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• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

Multi-scale modelling: How? 
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• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

– Transition 

• Downscaling: e is used to define the BCs 

• Upscaling: s is known from the reaction forces 

 

 

– Micro-scale 

• Usual 3D finite elements 

• Periodic boundary conditions 

 

– Advantages 

• Accuracy 

• Generality 

– Drawback 

• Computational time 

Multi-scale modelling: How? 

Ghosh S et al. 95, Kouznetsova et al. 2002, Geers et al. 2010, …  
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Assumptions: 

Lmacro>>LRVE>>Lmicro 
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Multi-scale simulations with strain softening 

• Propagation of instabilities in honeycomb structures 

– Due to micro-buckling 

– Localization bands 

 

 

 

 

 

• Finite element solutions for strain softening problems suffer from:  

– Loss of solution uniqueness and strain localization 

– Mesh dependence  

 

 

The numerical results change with the size of 

mesh and direction of mesh 
Homogeneous unique solution 

  

Loss of solution 

uniqueness 

Strain localization 

The numerical results change without 

convergence 
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• Challenges 

– Micro-structure 

• Not perfect with non periodic mesh 

 

How to constrain the periodic boundary 

conditions? 

 

 

 

 

 

 

 

 

 

  

 

 

Computational homogenization for foamed materials 
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– Transition  

• Homogenized tangent not always elliptic 

• Localization bands 

 

How can we recover the solution unicity 

at the macro-scale? 

– Macro-scale  

• Localization bands 

How to remain computationally efficient 

How to capture the instability? 

 

 

 

 

 

 

 

  

 

 

Computational homogenization for foamed materials 
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• Recover solution unicity: second-order FE2 

– Macro-scale 

• High-order Strain-Gradient formulation  

 

 

• Partitioned mesh (//) 

 

 

– Transition 

• Gauss points on different processors 

• Each Gauss point is associated to 

 one mesh and one solver 

 

 

 

– Micro-scale 

• Usual continuum 

 

  

 

 

Computational homogenization for foamed materials 

𝐏 𝑿 ⋅ 𝛁0- 𝐐 𝑿 : (𝛁0 ⊗𝛁0)=0 

𝐏 ,  𝐐  

𝜕𝐏 

𝜕𝐅 
,

𝜕𝐏 

𝜕(𝐅 ⊗𝛁)
,  

𝜕𝐐 

𝜕𝐅 
,

𝜕𝐐 

𝜕(𝐅 ⊗𝛁)
  

𝐅 ,  
𝐅 ⊗ 𝛁 

𝐏 𝑿 ⋅ 𝛁0=0 

Kouznetsova et al. 2002, Geers et al. 2010, …  
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• Discontinuous Galerkin (DG) implementation of the second order continuum  

• Finite-element discretization 

• Same discontinuous polynomial approximations for the 

• Test functions h and  

• Trial functions d 

 

• Definition of operators  

 on the interface trace: 

• Jump operator: 

• Mean operator: 

 

• Continuity is weakly enforced, such that the method 

• Is consistent 

•  Is stable 

•  Has the optimal convergence rate 

 

• Can be used to weakly enforce higher discontinuities 

 

Computational homogenization for foamed materials 
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Computational homogenization for foamed materials 

𝑎 𝒖 , 𝛿𝒖  = 𝑎bulk 𝒖 , 𝛿𝒖  + 𝑎PI 𝒖 , 𝛿𝒖  + 𝑎QI 𝒖 , 𝛿𝒖  = 𝑏(𝛿𝒖 ) 

𝐏 𝑿 ⋅ 𝛁0- 𝐐 𝑿 : (𝛁0 ⊗𝛁0)=0 

• Second-order FE2 method 

– Macro-scale second order continuum 

 

 
– Requires C1 shape functions on the mesh 

– The C1 can be weakly enforced using the DG method 
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• Micro-scale periodic boundary conditions 

– Convergence in terms of RVE size 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Periodic boundary condition is the optimum choice for periodic structures 

 

– Periodic boundary condition remains interesting for non-periodic structures 

 

Computational homogenization for foamed materials 
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• Micro-scale periodic boundary conditions (2) 

– Defined from the fluctuation field 

 

 

 

– Stated on opposite RVE sizes 

 

 

 

 

– Can be achieved by constraining opposite nodes 

 

• Foamed materials 

– Usually random meshes 

– Important voids on the boundaries 

 

• Honeycomb structures 

– Not periodic due to the imperfections 

  

 

 

Computational homogenization for foamed materials 

𝒘 = 𝒖 − 𝐅 − 𝐈 ⋅ 𝑿 +
𝟏

𝟐
𝐅 ⊗ 𝛁𝟎 : (𝑿⊗ 𝑿)  

𝒘 𝑿+ = 𝒘 𝑿−  

 𝒘 𝑿 𝒅𝝏𝑽 = 𝟎
𝝏𝑽−
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• Micro-scale periodic boundary conditions (2) 

– New interpolant method 

 

 

 

 

 

 

 

 

– Use of Lagrange, cubic spline .. interpolations 

 

– Fits for 

• Arbitrary meshes 

• Important voids on the RVE sides 

 

– Results in new constraints in terms of the boundary and control nodes displacements 

 

  

 

 

Computational homogenization for foamed materials 

𝒘 𝑿− = N 𝑿 𝒘𝑘

𝑘

  

𝒘 𝑿+ = N 𝑿 𝒘𝑘

𝑘

 

  N 𝑿 𝒘𝑘

𝑘

𝒅𝝏𝑽 = 𝟎
𝝏𝑽−

 

 

𝑪  𝒖 𝑏 − 𝒈 𝐅 , 𝐅 ⊗ 𝛁𝟎 =0 
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• Capturing instabilities 

– Macro-scale: localization bands  

 

• Path following method on the applied loading 

 

 

• Arc-length constraint on the load increment  

 

 

 
 

 

 

 

 

Computational homogenization for foamed materials 

𝑎 𝒖 , 𝛿𝒖  = 𝜇  𝑏(𝛿𝒖 ) 

ℎ Δ𝒖 , Δ𝜇  =
Δ𝒖 ⋅ Δ𝒖 

𝑋 0
2 + Δ𝜇 2 − Δ𝐿2 = 0 
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• Path following method on the applied boundary 
conditions 
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𝑋 0
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𝑪  𝒖 𝑏 − 𝒈 𝐅 , 𝐅 ⊗ 𝛁𝟎 =0 

𝐅 = 𝐅 0 + 𝜇 Δ𝐅  

𝐅 ⊗ 𝛁𝟎 = 𝐅 ⊗ 𝛁𝟎 0 + 𝜇 Δ 𝐅 ⊗ 𝛁𝟎  
 

ℎ Δ𝒖, Δ𝜇 =
Δ𝒖 ⋅ Δ𝒖

𝑋0
2 + Δ𝜇2 − Δ𝑙2 = 0 
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• Compression of an hexagonal honeycomb 

 

– Elasto-plastic material 

 

 

 

 

 

• Comparison of different solutions 

 

Full direct simulation  Multiscale with different macro-meshes 

 

 

 

 

 

 

Computational homogenization for foamed materials 
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• Compression of an hexagonal honeycomb (2) 

 

– Captures the softening onset 

– Captures the softening response 

– No macro-mesh size effect 

 

 

 

 

 

Computational homogenization for foamed materials 
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• Compression of an hexagonal honeycomb plate with a centered hole 

– Results given by full and multi-scale models are comparable  

 

 

 

 

 

Computational homogenization for foamed materials 
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• Carbon-nanotubes-reinforced PolyPropylene foam 

 

 

 

 

 

Validation 

Tetrakaidecahedron with mass concentration Foamed PP/CNTs 

? 



CM3 August 2014 -        EMMC14     -    27 

• Carbon-nanotubes-reinforced Polypropylene foam (2) 

 

 

 

 

 

Validation 

Aggregate model PP/CNTs composite 

Amorphous  

Crystalline  x 
y z 

CNT Amorphous +CNT  
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• PP/CNTs composite material properties 

– Crystallinity degree from Differential Scanning Calorimetry 

• Different for foamed and unfoamed materials 

• Aggregate model (mean-field homogenization) predictions 

 

 

 

 

 

Validation 

Aggregate model 

Measures on unfoamed samples 

Extrapolated value for foamed samples 
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• Compressive tests on the foamed samples 

– Dependence on the mass parameter F  

 

 

 

 

 

Validation 
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• Computational homogenization for foamed materials  

– Second-order FE2 method 

– Micro-buckling propagation 

– General way of enforcing PBC 

– More in 

• 10.1016/j.cma.2013.03.024 

• 10.1016/j.commatsci.2011.10.017  

• 10.1016/j.ijsolstr.2014.02.029 

• Validation on PP/CNTs foamed materials 

• Open-source software 

– Implemented in GMSH 

• http://geuz.org/gmsh/  

 

 

Conclusions 

http://geuz.org/gmsh/
http://geuz.org/gmsh/
http://geuz.org/gmsh/
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DG-based fracture framework 

DG-based fracture 

framework 

SVE size effect on meso-scale properties 

 

Damage to crack transition 

QC method for grain-boundary sliding 


