
Let f be a signal and xg a real number. Then f belongs to the Holder space

C%(xo) if there exists a polynomial Py, o of degree at most a, a positive
constant C and a neighborhood Vy, of X satisfying

[f(%) = Pxo.a(x)] < Clx —xo|*

for all x € Vy,.

Definition

The Holder exponent h(xo) of f at Xq is defined as the supremum of the
exponents o such that f belongs to C%(xo) :

h(Xo) = sup{O( fe Ca(Xo)}.
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Holder regularity Holder exponent

Monofractality

@ Holder exponent changes from point to point : f multifractal
@ Constant Holder exponent : f monofractal, i.e. f is regularly irregular
@ Example of a monofractal function : fractional Brownian motion

Fractional Brownian motions with Holder exponents 0.2, 0.4, 0.6 almost surely.

ULg, June 2014
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Holder regularity Spectrum of singularities

Spectrum of singularities

How to characterize the global regularity of a signal ?

The spectrum of singularities of f is the Hausdorff dimension of the set of
points sharing the same Hélder exponent :

d : h — dim, ({Xo € R : h(xo) = h}),

where dim,(X) denotes the Hausdorff dimension of the set X.

Corollary : f is monofractal if and only if its spectrum of singularities is reduced
to a single point.

Adrien DELIEGE (University of Liége) Multifractal analysis of temperature signals ULg, June 2014



Holder regularity Wavelet leaders method (WLM)

WWEVESS

Definition
We say that p is a wavelet with n € N vanishing moments if p € L*(R), the

function x — x*(x) belongs to L*(R) with [ x*W(x)dx = 0 for all k € N such
that k < n and if P(0) = 0 (where ({ denotes the Fourier transform of ).

We use Daubechies smooth and compactly supported wavelets.
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Holder regularity Wavelet leaders method (WLM)

Wavelet leaders method (WLM)

1) Wavelet decomposition of the signal :

()= qub@x—k)= T cath

j,KEZ AEA

where U is a wavelet and ¢; i is the wavelet coefficient associated to the
dyadic interval A at scale j and position k :

A=Ak = [2k, 2 (k+1)]
and
G =27 / FOOW(2Ix — K)dx.
R

2) For each A, compute the wavelet leaders

d) = sup|cy|
NCA
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Holder regularity Wavelet leaders method (WLM)

Wavelet leaders method (WLM)

3) Remove the null wavelet leaders and compute

S(a.j)=2"Y dy,
}\E/\j
where A; is the set of dyadic intervals at scale j.
4) Compute the function T defined as

log(S(a,j))

)

which is numerically obtained through the slopes of linear regressions at
small scales of log(S(q,j)) seen as a function of j.

5) One can hope to obtain the spectrum of singularities as

d(h) = ir(}f{qh —1(q)}+1.
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Holder regularity Wavelet leaders method (WLM)

Wavelet leaders method (WLM)

(@)
-1

T function associated to the previous signal. Linear regression gives a slope of
0.494021.

6) Remark : if T is a straight line, then f is monofractal, in which case the
Holder exponent of f is the slope of T.
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Holder regularity Wavelet leaders method (WLM)

Wavelet leaders method (WLM)

@ Remark : if T is a straight line, then f is monofractal, in which case the
Holder exponent of f is the slope of T.

@ If f is a monofractal signal with Hélder exponent H, then f belongs to the
uniform Hélder space CM, and a “norm” in this space is defined by

[fllcn = S.ukp{lcj,k\/ZjH} =N

Js

@ —> Application to surface air temperature signals !
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Holder regularity Application to surface air temperature signals

Analyzed data

(]

Daily mean temperature data from 1951 to 2003, calculated as average of
minimum and maximum daily temperatures

Weather stations located below 1000 meters of altitude

115 stations selected

Missing data up to 7%, less than 1% for 97 stations

Temperature profile used for more stable numerical results (i.e. x,
replaced by i, x;.)

e © 6 ¢
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Holder regularity Application to surface air temperature signals
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Holder regularity Application to surface air temperature signals

Monofractal nature of the signals

T functions associated to Aachen (green), [lleneruska (blue) and Rome
(orange), with respective slopes 1.156, 1.218, 1.358.
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Holder regularity Application to surface air temperature signals

Hélder exponents and norms

@ T linear = signals are monofractal

@ Mean coefficient of determination : R? = 0.9975 +0.0028
@ Holder exponents ranging from 1.093 to 1.43

@ Norms ranging from 8.23 to 30.45

Comparison with the detrended fluctuation analysis ?
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Comparison beween WLM and DFA
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Comparison beween WLM and DFA Detrended fluctuation analysis

Description of the method

@ Another method to define a notion of regularity.

@ Seasonal variation of the temperature signal f have to be removed first.
If d is a calendar date (e.g. May 22nd), then (f) (d) is the average over
the years of the values f(t) such that t corresponds to the calendar date d
(May 22nd 1951, May 22nd 1952,...).
The corresponding trend is

Af(t) =f(t) — (f) (d).

@ "Trend profile" used to reduce the noise, i.e. f(t) replaced by ,_; Af(u).
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Comparison beween WLM and DFA Detrended fluctuation analysis

Description of the method

@ For a given length I, divide the signal in n segments of length I.

@ Foreachi =1,...n, determine the best linear fit of segment i and
computes the standard deviation Fi(l) of the profile from that straight line.

@ Compute the standard deviation of the profile as

F(|) — ZinzlnFi(l)'

@ For monofractal signals of exponent y, we have F (1) ~ IY.
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Comparison beween WLM and DFA Comparison of the methods

Comparison bewteen WLM and DFA

First simulation : Gaussian noise associated to LRC with index 0.65 +
7sin(Zit — 7)

WA

WAL
MHH\HM \M\ W \U”‘”HHH“\‘

Left : WLM. Slope = 0.651104 . Right : DFA. Slope = 0.657925

Adrien DELIEGE (University of Liége) Multifractal analysis of temperature signals ULg, June 2014



Comparison beween WLM and DFA Comparison of the methods

Comparison bewteen WLM and DFA

Second simulation : Gaussian noise associated to LRC with index 0.65 +

7sin(Zit — J— Llog(t + 1))

Z ; i ‘wa{ W‘w

Left : WLM. Slope = 0.647673 . Right : DFA. Slope (straight line) = 0.717090 .
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Comparison beween WLM and DFA Comparison of the methods

Comparison bewteen WLM and DFA

@ On synthetic examples : DFA seems less accurate than WLM.
@ On real temperature signals ?

(a)

@ How to check the "interest" of the results ?

@ |dea : temperature variability linked with standard deviation of pressure
anomalies.
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Comparison beween WLM and DFA Relation with pressure anomalies

Relation with pressure anomalies

@ Normalize the Holder exponents from WLM between 0 and 1, as well as
those from DFA, and standard deviation of pressure anomalies.

@ Consider these values as matrices representing Europe (Mw, Md, Mp).
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Comparison beween WLM and DFA Relation with pressure anomalies

Relation with pressure anomalies

@ Normalize the Holder exponents from WLM between 0 and 1, as well as
those from DFA, and standard deviation of pressure anomalies.

@ Consider these values as matrices representing Europe (Mw, Md, Mp).

@ Compute the Frobenius distance between these matrices :

d(M,N) = /% (Mij —Nij)>.
2
We get d(Mw,Mp) = 2.68 and d (Md,Mp) = 4.67.

@ Are these distances significant ? Confirmation that Mw and Mp are
correlated and Md and Mp are not ?
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Comparison beween WLM and DFA Relation with pressure anomalies

Relation with pressure anomalies

Mw and Md shuffled 1000 times and distance with Mp measured.

05

0.0

I
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0.0 05

Distance Distance

Correlation probable between Mw and Mp but not between Md and Mp. Hoélder
exponents seem to be linked to climate variability.
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Link between Hélder exponents and climate types
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Distribution of the exponents and norms
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Link with climate types ? What do you think ?
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Kdppen-Geiger climate classification

Classification based on maximum and minimum monthly mean temperatures
(references fixed at 22°C and 0°C). Stations close to 0.5°C of another type of

climate were also associated to this second category. Here, precipitations were
not taken into account.

Max. monthly mean temp. (°C)
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Climate distribution
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Distribution of the exponents and norms
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Distribution of the exponents and norms
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Distribution of the exponents and norms
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Hélder spaces-based climate classification and results

Maximum matching with K6ppen-Geiger classification if

H, = 1.186
H, = 1.275
N, = 14.81
N, = 16.18

Result : 93.9% correctly associated

Remark : without the norm, 89.6% correctly associated.
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Results on the map

Stations marked with a brown cross are the ones whose type of climate was
erroneously predicted. The others were correctly predicted ; green discs stand
for Oceanic climate, blue triangles correspond to continental stations and
orange orange diamonds are the Mediterranean ones.
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Blind test
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@ 69 other stations
@ 40 years of data between 1951 and 2003
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Blind test

Result : 88.4% correctly associated ‘

Remark : without the norm, 84.1% correctly associated.
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Link between Hélder exponents and climate types Holder spaces-based classification and blind test

Results on the map

The first 115 weather stations are represented with diamonds, the 69 stations
used for the blind test are represented with triangles. Each of them is colored
as follows: Oceanic stations (Ch-type) in green, continental stations (D-type) in
blue, Mediterranean stations (Ca-type) in orange, and brown diamonds and
triangles are used for stations for which the climate type is erroneously
predicted by the Holder-based classification.
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Link between Hélder exponents and climate types Discussion and conclusions

Discussion of the results

Results

Oceanic stations <— Lowest Holder exponents
Continental stations <— Intermediate Holder exponents

Mediterranean stations <— Largest Holder exponents

Discussion

@ On a daily basis, Oceanic climate is more irregular than the Continental
weather, which is less regular than Mediterranean climate.

@ Explanation could be the North Atlantic Oscillation (NAO), anticyclonic
conditions in Southern Europe, ...
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Link between Hélder exponents and climate types Discussion and conclusions

Conclusions and future work

Conclusions
@ WLM shows surface air temperatures signals are monofractal signals
@ WLM seems to be more accurate than DFA

@ Their belonging to functional spaces reflects their temperature-based
Koppen-Geiger climate type

@ Algorithm and results confirmed through blind tests

Future work
@ Checking of the validity of current climatic models
@ Analysis of other climate indices (pressure, precipitation,...)
@ Generalization to global temperatures
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