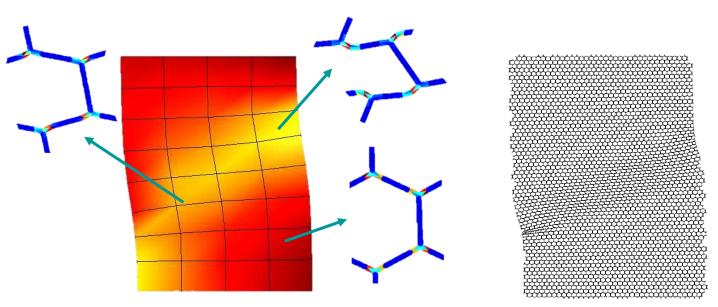


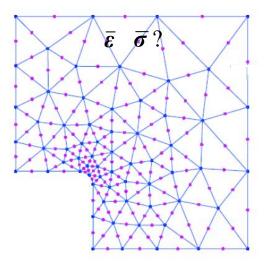
Computational homogenization of cellular materials with propagation of instabilities through the scales

V.-D. Nguyen, F. Wan, J.-M. Thomassin, L. Noels

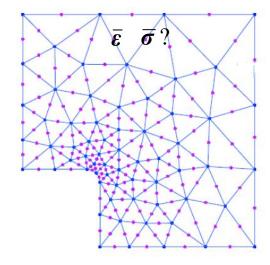


Les recherches ont été financées grâce à la subvention "Actions de recherche concertées ARC 09/14-02 BRIDGING- From imaging to geometrical modelling of complex micro structured materials: Bridging computational engineering and material science

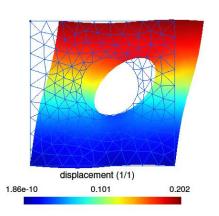
- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought



- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought

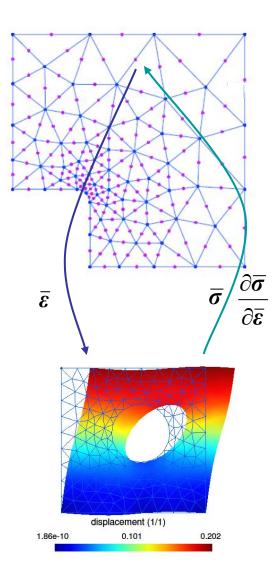


- Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions



Computational technique: FE²

- Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
- Transition
 - Downscaling: $\overline{\epsilon}$ is used to define the BCs
 - Upscaling: $\overline{\sigma}$ is known from the reaction forces
- Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions



- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
 - Transition
 - Downscaling: $\overline{\epsilon}$ is used to define the BCs
 - Upscaling: $\overline{\sigma}$ is known from the reaction forces
 - Micro-scale
 - Usual 3D finite elements
 - · Periodic boundary conditions
 - Advantages
 - Accuracy
 - Generality
 - Drawback
 - Computational time

Assumptions:

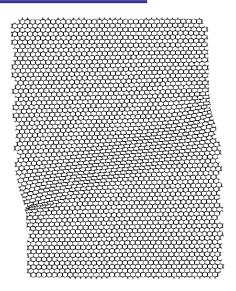
$$L_{\text{macro}} >> L_{\text{RVE}} >> L_{\text{micro}}$$



Ghosh S et al. 95, Kouznetsova et al. 2002, Geers et al. 2010, ...

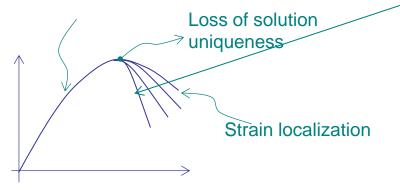
Multi-scale simulations with strain softening

- Propagation of instabilities in honeycomb structures
 - Due to micro-buckling
 - Localization bands

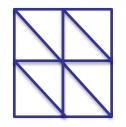


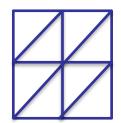
- Finite element solutions for strain softening problems suffer from:
 - Loss of solution uniqueness and strain localization
 - Mesh dependence

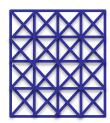
Homogeneous unique solution



The numerical results change with the size of mesh and direction of mesh



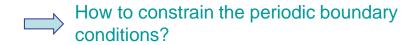


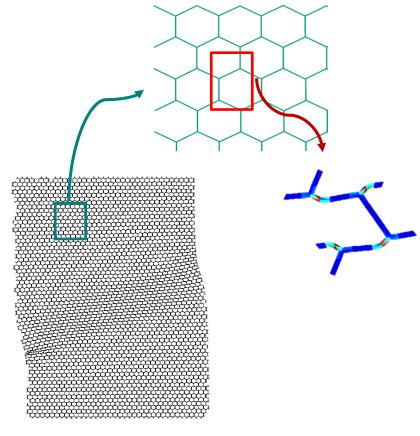


The numerical results change without convergence

Challenges

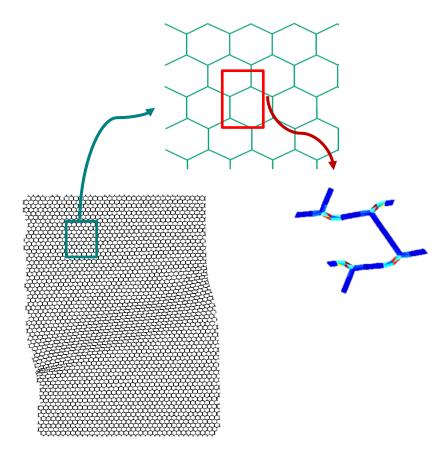
- Micro-structure
 - Not perfect with non periodic mesh





Challenges

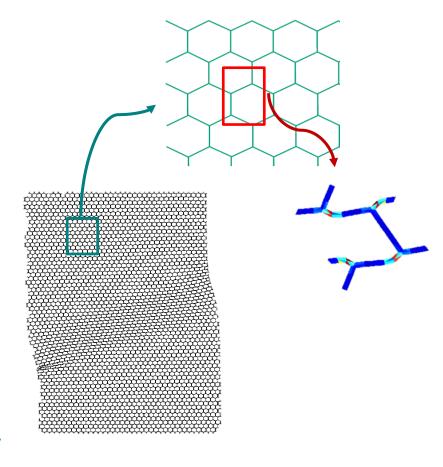
- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 - Thin components
 - Experiences micro-buckling
 - How to capture the instability?



CM3

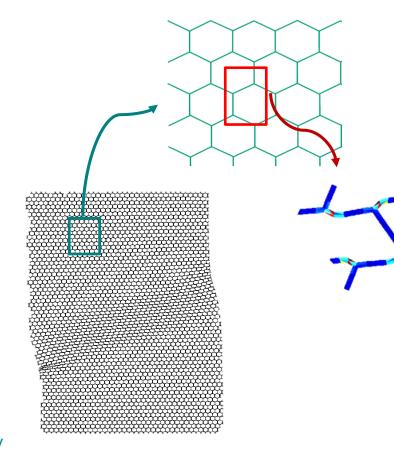
Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 - Thin components
 - · Experiences micro-buckling
 - How to capture the instability?
- Transition
 - Homogenized tangent not always elliptic
 - Localization bands
 - How can we recover the solution unicity at the macro-scale?



Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 - Thin components
 - Experiences micro-buckling
 - How to capture the instability?
- Transition
 - Homogenized tangent not always elliptic
 - Localization bands
 - How can we recover the solution unicity at the macro-scale?
- Macro-scale
 - Localization bands
 - How to remain computationally efficient
 - How to capture the instability?



- Recover solution unicity: second-order FE²
 - Macro-scale
 - High-order Strain-Gradient formulation

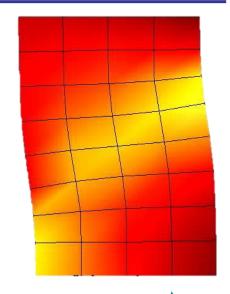
$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

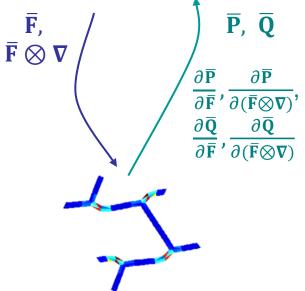
Partitioned mesh (//)

- Gauss points on different processors
- Each Gauss point is associated to one mesh and one solver

Usual continuum

$$P(X) \cdot \nabla_0 = 0$$



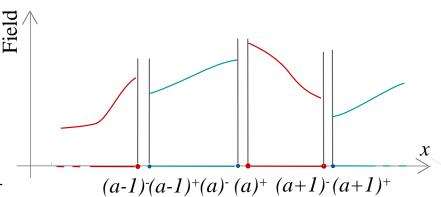


Kouznetsova et al. 2002, Geers et al. 2010, ...

- Discontinuous Galerkin (DG) implementation of the second order continuum
 - Finite-element discretization
 - Same discontinuous polynomial approximations for the
 - **Test** functions φ_h and
 - Trial functions $\delta \varphi$

Jump operator: [·] =·+

Mean operator: $\langle \cdot \rangle = \frac{\cdot^{+} + \cdot^{-}}{2}$



- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has the optimal convergence rate
- Can be used to weakly enforce higher discontinuities

Second-order FE² method

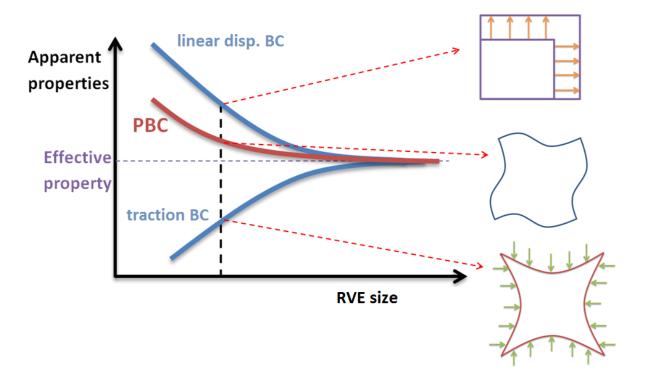
Macro-scale second order continuum

$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

- Requires C¹ shape functions on the mesh
- The C¹ can be weakly enforced using the DG method

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = b(\delta \overline{\boldsymbol{u}})$$

- Micro-scale periodic boundary conditions
 - Convergence in terms of RVE size



- Periodic boundary condition is the optimum choice for periodic structures
- Periodic boundary condition remains interesting for non-periodic structures

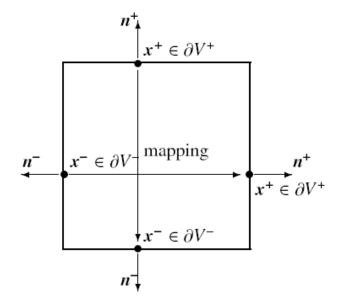
- Micro-scale periodic boundary conditions (2)
 - Defined from the fluctuation field

$$w = u - (\overline{F} - I) \cdot X + \frac{1}{2} (\overline{F} \otimes \nabla_0) : (X \otimes X)$$

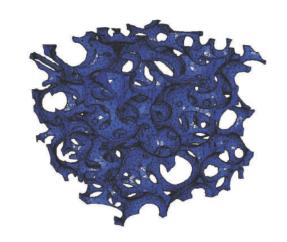
Stated on opposite RVE sizes

$$\begin{cases} w(X^+) = w(X^-) \\ \int_{\partial V^-} w(X) d\partial V = 0 \end{cases}$$

Can be achieved by constraining opposite nodes



- Foamed materials
 - Usually random meshes
 - Important voids on the boundaries
- Honeycomb structures
 - Not periodic due to the imperfections



- Micro-scale periodic boundary conditions (2)
 - New interpolant method

$$w(X^{-}) = \sum_{k} N(X)w^{k}$$

$$w(X^{+}) = \sum_{k} N(X)w^{k}$$

$$\int_{\partial V^{-}} \left(\sum_{k} N(X)w^{k}\right) d\partial V = 0$$
• Boundary node
• Control node

- Use of Lagrange, cubic spline .. interpolations
- Fits for
 - Arbitrary meshes
 - Important voids on the RVE sides
- Results in new constraints in terms of the boundary and control nodes displacements

$$\widetilde{\boldsymbol{c}} \ \widetilde{\boldsymbol{u}}_b - \boldsymbol{g}(\overline{\boldsymbol{\mathsf{F}}}, \overline{\boldsymbol{\mathsf{F}}} \otimes \boldsymbol{\nabla_0}) = 0$$

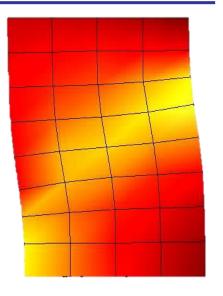
Capturing instabilities

- Macro-scale: localization bands
 - Path following method on the applied loading

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \bar{\mu} b(\delta \overline{\boldsymbol{u}})$$

• Arc-length constraint on the load increment

$$\bar{h}(\Delta \bar{\boldsymbol{u}}, \Delta \bar{\mu}) = \frac{\Delta \bar{\boldsymbol{u}} \cdot \Delta \bar{\boldsymbol{u}}}{\bar{X}_0^2} + \Delta \bar{\mu}^2 - \Delta L^2 = 0$$



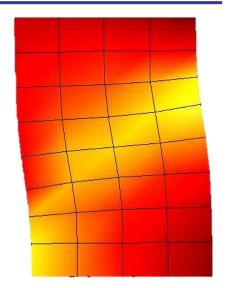
Capturing instabilities

- Macro-scale: localization bands
 - Path following method on the applied loading

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \bar{\mu} b(\delta \overline{\boldsymbol{u}})$$

· Arc-length constraint on the load increment

$$\bar{h}(\Delta \bar{\boldsymbol{u}}, \Delta \bar{\mu}) = \frac{\Delta \bar{\boldsymbol{u}} \cdot \Delta \bar{\boldsymbol{u}}}{\bar{X}_0^2} + \Delta \bar{\mu}^2 - \Delta L^2 = 0$$



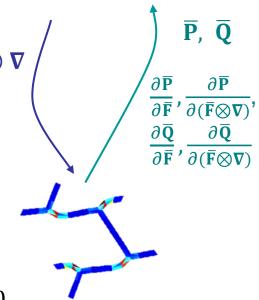
- Micro-scale
 - Path following method on the applied boundary conditions

$$\widetilde{\mathbf{C}} \ \widetilde{\mathbf{u}}_{b} - \mathbf{g}(\overline{\mathbf{F}}, \overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}}) = 0$$

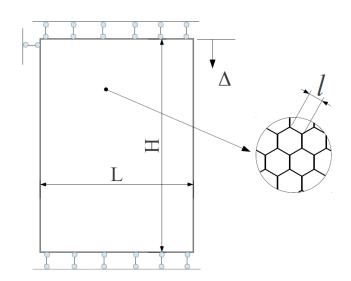
$$\begin{cases}
\overline{\mathbf{F}} = \overline{\mathbf{F}}_{0} + \mu \Delta \overline{\mathbf{F}} \\
\overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}} = (\overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}})_{0} + \mu \Delta (\overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}})
\end{cases}$$

Arc-length constraint on the load increment

$$h(\Delta \boldsymbol{u}, \Delta \mu) = \frac{\Delta \boldsymbol{u} \cdot \Delta \boldsymbol{u}}{X_0^2} + \Delta \mu^2 - \Delta l^2 = 0$$

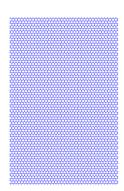


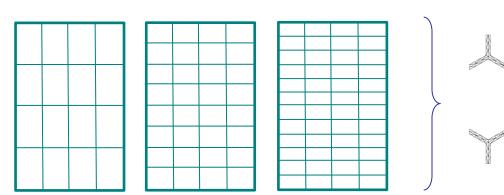
- Compression of an hexagonal honeycomb
 - Elasto-plastic material



Comparison of different solutions

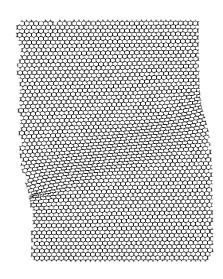
Full direct simulation

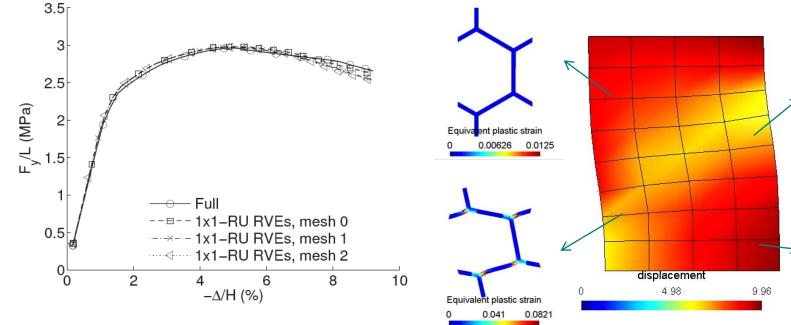


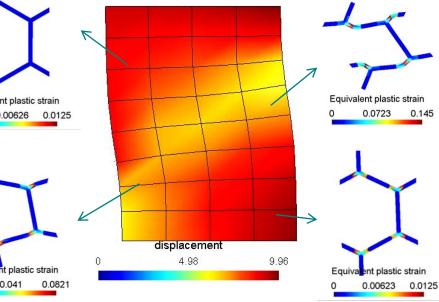


- Compression of an hexagonal honeycomb (2)
 - Captures the softening onset
 - Captures the softening response
 - No macro-mesh size effect

CM3

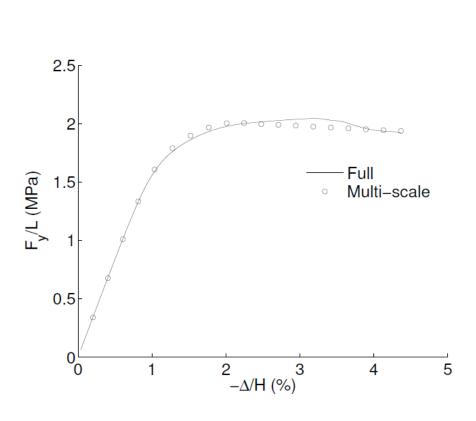


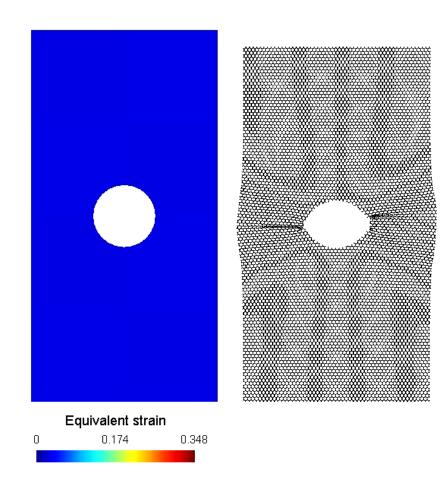




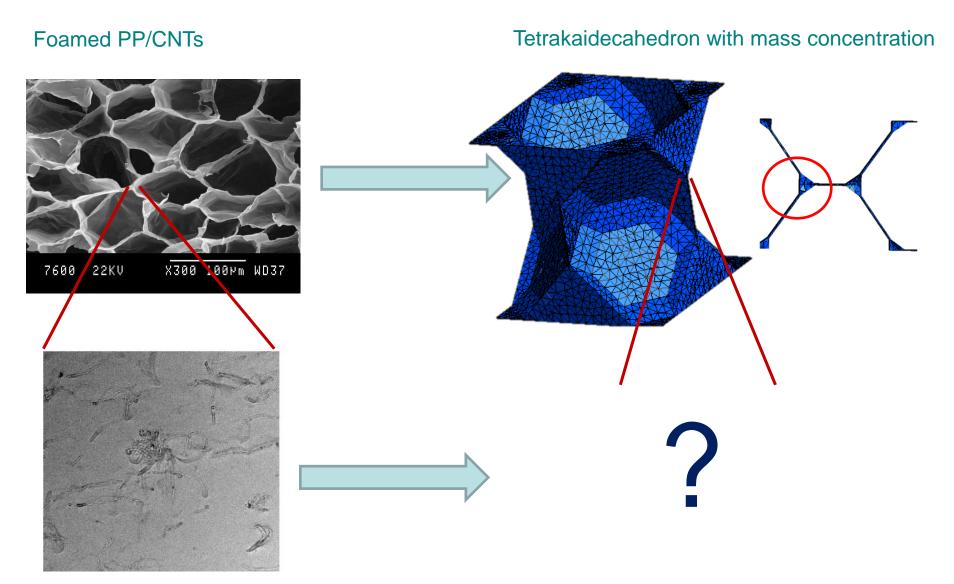
August 2014 -EMMC14

- Compression of an hexagonal honeycomb plate with a centered hole
 - Results given by full and multi-scale models are comparable

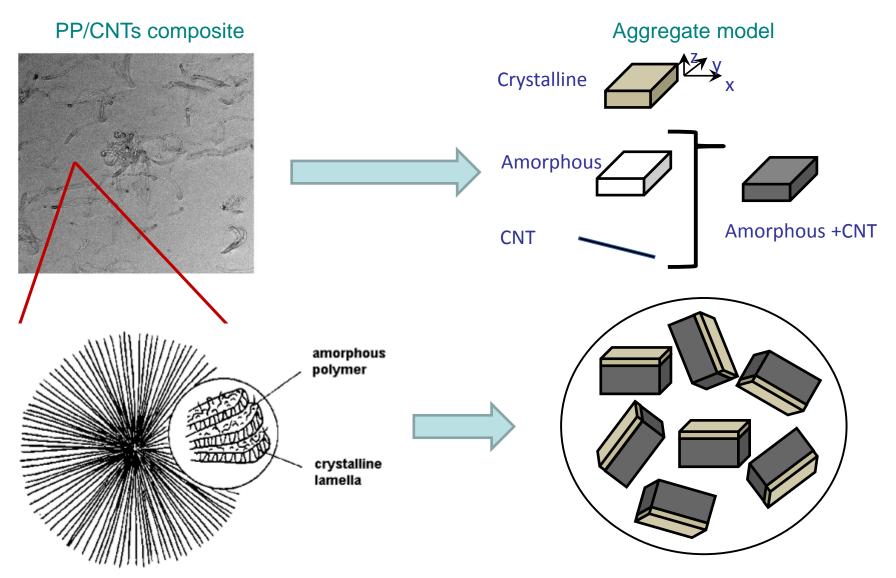




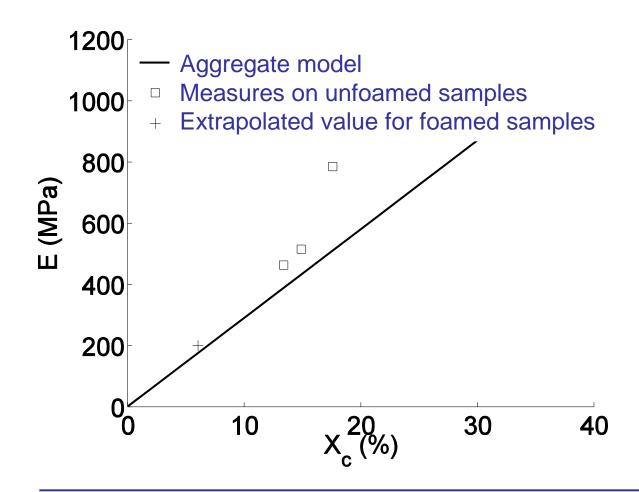
Carbon-nanotubes-reinforced PolyPropylene foam



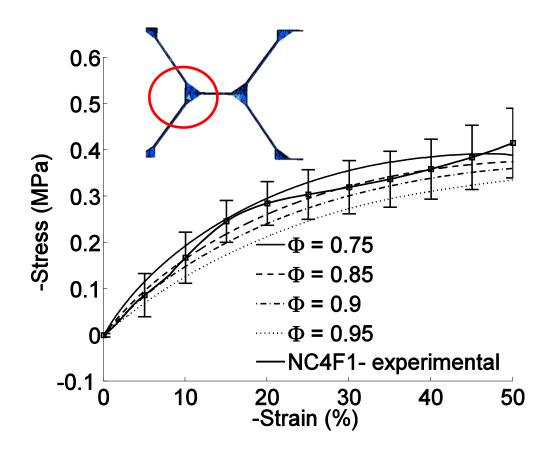
Carbon-nanotubes-reinforced Polypropylene foam (2)



- PP/CNTs composite material properties
 - Crystallinity degree from Differential Scanning Calorimetry
 - Different for foamed and unfoamed materials
 - Aggregate model (mean-field homogenization) predictions



- Compressive tests on the foamed samples
 - Dependence on the mass parameter Φ



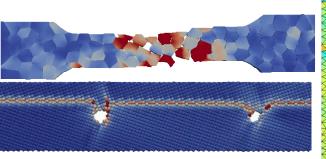
Conclusions

- Computational homogenization for foamed materials
 - Second-order FE² method
 - Micro-buckling propagation
 - General way of enforcing PBC
 - More in
 - 10.1016/j.cma.2013.03.024
 - 10.1016/j.commatsci.2011.10.017
 - 10.1016/j.ijsolstr.2014.02.029
- Validation on PP/CNTs foamed materials
- Open-source software
 - Implemented in GMSH
 - http://geuz.org/gmsh/

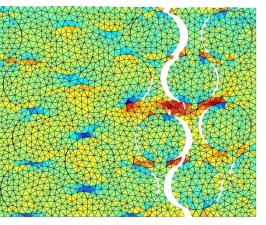
Computational & Multiscale Mechanics of Materials

CM3

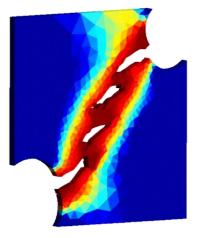
www.ltas-cm3.ulg.ac.be



QC method for grain-boundary sliding



Ludovic Noels, G. Becker, L. Homsi, V. Lucas, S. Mulay, V.-D. Nguyen, V. Péron-Lührs, V.-H. Truong, F. Wan, L. Wu



Damage to crack transition

