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Thesis Abstract

The topic of this thesis in management science is to propose a methodology to
tackle multi-period decision problems including stochastic forecasts and to apply
it to the field of transportation management. This methodology relies mostly on a
sequence of numerical experimentations based on a set of algorithms to assess the
value of the multi-period setting and the interest to use the stochastic information
contained in the forecasts. Moreover, a statistical validation method to compare the
performances of algorithms enables us to rank them meaningfully. From theory to
practice, the thesis is structured into four parts.

Firstly, we define the thesis subject and content. Then, based on a literature
review, we present the past and present issues within the research field: "Optimiza-
tion in Transportation". Mainly, we define the differences between multi-period
stochastic models and classical deterministic mono-period ones. We explain how
dynamism and stochasticity are taken into account within transportation problems.

Secondly, our methodology, which is our main contribution, is exposed from
a generic point of view in the theoretical research field: "Multi-period Stochastic
Optimization Problems". On the one hand, temporal parameters and computational
issues in multi-period optimization are detailed; on the other hand a summary of
optimization techniques and algorithms for stochastic optimization problems is pro-
vided. Afterwards, the statistical validation of algorithmic performance is discussed.

Then, part three contains two applications that lead us to set up the method-
ology, following an inductive method. The first problem, based on an industrial
application at the start of the research, investigates a "multi-period vehicle loading
problem with stochastic release dates". The second application, based on a more
generic approach for the deployment of the methodology, deals with a "multi-period
vehicle assignment problem with stochastic load availability".

Finally, in the fourth part, we conclude on the thesis contributions and propose
some perspectives.
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Part I

Introduction
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Chapter 1

Thesis subject

The aim of this thesis is to present a methodology in the field of decision making
and to apply it to long-haul road transportation problems. These problems have two
major specificities: they are multi-period decision making processes and they con-
tain stochastic information. For example, in order to reduce cost in transportation, it
is often profitable to reduce the total number of trucks by grouping efficiently items
to be carried. This could be done by postponing over time the delivery even when
facing penalties for keeping the item in inventory or even for a late delivery at the
customer plant. Indeed, some items currently available could be collectively trans-
ported with items expected to be ready for shipment in the forthcoming days. So, at
each decision step the dispatcher faces a loading problem which consists in decid-
ing which and how items should be dispatched. This leads to a repetitive decision
problem. When the information available for the future decision steps is stochastic,
this leads to investigate multi-period stochastic problems.

In the present thesis, the range of repetitive decision problems is restricted to
multi-period ones. Typically, periods are days. This means that the decision fre-
quency is regular and is not induced by external elements which might occur, for
instance, according to the realization of a stochastic event. Moreover, projections,
or forecasts, are provided over a constant number of periods leading to a so-called
"rolling horizon" process. The cumulative value of the successive decisions at each
decision period is called the policy value. Furthermore, for each problem, the prob-
ability distributions are related to periods. In the first application, the distribution
refers to the probability for a transportation order to become available during a spe-
cific period. In the second one, the distribution refers to the probability for an item to
be released from production within the periods of a time-window. The distributions
that we consider are discrete and defined over a small finite set.
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Therefore, the thesis subject in terms of problems consists of:

• multi-period stochastic optimization problems,

• faced in road long-haul transportation,

• and containing stochastic information,

• represented by discrete distributions,

• over a rolling horizon.

As the size of the problems become larger, and due to the large number of po-
tential combinations of the stochastic parameter realizations, such problems become
hard to solve to optimality. Memory and computation time issues arise at each de-
cision period. Consequently, in the present work, approximate models are solved.
The range of approximate models is part of the methodology proposed in this the-
sis. Mainly, the optimization techniques are scenario-based. A scenario is a deter-
ministic representation over time of a specific outcome of the stochastic parameter.
Usually, scenario-based deterministic models approximating the stochastic one are
easier to solve. For the applications tackled in this thesis, optimal solutions for a
single scenario-based model can be found in reasonable time. Single scenario and
multiple scenario approaches are exposed and briefly described hereunder.

Policies issued from the optimization of the deterministic models associated
with certain single scenarios are proposed in order to approximate the best policy
for the stochastic problem: among them, the modal scenario, the expected value
scenario, the optimist scenario. Moreover, policy values issued from the optimiza-
tion of models generated by specific scenarios are used as bounds for the value of the
best policy. Typically, these scenarios contain a restricted or a fully revealed part of
the deterministic information. More precisely, our bounds are derived from: the my-
opic scenario containing no projections, from the scenario containing a-posteriori
fully revealed information over the rolling horizon and from the scenario contain-
ing a-posteriori fully revealed information over the whole horizon. In addition, the
policy values provided by the optimization over these approximate models allow us
to compute several measures of the value of information.

To improve the performance of policies approximating the optimal one for the
stochastic problem, three multiple scenario approaches are also presented, namely:

1. the Consensus algorithm, that generates a compromise solution based on the
most frequent decisions issued from solutions obtained when models gener-
ated by a set of scenarios are separately optimized;
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2. the Restricted Expectation algorithm that selects a solution by estimating
its value over a sample of scenarios;

3. the Subtree algorithm that solves a reduced model of the deterministic equiv-
alent representation of the problem. This subtree model is based on a reduced
set of scenarios linked by non-anticipativity constraints. This leads to simul-
taneously consider several scenarios.

A simulation framework using scenarios is deployed to check the relative per-
formances of these algorithms, and a statistical validation is mandatory to assess
the significance of the results. Biases linked to the simulation framework are also
discussed.

Thus, the thesis subject and contribution in terms of optimization methodology
relies on proposing scenario-based algorithms and a framework for policy perfor-
mance comparisons.

In order to demonstrate the practicability of this contribution, the complete
methodology is deployed over two applications.

The first application is a "multi-period vehicle loading problem with sto-
chastic release dates". The decision problem consists in loading trucks with items
on a daily basis. Deliveries must take place in a time window including an early
delivery period, regular delivery periods and a late delivery period per item. The
combinatorial choice lies in the choice of the items that have to be transported in
the same truck according to their relative weights and to the capacity of the truck
while taking into account the penalty faced for the selected delivery period. The
aim is to minimize the total cost, over a long horizon, arising from the number of
trucks used and the cumulated penalties for the items. Data on projected items to be
released from production are provided over a rolling horizon ahead of the current
decision period. The probability distribution of release dates for an item is provided
initially as a time-window spread over 4 periods. As the horizon rolls over, either
the item is released, or the distribution reduces to a 3- or 2-period time-window.
One characteristic of this problem is that it leads to the consideration of conditional
distributions.

The second application is a "multi-period vehicle assignment problem with
stochastic load availability". It models a full-truckload (FTL) situation. The com-
binatorial decision resides in the selection of shipments to be performed by a fleet
of trucks. Moreover, unladen trips can be performed or the trucks can wait in their
present locations. The decision process is performed daily. The aim is to maximize
profit stemming from the reward obtained for transporting shipments and the cost
due to empty moves or staying at standstill. Data are provided over a rolling horizon

17



and include forecasts on transportation orders which might occur or not in a partic-
ular period. The probability distribution of availability for a transportation order is
represented by a Bernoulli distribution.

Both applications lead to multi-period stochastic models, with a discrete distri-
bution defined over a small finite set for the data inside the rolling horizon. So, they
comply with the preliminary statements and the optimization techniques and policy
performance comparisons are applied according to the proposed methodology.

This methodology and related algorithmic techniques might seem to be partic-
ularly dedicated to a restricted set of problems. But, it is also possible to adapt this
framework to other environments. Discussing the modifications to be performed to
continuous time optimization, continuous distributions or distributions defined over
an infinite set of values for the stochastic parameter or other transportation modes
as well as a scheduling environment is out of the scope of this thesis.

This thesis is structured into four parts.

Part I Introduction contains the present chapter dealing with the description of
the thesis subject. Then, chapter 2 positions the transportation problems faced in
this thesis within the scientific literature.

The Methodology is described in Part II.

As they represent specific features of the investigated models, two chapters are
dedicated, respectively, to the multi-period decision making environment and to
the stochastic one. Chapter 3 presents the multi-period optimization setting and
the rolling horizon process. The different parts of the horizon are defined and the
dynamism of the rolling procedure is detailed. Deterministic bounds are introduced
and several values of information are valuated.

Stochastic optimization techniques are described in chapter 4, with an emphasis
on heuristics based on sampling and deterministic scenario optimization.

A statistical validation procedure for algorithmic performance comparison is
proposed in chapter 5.

Then, Part III proposes two applications illustrating the methodology as men-
tioned above. Chapter 6 contains an article published in the EURO Journal on Trans-
portation and Logistics. It investigates the multi-period vehicle loading problem
with stochastic release dates.

Chapter 7 deals with the multi-period vehicle assignment problem with stochas-
tic load availability.

Finally, in Part IV, chapter 8 concludes with a discussion of the thesis contribu-
tions and highlights some perspectives for future research.
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Chapter 2

Optimization in transportation

2.1 Introduction

As this thesis is entitled "multi-period stochastic optimization problems in trans-
portation management", a major contribution of this work is to study the inter-
section of three domains : multi-period decision making, stochastic optimization
problems and transportation models. Many works have been performed in each of
these areas and some at the intersections of two of them. Nevertheless, regarding
the intersection of the three domains, one must admit that the literature reflecting
problems, models, algorithms and methodological issues is quite sparse. Indeed,
these multi-period stochastic problems in transportation accumulate all difficulties
from their relative sub-domains. So, developments should be based on preliminary
research performed in each restricted area and be integrated in a new methodologi-
cal framework. Yet, the time has come to propose some progress in this central and
composite domain. This necessity is related to the industry that requires to handle
real-life problems with all their features and not only a reduced or approximate ver-
sion of a practical problem. Most of all in transportation, wherein communication
systems have improved the availability of information. Moreover, the commercial
competition increases the need for efficient business processes, among others in de-
cision making. Therefore, optimization of decisions requires to use any piece of
information and algorithmic procedures that might lead to a commercial advantage
such as cost reduction or profit increase.

As this thesis is in the field of management science, the decision process in trans-
portation management might be exposed from the strategic bird’s-eye view down to
the operations issued from the ground level. However, in the present work, the focus
lies on the operational level. In fact, the concern is on a generic methodology for
decision making in transportation illustrated by two applications performed daily in
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the dispatching department of a transportation company (see chapters 6 and 7).

As this thesis is also in the operational research area, the literature review in-
serted in chapter 2 introduces the two major specificities of the handled transporta-
tion problems: dynamic decision process (section 2.3) and stochasticity (section
2.4) in transportation. This leads to specify the thesis subject and to highlight its
characteristics (section 2.5).

2.2 Decision making in transportation management

Transportation management represents a wide range of decisions problems. So, in
this section, the aim is to characterize the differences of the transportation problems
tackled in the thesis from other issues inside this domain. Successively the restric-
tions over the transportation topic and mode, the frequency of the decision and some
classical assumptions in the modeling approach are depicted in order to differentiate
the present work from previous ones.

2.2.1 Transportation topic and mode

First of all, some domains in transportation must be discarded such as: infrastructure
design, people or public transportation, multiple modes (maritime, air, rail), national
or international regulations and social, technical, environmental issues. This bun-
dle of subjects that might be related to transportation management is for example
(among other classifications) brought to light by the division of the domains in the
series of journals from Elsevier: Transportation Research.

• Part A: Policy and Practice

• Part B: Methodological

• Part C: Emerging technologies

• Part D: Transport and Environment

• Part E: Logistics and Transportation Review

In this thesis, even if the present work can be transposed to other transportation
modes, the methodology proposed and the related applications are based on long-
haul road transportation, meaning freight transported by trucks over a long period
of time. The choice of road transportation is due to the fact that most applications
and models are related to it within transportation. Besides this, long-haul concerns
long distance journeys, so long durations trips leading to take a few decisions along
time for each vehicle. Moreover, the cost or reward of that kind of transportation
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is expensive, so that it might be profitable to postpone or to select transportation
orders by taking into account forthcoming orders. So, decisions can be simultane-
ously performed on a regular basis for the whole fleet of vehicles. This leads to
a multi-period decision framework. Typically in long-haul transportation, decision
epochs equal a single day. Actually, long-haul road transportation is situated in be-
tween maritime transportation, that uses periods of several days or weeks, and at
the opposite daily distribution or emergency services that manage their operations
within minutes or hours. Owing to the flow of in-coming and out-going informa-
tion in each period and to the rhythm of decisions, the reader should keep in mind
that the operational multi-period problems investigated in the thesis are situated be-
tween on-line optimization (e.g. emergency service) and mid-term tactical decision
making (e.g. maritime transportation). As air and rail transportation usually uses a
highly regulated network with time-slots reservation and long-term schedules, these
modes do not fit well with a day to day decision process except for some chartering
applications. So, the words "vehicle" and "shipments" might be used by the reader
to transfer its potential applications from the present setting to other modes even if
long-haul road transportation is the main concern of this thesis.

2.2.2 Frequency of the decision

Returning to the decision frequency, within transportation some decisions are per-
formed typically once or a few times in a relatively long horizon as they are of a
strategic nature. For example:

• facility location problem: to locate depots close to customers in order to min-
imize distribution costs or to locate depots far away from customers within a
risk pooling strategy,

• road network design: to define the connections to be built between cities,

• multi-modal network design: to locate platforms where freight is changed
from one mode to another,

• city logistics problems mixing a bit of the previous issues (warehouses, meet-
ing points or cross-docking platform locations).

Yet, our concern when dealing with dynamic applications in transportation is
mainly at an operational level. This means a repetitive decision process performed
on a short term basis. Therefore, even if they are important issues in transportation
management, these problems are out of the scope of this thesis which investigates
an operational repetitive decision making process.
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As a consequence, in the present research, repetitive decisions in road trans-
portation consist for instance in defining, on a daily basis, which trucks will take
which loads, when, from where to where, at which cost, for which reward, etc.

2.2.3 Classical assumptions in transportation models

This thesis investigates multi-period stochastic optimization problems. This kind
of problem deals with a much more complex reality than the standard well-known
problems which are usually mono-period, deterministic and short distances ones.
These assumptions and others are often hidden by default in the models. So, let
us review some classical assumptions of transportation models, starting with well-
known models up to more complex problems in transportation. It is known that the
standard Vehicle Routing Problem (VRP) is already hard to solve (NP-Hard). As
a consequence of this algorithmic difficulty to solve a basic problem, the earliest
developments in optimization for problems in transportation focused on simplified
models and formulations caricaturing sometimes the reality (for the earliest devel-
opments, see the literature review from [Laporte & Osman, 1995] and [Toth & Vigo,
2001]).

The caricature comes out from several assumptions in the models. The first
assumption resides in the aim of the decision. In transportation, the objective func-
tion is typically the total distance minimization as a way to minimize cost but when
some customers can be retrieved by selection or by facing a penalty, a profit maxi-
mization objective function can be used. Consequently, problems such as the "Trav-
elling Salesman Problem" (TSP) with profit have also been tackled and therefore
the minimal distance might not be the only objective (for an introduction to profit
optimization in transportation see [Feillet et al., 2005]).

A second assumption resides in the constraints that should be taken into account
or not in the model. Indeed, several additional features have created models that fit
better with real problems: heterogeneous fleet of vehicles, limited capacity of the
vehicle or service level requirement. However, some constraints are sometimes
discarded without reporting the reasons for that selection. Successively, this leads
to introduce the following models.

The "Vehicle Routing Problem" (VRP) deals with a fleet of vehicles that should
visit a set of customers while minimizing the total cost represented by the traveled
distance with or without the fix vehicle cost; and with or without a maximum tour
length per vehicle (for an introduction to the VRP, its variants and solutions tech-
niques, see [Toth & Vigo, 2001]).

To fit with tonnage regulations, the "Truck Dispatching Problem" (TDP) was
introduced by [Dantzig & Ramser, 1959]. This "TDP" is now known as the "Ca-
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pacitated Vehicle Routing Problem" (CVRP). It includes a limited capacity for the
vehicles (often weight) which exclusively either deliver or pick up goods from or to
a single depot.

The CVRP can also consider options such as heterogeneous fleet, mono-product
or multi-products transportation, multi-tanks vehicles, 2D or 3D loading constraints,
drivers regulations... These options create a wide family of problems more or less
concerned by the loading or the routing constraints, making them difficult to be
solved by a common algorithm.

As already mentioned in chapter 1, as an example for the diversity of models,
two applications are proposed in chapters 6 and 7. Both problems have different
characteristics.

1. The first application considers a "vehicle loading problem", which focuses
only on the loading problem without routing, making it close to a bin-packing
problem.

2. The second application considers a "vehicle assignment problem" (see [Pow-
ell, 1988] and [Powell, 1996]), simply selecting the paths to be followed with-
out loading constraints.

This highlights the fact that problems in transportation which sound close might
represent drastically different decision environments. So, even though operational
routing and loading problems seem to be restricted to a subclass of problems in
transportation, the wide range of models, formulations, objective functions, vari-
ables and constraints generates an explosion of issues. Adding dynamic and stochas-
tic elements should lead also to a potential tremendous number of various applica-
tions. Instead of complicating the model by adding options from the TSP through
VRP up to CVRP, it might be interesting to define the most complex problem in
transportation and to retrieve features that are not activated in reality. The objective
is not to create a complex problem for itself, but to represent the complex situations
faced by practitioners with all the required features.

There was a first attempt to define such a global generic model with the "Pickup
and Delivery Problem" (PDP) that represents the case where goods can be picked-
up and delivered along the way between two locations while not exceeding the ca-
pacity (see [Berbeglia et al., 2007]). But, even this generic model can be compli-
cated according to situations faced in reality such as temporal constraints, service
level requirements from customers and others described below.

In fact, despite their importance, cost or profit are not the only criteria in the
relationship between the freight forwarder and the carrier. In practice, the Service
Level Agreement (SLA) implies the respect of delivery time. Consequently, models
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including time-windows (TW) for the un/loading operations have been introduced.
The TW can be "hard" meaning that the scheduling of the operations should respect
the time limits, or "soft" meaning that a penalty is faced in case a violation occurs.
These temporal requirements are usually formalized as constraints inside the model.

In the same sense, a variant of the PDP for people transportation called "Dial-A-
Ride Problem (DARP)" has been defined. Some penalties in the objective function
are used to reduce passengers’ inconvenience (for an introduction to the DARP, see
[Cordeau & Laporte, 2003] and for models and algorithms, see [Cordeau, 2007]).

As one can notice, previous problems mainly focus on finding paths between
points or locations. Another kind of problems which tends to find tours on arcs or
edges such as the postman problem or garbage collection problem are also investi-
gated in the field.

As another attempt to generalize transportation problems, in [Savelsbergh &
Sol, 1995], the authors present a formulation of the "General Pickup and Delivery
Problem (GPDP)" that can be used to formulate most problems as a sub-case, from
the most complex GPDP to the simple TSP (for an introduction to and perspectives
on the GPDP, see [Savelsbergh & Sol, 1995] and [Psaraftis, 1995]).

Even if the aim of this article was to present a global formulation for this range
of problems, only a few lines mention the dynamic case, which implies a sequence
of decisions, and not more for the stochastic version of the problem. In fact, within
the model description, as another assumption, many authors assume by default but
not explicitly that each decision has no influence on future decisions and is discon-
nected from previous ones. In most articles and models, this default setting is often
hidden within the remark: "all vehicles start and end at their depot". As the starting
and ending points are fixed, the problem comes back to an original state or at least
the final state is defined. Similarly, the fact that only one decision is taken over time
is implicitly induced. Therefore, every optimization stage can be disconnected. This
represents the local area daily distribution situation or the national distribution in a
small size country such as Belgium. However, in other cases such as in long-haul
or international transportation, the starting and ending locations of vehicles might
differ from a decision period to another. Therefore, the decision process depends on
previous decisions and influences the following ones. In [Savelsbergh & Sol, 1995],
the authors only mention, "(...) the objective function for the static subproblem does
not necessarily have to be equal to the objective function for the dynamic problem.
The objective function for the static subproblem may reflect some knowledge or an-
ticipation of future requests". (for a recent state of the art review on PDP, see for
the static version [Berbeglia et al., 2007] and for the dynamic one [Berbeglia et al.,
2010])
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Moreover, if the performance of algorithms can be compared over the solu-
tion values on benchmark instances for most static problems, a common validation
framework for policies performances over dynamic problems is not widely admitted
(for a review on dynamic VRP, see [Pillac et al., 2013]). Therefore, dealing with
the dynamism of a problem is more than an option, it is a specific decision making
area. Yet, these models with successive decision processes are often neglected by
the research community. Consequently, even if the road transportation problems
investigated inside this thesis, look similar at every time-period to standard models,
they are highly different and beyond the limits of the usual models of road trans-
portation. Firstly, because decisions are repeated but also because decisions are
related to each other. This makes the problems out of the scope of most models and
formulations as problems involve a dynamic process between decision periods.

Furthermore, as a third assumption, when the problem formulation contains
forecasts, the information is usually provided as a probability distribution. If the
initial plan is performed whatever happens, and only penalty or recourse actions
can be taken in a second stage, the problem can be treated by stochastic program-
ming as a static problem (see [Pillac et al., 2013]). This means that a stochastic and
dynamic problem can be solved as a static one. On the other side, on-line optimiza-
tion which regenerates or updates a new solution every time new information comes
in for several periods, requires specific evaluation procedure to define what is a pol-
icy performance in the long run. Therefore, the term "dynamic" in a model might
represent different decision making processes from a single decision to a huge finite
sequence of decisions.

Finally, as the size of the model becomes larger (number of vehicles, cus-
tomers...) the CPU time and the required memory increases. Sometimes, even if
solutions techniques can guarantee optimal solutions, time-efficient heuristics have
to be used. For problems involving stochastic information, the numerical explosion,
called curse of dimensionality, often leads to intractable models in practice. So,
finding the optimal solution remains unaffordable.

For all these reasons, less work has been performed in transportation about ei-
ther dynamic or either stochastic models than about static and deterministic models.
Moreover, when both aspects are embedded, the scientific work is rare. Yet, in
reality, carriers dispatching centers often face a sequential decision process taking
into account commercial forecasts. Whatever the quality of static models can be,
they might be rejected by practitioners if they do not take into account the benefit
that can be extracted from all the available information and a repetitive decision
process. After recognizing the fact that there can be several objective functions in
transportation, as a response to the standard paradigm, this thesis tries to propose
a methodology to get rid of these two strong hypothesis or assumptions in trans-
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portation models: "No forecasts" (stochastic), "No effect on the next decision step"
(multi-period).

As a conclusion, transportation optimization problems usually neglect to men-
tion the dynamism of the decision process and the stochastic behavior of real-world
applications. Of course, it might be the case in some operational settings, yet for
long-haul transportation, it is not the case. For this reason, these aspects are devel-
oped in dedicated sections of the introduction. An introduction to dynamism and
time in transportation applications is proposed in section 2.3, because both subjects
are often mixed and standard definitions are not fixed yet. Consequently, an im-
portant part of the section is devoted to expose the various utilizations of the term
"dynamism" in transportation models. For that reason, after introducing concepts,
details are provided about "time in transportation" in section 2.3.1 and about "dy-
namic decision process in transportation" in section 2.3.2.

For the second topic, a summary depicts how stochasticity is embedded in trans-
portation models in section 2.4.

Finally, summarizing the introduction, the thesis subject and outlines are ex-
posed in section 2.5.

2.3 Dynamism and time in transportation

The title of the thesis mentions multi-period problems and not dynamic ones. This
choice is due to the fact that the term "Dynamic" in operational research might
induce confusion as there are several definitions. Inside the thesis, dynamic refers to
a repetitive decision process. Yet, the problems are specifically labeled multi-period
to highlight a repetitive decision process at fixed decision epochs and because the
information is revealed over a rolling horizon. For that reason, when dynamic is
used in the present thesis, it refers to a sequential decision process and multi-period
to a sub-domain of these dynamic problems.

Nevertheless, to avoid a misunderstanding for the reader, the confusion about
"dynamic" must be detailed. First of all, a well-known solution technique and a
modeling framework introduced by Bellman (see [Bellman, 1957]) are called "Dy-
namic Programming". This technique is based on the division of a basic problem
into sub-problems easier to solve, so that the global solution of the problem can be
found. It was preliminary used for deterministic problems such as the shortest path
problem. Therefore, the word "Dynamic" is used to represent a sequential algorithm
and not a model to be solved repetitively along time.

The second drawback of this word "Dynamic" comes from the fact that it does
not represent the same notion for all authors. The misunderstanding is a bit high-
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lighted in [Powell et al., 1995]: "One question that comes up with surprising fre-
quency is: What constitutes a dynamic model? To answer this, we must first distin-
guish between a problem, a model, and the application of a model. A problem is
dynamic if one or more of its parameters is a function of time. This includes such
problems as vehicle routing with time windows or time-varying travel times. Note
that two types of dynamic problems are covered here. The first type, which we call
problems with dynamic data, are characterized by information that are constantly
changing. Dynamic data might include real-time customer demands, traffic con-
ditions, or driver statuses. The second type is problems with time-dependent data
which is known in advance. (..) such as VRP-TW (...), but where this data is a
known function of time.(...) Similarly, a model is dynamic if it incorporates explic-
itly the interaction of activities over time. (...) It is useful, however to distinguish
between deterministic, dynamic models, and stochastic models which explicitly cap-
ture the staging of decisions and the realizations of random variables. (...) Finally,
we have a dynamic application if a model is solved repeatedly as new information
is received."

Consequently, if one uses this definition in a broad sense, any problem involv-
ing time becomes dynamic. This wide definition might seem to create a confusion
with a narrower definition restricted to a repetitive decision process. According to
[Pillac et al., 2013], it is better to enlighten the terminology while using "static"
and or "dynamic" to reflect the decision process. A static decision process defines a
solution and possible recourse actions selected a-priori. This denomination stands
even if some data are either known in advance or revealed during the execution. At
the opposite, a dynamic process defines a successive decision process taking place
while some new information is gradually taken into account.

Therefore, it is more rigorous to use a specific terminology for problems which
contains information related to time and also for the dynamism of the decision pro-
cess as described hereafter in the subsections 2.3.1 and 2.3.2.

The third difficulty may be induced by the word "stages" as it is used in "two-
stage" and "multi-stage" expressions. These stages represent typically, two or sev-
eral decisions steps but conversely to operational problems in transportation which
are performed daily, the number of stages is finite. For two stages, a decision is
applied after the first stage and then all the unknown information is revealed. So,
subsequent actions, called recourse actions, can be applied according to the prelim-
inary ones and the current state of the system in stage 2. For multi-stage problems,
a piece of information is revealed after each decision and an extra decision is per-
formed until the last stage is revealed. The confusion might come when the stages
do not represent periods but consist of related or interlinked decisions represent-
ing levels of decisions or subsequent decision steps. This is the case in "Material
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Requirement Planning (MRP)" when parent items generate the requirements for
components. Some models labeled multi-stage in transportation correspond to this
definition (e.g. see [Tsilingiris & Psaraftis, 2006]). For these reasons, in the present
work, the expression multi-period referring to a consecutive decision process within
time is preferred to multi-stage which might be understood as a hierarchical require-
ments decision process or successive and dependent decision processes. In the latter
case for instance, the problem is not dynamic.

2.3.1 Time in transportation

For some authors, "dynamic" stands for "information linked to time". There are
numerous ways to insert "time" within a transportation problem. Here are some
examples:

• The maximum tour length L constraint: which sets, by a constraint in the
model, that the sum of selected arcs of a path is inferior to a predefined limit.
At first sight and literally, it seems to be a spatial constraint but inside the
problem description it usually reflects a limit to avoid extra-hours or to restrict
the driving time, which are indeed temporal constraints.

• Time Windows (TW): which impose that an action or the start of an ac-
tion (for example loading, unloading in a PDP, VRP, DARP-TW) must take
place during a certain interval of time. In the specific cases of the Travel-
ing Repairman or Delivery Man problem with TW (see [Tsitsiklis, 1992]),
the objective function might also be influenced by the time-windows, which
leads to a delay minimization or shortest time problem or minimum waiting
time problem. These TW can be hard or soft. In the first case, the temporal
constraints must be respected. In the second one, a penalty is faced according
to the non-fulfillment of the temporal constraint. Within these problems, time
can be represented by a continuous or discrete variable and this might change
the optimization technique.

• Time-dependent problems: due to the increase of traffic jam during peak
hours, it becomes valuable to generate solutions that take into account the
variability of travel time between points according to the day, weekday or
holiday. This influences the temporal parameters of the models. There are
two major representations to deal with that aspect: the a-priori one based on
statistics that generates a factor that modifies the travel time according to a
pattern or function along the day; or the on-line one (see section 2.3.2) that
gets the travel time from a mobility control center. These problems get more
and more relevant and investigated. They can drastically improve the practical
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realization and the efficiency of transportation plans (see for an introduction
[Malandraki & Daskin, 1992] and for an application [Ichoua et al., 2003]).

• Periodic and timetabling problems: in that case, time is turned into a fre-
quency measure. Public transportation following a regular schedule such as
buses, trains, airlines have successfully proposed techniques to gather the cus-
tomer’s frequency level of service. For freight transportation and routing in-
cluding stock management, some articles propose interesting strategies that
require usually a single decision. Anyway, periodic problems are still a de-
veloping area of research (e.g. see [Angelelli & Speranza, 2002]).

• Planning: some transportation problems are linked with scheduling and gen-
erate plans for several weeks or months according to the demand, like mar-
itime vessel scheduling or fleet management for harvest. These plans are
often tactical decisions running over several periods. Nevertheless, the initial
decision is performed only once and kept. This is not what is considered as a
multi-period problem for the present work.

• Periods or Epochs: such as in a MRP, data is provided period per period.
Therefore, time is discontinuous. To be a relevant dynamic decision process,
each decision period requires interactions between past and/or following pe-
riods in order to influence the current decisions. If not, every period can be
optimized separately and time is not important except in the period itself. The
number of periods can be finite or infinite and the information fully revealed
or not. If the number of periods is finite and the information fully revealed,
the problem becomes a static planning problem. In the other cases, if the
information is revealed successively period per period, the decision process
might be dynamic such as in a 2-stage model with recourse decision or a
rolling horizon procedure described below (see [Cordeau et al., 2014] for an
application).

As mentioned, the multi-period problems tackled in this thesis assume the avail-
ability of information over several periods and interactions between the decision
periods. So, there is a temporal framework for the decision process and one for
the information revealed at each decision step. Consequently, the previous notions
might be used simultaneously such as a time-dependent vehicle routing problem
with time-windows or in chapter 6 a multi-period problem with time-windows.
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2.3.2 Dynamic decision process in transportation

In this section, the reason for the occurrence of dynamic decision process is de-
picted and links with other optimization areas are exposed. Secondly, four classes
of models are exposed: 2-stage, rolling horizon, on-line and real-time.

Owing to the development of sensors, telecommunication and information sys-
tems bringing storage as well as computational power, costs for reporting data from
the field have highly decreased since the change from paper-based organizations to
wireless ones. For strategic projects or stable environments, a long computing time
can be afforded if the decision is only performed once, e.g. for finding the best tour
of a fixed set of customers. Moreover, the cost of one-time data acquisition can be
high. If this investment in data collection can be recovered over the long run, for
real-time operational problems having fluctuations in the parameter values, this data
acquisition should be cheap and fast.

Optimization is used as a decision tool for several processes in factories: among
others inventory management and production scheduling. These domains often re-
quire successive operational decisions linked to each other. Therefore, decision pro-
cesses are usually dynamic (i.e. repetitive) by nature in these fields. Moreover, there
was a small delay between the operations management in manufacturing (called
production management) and transportation which take place outdoors. In fact,
Global Positioning System (GPS) system and wireless telecommunications (Global
System for Mobile Communication GSM) appeared later than Computer Integrated
Manufacturing (CIM) based on wired local area networks (LAN). For this reason,
machine control has developed its own terminology (states, actions, transition func-
tion) related to a production environment. As a consequence, it is possible to find
similarities between production and transportation frameworks but this requires a
transposition of the theoretical notions. [Chand et al., 2002] provide a survey of the
literature on rolling horizon models in operations management including applica-
tions in production and transportation. Few of these references deal with stochastic
problems. Therefore, we do not further refer to production planning and scheduling
inside this thesis.

The dynamic aspect in a sequential decision process lies in the event or the cause
that leads to induce a new decision. As a consequence, the amount of time between
two decisions can be regular or irregular according to that cause. In the present
thesis, problems are multi-period with regular periods of time between subsequent
decisions. The frequency of the decision sequence does not depend on any event
realization. Yet in some cases, the dynamism of the decision process is induced by
the realization of an event, usually a stochastic one. So, dynamism and stochasticity
are sometimes embedded together creating confusion. Therefore, the dynamic de-
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cision process should be classified by terms explaining the rhythm of the decision
process and furthermore if the delays between decisions are irregular, the stochastic
events that trigger the decision process should be mentioned. For instance, these
causes can be a parameter modification (travel time) or an incoming variable in-
sertion (new customer) or a customer demand revelation along a tour. This second
classification related to stochastic event linked to an information is discussed in
section 2.4. Hereunder, four of these terms are explained.

• 2-stage problems correspond to a 2-step decision process where an initial
decision is performed and applied. Afterwards, in a second step, all informa-
tion is revealed and either some predefined actions (such as recourse actions:
going back to the depot, rerouting or facing a penalty) or at once a set of cor-
rective actions is performed (see [Secomandi, 2000]). In that case, the initial
solution is supposed to be feasible, as in the news-vendor problem or the VRP
with stochastic demands. The second stage appears when a breaking point has
been reached such as the stock-out of a newspaper in the newsvendor problem
or a too high demand in the VRP with stochastic demand. So, the length of
the first stage can be variable as the stock-out can occur along the day for the
newsvendor or the truck along its tour, while the overstock is revealed at the
end of the day or after the tour completion. The second stage represents the
realization of unknown data. Decisions at the second stage correct the initial
plan if needed. Typically, the problem and the actions of the second-stage are
not of the same nature as the first stage part and decisions.

• In a multi-period rolling horizon process, the periodicity of the decision
process is initially fixed. Consequently, at predefined time-steps, also called
epochs, the available information is updated. Then, a decision based on sim-
ilar information and leading to similar actions as in the previous period is
performed. There might be some special periods such as the initial one and
the last one. This process is explicitly discussed in chapter 3 as it is the core
of the transportation problems investigated in this thesis.

• On-line: literally means that the system is connected continuously or at a
specific frequency to a system providing information (see [Psaraftis, 1995]).
When a specific event occurs, it does not force a decision to be taken but it
updates information. If some threshold value is exceeded or particular infor-
mation comes in, a decision might be generated with fixed or variable times
between information collection and decision. So, an on-line decision pro-
cess might lead to update a present solution, to modify it or to regenerate
a new set of decisions. By definition, on-line should be used as a techni-
cal term to define the information flow communication process. However,
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by extension, it became also the decision process (on-line optimization, on-
line control) which might be a bit confusing. As explained in [Van Henten-
ryck & Bent, 2006], initially on-line decision systems only considered de-
terministic information. Currently, on-line anticipatory algorithms are devel-
oped to embed non-confirmed information issued from probability distribu-
tion in order to improve the algorithmic performances. This leads to on-line
stochastic optimization. The present work follows that trend of incorporating
stochastic information in the model but the updates of information are fixed
at predefined epochs.

• Real-time: is close to on-line but it is supposed to be more reactive to any new
information coming in. This hard constraint assumes that the decision pro-
cess can be as rapid as the data acquisition process. In that sense, real-time
should be considered as an extreme case where the period length is supposed
to tend to zero. Moreover, in that specific case, if no extra-piece of informa-
tion happens, the previous solution is kept, while any new information gen-
erates an optimization process. Consequently, the major difference between
multi-period and real-time problems is that in general, more information is re-
vealed and more actions are applied in the former case. As a consequence, in
the present work, a solution is less frequently generated than the current one
is updated in real-time optimization. However, the next decision period solu-
tion is fully renewed as a significant set of incoming and outgoing elements
have to be taken into account. Notice that in practice, on-line and real-time
are often used for each other while on-line should stem for a data acquisition
system and real time for the rapidity of a decision process.

The present thesis is dealing with multi-period transportation problems wherein
the decision process is induced by fixed periods according to the commercial or op-
erational booking process. This requires to accomplish tasks, typically daily, for the
next day as orders have to be planned between partners, such as freight forwarders,
carriers and drivers. Updates or new information coming in (mainly loads to be
transported) are linked to the business activity and might encompass several days
in advance. These data contained within the forthcoming periods can be determin-
istic or stochastic. In the present cases, some parts of the forecasts are represented
by stochastic elements. Therefore, in the present work, the dynamism of the de-
cision process is regular and not enforced by the realization or not of a stochastic
event. Decisions are taken at equal intervals in time. The duration of these inter-
vals are not influenced by the information coming in during this period of time. A
stochastic customer demand is a good example to understand this difference. In a
multi-period decision process, the customer demand is added within the period it
occurs. Then, the decision process takes this information into account for optimiza-
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tion at each regular decision periods until an action is performed for this demand.
Conversely, within a real-time decision process for a taxi or emergency service,
the appearance of the customer demand might generate immediately a decision and
action process. In this last case, stochastic and dynamic might sound similar (as
noticed in [Psaraftis, 1995]). For the multi-period setting, stochastic elements used
as forecasts but not leading to a decision process are described in section 2.4.

2.4 Stochasticity in transportation

As the dynamism of the multi-period decision process is stated, the information
embedded in the periods can be described. This information can contain various
data from which a special set can be made of stochastic elements that will realize
while time goes by. In this section, the different elements that can be stochastic in
transportation models are listed (see section 2.4.1). Then, the focus is put on the
probability distributions (see section 2.4.2). In our applications, both the decision
variables and the stochastic variables are discrete. Both characteristics are important
as they lead to discard some optimization techniques and to select a particular one
(see section 4.1.3).

2.4.1 Stochastic information in transportation model

Starting from the global model of the GPDP from [Savelsbergh & Sol, 1995], one
can understand which elements in the model might vary and generate a stochastic
model in transportation.

"Let N be the set of transportation requests. For each transportation request
i ∈ N, a load of size q̄i ∈N has to be transported from a set of origins N+

i to a set of
destinations N−i . Each load is subdivided as follows: q̄i = ∑ j∈N+

i
q j = −∑ j∈N−i

q j,
i.e., positive quantities for pickups and negative quantities for deliveries. Define
N+ := ∪i∈NN+

i as the set of all origins and N− :=
⋃

i∈N N−i as the set of all desti-
nations. Let V := N+∪N−.

Furthermore, let M be the set of vehicles. Each vehicle k ∈ M has a capacity
Qk ∈ N, a start located in k+, and an end location k−. Define M+ := {k+|k ∈M}
as the set of start locations and M− := {k−|k ∈M} as the set of end locations. Let
W := M+∪M−.

For all i, j ∈V ∪W let di j denote the travel distance, ti j the travel time, and ci j

the travel cost. (...)

For each i∈V ∪W a time window [ei, li] is introduced denoting the time interval
in which service at location i must take place. Given a pickup and delivery plan and
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departure times of the vehicles, the time windows define for each i ∈ V the arrival
time Ai and the departure time Di. Note that Di = max{Ai,ei}.

If Ai < ei, then the vehicle has to (*) wait at location i."

Note: (*) rarely, some models forbid to wait at customer plant.

As many constraints or particular sets can be considered, this model can yield
many formulations representing different problems, even in a deterministic environ-
ment.

Nevertheless, it is also possible to enrich the model by assessing some stochastic
elements over some sets of parameters (see [Gendreau et al., 1996]):

• stochastic customers or transportation request:

1. N, the customer or the transportation request may exist or not (see
[Thomas, 2007] or chapter 7). In that case, waiting strategies or redirec-
tions in promising locations can be developed.

2. N+
i or N−i , the origin or the destination city might be unknown. It is of-

ten a consequence of stochastic customers. For example, in emergency
services, the patient is transported to the hospital but the origin point
is unknown until the demand exists (see [Gendreau et al., 2001] and
[Brotcorne et al., 2003]).

• stochastic demands: q̄i, the quantity to be transported as in [Secomandi,
2000]. In that case, recourse policies or re-optimization can be useful.

• stochastic travel times: ti j (see [Pillac et al., 2013] for references)

• stochastic release dates: ei (see [Albareda-Sambola et al., 2014] and see chap-
ter 6 for an application). The probability distribution in that case is condi-
tional. If an item does not show up in the first period of the time windows,
it increases proportionally the probability distribution of appearance in the
remaining periods of the TW. In that sense, this conditional distribution law
leads to a "dynamic" stochasticity in the sense that it evolves over time and
not according to a decision process.

• stochastic service times: not mentioned in the previous model stochastic ser-
vice times can occur at the pick-up or delivery places, even if the vehicle was
on time at arrival. It refers to the loading or unloading operation durations
that might vary according to unpredictable events at customer’s plant.
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Indeed, from a theoretical point of view, it is possible to assume other stochastic
effects in the model: probability of availability of trucks in case of breakage (M),
probability of cost value (ci j), but these issues are not usual in practice and therefore
rarely investigated (see [Pillac et al., 2013]).

2.4.2 Types of probability distributions

Regarding the stochasticity itself, an important point resides in the probability dis-
tribution function that leads to discrete or continuous random variables. In the case
of stochastic customers or transportation request, the probability of a transportation
request i to appear is provided by a parameter pi ∈ [0,1] generating a Bernoulli prob-
ability distribution (see chapter 7 for an application). This probability law induces
discrete random variable realizations. In a scenario sampling approach (see chapter
4), this would generate various scenarios representing the presence or not of trans-
portation requests. Consequently, this can lead to drastically opposed scenarios.

This mix of discrete or continuous probability distributions and discrete or con-
tinuous decision variables allows to use or not some optimization techniques. Inside
this thesis, an advantage of the discrete distributions defined over a restricted subset
of values is that the total number of possible scenarios is finite. With a continu-
ous probability distribution, the total number of scenarios is infinite. Therefore, the
techniques and the number of scenarios required to approximate the distribution can
be different. Similarly, with discrete decision variables the total number of decisions
is reduced but they might be very different from one scenario to another owing to
the combinatorics of the decision framework. Moreover, optimization techniques
are usually more complex for discrete decision variables as they are associated with
integer programming models. With continuous decisions variables, some efficient
techniques may be available like the simplex algorithm.

In the present work, applications deal with discrete probability distributions de-
fined on a restricted set for the random variables. Moreover the decision variables
are also discrete as they are binary. This discretization is not mandatory for some
parts of the proposed methodology, except for the restricted range of scenario-based
algorithms detailed in chapter 4.
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2.5 Problems in transportation management tackled in the
thesis

Transportation management represents a wide range of issues. In the literature,
transportation problems are often modeled as richer versions of basic theoretical
ones, already hard to solve by optimization techniques. As huge improvements have
occurred in the optimization capability of computers, data management, program-
ming languages and algorithms, more realistic problems have been tackled: VRP,
GPDP, DARP with TW, real-time decision processes, stochastic issues... From an
operational research point of view, this is useful in order to formulate the problem
by reckoning up additional constraints. From a practical point of view, for man-
agers, it is also time now to reverse the paradigm to understand what is not usually
included within these models such as for example repetitive decision making and
stochastic information.

Among these usually removed assumptions, two are investigated in the present
work: dynamic decision processes and stochastic information. Therefore, the pre-
sent thesis aims at proposing a methodology to investigate these two aspects for
particular cases as we deal with long-haul transportation:

• the dynamic decision process is a multi-period decision process;

• data are provided over a rolling horizon;

• the probability distribution of the stochastic parameters is defined over a small
finite set;

• the decision variables are binary.

These characteristics might seem to reduce the scope of applications to a narrow
range of problems in transportation. But, some parts of the methodology can be
transposed to other environments such as real-time short-haul problems. Discussing
the possibilities of deployment of this methodology in other transportation problems
is out of the scope of this thesis. However, some perspectives will be proposed in
chapter 8.
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Part II

Methodology
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Chapter 3

Multi-period optimization

3.1 Introduction

According to the introduction, the multi-period optimization problems considered in
this part are related to a sequence of decisions performed successively, but not inde-
pendently. If some data for forthcoming periods are also available, the sequence of
updates and decisions is called a rolling horizon process. This section depicts this
decision making framework and mostly the data representation within the rolling
horizon process. Terminology, information acquisition, repetitive optimization val-
uation, warm-up and end of horizon biases are also explained. Moreover, theoretical
bounds and some concepts related to the value of information are presented.

3.2 Multi-period rolling horizon process

A multi-period rolling horizon process in transportation is based on a partition of
time into periods:

• The current decision period is referenced as period t. In the present work, the
information is fully revealed, meaning deterministically provided, in this de-
cision period. Hence, decisions lead to actions effectively performed without
facing penalties for infeasible decisions. Moreover, actions are only taken in
this decision period. This means that the solution over the periods which are
not the current decision period t is fully renewed at the next decision step, so
that no decision is frozen in the future.

• Some periods subsequent to period t, called look-ahead periods. For the ap-
plications in our thesis, the number of such periods, containing extra-piece
of deterministic or stochastic information, is considered constant. In fact, the
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transportation problems investigated here are operational processes that are
performed in the long run with a stable number of periods containing fore-
casts. This number of look-ahead periods is labeled H, standing for the rolling
horizon length. The decision period t is not included in it (for an application
see section 7.8.6).

• There are periods subsequent to period t+H up to the last period (labeled T ),
i.e. periods in the remote part of the horizon. In this thesis, these periods are
not taken into account for the optimization process because no information is
supposed to be available for these periods which will enter the rolling horizon
while t rolls over.

The rolling horizon process is led by the indexation of t that evolves period per
period from period 1 up to T −H where T represents a finite number of periods or
an approximation of an infinite time. The decision period t becomes t +1 when the
horizon rolls.

At cruising speed, the first step of the rolling horizon process is based on an
optimization process at decision period t taking into account the data belonging to
this decision period t and the periods of the rolling horizon, i.e. t + 1, ..., t +H.
Therefore, at each decision step t = 1,2, ...,T −H, information belonging to 1+H
periods are taken into account. The obtained solution is analyzed and some actions
issued from this solution are performed. The costs or rewards of these actions are
recorded into the policy value. This concludes the decision phase for the decision
period t.

Then, data are updated when the horizon rolls from t to t +1:

• some data enters the rolling horizon, typically within the last period t +H

• some data status is modified (e.g. stochastic data becoming deterministic or
probability distribution modification)

• some data are discarded from the rolling horizon as they are outdated, typi-
cally those from period t. In the case of stochastic customers, some demands
projected in the rolling horizon might vanish completely. Indeed, when such
a projection does not lead to a demand, it is removed from the model as the
stochastic parameter is set equal to zero.

Finally, a new optimization process takes place in period t +1 and the sequence
of decisions and updates is repeated. This setting can be sketched as follows:
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1

1st Decision

−→ t

tth Decision

H periods

Rolling Horizon

−→ T

End

Figure 3.1: Rolling Horizon in period t

In the present thesis, this framework is followed in the theoretical part and in
the applications (see section 3.3). However, this rolling horizon framework is not
unique in the literature. For some authors, the rolling horizon process can be de-
ployed over a finite time and the look-ahead periods encompass the whole horizon
since the beginning of the process. In this case, there are T decision periods in the
set {1, ...,T} and the rolling horizon length reduces from T − 1 down to zero. For
instance, a working day is optimized every hour for requests coming in along the
day. In that case, the horizon reduces from 8 to 7, to 6...down to 1, 0 hour.

Moreover, for some authors dealing with on-line optimization of VRP with
stochastic demands such as [Van Hentenryck & Bent, 2006] and [Yang et al., 2004],
the whole horizon is considered open for decision making from the earliest decision
state until the end of the horizon. Therefore, transportation demands taking place
during the latest periods of the horizon can be confirmed during the earliest decision
periods. This leads to a decreasing rolling horizon length with frozen decisions in
the look-ahead periods. This optimization framework is different from the constant
rolling horizon length process considered above allowing actions only in the current
decision period t.

In some cases, there might also be a misunderstanding in the literature owing to
the fact that authors do not state explicitly the rolling horizon taken into account, the
flow of incoming information as well as the possibility to freeze or not decisions.

Note that, the length of H might influence the performance. At first sight, the
longer H is, the better the performance. Nevertheless in practice, the dispatching
process depends for example on the commercial process, called booking process in
[Powell et al., 1995]. Therefore, it might be practically impossible to get forecasts
at no cost. Consequently, the economic value of increasing H or the systemic loss
should be evaluated (see sections 3.7 and 7.8.6).
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3.3 Specific parts of the rolling horizon

The H look-ahead periods following the decision period t, which contain extra-piece
of information, can be refined into several parts:

• The deterministic part of the horizon t, ..., t+RH (where RH ≤H) is made of
subsequent periods following the decision period and wherein the information
is fully revealed. The information contained within these periods cannot be
modified afterwards.

• The stochastic part of the horizon t +RH +1, .., t +H, follows the determin-
istic part up to the end of the rolling horizon. The data included in this part
might change as the horizon rolls over (but might also include some piece of
deterministic information).

• The action part of the horizon contains the periods where the decisions issued
from the solution are effectively applied. Inside this thesis, for the applica-
tions, the action part is considered to be equal to the current decision period.

• The frozen zone covers the current decision period t and some successive
periods of the rolling horizon. In these periods, actions previously planned
can not be modified and no new actions can be inserted. For example, the
decisions taken in day t might be applied in day t + 2 while actions in t + 1
were selected previously in t − 1 (see e.g. [Tjokroamidjojo et al., 2006]).
In Figure 3.2, the frozen zone length equals 2 periods. In other cases, (see
[Keskinocak & Tayur, 1998]), some actions can be frozen in a remote pe-
riod of the horizon, such as mandatory tasks (maintenance, going back home,
specific transports) which are scheduled in advance. This action freezing is
different from a frozen zone as it allows to modify some decisions variables
and related actions in periods ahead of these frozen actions. In the present
work, there are neither frozen zones, nor frozen actions ahead of the current
decision period t.
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Here is a sketch of the rolling horizon process with the different parts of the
rolling horizon:

1

1st

−→

...

−→

... Deci. Froz. Act. Deter. Stoch. End

t t+1 t+2 t+3 t+4 t+5 T

Figure 3.2: Generic rolling horizon in period t with 2 frozen periods

Figure 3.2 shows a rolling horizon process containing H = 5 look-ahead periods.
The period t is the current decision period. The actions are frozen during the present
period t and t + 1 as previous actions have been implemented respectively in t− 2
and t−1. Similarly, from the decision generated in t, actions will be performed in
period t +2. The deterministic information is available for 3 periods ahead RH = 3.
Stochastic information is in the remote part of the horizon t+4 and t+5. Iteratively,
the status of periods is updated according to the dynamic sequence of the rolling
horizon process when t becomes t +1.

Owing to the restrictions presented for this thesis, the generic rolling horizon is
simplified as follows:

1

1st

−→

...

−→

... Deci.-Act. Deter. Stoch. End

t t+1,...,t+RH t+RH+1,...,t+H T

Figure 3.3: Thesis simplified rolling horizon in period t

3.4 Dynamism of the rolling horizon process

The sequence followed by the process should be detailed as it is a sequence of de-
cisions and information updates. As an example, the dynamic and stochastic knap-
sack problem (in [Kleywegt & Papastavrou, 1998]) might lead to many sequences
depending on when the information on the weight and/or reward of the item is re-
vealed; whether items are inserted one by one or together; whether a discarded item
can be selected again afterwards, etc.
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The rolling horizon process is part of the problem definition itself and imposes
to describe:

• the rolling horizon length H, the whole horizon length T and the decision
periods t = 1, ...,T −H

• the information coming in at every time-step, in the deterministic part t, .., t+
RH and in the stochastic part t +RH +1, ..., t +H of the rolling horizon

• the frozen zone length if necessary

• the solution found after optimization over the rolling horizon

• the procedure used to determine actions to be implemented in the actions
periods

• the effects of these actions on the system

• the modification of the global objective function valuation owing to these
actions

• the information becoming outdated after completion of these actions and the
information becoming useless when the stochastic variables are replaced by
deterministic values.

The sequence of periods, information status, solutions, actions make up the core
of the rolling horizon process description. This process is problem dependent and
should be detailed accordingly.

3.5 Policy versus solution

As mentioned, the actions performed over the long term are based on solutions
issued from a sequence of optimization processes over restricted horizons. This is
an important step of the multi-period process, as the aim is to valuate the decision
making process in the long run. Depending on the problem, different algorithms
may be available and the set of actions performed can vary according to the solution
generated by these algorithms. Indeed, each algorithm Ai from a set of algorithms
{A1, . . . ,Ai, . . . ,ANA} generates a set of solutions over the rolling horizon leading
to implement the decisions within the action periods. This set of actions, called the
policy π(i) of algorithm Ai, contains each action labeled Aπ(i)(St) for the system in
state St in the decision period t. The total value (cost or reward) of all these actions

44



C(St ,Aπ(i)(St)) depends on the state of the system St in period t and the policy π(i).
This expected global value is called the policy value µπ(i).

µπ(i) = lim
T→∞

E[∑T
t=0C(St ,Aπ(i)(St))]

T
(3.1)

Thus, µπ(i) is the average cumulated gain over the successive action periods.
Note that the policy value is not the cumulative sum of all objective function values
over all rolling horizons. In fact at each decision period, the performed actions are
a restricted portion of the decision variables of the solution over the rolling horizon.
Consequently, the measuring unit of both values, the policy and the rolling horizon
solution might be different. For example in a transportation problem aiming at
minimizing the costs, the policy value on the long-run can be valuated as an average
transportation cost per ton per period while at each decision period of the rolling
horizon the valuation of the objective function might be measured by the global
total transportation cost over the rolling horizon.

The aim is to select the best policy π∗(i) = π∗ among all π(i) and consequently
the best algorithm A ∗. According to the objective function, the best policy π∗ might
be the one maximizing or minimizing the value µπ∗ .
For example, for a maximization problem:

µπ∗ = max
π(i)

µπ(i) (3.2)

Besides this, the policy requires a solution at each time step to generate a global
decision leading to perform actions. This solution might be issued from rules, exact
methods, heuristics or meta-heuristics. If the data are fully deterministic inside the
rolling horizon, previous research dealing with a single period model can sometimes
be of interest. As these models represent an important part of the literature in trans-
portation, it is valuable to adapt them to a multi-period deterministic framework.
Indeed, each decision making process might be an instance of the more studied
static case of the problem, as in scheduling and routing (see [Pillac et al., 2013]). If
the information includes stochastic data within the rolling horizon, dedicated tech-
niques have to be used (see chapter 4).

An important point is how to deal with the time parameter in this framework, as
"periods" are considered. These periods discretize time which is continuous by na-
ture. Indeed, the rolling horizon process deals with a sequence of periods {1, ...,T}
but some piece of information linked to time might follow another time unit. For
instance, the decision periods might be separated by days or hours, whereas the
time-windows for pick-up or delivery of a given load may be provided in minutes
(e.g. [Tjokroamidjojo et al., 2006]). Then, such information is allocated to a single
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period even if the information arises between the start and the end of the period. In
this thesis, every temporal information is given per period. Therefore, there are no
reconciliations or rounding procedures between the time scale of the rolling horizon
and the time scale of the data.

Another difficulty is due to the fact that models including time constraints, such
as problems with time-windows, can be hard to solve, i.e. non-polynomially solv-
able. Consequently, solving optimally or heuristically a single fixed horizon might
already be an issue. For instance, each fixed horizon optimization problem might
be NP-Hard.

For the two applications that we consider, a preprocessing step based on the
structure of the problem allows us to present two formulations of the deterministic
versions of the problems where no index parameter for time exists. This leads to
single period formulations computationally tractable by a commercial solver as op-
timization tool. As less computing time is required, test instances can be diversified
and a larger number of periods T can be considered. More generally, for practition-
ers and for researchers, developing efficient formulations for each decision step is
important because actions issued from the solution at each step make up the policy
value. So, the rolling horizon process highly depends on the ability to find a solution
at each decision step.

3.6 Start and end of horizon biases

When valuating the policy over the rolling horizon, potential biases influencing the
results must be depicted. The earliest and the latest decision steps on the whole
horizon might induce such phenomena, i.e., start and end of horizon biases.

When performing simulations, one can choose to use historical data to repro-
duce natural starting points. In practice, one often generates artificial instances to
test algorithms over various types of instances. Therefore, starting points have to be
randomly regenerated as well.

A way to alleviate these biases is to consider the process at cruising speed or in
"stationary state". For example in [Tjokroamidjojo et al., 2006], the process rolls
over t = 1, ...,20−H with a rolling horizon including H = 4 periods at most and
authors present results from the decision period 5 to the decision period 15. The ma-
jor problem of a multi-period optimization framework is that it is difficult to embed
past decisions in the preliminary periods to simulate a steady state, because these
previous decisions might be the consequences of a policy different from the one
tested. Therefore, there would be an initial bias in the policy valuation. A remedy is
to remove these initial periods of the whole horizon. This creates a warm-up delay
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that allows the policy to take its own decisions up to a representative decision pe-
riod including policy past effects and representative information inside the rolling
horizon. As in [Tjokroamidjojo et al., 2006], a warm-up length equal to the decision
period and the rolling horizon length (1+H) is often used in practice. Warm-up pe-
riods leading to different initial conditions, also induce a bias as the starting points
might be different for policies that have already rolled over 1+H periods.

Also, simulations cannot be run over infinite horizons and must be terminated.
As far as the end of the whole horizon is concerned, one has to highlight that multi-
period optimization is relevant if there are interactions between periods, meaning
that an operation might be postponed, selected or rejected during the rolling horizon
optimization. As a consequence, when an infinite horizon case (T ∼= ∞) is consid-
ered, in practice the whole horizon is reduced to a finite one. Due to the truncation
and the rolling horizon procedure, T −H decisions are taken. Therefore, in practice
for the applications, equation 3.1 becomes:

µ(π) =
E[∑T−H

t=0 C(St ,Aπ(St))]

T −H
(3.3)

Thus, one cannot claim that the same set of actions have been considered by all
policies when the truncation arises in t = T −H. For this reason, the horizon T
should be long enough to reduce this bias. Policy values can also be evaluated
per period in order to average the performance over the whole horizon and to be
compared with real-life performances. Consequently, it is mandatory to take care of
the biases that the start and the end of the whole horizon might induce in the final
value of the policy.

For some authors [Hughes & Powell, 1988], the "end of horizon effect" has
another meaning, as this effect is related to the last periods of the rolling horizon.
Actually, for them, it represents the decreasing value of information in the remote
periods of the rolling horizon. As many changes in the data status can occur be-
fore reaching the periods at the end of the rolling horizon, at each decision step, it
might be interesting to give more importance to data closer to this current decision
period than distant ones. To handle this, a decreasing or discount factor (such as
γ in equation 3.4), representing a lower weight for the information in the remote
periods of the rolling horizon, is inserted in the formulation to improve the policy
performance. For example, in the following form of the Bellman equation 3.4 (see
[Powell, 2011] and section 4.1.2 for details), the value of a decision Vt at period t
when the system is in state St is estimated by :

• the cost C(St ,At) of the decision At ,

• and the discounted (γ ∈ [0,1]) expected (∑s′∈S P) value (Vt+1) of this decision
when it is applied (s′|St ,At) over all subsequent realizations (s′ ∈ S)
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Vt(St) = min
At∈At

[
C(St ,At)+ γ ∑

s′∈S
P(s′|St ,At)Vt+1(s′)

]
(3.4)

So, here, the end of the horizon is mitigated ex-ante in order to improve the
model and its algorithmic performance, whereas in our previous discussion, the
effect appears only in the ex-post evaluation of the policy over a finite horizon.

3.7 Rolling horizon length

Obviously, the performance of the decision process might also depend on the rolling
horizon length H. If the rolling horizon is long, its last periods might not influence
the solution for the decision period (see [Chand et al., 2002]). For instance, the
applied actions in t might not be affected if the last period t+H is removed from the
rolling horizon and if the decision making process is performed over t, ..., t +H−1.
At first sight, if the actions taking into account 1+H or H periods are equivalent,
both solutions seems to lead to the optimal policy. This is a necessary condition,
but not sufficient to prove the optimality of the policy issued from the decisions at
each time step. This can be proved easily. Assume a taxi driver which should decide
every 10 minutes to relocate his position from the train station to the airport to pick-
up a customer for a profit of 2$. The trip to the airport from the train station takes
60 minutes and its cost is 1$. A customer is expected within an hour in the airport
while the taxi is waiting at the train station. If the taxi driver has got a rolling horizon
from 10 to 50 minutes, i.e. from 1 up to 5 periods, he will decide to stay at the train
station, because it is more profitable to stay idle than to move. When the demand
will be revealed, it will be too late to decide to move and pick-up the customer. If
the rolling horizon is 60 minutes or more, the taxi would decide to move and would
be on time to pick-up the customer. So, constant actions for several rolling horizon
lengths do not prove the optimality of the policy.

Moreover, looking at it closely, increasing the rolling horizon length requires
to still be able to solve the model for several periods while increasing the model
size. However, the memory requirement and the computing time might make the
optimization repellent in practice if many data are concerned. Beside this, getting
these forecasts for a long time can be costly leading to a cost vs benefit analysis to
decide whether or not some extra-piece of information is valuable.

Conversely, the rolling horizon might be short, so the loss for lacking of infor-
mation should be valuated. This can be done by a test reporting the policy values
based on successive rolling horizon length H = 0,1,2.... compared to the fully re-
vealed information over T (see section 7.8.6 for an application).
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The influence of the length H on the policy performances was investigated pre-
viously (see [Sethi & Sorger, 1991] for references and [Powell, 1986] for a similar
analysis). For both applications presented in the thesis, preliminary tests show im-
provements if a rolling horizon of at least one period {t, t +1} is considered instead
of a purely myopic decision based on the information available in the decision pe-
riod t. Then, the benefit of increasing the rolling horizon length reduces asymptoti-
cally to zero in percentage within the few next periods.

From a managerial point of view, as the rolling horizon length H might be the
consequence of the booking process between the freight forwarder and the trans-
portation company, it might be interesting to analyze the process and to re-engineer
a new one with a smaller or longer H, if this is profitable. However, in case of in-
crease, H should remain commercially relevant, as the amount of time between the
booking process and the realization of the order is also part of the service level.

On the other hand, the limitation of the length of the rolling horizon H might
come from the difficulty for developing a dedicated algorithm able to handle longer
rolling horizon instances.

As a conclusion, the rolling horizon length H is an important issue within these
multi-period optimization problems and its potential influence should be measured.

3.8 Bounds with fully revealed information

Within an optimization process, when the optimal solution cannot be reached, it is
important to assess the quality of the approximate solution found. In this section,
some bounds based on fully revealed deterministic data are proposed to estimate
the quality of the policies using the stochastic information which is the situation
faced in reality. In a simulation process, some bounds can be generated using the
deterministic information alias fully revealed information alias Oracle data. Three
bounds can be generated according to the horizon length considered. Theoretically,
the expected values of some policies can be computed over all possible scenarios
according to the relative probability of occurrence of these scenarios, also called
weight of the scenarios:

1. LO or O∗RH the a-priori or myopic bound value based on a policy only us-
ing the information from the deterministic part of the horizon 1+RH and
generating a policy called the myopic or a-priori policy.

2. O∗H the a-posteriori bound value based on a policy only using the fully re-
vealed information over the rolling horizon 1+H and generating a policy
called the rolling horizon a-posteriori policy.
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3. O∗T the a-posteriori bound value based on a single solution only using the fully
revealed information over the whole horizon T . In this case, the value of the
policy is equal to the value of the solution over the entire horizon and not a
cumulated sum of actions issued from the decisions taken in each decision
period. In the applications, due to the truncation of the horizon (see equation
3.3), the optimal solution value O∗T is estimated as O∗T−H .

Referring to figure 3.2, one gets the following figures:

1. for O∗RH , the rolling horizon reduces to 3 periods and the optimization process
takes into account the revealed information 3 periods ahead of the present
decision period.

1

1st

−→

...

−→

... Deci. Froz. Act. Deter. End

t t+1 t+2 t+3 T

Figure 3.4: Information for the a-priori or myopic policy in period t

2. for O∗H , the deterministic part of the rolling horizon increases up to 5 periods
and the optimization process takes into account the revealed information 5
periods ahead of the present decision period.

1

1st

−→

...

−→

... Deci. Froz. Act. Deter. End

t t+1 t+2 t+3 t+4 t+5 T

Figure 3.5: Information for the rolling horizon a-posteriori policy in period t

3. for O∗T , the information is fully revealed over the whole horizon and the op-
timization process takes into account the revealed information T −1 periods
ahead of the present decision period.
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1

Deterministic

−→ T

Figure 3.6: Information for the a-posteriori optimal policy

Finding these bounds using deterministic information is usually a bit easier than
solving the true problem dealing with stochastic information. Indeed, only a single
deterministic problem is solved at every iteration and not a stochastic one which
might require a sophisticated algorithm (see chapter 4).

If the values of the policies are issued from optimal solutions of the deterministic
problems, one can state that O∗RH ≤O∗T for a maximization problem and O∗RH ≥O∗T
for a minimization one. A-priori solutions O∗RH cannot outperform the a-posteriori
optimal one O∗T .

Besides this, the value of the rolling horizon a-posteriori policy O∗H using the
fully revealed deterministic information over 1+H periods should be in between
these bounds. As a consequence, a lower and an upper bound on the rolling hori-
zon a-posteriori policy exist. They are respectively the a-priori or the a-posteriori
solutions for a maximization problem and conversely for a minimization problem.
Indeed, one can found a worst solution than the a-priori solution (see [Yang et al.,
2004]) such as it might be the case with manual optimization in company. Neverthe-
less, from an operational research point of view, the value of the myopic solution is
supposed to be at least reached, if not the best policy using the a-priori information
should be considered as the myopic bound.

In the same sense, the value O∗H is assumed to be in between the lower and the
upper bound. Yet, this cannot be claimed as sometimes the myopic policy performs
better than the rolling horizon a-posteriori one (see [Blackburn & Millen, 1980]).
Therefore, the following equations "usually" hold and these symbols are used ≤̃ and
≥̃:

• for a maximization problem:

O∗RH ≤̃ O∗H ≤ O∗T (3.5)

• for a minimization problem:

O∗RH ≥̃ O∗H ≥ O∗T (3.6)
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If there is a significant gap between the values of the bounds, then the value of
the information can be economically valuated (see section 3.9). From a management
point of view, similarly to what can be done for the rolling horizon length H, it
is possible to measure the maximum earning that can be made by improving the
acquisition of the deterministic information. Conversely, if the bounds are close
and the gap economically irrelevant, it is noticeable to know that any improvement
is useless and the myopic optimization over deterministic data might be efficient.
This annihilates the difficulty to solve the stochastic version of the problem. This
situation is also faced when the inequalities ≤̃ and ≥̃ do not hold in 3.5 and 3.6.

In this introduction, we assume that each scenario, i.e. each deterministic model,
is solved to optimality and that the bounds are estimated by the cumulated value of
these optimal solution values for all the scenarios taking into account their relative
weight. If the values for the bounds are estimated by the cumulated solution values
generated at the optimization level of each deterministic model issued from a sce-
nario by a heuristic or a meta-heuristic, proving that the previous inequalities (3.5
and 3.6) still hold is beyond the scope of this thesis (see chapter 8).

Finally, as the number of scenarios can be cumbersome, it cannot be practicable
to compute the expected value of the bounds over all scenarios. If all scenarios
and their relative weights are considered, the bound value is its expectation. If a
restricted set of scenarios (considered as equiprobable) is used, the bound value is an
estimate of this expectation. For the applications and for the forthcoming sections,
the estimates and the expectations of the bounds are labeled in the same way. Yet,
owing to this approximation, the significance of the gap between the estimates of
the values should be statistically checked.

3.9 Value of information in multi-period optimization

As introduced in the end of previous section 3.8, it might be profitable to solve the
myopic version of the problem if the a-priori and a-posteriori bounds values are not
different. Conversely, if gaps exist between the a-priori and the a-posteriori bounds,
it might be interesting either to increase the deterministic part of the rolling horizon
RH or to develop a policy using the stochastic information contained in the rolling
horizon. Increasing RH or H (see section 3.7) requires to adapt the data collection
within the booking process from the customer. This process re-engineering is not in
the scope of this thesis even if a sensitivity analysis is performed for H.

Therefore the main focus of the practical part of this thesis lies on finding effi-
cient policies using the stochastic information available in the rolling horizon. Sim-
ilarly to the previous section, as simulation techniques (see chapter 4) are used to
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valuate the policies π(i), only an estimate of the expectation of the policy value
µπ(i) can be reached. For the sake of simplicity and similarly to the bounds, esti-
mates are labeled like the expectations. However, using estimates requires to assess
a statistical significant difference between policy performances.

As deterministic lower and upper bounds are available, the policy values based
on stochastic information over the rolling horizon, µπ(i) can be reported in a chart.
This section introduces concepts to measure the values of the information between
the deterministic bounds and the value µπ∗ of the best policy found π∗ using the
stochastic information.

The optimal policy value using the stochastic information is labeled E∗. Note
that, the optimal policy E∗ might remain unknown and different from π∗.

Similarly to the rolling horizon a-posteriori policy O∗H , a policy using stochastic
information over the rolling horizon π(i) should be between the lower O∗RH and the
upper O∗T bounds. If not, the extra-piece of stochastic information or the algorithm
generating this policy would have a negative effect. Moreover, the best policy π∗

should under-perform when compared to O∗H which has the fully revealed informa-
tion over the rolling horizon and no stochastic elements. Exceptionally, owing to
the rolling process and for some instances, µπ∗ might be better than O∗H (see chap-
ter 4). Therefore, in the same sense than in equations 3.5 and 3.6, the following
symbols are used ≤̃ and ≥̃. As mentioned here above, the situation faced when the
a-priori policy performs better than the rolling horizon a-posteriori one is profitable,
because using a myopic policy is relevant. Similarly when the policy value µπ∗ us-
ing the stochastic information outperforms the rolling horizon a-posteriori bounds
O∗H , the situation is interesting. Indeed, this means that the stochastic information is
used in such a way that trying to get the fully revealed deterministic information is
useless. Therefore, when these inequalities ≤̃ and ≥̃ do not hold, the manager faces
a beneficial situation. Unfortunately, in most cases, these inequalities remain and
lead to:

• for a maximization problem:

O∗RH ≤̃ µπ∗ ≤̃ O∗H ≤ O∗T (3.7)

• for a minimization problem:

O∗RH ≥̃ µπ∗ ≥̃ O∗H ≥ O∗T (3.8)

The gaps between these values provides some information that can be useful
to decide which actions can be profitable between data acquisition, algorithmic de-
velopment or rolling horizon length increase. In the practical part, estimates are
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computed, while theoretically expectations are considered. In order to be consis-
tent with the admitted acronyms (see [Birge & Louveaux, 1997]), the expression
"Expected" is used instead of "Estimated". Therefore, for a maximization problem,
names and values of the intervals between these bounds and the best policy value
are proposed hereafter. The EVPI is a standard notion (see [Birge & Louveaux,
1997]) while the others are contributions of this thesis.

• EVPI: Expected value of the perfect information

EV PI = O∗T −µπ∗ (3.9)

• EVMPM: Expected value of the multi-period model

EV MPM = O∗RH −O∗H (3.10)

• EVAI: Expected value of the accessible information

EVAI = O∗H −µπ∗ (3.11)

• EVTI: Expected value of the tail information

EV T I = O∗T −O∗H (3.12)

For a minimization problem, terms of the equations are inverted.

For a maximization problem, values can be reported in a chart as follows:

O∗RH

µπ∗

O∗H

O∗T
EVTI

EVAI

EVMPM

EVPI

Figure 3.7: Bounds and values of information
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• The EVMPM shows how interesting it is to treat the problem as if the data
available on the rolling horizon were deterministic (i.e. were accessible)
and considered within the optimization process. This means evaluating the
cost for keeping the process myopic and for not using information from the
rolling horizon. If this EVMPM cost is high, the consequence would be to
improve the data collection (increasing RH) or to develop an algorithm deal-
ing with the stochastic information over the rolling horizon. Conversely, if
this EVMPM cost is low, it might be interesting to use only the deterministic
part of the horizon RH or even to reduce this deterministic part of the hori-
zon. Indeed, if the booking process is too rigid by imposing several periods in
advance for registration, the transportation company might loose commercial
opportunity. Therefore, even reducing RH might also be an option highlighted
by a low EVMPM.

• The EVPI shows how interesting it would be to find a solution with the
fully revealed information over the whole horizon compared to the best opti-
mization technique using the information presently available over the rolling
horizon. The consequence could be to try to improve the performance of
the stochastic solution µπ∗ by an algorithmic development or to increase the
rolling horizon length H or by inserting more information at the end of the
rolling horizon such as stationary periods (see [Sethi & Sorger, 1991] or
[Powell, 1988]).

• The EVAI shows how interesting it is to treat the problem as if the data where
fully revealed over the rolling horizon compared to the best solution found
using the stochastic information also over this rolling horizon. The conse-
quence would be to increase the deterministic part of the rolling horizon (e.g.
by improving the booking process) or if possible to develop a more perform-
ing algorithm using the stochastic information. So, the EVAI helps to decide
what to do between the two options provided by the EVMPM: RH increase
or algorithmic development.

• The EVTI shows how much is lost due to the length of the rolling horizon H
which might be extended. Therefore, when the EVPI is high, the EVTI helps
to select which options between H increase or µπ∗ improvement would be the
more profitable.
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However, measuring these values shows the potential benefit of actions but do
not prove that it is feasible. For instance, it is not always possible to improve the
information by transforming forecasts into confirmed orders, so increasing RH is
not obvious. In the same sense, gambling on a performance improvement for an
algorithm using the stochastic information of the rolling horizon π(i) can be risky.
Actually, the optimal policy for the stochastic problem E∗ remains unknown and
can be approximated by π∗ but E∗ = π∗ cannot be usually proved particularly with
estimated values.

So, improving π∗ is not an obvious option. Inside this thesis, simple optimiza-
tion techniques to get a performing π∗ are proposed (see chapter 4).

Finally, these values of information are often provided normalized as a percent-
age of the bounds such as in [Pillac et al., 2013] and chapters 5, 6 and 7.

56



Chapter 4

Stochastic optimization problems

4.1 Introduction

This chapter depicts in its first section 4.1.1 the standard model used in stochastic
programming. This formulation fits best for two-stage problems and is not suited for
a multi-period problem whereas the present work aims at minimizing the expected
cost (or maximizing the expected reward) in a multi-period framework.

In section 4.1.2, four families of policies to approximate the expected cost of the
optimal policy are presented: myopic policies, lookahead policies, policy function
approximations and policies based on value function approximation.

Then, linked to these policies, scenario-based models are described in section
4.1.4 leading to related optimization techniques while some discarded optimization
techniques are exposed in section 4.1.3.

These algorithms are successively based on mono-scenario approximation (sec-
tion 4.2.1) and multiple scenario approaches (section 4.2.2).

Then, in section 4.3, the policy values from these algorithms using the stochastic
information are inserted in the bounds presented in chapter 3 and values of the
stochastic information are introduced.

4.1.1 Stochastic programming

Stochastic programming is a framework for modeling optimization problems with
uncertainty. As mentioned in [Kall & Wallace, 1994]: "Within the mathematical
programming community, it is common to split the field into topics such as linear
programming, nonlinear programming, network flows, integer and combinatorial
optimization, and, finally, stochastic programming. Convenient as that may be, it is
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conceptually inappropriate. It puts forward the idea that stochastic programming is
distinct from integer programming the same way that linear programming is distinct
from nonlinear programming.".

Let us follow this reasoning. The standard form of a linear programming prob-
lem, using a matrix-vector notation, is as follows:

Z∗ = min (cT x)

s.t. Ax = b

x≥ 0

 (4.1)

where cT is the cost vector, A is a vector of parameters such as weight or distance
for a problem in transportation while b is the corresponding constraining parameter
vector such as capacity or tour length. Finally, x is the vector of decision variables.
Values of vectors cT , A, b are assumed to be known deterministically.

If some constraints or the objective function are not linear, but expressed by
more general functions gi(x), one can represent the problem by a mathematical
programming model such as:

Z∗ = min (g0(x))

s.t. gi(x)≤ 0, i = 1, ..., m

x ∈ X ⊂ Rn

 (4.2)

So, depending on the set of functions gi, the problem is linear or non-linear.
Similarly, if some or all x ∈ X are required to be integer, the problem is respectively
called mixed-integer programing (MIP) or integer programming (IP) problem (see
[Kall & Wallace, 1994]).

In order to introduce stochastic programming models, the stochastic informa-
tion is assumed to be modeled by a random vector ω taking its values over a set
Ω ⊂ Rl where l is the number of dimensions of the random elements. We assume
that the probability distribution of ω is known. Then, the objective function and
the constraint functions can be viewed as functions of x and of ω , to be denoted
g0(x,ω) and gi(x,ω). Therefore, a general formulation of a stochastic program can
be formalized as follows:

Z∗ = ”min” (g0(x;Ω))

s.t. gi(x;Ω)≤ 0, i = 1, ..., m

x ∈ X ⊂ Rn

 (4.3)

where g0(x;Ω), gi(x;Ω) denote "aggregate" values of g0(x,ω), gi(x,ω) over Ω. In
that framework, the constraints can be expressed in a meaningful deterministic way.
Typically, we may take gi(x;Ω) = EΩ gi(x,ω) or gi(x;Ω) = max

ω∈Ω

gi(x,ω).
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So, stochastic programming is quite different from the usual mathematical pro-
gramming model of equation 4.2, because some information materializes after the
decision is taken.

For example, a two-stage stochastic program with recourse assuming that the
information is fully revealed after the decision is taken can be formulated as follows
(see [Birge & Louveaux, 1997]):

Z∗ = min (g0(x)+EΩ Q(x,ω))

s.t. gi(x;Ω)≤ 0, i = 1, ..., m

x ∈ X ⊂ Rn

 (4.4)

where g0(x) estimates the first stage cost and where EΩ Q(x,ω) is the expectation
of the second-stage problem valuating the recourse cost over Ω. This recourse cost
is valuated as q(x,y,ω) where q is the recourse cost function, ω is the observed
realization of the random vector, and y the associated second stage decisions. Thus,
the second-stage problem can be formulated as follows:

Q(x,ω) = min q(x,y,ω)

s.t. hi(x,y,ω)≤ 0, i = 1, ..., m

y ∈ Y ⊂ Rm

 (4.5)

where hi(x,y,ω) ≤ 0 represents the second-stage constraints taking into account
decision x from the first stage and the value of ω .

In case of a discrete and finite distribution, each scenario (ω ∈ Ω) is an inde-
pendent outcome of the distribution and is therefore a potential second-stage. The
model can be decomposed per scenario for the second-stage, so that the recourse
cost can be estimated independently per scenario. So, the expectation of the global
recourse of an action can be computed over all scenarios taking into account their
relative probabilities pω . Therefore, equations from models 4.4 and 4.5 become:

Z∗ = min (g0(x)+ ∑
(ω∈Ω)

pω Q(x,ω))

s.t. gi(x,ω)≤ 0, i = 1, ..., m

x ∈ X ⊂ Rn

where Q(x,ω) = min{q(x,y,ω), s.t. hi(x,y,ω)≤ 0} , ω ∈Ω

y ∈ Y ⊂ Rm


(4.6)

In the present work, such discrete and finite distributions are investigated. How-
ever, the number of scenarios ω ∈Ω is so large, that the expectation of the recourse
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cost can only be approximated even for each decision period. Moreover, even for
a single scenario, the cost function q(x,y,ω) can only be approximated as the in-
formation is not fully revealed after the current decision period. Actually, some
new stochastic information is incorporated in the model at the end of the rolling
horizon, while only a part of stochastic information becomes deterministic, i.e., is
fully revealed. Indeed, all data are not provided when ω is revealed and there is still
unknown information that has to be revealed period per period in the remote part of
the horizon. Thus, the problems in transportation investigated in the present work
are not two-stage ones (as in formulation 4.6), but multi-period ones. Usually, the
formulation of this kind of "multi-stage" model is based on a composition of several
sequential 2-stage models. This leads to a sequence of decisions and revealed in-
formation observations. In this work, for such multi-stage models, similarly to the
2-stage model, estimating the expected recourse cost of an action leads to approx-
imate it, because of the large number of scenarios and because the information is
not fully revealed after each stage. So, approximate models should be used to find a
solution per period which should be itself embedded into a policy (see section 3.5).
This thesis aims at proposing such approximate models or optimization techniques
for stochastic problems.

Note that, the segregation, linear vs non-linear, MIP or IP for x (and y) also
stands for stochastic programming. This shows that stochastic programming is not
a branch, but another trunk in mathematical programming.

Regarding the objective function, the labeling "min" deserves some explana-
tions. In some applications, the objective function based on g0(x;Ω) might include
significant penalty costs in case of non-fulfillment of an action. For instance, in
emergency services facing uncertain demand, the model attempts to minimize the
maximal unserved demand, generating a min-max model. In dial-a-ride problems
(DARP), the objective might be to minimize the global or individual maximal in-
convenience. In such optimization problems, the solution tends to be immune to the
data uncertainty, i.e. robust (see [Bertsimas & Sim, 2004], [Bertsimas et al., 2011]
and section 5.3). For instance, in some cases, the optimization takes into account
the worst case of the outcomes of the probability distribution as every other out-
come would be less damaging. Obviously, if that kind of robust solution minimizes
the penalty costs issued from the stochastic information realization in the second
stage, it often overestimates the cost for the first stage. This is legitimate when high
penalty costs or infeasibility (infinite penalty) have to be faced.

In other contexts, such as in operational models in transportation presented in
this thesis where the emphasis is placed on economic performance over the long run,
objective functions tend to minimize the expected cost or maximize the expected
reward. In these cases, the robustness of the solution is related to the ability to stay
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close to the optimal solution even if some data used during the optimization phase
were erroneous or imprecise. In that case, extreme scenarios should be sporadic and
economically affordable. Consequently, the term "min" may represent several goals
in stochastic optimization.

4.1.2 Expected cost minimization approaches

According to [Powell et al., 2012]: "Stochastic optimization problems arise in many
settings, and as a result, a wide range of algorithmic strategies have evolved from
communities with names such as Markov decision processes, stochastic program-
ming, stochastic search, simulation optimization, reinforcement learning, approxi-
mate dynamic programming and optimal control." These authors classify also the
policies in four classes wherein each policy approximates the solution for the cur-
rent period by adapting Bellman’s equation (e.g. equation 3.4) with a discount fac-
tor γ = 1: Policy function approximation, Myopic cost function approximations,
Lookahead policies and Policies based on value function approximations. The dif-
ferences between these ranges of policies lay in :

• the availability and utilization of the information from the current decision
period t;

• the availability and utilization of the information in periods subsequent to the
current decision period;

• the optimization or not of a decision at each decision step;

• the exact or estimated valuation of the consequences of an action in the next
periods.

1. Policy function approximation: in this approach, there are rules or functions
that automatically generate the decisions without optimization and without
taking into account extra pieces of information beyond the structure of the
present state itself. In fact, the information in the subsequent periods might
not be known explicitly, but globally. For example, in inventory management,
the policy can be periodic, meaning that regularly, the inventory is replenished
up to a level L estimated according to an average demand over time. To
alleviate the variations in the demand, a security stock level can be taken
into account when estimating L. The computation of the replenishment level
is done once for all and replenishment decisions are taken at fixed epochs
t. Quantitatively, each replenishment decision At depends on the inventory
level St and At = L−St . This decision policy is reduced to a simple function
depending on the current state of the system and to an approximation of the
action to be performed.
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This policy might be optimal in case of a constant demand rate. However, in
case of variations of the demand, a safety stock has to be evaluated to avoid
stock-outs. Therefore, in each period t, the replenishment to L is no more an
optimal action, but an approximation that should lead to an efficient policy in
the long run.

Similarly, in transportation management, a periodic policy (see [Angelelli &
Speranza, 2002]) or a returning to the depot policy (see [Gendreau et al.,
1996]) can be used to approximate multi-period or multi-customer delivery
processes.

2. Myopic cost function approximations: if no information from the periods
of the rolling horizon is explicitly revealed or cannot be used efficiently, it is
possible to optimize the decision while restricting the data to the information
available in the current decision period t. This leads to a so-called myopic
policy. In that case, the policy computes a solution in period t, called action
At belonging to the set of all possible actions in period t, At . This solution is
taken according to the current state of the system, called St , while minimizing
the cost generated by this action, labeled C(St ,At).

V Myopic
t (St) = min

At∈At

[
C(St ,At)

]
(4.7)

The real current state or cost function can be modified if this leads to more
efficient results on the long-run: that is, St and C(St ,At) can be approximated
to select a more efficient At over the rolling horizon while using a restricted
set of information. The value C(St ,At) is added to the policy value. In our
methodology, this policy can be used to estimate the myopic bound O∗RH , if
the revealed horizon length RH equals 0 (e.g. application 1).

3. Lookahead policies: if data are available for several periods subsequent to
the current decision period t, it is possible to optimize while taking into ac-
count the future periods t ′= t+1, ..., t+LA including deterministic (see equa-
tion 4.8) or stochastic information (see equation 4.9). LA is the number of
lookahead periods taken into account at each decision step and LA = H in the
rolling horizon procedure. The value Vt(St) estimates the policy value over
several periods if action At would be applied. However, only the current state
decisions At are applied and its related cost C(St ,At) is added to the policy
value. So, there is a gap between the estimate of the policy value over the
lookahead periods and the value added to the policy at each decision period t.

V Lookahead deterministic
t (St) = min

At∈At

[
C(St ,At)+

t+LA

∑
t ′=t+1

C(St ′ ,At ′)

]
(4.8)
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V Lookahead stochastic
t (St) = min

At∈At

[
C(St ,At)+ ∑

ω∈Ω

p(ω)
t+LA

∑
t ′=t+1

C(St ′(ω),At ′)

]
(4.9)

Repeated over the whole horizon, the lookahead deterministic policy (see
equation 4.8) can be used to valuate the bounds (say O∗RH or O∗H) based on
the revealed deterministic information. In these cases, the number of looka-
head periods LA equals respectively RH ≥ 1 or H.

Repeated over the whole horizon, the lookahead stochastic policy (see equa-
tion 4.9) should be used to generate the policy value of the problem using
the stochastic information over the rolling horizon. However, as explained
above, the number of ω ∈ Ω is too large and the cost C(St ′(ω),At ′) can only
be approximated such as in the following policies.

4. Policies based on value function approximations: in that case the decision
is optimized in the present state while estimating the expected cost of the
decisions taken in future periods. This value function approximation is linked
to pricing techniques (see [Pillac et al., 2013]).

VValue f unction
t (St) =V t(St) = min

At∈At

[
C(St ,At)+E

{
V t+1(St+1)|St

}]
(4.10)

Of course, hybrid methods might be set up as mentioned in [Powell et al., 2012].
Within the methodology presented in section 4.2, several classes of policies are
used: myopic ones for bounds, policy function approximation for some specific
scenarios and lookahead policies including deterministic information trying to ap-
proximate the value of a decision over the following periods. As the problems are
multi-period, using lookahead strategies seems obvious. However, as stochastic
data are embedded in the lookahead periods, these problems are hard to solve to
optimality because of the curse of dimensionality. Therefore, instead of introducing
the stochastic information, only an approximate deterministic equivalent informa-
tion is inserted in the lookahead periods. This deterministic information is usually
one or some particular realizations of the probability distribution (scenarios) (see
4.1.4) leading to a policy based on value function approximation as in 4.10. In a
sense, all models and techniques presented above and in this thesis generate several
valuations of E

{
V t+1(St+1)|St

}
, as estimates of ∑ω∈Ω p(ω)∑

t+LA
t ′=t+1C(St ′(ω),At ′).

Testing several realizations at each time step over the rolling horizon to find
an efficient solution is called sampling while testing several realizations over the
whole horizon to assess the statistical validity of the results is called simulation (see
chapter 5). Hence, sampling assumes that one or several scenarios might lead to
generate a decision that performs efficiently.
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4.1.3 Discarded optimization techniques

Some techniques fit better when the probability distribution is continuous such as
the normal distribution embedded in a 2-stage decision process while assuming con-
tinuous decision variables. The suitability of some algorithms is linked to the con-
vexity or the ability to solve the second stage by linear programming (e.g. the L-
shaped algorithm issued from 2-stage stochastic programming see [Kall & Wallace,
1994] and [King & Wallace, 2012]; or for the sample average approximation method
(SAA), see [Vermeij et al., 2002] and [Kleywegt et al., 2001]). Consequently, these
optimization techniques can be discarded in the present case of multi-period prob-
lems with discrete decision variables.

Conversely, some enumeration techniques are more suited to discrete proba-
bility distributions and discrete decision variables. For example, in a multi-period
setting, models represented by a Markov Decision Process (MDP) can be solved
by dynamic programming (DP) (see [Putterman, 1994]). Unfortunately, this ap-
proach highly suffers from the size of the problem. This is often the case with the
exponential explosion due to the combinatorial effects among uncorrelated proba-
bility distributions. Therefore, action and state spaces are so cumbersome that the
problem may become intractable for memory reasons or because of the number of
iterations required.

Attempts can be made to overcome this difficulty by using an approximate dy-
namic programming approach (ADP) as described in [Powell, 2011]. Even if this
technique seems theoretically promising, it is also not used in the present work. In
fact, a target of this thesis is to focus on testing simple and easily implementable
algorithms to check the added value of using the multi-period model and stochastic
information in operational applications. As, in practice, results show high improve-
ments and robust performances of the best developed algorithms, ADP was kept as
a perspective in case of failure of previous approaches. In fact, owing to the huge
size of the action and state spaces as well as the variability of the probability dis-
tributions over the horizon, the decision rules for each current decision period state
is difficult to define by ADP. Actually, this technique tries to evaluate the overall
future cost of an action according to the current state space based on the past and
simulated future realizations of the stochastic parameters such as in equation 4.10.
One difficulty is to define what is the state space in a multi-period environment.

If the current state space St contains only the information available in the current
decision period t, the rule issued from ADP will take into account an average rolling
horizon over t +RH + 1, ..., t +H and not the information already available in the
following periods. Conversely, if the state space includes the decision period and
the complete rolling horizon, statistically each state tends to be unique and rare on
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the mid or short-term. Therefore, ADP would not be able to anticipate most of the
state space and to evaluate the approximate cost of an action. Finally, ADP can
approximate the state space itself. This would lead to approximate the cost of an
action from an approximate state space which might decrease the performance. Yet,
ADP is conceptually exhibited as a strategic tool to define recurrent decision rules
over a reduced state space (see [Simao et al., 2009]). For all these reasons, ADP has
not been considered in our research.

In this thesis, due to the fact that we are dealing with finite discrete probability
distributions, selected optimization techniques are scenario-based.

4.1.4 Scenario-based models

To approximate the stochastic model expressed in equation 4.9, a scenario-based
model approach is used over H lookahead periods. It estimates the value of the
solution as in 4.10 on a reduced subset ΩK ⊂Ω where K is the number of scenarios
considered. The value of the policy µπ∗

∼= E∗ is made of each decision step such
that:

V Scenario−based model
t (St) = min

At∈At

[
C(St ,At)+ ∑

ωk∈ΩK

t+H

∑
t ′=t+1

C(St ′(ωk),At ′)

]
(4.11)

Differences reside in

• the computation over a restricted set of scenarios ωk ∈ΩK ,

• the removal of the relative weight of scenarios p(ω),

• a family of cost functions approximating C.

In the present work, problems’characteristics lead us to select :

• a lookahead approach, because of the rolling horizon process

• a scenario-based approach, because of the discrete and finite distribution

• a value function approximation, because of the size of the problem forcing us
to use a restricted set of scenarios

These approximate models are based on deterministic scenarios that shadow the
stochastic part of the problem within the scenario generation process. These scenar-
ios are particular realizations of ω: ω1,ω2, . . . ,ωk, . . . ,ωK , where K is the number
of deterministic scenarios generated to induce a decision over ΩK approximating Ω.
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Therefore, getting back to the standard formulation of the stochastic problem, in the
present work, scenario-based approaches approximate formulation 4.3 as follows:

Z∗ = min (g0(x;ω1,ω2, . . . ,ωk, . . . ,ωK))

s.t. gi(x;ω1,ω2, . . . ,ωk, . . . ,ωK)≤ 0, i = 1, ..., m

x ∈ X(ω1,ω2, . . . ,ωk, . . . ,ωK)⊂ Rn

k ∈ 1, ..., K

 (4.12)

In the following sections, algorithmic techniques are related to the cost func-
tion g0, the number of scenarios K taken into account and the relations among the
constraints.

In section 4.2.1, techniques are based on a single scenario K = 1, i.e. a sin-
gle outcome ω ′ among the possible realizations of the events. The solution to the
problem x is taken among X(ω ′).

Z∗ = min (g0(x,ω ′))

s.t. gi(x,ω ′)≤ 0, i = 1, ..., m

x ∈ X(ω ′)⊂ Rn

 (4.13)

In section 4.2.2, some techniques are based on generating several scenarios K >
1 where the constraints are not linked by the scenario variables ωk, but only by
x. Therefore, some techniques rely on the decomposition of the problem into each
scenario k. So, if each scenario is solved independently, the set of feasible solutions
may be restricted to a subset X(ω1, . . . ,ωK) ⊆ X as a consequence of the selection
of scenarios. Actually, a solution xk is found for each scenario k:

Z∗k = min (g0(xk,ωk))

s.t. gi(xk,ωk)≤ 0, i = 1, ..., m

xk ∈ X(ωk)⊂ Rn

∀ k ∈ K

 (4.14)

Afterwards, the cost function g0 should select the solution of a particular sce-
nario x ∈ X(ω1, . . . ,ωk, . . . ,ωK) or a solution x generated after processing (x1, . . . ,
xk, . . . ,xK) in a specific procedure.

Another approach enforces the uniqueness of the decision x in all scenarios
and does not decompose the problem (as in 4.14) by imposing equalities among xk
variables. These equalities are called non-anticipativity constraints and are detailed
in section 4.2.2.6. Typically, they enforce equality constraints like x = xk, ∀k =
1, ...,K as well as other equalities among scenarios showing some similarities. In
subsequent sections, we return in more detail to some of these techniques.
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4.2 Scenario-based techniques

The scenario-based, also called sampling, strategy for stochastic optimization prob-
lem is based on the insight that one or severals scenarios tackled in a particular way,
can provide a decision that will lead to an interesting policy on the long run. If
there is an algorithm to solve the deterministic multi-period problem, this algorithm
can be employed again for any other single scenario which is a deterministic out-
come of the stochastic parameters. These single scenario optimization techniques
are depicted in section 4.2.1. Using the same optimization technique, it can also
be interesting to solve sequentially a set of individual scenarios. Yet, this requires
a meta-framework to select the best decision for the stochastic problem from the
set of optimal solutions for each deterministic scenario. This selection procedure is
often linked to a pricing technique that tries to estimate the expected value of the
solution selected or build from the set of scenario solutions. This is presented in
section 4.2.2. If several scenarios are treated simultaneously in parallel, a specific
solution technique should be developed (see section 4.2.2.6).

4.2.1 Mono-scenario approximation

The mono-scenario approximation has some advantages:

• it is easy to explain to practitioners and to implement,

• usually, it is easier to solve than a stochastic model, as it reduces to a single
deterministic optimization,

• the solution speed might be high and practicable,

• the data management is reduced.

Nevertheless, the drawback is "how to find a representative scenario" if such a
scenario exists. One can not be sure that a scenario leading to the optimal solu-
tion of the stochastic problem exists. Moreover, this scenario might be extremely
dependent on the problem structure and difficult to bring to light. So, there are
some classical scenarios that should be tested for any problem and afterwards, each
problem requires customized attempts according to its structure.

4.2.1.1 Expected value scenario

The expected value solution (EVS) is the optimal policy based on the scenario
wherein stochastic parameters are set equal to their expected value [Birge & Lou-
veaux, 1997]. Its value is denoted by EVS. This expected value solution scenario
is supposed to be the most representative scenario. But does it lead to the most
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interesting decision for the stochastic problem? Yet, when the discrete parameter
can only take a small number of values such as in a Bernoulli distribution where
the stochastic parameter p ∈ [0,1], the expected value equals p. Depending on the
structure of the problem, in some cases, it is not possible to build a real scenario
out of this non-integer value. Therefore, a choice could be to set this stochastic
parameter equal to 0 or 1 if p is respectively < 0.5 or ≥ 0.5 which is the modal
value scenario. This induces a Manichean, black and white or 0/1 scenario for the
expected value scenario. This scenario taking extreme values might not be close at
all to a scenario tempting to be representative of all others, mostly if p ∼= 0.5. In
this particular case of discrete probability distribution defined over a small finite set,
we propose a new expected value scenario definition that sets all variables to 1 and
insert a factor equal to the parameter of the probability distribution in front of the
cost or reward of these variables.

Yet, the aim of using this expected value scenario is to generate a scenario that
leads to a "representative" scenario. Consequently, a new vision of the expected
value scenario is presented within this thesis when the stochastic parameter is drawn
from a Bernoulli distribution. This scenario assumes that the stochastic event always
occurs (x = 1), but the reward or the cost of this event is affected by p. So, this
scenario can be built, while assuming that the stochastic event always occurs, but
with an average value.

Surprisingly, the expected value scenario is not a scenario that might realize
effectively according to the setting of the original problem. This expected value
scenario is a virtual or unrealistic scenario leading to a deterministic model enforc-
ing a decision that might be valid for the stochastic problem. This is not always
the case. Yet, in some cases, the optimal decision for the stochastic problem E∗ is
encountered by the EVS. So, a complex algorithmic strategy might not be useful.

As introduced in section 3.9, the simulation gives an estimate of the policy value
µπ(i). Similarly, the estimate of the expected value solution is labeled (EEVS).

4.2.1.2 Modal value scenario

Another classical scenario is the modal value scenario wherein stochastic param-
eters are set equal to their modal value. It is the likeliest scenario and it should
be drawn more often than others in a scenario generation process simulating rep-
resentative outcomes, as in a Monte-Carlo method. Obviously, one should check
that the modal scenario is not equal to the expected value scenario, such as when
the stochastic parameters are issued from a normal probability distribution or any
symmetric distribution.
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As examples of modal scenarios, applications in chapters 6 and 7 show an in-
teresting behavior. In the first application, the distribution law represents the proba-
bility of a load to be released in a time-window. In the particular case of a uniform
distribution over the periods of the TW, it is not possible to differentiate among pe-
riods as they are all modal. So, defining the modal scenario is not always obvious
and several ones might exist.

For the second application, the probability distribution is represented by a Ber-
noulli distribution where the stochastic parameter is pi ∈ [0,1] representing the prob-
ability of realization of a transportation order i. This leads to a radical modal value
scenario when pi ∈ [0,0.5[ or pi ∈ [0.5,1].

In both applications, the modal value scenarios under-perform, but as this kind
of scenario is easy to set-up, it should be attempted. In some models, this modal
scenario might represent the worst case scenario. In these particular cases, the solu-
tion of the model generated by the modal value scenario leads to robust optimization
and might not reflect the expected value objective.

4.2.1.3 Optimistic value scenario

An optimistic value scenario is not directly induced by the probability distribution,
but by the nature of the stochastic parameter. It depends on the problem descrip-
tion and represents a particular extreme case which might be favorable, because all
stochastic parameters values are correlated. In the thesis applications, dealing with
stochastic release dates and stochastic availability of a transportation order, the op-
timistic scenarios are respectively, a scenario assuming the earliest release dates for
all loads or a case where all projected orders are assumed to be confirmed. The
policy issued from the optimization of the first model is efficient while the policy
based on the second one under-performs.

4.2.1.4 Customized scenario

Depending on the structure of the model, other single scenarios can be investigated.
These scenarios engender heuristic solutions to the stochastic problem which might
turn out to be good.

4.2.1.5 Bounds and mono-scenario approximation

Let us assume that algorithm A1 outclasses algorithm A2 if it is significantly better
(details in chapter 5). Conversely, algorithm A1 does not outclass algorithm A2,
if it is not significantly better. If a policy value µπ(i) issued from a mono-scenario
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approximation is never outclassed by O∗H , then this optimization technique is suffi-
cient for the problem. This means that the policy issued from the optimization of
a model based on a deterministic outcome of the stochastic information is equiv-
alent to the policy issued from the a-posteriori fully revealed information over the
rolling horizon. This means that the solution of a stochastic problem can be approx-
imated easily by the optimization of a deterministic one. This situation jeopardizes
the initial assumption that stochastic problems are hard to solve. Indeed, this does
not prove that this solution issued from an approximate model is theoretically op-
timal for the real problem, but statistically equivalent or satisfactory in practice.
Therefore, mono-scenario approximation might be relevant while being an easy to
implement technique. If not, multiple scenario approaches might be developed and
the same test on their relative performances to the bounds can be performed.

4.2.2 Multiple Scenario Approaches (MSA)

A drawback of the mono-scenario approximation resides in the fact that the solu-
tion issued for a single deterministic scenario model should suit a wide range of
scenarios for the stochastic problem. At first sight, it seems more relevant to ex-
plore several outcomes of the stochastic parameters to analyze which solution might
arise among others. But in this case, there must be a selection among these optimal
solutions or an additional procedure to generate a single decision from several solu-
tions (see [Van Hentenryck & Bent, 2006]). The multiple scenario approaches are
multi-step optimization techniques. Depending on the practicability of optimization
techniques, a set of scenarios can be solved one by one or simultaneously.

• if several scenarios are solved sequentially:

1. Scenario generation (see section 4.2.2.1)

2. Sequential mono-scenario approximations similar to several determin-
istic multi-period problem optimization (see chapter 3)

3. Decision selection or generation from a collection of solutions (see sec-
tions 4.2.2.2 up to 4.2.2.5)

• if several scenarios are solved simultaneously:

1. Scenario generation (see section 4.2.2.1)

2. Unique optimization of a set of scenarios (see section 4.2.2.6)
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4.2.2.1 Scenario generation

As the optimization process is supported by a subset of scenarios taken among all
possible ones, either this subset should be representative of the global set or it should
contain specific scenarios leading to promising solutions. Finding promising solu-
tions assumes that there is some insight on the nature of the stochastic solution.
So, it is not obvious according to the structure of the problem to find specific sce-
narios leading to promising solutions for a selection or aggregation technique. In
this thesis, such structural scenario generation process has not been used and only
representative subsets are drawn.

However, several ways are proposed to generate a representative subset of sce-
narios. A usual one is the Monte-Carlo generation method which is based on a
random generation process using the probability distributions of the stochastic pa-
rameters. The probability to draw a scenario with a stochastic parameter equal to
a specific value is equal to the probability of having this parameter value from its
probability distribution. If the number of scenarios in the subset becomes larger,
the Monte-Carlo generation process tends to reproduce the whole set of scenarios
and the relative occurrence of each scenario in the subset tends to its probability.
Unfortunately, this convergence is not ensured for small subsets. An analysis on the
policy performances in accordance with the number of calibrating scenarios K can
be performed to check the sensitivity of the results to the size of this parameter (see
section 7.7.2).

To alleviate some disturbances in the drawing of scenarios, a stratified gener-
ation process, or others techniques can be used (see [Mitra, 2006]). An important
criterion to validate the scenario generation process is the stability of the solution.
This means that the policy performance should not be affected by the outcomes of
the scenario generation process.

Another theoretical opportunity might be to use a subset of scenarios that does
not fit the probability distribution, but that would lead to an interesting decision
in practice, (like the single scenario approximation). However, to the best of the
author’s knowledge, the description of such attempts and positive results have not
been provided yet for multiple scenarios.

In the framework that we discuss here, scenarios are used to generate a so-
lution and not to evaluate or to validate the expected policy performances. So,
they are called "Calibrating scenarios". Therefore, the statistical validation of the
performance should be done on an independently generated set of "Test scenarios"
representing also outcomes of the stochastic parameter (see chapter 5). Finally, gen-
erating scenarios and being able to solve the associated single-scenario models does
not lead to a unique optimal solution. Therefore, several algorithms dealing with
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scenario sampling as an optimization technique for stochastic problems were intro-
duced and described in [Van Hentenryck & Bent, 2006]. They represent a generic
approach, that is a family of algorithms to select or generate a unique solution for
the stochastic problem from several optimal solutions for deterministic scenarios.

These multiple scenario approaches are described in the following sections:

• Consensus algorithm in section 4.2.2.2

• Restricted Expectation algorithm in section 4.2.2.3

• Regret algorithm in section 4.2.2.4

• Scenario hedging and branch-and-regret algorithms in section 4.2.2.5

For the Consensus algorithm, parameters have to be customized according to the
problem while some others are not problem specific such as the Restricted Expec-
tation algorithm. Besides this, an optimization technique to solve simultaneously
several scenarios, the Subtree algorithm, is exposed in section 4.2.2.6.

Note that in our applications, we have only used the Consensus, Restricted Ex-
pectation and Subtree algorithms.

4.2.2.2 Consensus algorithm

According to authors in [Van Hentenryck & Bent, 2006], the Consensus algorithm
Cs is based on the simple idea that an action which is common to the optimal solu-
tions of several deterministic scenarios should be efficient in general for the stochas-
tic problem. In a caricatural way, frequently chosen actions should be effective ac-
tions. Notice that actions are considered and not decision variables from which they
are issued.

For example, in the first application (see chapter 6), the decision variables are
binary and represent the decision to send a particular set of loads. But, the frequent
actions taken into account to generate the consensus actions are based on the deci-
sions to send a particular load in the current period whatever the set in which this
load is included.

In the second application (see chapter 7), several decision variables might imply
for a truck to wait on site. The occurrence of "wait" actions is taken into account in
the Consensus algorithm wherever these decisions are issued from.

A generic description of the Consensus algorithm at period t is as follows:

1. Generate K calibrating scenarios (K is an algorithmic parameter).
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2. For each k = 1, . . . ,K, solve sequentially the deterministic model associated
with scenario k.

3. For each scenario k, extract from the solution the set of actions to be per-
formed in period t, say θ k. Keep track of the number of times, say ak

i , that
action i occurs in θ k, where i ranges over the set of possible actions and
k = 1, . . . ,K.

4. Count the total number of occurrences of actions i over all scenarios, say
Θi = ∑

K
k=1 ak

i .

5. Sort the values Θi by decreasing value and select the actions to be performed,
in this order, according to a criterion or a procedure which allows to rebuild a
solution. For instance, select action i if it appears in a majority of scenarios,
that is, if Θi/K ≥ 0.5, as long as this is feasible.

6. Implement this consensus solution in period t and roll over to the next period.

Hence, the Consensus algorithm requires K mono-scenario optimizations and a
counting-aggregation procedure which is customized according to the problem.

A drawback of this algorithm is that the frequency of appearance of an action in
the optimal solution of mono-scenario models does not ensure its global relevance
for the stochastic problem.

More generally, a weakness of Cs relies in the fact that it includes no pricing in
the solution process. Indeed, the compromise is based on the insight that solutions
are more or less similar. This might not be true for some problems with huge dif-
ferences between solutions and actions consequences. Therefore, customizing the
procedure to select the actions is the real issue of this family of algorithms.

4.2.2.3 Restricted Expectation algorithm

Conversely to Cs, which is mostly based on building a solution from parts of opti-
mal ones, the Restricted Expectation algorithm RE∗ is based on selecting a complete
solution among optimal ones. RE∗ stems from the Expectation algorithm described
in [Van Hentenryck & Bent, 2006]. In the Expectation algorithm, the procedure is
simple and exact, but it is exhaustive as it is an enumerative technique. Indeed, the
set of all feasible solutions x ∈ X is tested over the whole set of scenarios ω ∈ Ω.
Then, the solution with the best cumulated value, E∗, is selected on this basis. The-
oretically, it is an exact method as the expected value of every solution is calcu-
lated. Nevertheless, it is often intractable as already stated in [Van Hentenryck &
Bent, 2006], because the set of all feasible solutions might be large and unknown
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explicitly, and moreover because the number of scenarios might be huge (or even
infinite). Similarly to other methods, the expectation algorithm suffers from the
curse of dimensionality. Consequently, the Restricted Expectation algorithm is an
approximation of this exact method and we introduce this term "Restricted" in the
application of chapter 6 to differentiate the approximate algorithm from the exact
one. Actually, this expression "restricted" is owing to a double restriction, regarding
the number of solutions tested |X | and the number of scenarios for valuation |Ω|.

The algorithm is based on cross-evaluation of the optimal solution for each cali-
brating scenario over the same set of calibrating scenarios. Moreover, in our setting,
the relative weight of scenarios is not taken into account while cumulating each
solution values during the cross-evaluation over scenarios.

A generic version of the Restricted Expectation algorithm works as follows at
decision period t:

1. Generate K calibrating scenarios.

2. For each k = 1, . . . ,K, solve sequentially the deterministic model associated
with scenario k. Let vk denote the optimal value of this model.

3. For each scenario k, extract from the solution the set of actions to be per-
formed in period t, say θ k.

4. For each k = 1, . . . ,K and for each j = 1, . . . ,K with j 6= k, successively:

• Implement the set of actions θ k in period t for the calibrating scenario
j.

• Roll over to period t + 1 and solve the deterministic model associated
with this modified scenario j. Denote by v(θ k, j) the optimal value of
this model.

5. For each k, compute the restricted expected value of the set of actions θ k over
all scenarios, defined as Θk = vk +∑

K
j=1, j 6=k v(θ k, j).

6. Select the set of actions θ ∗ = θ k which provides the best value of Θk.

7. Implement the set of actions θ ∗ in period t and roll over to the next period.

Even if this method tends to mimic the exact method, the Restricted Expectation
algorithm has also several drawbacks. The set of solutions considered for the cross-
evaluations are issued from the optimization of deterministic mono-scenario model.
Therefore, the stochastic solution E∗ might not be among the candidates and θ ∗

might be very different from E∗. Moreover, K2 mono-scenario model optimization
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processes are required. So, the size of the set of calibrating scenarios, K, might be
repellent if every optimization step requires a long computation time. A sensitivity
analysis on the number of calibrating scenarios is recommended to keep K as low
as possible in order to reduce the computation time.

4.2.2.4 Regret algorithm

According to the authors in [Van Hentenryck & Bent, 2006], the Regret algorithm is
close to the Restricted Expectation algorithm, but it attempts to avoid the drawback
of K2 mono-scenario models optimizations. According to the structure of some
problems, when the optimal solution for a scenario θ k is calculated (k ∈ 1, ...,K), it
might be possible to approximate the value of this solution when θ k is implemented
in another scenario j. The value of this approximate solution is labeled v(θ̃ k, j)
with j ∈ 1, ...,K and j 6= k. This is called the suboptimal approximation. Instead
of re-optimizing when the solution of scenario k is implemented in scenario j, as
in RE∗, the Regret algorithm approximates the worst or the average cost of solution
θ k in scenario j, by taking into account the differences between scenario k and
scenario j. Initially, K mono-scenario model optimizations are required for the set
of calibrating scenarios. Then, K ∗ (K− 1) efficient approximation procedures are
added.

A generic version of the Regret algorithm works as follows at period t:

1. Generate K calibrating scenarios.

2. For each k = 1, . . . ,K, solve sequentially the deterministic model associated
with scenario k. Let vk denote the optimal value of this model.

3. For each scenario k, extract from the solution the set of actions to be per-
formed in period t, say θ k.

4. For each k = 1, . . . ,K and for each j = 1, . . . ,K with j 6= k, use θ k, and the
differences between scenarios k and j, and a suboptimal approximation pro-
cedure to generate the value v(θ̃ k, j) as an estimate of the value v(θ k, j).

5. For each k, compute the value of the set of actions θ k over all scenarios,
defined as Θk = vk +∑

K
j=1, j 6=k v(θ̃ k, j).

6. Select the set of actions θ ∗ = θ k which provides the best value of Θk.

7. Implement the set of actions θ ∗ in period t and roll over to the next period.
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This algorithm works faster, but requires a quality warranty on the suboptimal
approximation gap. Conversely to Cs and RE∗, this process is not obvious to imple-
ment even in a simple way as finding the suboptimal approximation algorithm is a
problem itself.

4.2.2.5 Scenario hedging and branch-and-regret algorithms

Previous techniques assume that a scenario representing a deterministic outcome
of the stochastic parameters can be solved over the rolling horizon H. In some
cases, finding the optimal solution for a single period is already a hard task to fulfill.
Therefore, some algorithms based on a decomposition procedure were developed to
connect the 1+H optimal solutions of each period of the rolling horizon and the
decision period t. This means that in a first step, the rolling horizon and the decision
period are split into 1+H periods and then solved independently per period. In a
second step, these algorithms connect the solutions between successive periods to
generate a coherent solution over all periods of the rolling horizon and the decision
period. These are called scenario hedging (SH) algorithms or heuristics. They were
first introduced in [Rockafellar & Wets, 1991]. A dynamic and stochastic version
(DSSH) for a vehicle routing problem is presented in [Hvattum et al., 2006].

Fortunately in this thesis, the formulations of both deterministic multi-period
problems used to solve a scenario-based model are timeless and solvable for all
periods at once over the rolling horizon. Therefore, this algorithmic technique is
not used.

Another interesting algorithm is the branch-and-regret heuristic (BRH) which
is a mix between the Consensus and the Restricted Expectation algorithms (see
[Hvattum et al., 2007] and [Tirado et al., 2013]). This algorithm also mimics a
branching scheme.

As previously, a set of calibrating scenarios is solved. Then, equal actions
among the solution of the mono-scenario model optimization are counted such as in
the Consensus algorithm. Next, as in the Restricted Expectation algorithm, the most
frequent action is fixed in all mono-scenario models and the cumulated value of the
optimal solutions over these mono-scenario models is estimated. Reversely in a sec-
ond step, the opposite action is fixed and the cumulated value for non-performing
that action in the mono-scenario models is computed. Consequently, the expected
values for performing or not that action is known. If it is more profitable, the most
interesting action is applied or discarded. This choice is definitively fixed. The pro-
cedure is repeated in a branching fashion for a second action and similarly until a
convergent complete set of actions is selected. One can check that this procedure
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is computationally highly demanding. However, one can check that this heuristic
includes both the sampling and the pricing issues.

As this thesis focuses on simple techniques and as they perform efficiently in
practice, the heuristics from the present section are just mentioned for theoretical
purposes and the completeness of the survey.

4.2.2.6 Deterministic equivalent: scenario tree

Contrary to the Expectation algorithm that performs serially on scenarios and solu-
tions, a technique that works with all scenarios in parallel and on a unique decision
can be set up. This exact technique solves the stochastic problem at once by gen-
erating all scenarios simultaneously while forcing common actions to be taken for
scenarios k and j (k, j = 1,2, ...,K) until both scenarios diverge. To diverge means
that at a given period, two scenarios do not contain the same data. So, the solutions
θk for scenario k and θ j for scenario j must be identical up to that period. For the
remaining periods, decisions for the solution of scenario k and j might not be related
to each other.

This deterministic equivalent representation is called the scenario tree. It in-
cludes all possible combinations of the outcomes of the stochastic parameters ac-
cording to their probability distributions. In case of continuous probability distribu-
tions and of some discrete distributions, the number of scenarios is infinite, so the
probability laws should be approximated in order to generate the tree. In this thesis,
only problems dealing with discrete distributions defined on a small set are investi-
gated. Therefore, theoretically, the fully equivalent deterministic scenario tree can
be generated.

To enforce similar actions for scenarios which share the same initial events,
non-anticipativity constraints, as equalities, should be added on common decision
variables. This makes the decisions coherent up to the period wherein the differ-
ences of the outcomes of the stochastic parameters occur.

Owing to the cumbersome number of scenarios to be considered, for computa-
tional and often computer memory reasons, it is not possible in practice to generate
and to solve the full tree model. Therefore, a heuristic leading to an approximation
by the optimization on subtree model including a reduced subset of scenarios has
to be considered. In that process, the relative weights of the scenarios can be re-
moved, leading to another approximation. Actually, the ratio of the occurrence of a
stochastic event over the number of scenarios in the subtree should converge to the
probability distribution of this event.

Besides this, in a multi-period problem where re-optimization takes place at
each decision period, the non-anticipativity constraints could be only inserted among
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variables of the current action period and not the entire rolling horizon. Indeed, at
each subsequent decision period, the optimization process might change previously
optimal decisions over the rolling horizon according to the revealed information.
Therefore, if the actions taken can be changed, imposing non-anticipativity con-
straints in the remote part of the rolling horizon would not represent the flexibility
of the decision process along time. Besides this, equalities are only imposed on
variables leading to common actions even if they are issued in each scenario from
variables representing different decisions (see chapter 7 for an application).

The Subtree algorithm ST performs as follows at period t:

1. Generate K calibrating scenarios of the subtree,

2. Insert non-anticipativity constraints on variables leading to common actions
in period t,

3. Solve the subtree model using a dedicated algorithm,

4. Extract the global actions from the decision variables,

5. Implement the solution in period t and roll over to the next period.

This heuristic is somewhat similar to the branch-and-regret algorithm, while
performing the whole computation in a single run. Indeed, it is also a sampling and
pricing technique. In fact, the subtree approach is appealing as it tends to avoid
previous algorithmic drawbacks and to represent the equivalent deterministic model
of the stochastic one.

However instead of estimating the cumulated cost over each scenario when a de-
cision is fixed, this is made simultaneously over all scenarios of the subtree. There-
fore, the subtree model optimization is usually computationally demanding. More-
over and unfortunately, even if a single deterministic scenario can be solved effi-
ciently, the non-anticipativity constraints might destroy the structure of the problem
when all scenarios are considered simultaneously in the formulation. This might
lead to an intractable problem, not only because of the increase in size, but because
of the new formulation characteristics.

In [Escudero et al., 2012], an algorithmic framework to solve large-scale multi-
stage stochastic mixed 0-1 problems with non-symmetric scenario trees is exposed.
This shows that some breakthroughs might arise in the future in scenario tree opti-
mization. For example, in the second application in chapter 7, the subtree formula-
tion can be solved easily. Yet, subtree formulation remains usually hard to optimize,
such as in the application of chapter 6.
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4.3 Bounds and expected value solution

As a first step, our methodology uses bounds issued from the optimizations of spe-
cific deterministic scenario models related by equations 3.7 and 3.8:

1. myopic policy value O∗RH ,

2. value of the policy with fully revealed information over the rolling horizon
O∗H ,

3. value of the policy with fully revealed information O∗T .

They are deterministic bounds assuming fully revealed information over some
parts of the horizon. In fact, the optimal decision for the stochastic problem over the
whole horizon E∗ might not be equal to the optimal decision for the deterministic
one over the whole horizon O∗T or over any rolling horizon O∗H . Indeed, solutions
of the deterministic problem with the fully revealed information O∗H or O∗T are often
unreachable bounds as the stochastic problem with unrevealed information is by
nature different from the deterministic one.

The expected value solution (EVS) (or its estimate EEVS) is also considered as
a bound, but issued from a particular outcome of the stochastic information and not
the fully revealed deterministic one. The EEVS can be introduced in equations 3.7
and 3.8, between the the myopic policy value O∗RH and µπ∗ .

• for a maximization problem:

O∗RH ≤̃ EEV S ≤̃ µπ∗ ≤̃ O∗H ≤ O∗T (4.15)

• for a minimization problem:

O∗RH ≥̃ EEV S ≥̃ µπ∗ ≥̃ O∗H ≥ O∗T (4.16)

Similarly to the explanation from section 4.2.1.5, if it is not possible to assess
that O∗H is significantly better than the EEVS (see chapter 5), developing a com-
plex algorithms such as in sections 4.2.2 and 4.2.2.6 is useless. So, comparing the
EEVS and O∗H allows to stop further algorithmic developments. One can state that
the stochastic solution approximated by a mono-scenario optimization using the ex-
pected value scenario performs as well the fully revealed information optimization
over the rolling horizon.

If O∗H is significantly better than the EEVS, the maximal gap for developing a
dedicated algorithm using the stochastic information in a better way can be esti-
mated. Even if the EVSS is outclassed by O∗H , this does not prove that it is out-
classed by the optimal solution of the stochastic problem E∗.
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Afterwards, the best policy π∗ will be selected among others. If the best policy
value µπ∗ is not significantly better than EEVS, for the sake of simplicity of the
algorithmic procedure, the computing speed and the data management, it might be
profitable to use the expected value scenario optimization instead of a more complex
algorithm. The loss due to this choice can be estimated.

Theoretically, the gap between the optimal solution of the stochastic problem
E∗ and the EVS gives the Expected Value of the Stochastic Solution, labeled EVSS.
EVSS: Expected value of the stochastic solution

EV SS = E∗−EV S (4.17)

As, these values are approximated by the optimization technique (µπ∗
∼= E∗)

and estimated statistically, the EVSS is valuated by the following approximation:

EV SS∼= µπ∗−EEV S (4.18)

This gives a decision criterion on the value for developing a dedicated algo-
rithm for the stochastic problem instead of using one of its simplest deterministic
approximation. Similarly to figure 3.9, the EEVS and the EVSS can be reported in
a diagram for visualization. For a maximization problem, this leads to :

O∗RH

EEV S

µπ∗

O∗H

O∗T

EVTI

EVAI

EVMPM

EVSS

EVPI

Figure 4.1: Bounds and values of information with expected value scenario
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Chapter 5

Statistical validation

5.1 Introduction

Testing algorithmic performances is not obvious even for mono-period deterministic
problems. Even when working with exact algorithms, one might consider the com-
puting time or the number of iterations as relevant performance criteria. Beside this,
the computer speed, the available memory, the language, the data management and
others features might also be taken into account. When the algorithm is a heuristic
or a meta-heuristic, discussions might be diverted to the optimality gap, the rate or
speed of convergence, the stopping criterion or the approximation ratio. Moreover,
algorithms are often compared on batches of instances where results are presented as
averages and percentages (see [Hooker, 1995], [Barr et al., 1995], [Johnson, 2001],
[Rardin & Uzsoy, 2001], [Eiben & Jelasity, 2002], [Brownlee, 2007] and [Ruml,
2010]). But these comparisons might lead to opposite conclusions.

There are two additional difficulties in the present work, which deals with multi-
period stochastic problems. Owing to the multi-period nature of the problems, the
policy value over the horizon T is an estimate of its expected value on the long-run.
Due to its stochastic nature, as mentioned in chapter 4, algorithmic techniques are
approximative and often include a random component. Actually, the set of calibrat-
ing scenarios K that are used, for example, in subtree or in restricted expectation
algorithms, only represents a subset of all potential scenarios (see chapter 4). More-
over, for related reasons linked to the number of scenarios that might arise along the
whole horizon, it is practically not possible in the evaluation phase to test algorithms
over all potential scenarios. So, estimates of the policy values can only be evaluated
over a reduced sample of so-called test scenarios (or evaluation scenarios) which
are independent of, and usually different from, the calibrating scenarios used by the
algorithms in order to generate solutions. These test scenarios represent outcomes
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of the stochastic parameters over the whole horizon T , whereas calibrating scenarios
of algorithms range over the rolling horizon H at each decision step t.

All these reasons explain that, in computational experiments, policies can only
be compared on a statistical basis. In order to reduce the bias due to the generation
of scenarios, it is preferable to use the same sample of test scenarios when com-
paring a pair of algorithms. Doing so removes the variance induced by different
samples. Practically, the test scenarios are recorded and the performance of each
algorithm is evaluated successively on the same scenarios. In this way, the relative
performance over each test scenario can be compared on this reduced subset, rather
than just comparing values averaged over distinct sets of scenarios which would re-
quire usually to be larger for the same confidence level. Note that, the probability
distributions are independent from the decision taken previously, meaning that the
scenarios do not evolve according to the algorithmic procedure.

Recording the test scenarios is also important for the methodology as policies
are compared with the bounds derived when the information is fully revealed:

• the bound with the fully revealed information over the deterministic part of
the rolling horizon O∗RH , i.e. the myopic bound,

• the bound with the fully revealed information over the rolling horizon O∗H , i.e.
the a-posteriori bound over the rolling horizon,

• the bound with the fully revealed information over the whole horizon O∗T , i.e.
the a-posteriori bound over the whole horizon.

When the performance of algorithms has been measured and the results are
available, there are several ways to present them. In fact, several methods have
been used in the literature to assess the quality of different policies for stochastic
problems. Among others, one can notice :

1. Value of information and value of information under heuristic cited in [Mitro-
vic̀ Minic̀ et al., 2004]

2. Means and ratios cited in [Regan et al., 1998]

3. Competitive analysis and Approximation ratio cited in [Angelelli et al., 2007]

4. Percentage to the a-posteriori solution or bounds cited in [Spivey & Powell,
2004]

5. Mean and variance trade-offs cited in [List et al., 2003]

6. Statistical pairwise comparison test cited in [Tjokroamidjojo et al., 2006]

These tests are described in the following sections.
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5.1.1 Value of information

In [Mitrovic̀ Minic̀ et al., 2004], similarly to [Birge & Louveaux, 1997], the authors
evaluate the performance of algorithms for dynamic problems. They measure per-
formance as a ratio taking into account the optimal solution of the dynamic problem
ẋ∗ and the optimal solution of the static problem x∗. Using the concepts introduced
earlier in this thesis, this can be translated into comparing the bounds O∗H and O∗T .
Accordingly, the Value of information ratio can be defined as follows:

V =
x∗− ẋ∗

ẋ∗
=

O∗T −O∗H
O∗H

. (5.1)

For this application, as all requests have to be served, the ratio V measures the
extra cost faced for lacking of information. If all requests were known in advance,
another feasible solution, the optimal one for the static problem, would have to
be set-up. So, owing to the missing information released dynamically along time,
another solution has been performed. This ratio is used to measure the ability to
deal with missing information of the algorithm generating the solution of the dy-
namic problem. Interestingly, the authors also define the value of information under
heuristic when the exact bounds cannot be computed exactly, but are approximated
by a heuristic H . In such cases, ẋ∗ becomes ẋH and x∗ becomes xH . Consequently,
equation 5.1 can be modified to define the value of information under heuristic:

V(H ) =
xH − ẋH

ẋH
(5.2)

As explained in chapter 3, this value of information is a good decision tool for
the manager to decide whether or not changing the process might be profitable. In
the present definition, the ratio V measures the cost of the rolling horizon length
(EVTI). But, in other problems, the value of information is related to the stochastic-
ity (EVPI) such as when equation 3.9 is presented as a ratio.

V =
O∗T −µπ∗

µπ∗
(5.3)

Yet, in general, this value of the information is not a tool to compare two algo-
rithmic policies in a multi-period stochastic problem. Therefore, in the presented
methodology, these values are used to measure information gaps instead of being
used for the comparison of algorithms. One of the contributions of this thesis is to
define and to use various values of the information, instead of using V for all. We
stress the fact that these values are only estimated (by sampling) and we accordingly
label them in the format EXXX (instead of using the terminology "under heuristic").
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5.1.2 Means and ratios

In [Regan et al., 1998], the authors present a range of performance measures for
algorithms developed for its application of dynamic fleet mangement such as:

1. "Mean and standard deviation of the average length of loaded and of empty
movements

2. Mean and standard deviation of the average wait time for service

3. Ratio of time spent empty to time spent loaded

4. An estimate of the operating profit generated per vehicle per week

5. Fraction of pickup deadlines missed (...)

6. Mean and standard deviation of loaded and empty distances traveled across
the fleet"

Even if all these data are interesting, the objective function is valuated as a mon-
etary profit including charges, unladen and loaded travel costs. For their specific
application, authors display the results as the average empty distance traveled, the
average wait service, the standard deviation for the wait service and the profit per
vehicle per week. This results in numerical data from several heuristics from which
global conclusions cannot be taken regarding absolute performances. Actually, the
decision criteria and their weights are not well defined and evaluation units are dif-
ferent. Consequently, the evaluation of the performance becomes itself a decision
problem.

5.1.3 Competitive analysis and approximation ratio

The approximation ratio of a heuristic H on an instance I is classically defined as
the ratio of the value v(H , I) returned by the heuristic to the optimal value v∗(I)
of the instance. More precisely, this ratio is guaranteed to be greater than or equal
to 1 both for minimization(1) and for maximization(2) problems if we define it as
follows:

rH = max
I

(
v(H , I)

v∗(I)
(1),

v∗(I)
v(H , I)

(2)
)
. (5.4)

In [Angelelli et al., 2007] for a multi-period deterministic problem, the ratio is
transformed to provide the best value of the policy HH taking into account partially
revealed information over H, called on-line algorithm by the authors, and the opti-
mal value of the a-posteriori optimization with the fully revealed information over
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the whole horizon T , called off-line algorithm (O∗T ).

rHH = max
I

(
v(HH , I)

O∗T
(1),

O∗T
v(HH , I)

(2)
)

(5.5)

Equation 5.5 generates a ratio instead of a gap for the value of the information
as equation 5.1. Yet, this is different as the approximation ratio is often a theoretical
result proved for any I while the value of information can be estimated on average
by simulation.

Even, if it gives an interesting indication on the policy performances, this me-
thod leads to two drawbacks for assessing algorithmic performances. Firstly, it is
not always possible to evaluate theoretically the approximation ratio of an algo-
rithm. Secondly, the average practical results from algorithm A1 and A2 might dif-
fer from their theoretical approximation ratios, based on a worst case performance.
Yet according to authors: "An on-line algorithm A1 is optimal if no other algorithm
A2 has a competitive ratio rA2 < rA1"’. Finally, in theory, some algorithms might be
optimal, but due to the curse of dimensionality, they might be unusable. Therefore,
the approximation ratio method might not be practicable to compare policies issued
from heuristics while using simulation.

5.1.4 Percentage deviation from the bounds

In [Spivey & Powell, 2004], for a maximization problem, the authors set to 100%
the a-posteriori optimal value O∗T in order to normalize their results. Therefore,
all policies values are below 100% and accordingly their relative difference to this
bound provide their deviations in percentage to this upper bound. However, the
value of the myopic solution is not set to 0%, but is valuated in a range between 10
to 60 %. Therefore, the important managerial information that reflects the closing of
the gap between the myopic solution and the a-posteriori solution (by 40% to 90%)
is not highlighted. Moreover, for instance, if the myopic policy is valuated at 10% or
90%, which conclusion can be drawn for a policy estimated in both cases at 91%, so
that the deviation in percentage to the upper bound is 9% in both cases. In the first
case, this result seems to be a good performance, but in the second one? Therefore,
we think that both deviations to the upper and lower bounds are important.

Beside this, results obtained by a myopic algorithm and some heuristics for
several instance classes are reported. For each policy, the results are computed as the
global mean over 100 tests and they are provided separately for each instance class.
Unfortunately, even if the myopic algorithm can be discarded, the performance of
the heuristics evolves erratically according to the instance classes. Therefore, just
looking at the figures, it is not possible to select a “best performing” heuristic. In
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fact, even though the number of tests is huge, there is no statistical evaluation of
the significance of the differences between heuristics. As a conclusion, just looking
at the figures even reported as percentage or averaged over many instances is not a
sufficient way to analyze policy performances.

5.1.5 Mean and variance trade-offs

In [List et al., 2003], the authors analyze the performance of their algorithms in
terms of robustness. According to them, the robustness is the ability of the algorithm
to avoid extreme consequences on some scenarios, (as discussed in section 5.3). In
particular, [List et al., 2003] can accept a policy which is dominated on average,
as long as it avoids to cross a threshold value for some scenarios. This leads to
the definition of a mean vs. variance trade-offs: that is, if the variance is below a
specific value for some algorithms, their means can be compared.

Unfortunately for this method, algorithms cannot be tested on all scenarios and
it is not always possible to identify the worst-case scenarios leading to extreme
consequences.

Finally, in the case of long-haul transportation, from an economical point of
view, managers would often prefer to minimize their average cost, under the as-
sumption that they are usually facing a normal situation and that they will react
specifically in case of extreme events which are supposed to be sporadic. Conse-
quently, this method to compare algorithmic performances is not really appropriate
for our purpose.

5.1.6 Statistical pairwise comparison test

In [Tjokroamidjojo et al., 2006], the authors present a two-step method to check
statistically the performances of their algorithms. The first test is an ANOVA test
to show that the results of the policies are not issued from the same distribution.
The second test is a Fisher’s statistical pairwise comparison test to indicate whether
or not the difference between policies is statistically significant. These tests are
interesting to assess the significance of the statistical difference among policy per-
formances.

Moreover, as a contribution from the present work, these tests can be useful
to validate the performances of the policy values compared to the estimates of the
bounds.
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5.1.7 Conclusion: Test integration

There are several tests used in the literature to measure the policy performances in
dynamic problems. They correspond to different points of view and they answer
various questions about policy performances from theoretical worst cases (approx-
imation ratio) through practical worst case, mean and variance trade-offs up to the
value of information, the percentage deviation to the a-posteriori solution or statis-
tical validation. In the present case, the aim is to propose a statistical validation
method that can take advantage from the previous attempts. Therefore, the method-
ology presents the policy performances in a blended framework.

• The gap between the estimates of the bounds (O∗RH and O∗H) is normalized to
100% providing the VMPM, as an opportunity gap (see section 3.9). There-
fore, O∗RH = 0% and O∗H = 100%.

• Consequently, the fully revealed information policy value O∗T is set larger than
100%. Then, various values of the information can be estimated as percent-
age.

• Policy values using deterministic or stochastic information are reported as
percentage between the bounds in order to normalize the results of the algo-
rithms.

• Policies are compared statistically according to a two-step method (see sec-
tions 5.2.1 and 5.2.2)

• Robustness is analyzed in a specific way (see section 5.3)

This leads to an understandable presentation framework for managers with
bounds,values of information and a statistical validation of policy performances.

5.2 Statistical validation: a two-step method

The statistical test used to evaluate policy performances is based on the statistical
significance of the difference between two policies or between a policy and a bound.
It is a two-step process. Actually, several assumptions should be checked before
using the Z-test explained in section 5.2.2 to assess that the difference between two
values is statistically relevant (see [Rakotomalala, 2013]):

1. the sample should be large enough n≥ 30,

2. tests should be performed over paired samples to reduce the variance due to
some random effect in the scenario generation process,
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3. the distribution should follow a normal probability distribution.

Complying to the first two requirements is easy. From an instance, 30 test sce-
narios (see section 5.1) are generated in order to be submitted to all policies and
also to estimate the bounds.

The third assumption is treated into the first step of the statistical validation
method. It is a normality check of the result distribution which is an hypothesis for
the second step consisting in the Z-test.

5.2.1 Normality check

There are several tests available to assess that a set of data is not issued from a non-
normal distribution (see [Rakotomalala, 2011]). In practice, this double negation
leads to use the test as a normality check, but this is not exactly the case. Indeed, the
normality can not be checked, but the non-normality characteristic of a distribution
can be rejected.

• Graphical tests: histogram, box-plots, QQ-Plot,

• Statistical tests: Shapiro-Wilk, Anderson-Darling, D’Agostino, X2, Jarque-
Bera, Lilliefors, Kolgomorov-Smirnov, Bontemps Meddahi.

As mentioned in [Razali & Wah, 2011], the Shapiro-Wilk test usually performs
better than others and is suitable for a sample size of 30 elements.

This test works as follows:

1. rank the n observations per increasing value y1 ≤ y2 ≤ ...≤ yi ≤ ...≤ yn

2. evaluate the mean ȳ = 1
n ∑

i=n
i=1 yi

3. evaluate Tn as Tn = ∑
i=n
i=1(yi− ȳ)2

4. evaluate the differences di as di = yn−i+1−yi for i = 1...
⌈n

2

⌉
. If n = 2p mean-

ing n is pair, there are p differences and if n = 2p+1, meaning n is odd, there
are also p differences.

5. evaluate W defines as W =
[∑ j=p

j=1 (a jd j)]
Tn

while coefficient a j can be computed
or provided by a table (see [Shapiro & Wilk, 1965]).

6. select a critical value Wc in the Shapiro-Wilk table according to a risk level in
percentage (e.g. 1%, 5% or 10%)

7. if W >Wc, the hypothesis is accepted and the claim that the sample is issued
from a non-normal distribution can be rejected. Otherwise if W < Wc, the
hypothesis is rejected and the sample is issued from a non-normal distribution.
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5.2.2 Statistically significant difference

After checking that the normality assumption is not invalidated by the Shapiro-Wilk
test, a Z-test can be used to differentiate policy performances. Indeed, small gaps
between the values obtained for two distinct policies µπ(1) and µπ(2) might be re-
lated to random effects only. The statistical significance of these differences must be
assessed. This method is also useful to validate or not the statistical significance of
the difference between a policy value µπ(i) and the bounds O∗RH , O∗H or O∗T . There-
fore in the following formulas, µπ(2) can be replaced by O∗x with x ∈ {RH, H, T}.

Two types of statistical tests are performed, either two-sided and one-sided:

1. Test A: H0 : µπ(1) = µπ(2) vs. H1 : µπ(1) 6= µπ(2) to test whether the results
provided by two policies are significantly different.

2. Test B: H0 : µπ(1) = µπ(2) vs. H1 : µπ(1) > µπ(2) (or H1 : µπ(1) < µπ(2)) to test
whether the results provided by a policy are significantly better than those
provided by another one.

In the applications of this thesis, expressions such as “π(1) outclasses π(2)” or
“π(1) outperforms π(2)” are used when hypothesis H0 is rejected in test B. Simi-
larly, we may say that “π(1) not outclassed or not outperformed by π(2)” when H0
is not rejected, and so forth.

A classical Z-test for paired samples can be used to test the hypotheses as fol-
lows:

1. denote by v(µπ(1), i) and v(µπ(2), i), respectively, the policy values obtained
on the i-th scenario of a paired sample of size n, for i = 1, ...,n;

2. evaluate the differences di = v(µπ(1), i)− v(µπ(2), i) for i = 1, ...,n;

3. evaluate the mean difference d̄ = 1
n ∑

i=n
i=1 di;

4. evaluate the variance s2
d = 1

n ∑
i=n
i=1(di− d̄)2;

5. evaluate the test statistic z = d̄
sd/
√

(n−1)

6. fix an uncertainty level α (e.g., 5% or 1%) and extract the critical value from
the tables of Z(1− α

2 )
for the first test and Z(1−α) for the second test.

7. for test A, if |z| = |d̄|
sd/
√

(n−1)
> Z(1− α

2 )
then at the level of uncertainty α , the

hypothesis H0 : µπ(1) = µπ(2) can be rejected and H1 : µπ(1) 6= µπ(2) is ac-
cepted; conversely, if |z|< Z(1− α

2 )
, then H0 cannot be rejected;
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8. for test B, if |z| = |d̄|
sd/
√

(n−1)
> Z(1−α) then at the level of uncertainty α ,

the hypothesis H0 : µπ(1) = µπ(2) can be rejected and H1 : µπ(1) > µπ(2) or
H1 : µπ(1) < µπ(2) is accepted; conversely, if |z| < Z(1−α), then H0 cannot be
rejected;

9. for test B, when the null hypothesis H0 is rejected, we conclude:

• µπ(1) > µπ(2) if z > 0 meaning d̄ > 0

• µπ(1) < µπ(2) if z < 0 meaning d̄ < 0.

The Z-test allows us to draw conclusions on policy outclassment or equivalence
with bounds. Practically, in our thesis a 95% confidence level, meaning a 5% un-
certainty level α , has been used as a standard value for all tests.

5.3 Robustness analysis

Operationally, it is difficult to know the exact probability distributions for the sto-
chastic parameters. Moreover, the real probability distribution might vary along
time while the probability distribution used to calibrate the algorithms is consid-
ered stable. Therefore, it is relevant to check that the policies and their relative
performances are still valid when the reality (test scenarios) is different from what
is projected (calibrating scenarios). In order to prevent this drawback, a robustness
analysis is performed over the stochastic parameter of the distribution. Actually,
policy performances are tested under false or deviant probability distributions. In
practice, the tests can be performed in two ways: either the test scenarios are op-
timistic or pessimistic in comparison to the calibration scenarios of the algorithms,
either conversely the calibration scenarios underestimates or overestimates the out-
comes of the probability distributions.

Usually, these final tests are performed over policies that showed good perfor-
mances under exact valuation of the probability distributions. Therefore, these tests
can lead to draw conclusions between policies that were not differentiated up to that
stage (e.g. see sections 6.8.2 and 7.8.5).

Finally, as dynamic, the expression "robust" and "robustness analysis" should be
used carefully as it is used in the present case for a specific analysis. According to
the literature (see [Mulvey et al., 1995]), researchers face problems in case of noisy,
incomplete or erroneous information. An a-posteriori or reactive analysis resides in
the so-called "sensitivity analysis" that checks the feasibility or the optimality of the
previously optimal solution when some data change. As in real-world optimization,
these biases on data often occur, it might be profitable to be proactive by generating
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a-priori a so-called "robust solution". Authors in [Mulvey et al., 1995] highlight that
fact for a stochastic problem which can be represented by scenarios: "A solution to
an optimization model is defined as: solution robust if it remains ’close’ to optimal
for all scenarios of the input data, and model robust if it remains ’almost’ feasible
for all data scenarios." As mentioned in [Bertsimas et al., 2011], "This assumes that
uncertainty is known by a probability distribution."

These authors also describe "robust optimization" which tends to make the so-
lution immune to the stochastic uncertainty, by replacing it by a solution that is
feasible for any realization of the uncertainty in a given set.

As introduced in the present thesis, the robustness analysis is specific and linked
to check the robustness of a policy. This means that in case of a stochastic prob-
lem, the policy performance is ensured even if the projected probability distribution
used in the algorithmic technique generating the policy is different from the real
probability distribution revealed afterwards.
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Part III

Applications
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Chapter 6

Multi-period vehicle loading with
stochastic release dates

Abstract1

This paper investigates a multi-period vehicle loading problem with stochastic in-
formation regarding the release dates of items to be transported. The deterministic
version of the problem can be formulated as a large-scale set covering problem. Sev-
eral heuristic algorithms are proposed to generate decision policies for the stochastic
optimization model over a long rolling horizon. The resulting policies have been ex-
tensively tested on instances which display the main characteristics of the industrial
case-study that motivated the research. The tests demonstrate the benefits of the
multi-period stochastic model over simple myopic strategies. A simple and efficient
heuristic is shown to deliver good policies and to be robust against errors in the es-
timation of the probability distribution of the release dates.
Keywords : transportation planning, production-transportation coordination, vehi-
cle loading, stochastic programming, set covering, heuristics, consensus algorithms,
robustness

1This chapter has been written in collaboration with Yasemin Arda, Yves Crama, David Kronus
and Pascal Van Hentenryck. It is published in EURO Journal on Transportation and Logistics (see
[Arda et al., 2014]).
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6.1 Introduction

6.1.1 Coordination of production and transportation

Production and outbound transportation are consecutive tasks in the supply chain
of most manufacturing companies. The associated planning processes, such as
production scheduling and transportation planning, have been thoroughly investi-
gated in the operations management literature, and numerous optimization mod-
els tackle production and transportation decisions. Some of these models integrate
production-transportation decisions, with a view towards better coordination of the
supply chain; representative examples of this trend of research can be found, for
instance, in [Boudia et al., 2007], [Chen, 2004], [Chen, 2010], [Fumero & Vercellis,
1999], [Melo & Wolsey, 2010], [Sarmiento & Nagi, 1999], [Erengüç et al., 1999],
[Stecke & Zhao, 2007], [Tang et al., 2007], [Vidal & Goetschalckx, 1997], [Wang
& Cheng, 2009], [Yung et al., 2006], and [Zegordi et al., 2010]. As pointed out
in the literature surveys by [Chen, 2004], [Chen, 2010], and [Vidal & Goetschal-
ckx, 1997], most models focus on coordination either at the strategic level or at the
tactical level: the objective is then to design efficient supply networks or to take
transportation costs into account in the framework of production planning. Some
authors, like [Boudia et al., 2007], [Wang & Cheng, 2009], or [Zegordi et al., 2010],
deal with operational decisions, but this stream of literature is quite recent and typ-
ically places the emphasis on production scheduling issues (see [Chen, 2010]).

Actually, a most common situation in practice is that transportation decisions
are largely disconnected from production decisions at the operational level: when
production items or batches have been completely processed by the manufacturing
plant, they become available for shipping, and they are subsequently dispatched
by the transportation department. This may be explained by several factors: low
complexity of this uncoordinated approach, “rule-of-thumb” according to which
immediate shipment tends to decrease the cost of inventory, and, in many cases,
lack of communication between various departments.

From a global supply chain perspective, aiming at better coordination of the
product flows and at increased customer satisfaction, this is not an ideal process. It
would be by far preferable, indeed, to set up an integrated production-transportation
plan taking into account, among other constraints, the capacity of the plants and
the customer due-dates. But even when such a plan exists, many events can concur
to create significant differences between the provisions of the plan and the actual
situation faced by transportation managers on a day-to-day basis. Production delays
caused by late deliveries of materials, equipment failures, non-conformities, urgent
orders, and other obstacles to lean plant management, are still frequent in many
industrial environments. Similarly, on the demand side, customer orders may not
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coincide, either in time or in quantity, with the forecasts that have been used to
establish the plans.

As a consequence, operational shipping decisions often rely solely on avail-
able (deterministic) data about items in physical inventory, and transportation is
managed in a purely reactive mode with respect to production. The main objec-
tive of this paper is to examine whether and how transportation decisions can be
improved when they account for forecasts about future releases of items from pro-
duction. As such, our paper takes an intermediate position between a purely sequen-
tial approach, whereby production and transportation decisions are independently
optimized, and a fully coordinated approach, whereby both types of processes are
simultaneously handled.

From the methodological point of view, taking forecasts into accounts leads us
to consider stochastic optimization models of transportation planning. We will show
that relatively simple, but efficient and robust methods can be used to improve the
quality of transportation plans, without necessarily resorting to advanced methods
from stochastic programming, which may be much more demanding in terms of
implementation effort and computational requirements.

6.1.2 Industrial setting

Our “production-transportation” problem formulation is inspired by a real-world
situation encountered in the steel industry. A large number of different steel coils
manufactured on a make-to-order basis must be dispatched everyday to customers.
At the operational level, the shipping department is informed of a production plan,
including confirmed and projected release dates announced by the plants, and of a
delivery schedule based on the delivery time windows requested by the customers.

The shipping department charters trucks according to confirmed coil releases
from production and according to customers’ requirements. Each truck typically
holds one to four coils, depending on their total weight. The economic objective is
to minimize the total cost consisting of transportation costs, penalties for early or
late deliveries, and inventory costs incurred when available coils are stored in the
warehouse before expedition. Shipping decisions are made and are implemented
on a daily basis knowing the coils available to be shipped on the first day and the
expected release dates of upcoming coils, meaning that only feasible plans are gen-
erated and executed at each period. Then, data such as coil releases from produc-
tion and coil departures from inventory are updated, and this sequential process is
repeated day per day over a rolling horizon (see [Sethi & Sorger, 1991] for the
corresponding theoretical framework).

The daily trade-off faced by dispatchers can be expressed as follows: “Is it better
to ship a given item today, or to wait in the hope of being able to ship it together with
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another item which is expected to be released from production in the near future, as
this would reduce transportation costs at the risk of incurring delay penalties?” The
optimization issue arises from the large number of potential combinations of coils
into truckloads, as well as from the selection of the shipment periods. In view of the
uncertainty that surrounds the releases of items from production, we consider both
expected cost and robustness to be important criteria when evaluating the quality of
shipment decisions.

Although our models have not been fully implemented in an industrial envi-
ronment, they are meant to reflect the major characteristics (objective function,
constraints) of the situation that motivated this work. Similarly, the values of the
parameters used in all instances are derived from real-world data, as explained in
Section 6.6.

6.1.3 Outline

In Section 6.2, we present a stochastic programming formulation of the multi-period
vehicle loading problem with stochastic release dates, and we briefly review the rel-
evant literature in Section 6.3. Then, Section 6.4 examines a deterministic version of
the problem which underlines its combinatorial aspects. This analysis is put to use
in Section 6.5, where several heuristic algorithms are proposed for the solution of
the stochastic problem. These algorithms have been tested on numerical instances
whose structure is described in Section 6.6. Since we are dealing with stochastic op-
timization problems, comparing the performance of different algorithms on a same
instance is not a trivial task: we explain in Section 6.7 how we have carried out
the analysis. The computational results are discussed in Section 6.8. Interestingly,
this discussion leads to the development of an additional, rather simple algorithm,
which is extensively tested in Section 6.9. Section 6.10 contains the conclusions of
our research.

6.2 Formulation

We consider the following multi-period vehicle loading problem with stochastic
release dates, or MVLSRD problem for short. A set of N items must be delivered by
trucks to several customers over a discrete (rolling) horizon {1,2, . . .}. Each item
i = 1, . . . ,N has several deterministic attributes:
- its weight wi;
- a delivery time window [ai,bi]⊆ {1,2, . . .};
- the warehouse location where the item must be picked up;
- the customer location where the item must be delivered.
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A subset of items are ready to be shipped at the beginning of the first (current)
period t = 1. Moreover, the firm has forecasts about the release dates of items from
production for a number of subsequent periods t = 2, . . . ,L+ 1, where L denotes
the length of the look-ahead horizon (see [Sethi & Sorger, 1991]). We represent
this information by probabilistic distributions of release dates: for all i = 1, . . . ,N
and t = 1, . . . ,L+1, pit ∈ [0,1] denotes the probability that item i will be released in
period t and hence can be shipped in periods t, t+1, . . . We assume that ∑

L+1
t=1 pit ≤ 1

and pi1 ∈ {0,1} for all i (information relative to the first period is fully revealed).
There is an unlimited number of trucks. The maximum total weight that can be
loaded on any truck is equal to Cap. These attributes, together with a number of
auxiliary parameters, allow us to compute the cost generated by a truck picking up
a given subset of items at their respective warehouses and transporting them to their
respective destinations. In our application, all warehouses are located around the
same plant, and we are primarily concerned with long-haul transportation. There-
fore, the routing aspects are not of primary interest: each truck only visits a couple
of warehouses and customers, so that the optimal route can be easily computed for
any truck. The total cost generated by a truckload only depends on:
- the composition of the load;
- the total distance driven by the truck;
- the transportation cost per ton and per kilometer;
- an inventory cost, or opportunity cost, depending on the number of periods that
each item spends in the warehouse after it has been released from production;
- penalties linked to the period of delivery of items to customers.
This broad definition allows us to integrate various specific features of the cost func-
tion (see Section 6.6.1).

The decisions to be made represent the truckloads to be composed and shipped
in period t = 1. As a general rule, grouping items on a same truck is beneficial, and
a good shipping decision is based on the following insights: it may be appropriate
to ship an item early (with respect to its delivery time window), or conversely, to
wait before shipping it (even though it has been released or its time window will be
missed) if this results in a reduction of the expected number of trucks required and,
more generally, in smaller expected total logistical costs.

Since the horizon is rolling, we actually want to solve an (infinite) sequence
of optimization problems, one for each look-ahead horizon {`, . . . , `+ L}, where
`= 1,2, . . . This results in successive decisions regarding the shipments to be made
in each period. The objective of the MVLSRD problem is to minimize the expected
cost per unit amount shipped (say, by ton) over the long term:

min
π

Z(π) = lim
T→∞

E
[

∑
T
t=0C(St ,Aπ(St))

∑
T
t=0W (St ,Aπ(St))

]
, (6.1)
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where π denotes the decision policy, St denotes the state of the system at time t
(defined by the collection of items available for shipment at time t, together with
their release date), Aπ(St) denotes the action taken in state St according to policy
π , C(St ,Aπ(St)) is the associated cost incurred in period t, and W (St ,Aπ(St)) is the
total weight shipped in period t. This problem can be viewed as a Markov decision
process with very large state space and action space, [Powell, 2011], although we
will not explicitly refer to the MDP framework in this paper.

6.3 Literature review

To the best of our knowledge, the multi-period vehicle loading problem with sto-
chastic release dates has not been previously investigated.

If the release dates are deterministic and the length of the horizon is fixed, then
the problem essentially boils down to a variant of the bin packing problem (see
[Dyckhoff, 1990], [Wäscher et al., 2007], and Section 6.4 hereunder). As such, this
version of the problem does not pose any specific difficulty and has not attracted
the attention of researchers. Online variants of bin packing are closer to our multi-
period framework (see [Coffman et al., 1983] for a survey), but they do not assume
any probabilistic information about incoming items, and the bin packing literature
mostly focuses on the worst-case analysis of simple heuristics.

Transportation planning under uncertainty has been considered in several pa-
pers, from different points of view (see [Crainic, 2003]). The stress is usually placed
on uncertainty on the demand side and on routing aspects. For instance, many au-
thors examined vehicle routing problems with dynamic demands arising in a single
period, as evidenced by the surveys [Cordeau, 2007], [Gendreau & Potvin, 1998],
[Pillac et al., 2013] and [Psaraftis, 1995]. More recently, [Angelelli et al., 2007],
[Angelelli et al., 2009] and [Wen et al., 2010] describe dynamic multi-period rout-
ing problems where a set of requests need to be served by a fleet of uncapacitated
vehicles over a finite discrete horizon. Some of the requests are known initially but
more may arrive over time, and each request has a deadline so that the firm may
decide to postpone it or not to a later period. The authors discuss the benefits drawn
from the multi-period framework with short look-ahead periods. Here again, as in
the online bin packing problem, complete uncertainty is assumed about the requests
to be served: this hypothesis makes sense in the case, for instance, of requests placed
by private customers of a courier company. But it appears to be inappropriate in the
case that we consider, where the production plan provides a fair amount of informa-
tion about the features of the items that will have to be transported and about their
expected release dates. Also, the focus in [Angelelli et al., 2007], [Angelelli et al.,
2009] and [Wen et al., 2010] is on routing, rather than optimal vehicle loading (the
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items are assumed to be small parcels, so that the capacity of the vehicle is not a
binding constraint).

Many papers investigate stochastic optimization models for fleet management,
see [Crainic, 2003], [Frantzeskakis & Powell, 1990], [Powell & Topaloglu, 2003],
and [Powell, 2011]. Here, the uncertainty is mostly due again to customer demands
that arise randomly over time, and the models emphasize issues related to the repo-
sitioning of empty vehicles and to the acceptance or rejection of incoming orders.
Multi-period problems of this nature can be handled as sequences of two-stage prob-
lems with recourse, where the second stage accounts for all future periods.

None of the papers cited above, however, simultaneously considers the three
defining features of our problem, namely, multiple periods, stochastic release dates,
and (small) capacity of the vehicles.

6.4 Deterministic optimization

In order to better understand the structure of the problem and to prepare the ground
for subsequent developments, we first consider the special case of the vehicle load-
ing problem where all release dates are deterministic: pit ∈ {0,1} for all i= 1, . . . ,N
and t = 1, . . . ,L+1.

In this case, the problem shares some similarity with a bin packing problem,
since we have to “pack” all items into bounded-capacity vehicles so as to minimize
a cost function which heavily depends, in practice, on the number of required ve-
hicles ([Coffman et al., 1983] and [Wäscher et al., 2007]). We can formulate this
loading problem as a large set covering problem, where each column, or pattern,
corresponds to a feasible truckload. Each pattern is represented by binary parame-
ters qip with the interpretation that qip = 1 if pattern p contains the item i, and qip = 0
otherwise. Here, feasibility means that the load does not exceed the capacity of the
truck and, possibly, that other relevant constraints are satisfied as well.

If we know the starting time t of the truck, then the corresponding cost ct
p of

pattern p can be simply computed as the sum of transportation costs, inventory
costs and auxiliary cost elements. Moreover, for each pattern p, there exists a “best
possible starting time” which minimizes the cost ct

p, and we can accordingly define
cp = min1≤t≤L+1 ct

p. We call cp the cost of pattern p.
If Ω denotes the set of feasible patterns and θp ∈ {0,1} represents the decision

to use or not a pattern, then we obtain the following model for the multi-period
vehicle loading problem with deterministic release dates (MVLDRD):

minZ∗ = min ∑
p∈Ω

cpθp (6.2)
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subject to
∑
p∈Ω

qipθp ≥ 1 ∀i = 1, . . . ,N, (6.3)

θp ∈ {0,1} ∀p ∈Ω. (6.4)

This set covering representation is usually more efficient, from a computational
point of view, than an ILP model based on assignment variables (where yip = 1
if item i is included in load p) and explicitly expressing the feasibility constraints
(see, e.g., [Vanderbeck, 1999]). It allows multiple parameters (item weights, truck
capacity, penalties, complex transportation costs, etc.) and side-constraints (hetero-
geneous fleet, load-vehicle compatibility, route length, etc.) to be “hidden away”
in the definition of the patterns, thus leading to a generic model that is suitable for
customized applications.

Generating the set of patterns Ω gives rise to an auxiliary task that can be either
performed in a preprocessing phase, or embedded in the solution phase by use of
a dedicated column generation technique ([Vanderbeck, 1999] and [Vanderbeck &
Wolsey, 1995]). The former approach becomes rapidly prohibitive if the size of
Ω is large. In our case study, however, this size remains manageable: short look-
ahead horizons, small numbers of available items per period, and small number of
items per truckload concur to limit the set of feasible patterns. Moreover, exhaustive
generation of the set of patterns allows us to compute rather complex, nonlinear cost
functions ct

p, such as those encountered in practice (see Section 6.6.1), and to derive
the pattern cost cp.

Thus, whenever we rely on model (6.2)–(6.4) in the remainder of the paper,
we always assume that the complete set of columns is generated in a preliminary
phase. This allows us, in particular, to solve the resulting model to optimality by
branch-and-bound. (In our computational experiments, we simply feed the model
to a generic IP solver.)
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Procedure: Rolling deterministic
For each period `= 1,2, . . ., successively, do

1. Let t(i) be the release date of item i = 1, . . . ,N.

2. Consider all items such that t(i) ∈ {`, . . . , `+L}, and solve the associ-
ated set covering problem (6.2)–(6.4). Let Θ be the collection of pat-
terns selected in the optimal solution of (6.2)–(6.4) and for which the
best possible starting time is the current period `: cp = c`p for p ∈Θ.

3. Remove all items contained in the patterns of Θ (that is, constitute and
ship the corresponding truckloads), let ` := `+ 1 (increase the time
counter to the next period), update all data, and repeat steps 1–2.

Figure 6.1: Procedure Rolling deterministic

Putting together the pieces of the previous discussion, we conclude that the de-
terministic MVLDRD problem over a rolling horizon can be handled by the proce-
dure in Figure 6.1. This sequential process can be used to generate a policy over an
indefinitely long rolling horizon. As L increases, we expect it to provide an increas-
ingly better approximation of the long-term optimal policy, but its computational
complexity grows accordingly.

6.5 Stochastic optimization

Let us now return to the stochastic version of the MVLSRD problem. We can view
a decision policy for this problem as a mapping π which, for every instance de-
scribed as in Section 6.2, selects the patterns to be loaded and shipped in period 1.
The quality of a policy is evaluated by the objective function (6.1). We denote the
optimal policy by π∗ and its value by Z(π∗). It is the best expected value that can
be achieved in the probabilistic environment. From an algorithmic point of view,
the policy π∗ cannot be easily computed, due in particular to the very large size of
the state space, and to the inherent complexity of the deterministic version of the
problem (it is easy to infer from Section 6.4 that the deterministic loading problem
is NP-hard, just like set covering and bin packing problems).

In this section, therefore, we propose several heuristic methods that produce
“good” policies πi; these heuristics are based on generic schemes discussed for
instance in [Van Hentenryck & Bent, 2006] and [Powell, 2011]. Several of them
rely on the generation of scenarios: a scenario is a joint realization of the random
release dates of items i = 1, . . . ,N.
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6.5.1 Deterministic equivalent: scenario tree

For every instance of MVLSRD, the set S of potential scenarios over the look-ahead
horizon {1, . . . ,L+ 1} is finite, since any item i can only be released in one of the
periods 1, . . . ,L+ 1, or not at all. This set S can be represented by a scenario tree,
which can be used in turn to set up an equivalent deterministic formulation of the
problem as an integer programming problem based on the binary decision variables
θp,t,s, where θp,t,s = 1 if pattern p is shipped at time t in scenario s. As usual, non-
anticipativity constraints (θp,t,s1 = θp,t,s2) are imposed in this model to enforce the
consistency of decisions regarding each pattern p for all pairs of scenarios s1,s2 ∈ S
which coincide over an initial subhorizon {1, . . . , t} (see, e.g., [Birge & Louveaux,
1997]). Taking into account the whole set of scenarios S leads to a very large-scale
IP model, which turns out to be intractable in practice. An approximation of this
model can be obtained by restricting the tree to a subset of scenarios. This approach
is called “reduced tree approximation” (see [Heitsch & Romisch, 2007a], [Heitsch
& Romisch, 2007b] and [Shapiro, 2003]). We have conducted preliminary experi-
ments with reduced trees built on random samples of scenarios (Monte Carlo and
stratified sampling consistent with the probability distributions pit , t = 1, . . . ,L+1,
have been used). Even with as few as 20 items and 5 look-ahead periods, the re-
sulting models proved very hard to solve to optimality by a commercial software
package (IBM ILOG CPLEX 11). Therefore, we have abandoned this approach and
we have considered alternative, more efficient heuristics.

6.5.2 Local Optimization algorithm (LO)

This simple myopic heuristic reduces the multi-period stochastic problem to a se-
quence of mono-period deterministic ones. At the current period t = 1, LO solves
the deterministic set covering model (6.2)–(6.4) associated with the set of items that
are initially available for shipment, thus disregarding any information about future
releases of items in periods 2, . . . ,L+1. The same process is repeated in the second
period, when the information pertaining to this period is revealed, and so forth, to
produce a policy with expected value Z(LO).

From the industrial perspective, heuristic LO mimics the procedure implemen-
ted by many companies, whereby transportation decisions are made with the objec-
tive to ship all available items as soon as possible, without consideration for com-
binations of items that may potentially bring additional benefits in the future; see
Section 6.1.1. We do not expect LO to be very effective, but it provides a benchmark
against which other approaches can be evaluated.
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6.5.3 Mean Release Date algorithm (Mean)

An intuitive and popular approach to stochastic optimization problems consists in
replacing all uncertain parameters by their expected values. In our case, this can
be translated into selecting a unique scenario for which the release date of item i is
equal to the mean value t(i) = ∑t pitt (rounded to the nearest period). The proce-
dure Rolling deterministic defined in Figure 6.1 can be used with these release dates
to define an algorithm Mean that generates a policy with expected value Z(Mean).
(Note that when the data is updated in Step 3 of the procedure, the expected value
of the release dates may change, since the probability distributions pit must be con-
ditioned by the occurrence or non-occurrence of certain events.)

When compared with the myopic LO heuristic, Mean takes into account the
look-ahead horizon L, at least to some extent. Thus, the difference between Z(LO)
and Z(Mean) provides a measure for the value of using a multi-period model with
a rough estimate of the future. Our computational results will demonstrate that this
simplistic improvement provides significant benefits.

6.5.4 Modal Release Date algorithm (Mod)

As an alternative to the previous single scenario heuristic, the scenario based on the
modal value of the release dates can be used, together with the procedure Rolling
deterministic, to define an algorithm Mod that generates a decision policy with value
Z(Mod); here, t(i) is the value of t which maximizes pit , that is, t(i) = argmaxt pit

for all i (ties are arbitrarily broken).

6.5.5 Consensus algorithm (Cons)

A more complex heuristic to approximate the optimal value Z(π∗) is based on con-
sensus approaches described in [Van Hentenryck & Bent, 2006]. This family of
algorithms provides a generic framework for multi-period stochastic optimization
problems. It relies on a simple intuitive idea: if a same decision is frequently made
in the optimal solutions associated with a large number of scenarios, then this de-
cision is presumably “good” and can be adopted more generally. For our specific
vehicle loading problem, we implement this principle as follows: First, a sample
S = {1, . . . ,K} of scenarios is randomly generated. The scenarios in S are called
calibrating scenarios. Next, the set covering model (6.2)–(6.4) corresponding to
each calibrating scenario is independently solved: this yields K sets of patterns
Θ1, . . . ,ΘK , where Θ j is the optimal set of patterns to be shipped in period 1 for
scenario j ∈S .

Notice that, as compared with the reduced tree approach sketched in Section
6.5.1, we do not impose here any non-anticipativity constraints, so that the decisions
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Θ1, . . . ,ΘK are usually different, even though the set of items released in period 1 is
identical in all scenarios. We define D to be the set of those items i that appear in at
least dK/2e of the solutions Θ1, . . . ,ΘK (that is, D is the set of items that are shipped
in period 1 in a majority of the calibrating scenarios). In the Consensus algorithm
Cons, all items contained in D will be shipped in period 1.

The reader should observe that, at this point, it is usually not clear how the items
in D should be loaded (i.e., how they should be grouped into truckloads); in fact,
the set D may not have been selected for transportation, as a whole, in any of the
independent solutions Θ1, . . . ,ΘK . Moreover, optimizing the transportation of D
may lead to less-than-full truckloads; therefore, it seems reasonable to complete the
set D with additional items that can be loaded without increasing the total cost.

To account for these observations, in a second phase, we solve the following
mono-period optimization model, where N1 is the set of items available in period 1,
and Ω stands here for the set of patterns that only involve items from N1:

min M ∑
p∈Ω

cpθp− ∑
i∈N1\D

∑
p∈Ω

aipθp (6.5)

subject to
∑
p∈Ω

aipθp ≥ 1 ∀i ∈ D (6.6)

θp ∈ {0,1} ∀p ∈Ω. (6.7)

Constraint (6.6) expresses that all the items in D must be included in the truckloads.
For M large enough, the first term of the objective function (6.5) ensures that the
total cost of the solution does not exceed the optimal cost incurred for D, whereas
the second term tends to maximize the number of items included in the truckloads.

The solution of model (6.5)–(6.6) defines the consensus decision that comes
into effect in period 1. Our Consensus algorithm (Cons) is obtained by repeating
the same process for each successive period. Note that it requires the solution of
K +1 integer programming problems per period, as compared with one IP for each
of the three previous algorithms.

6.5.6 Restricted Expectation algorithm (RE)

A drawback of the Consensus algorithm Cons is that it relies on the frequency of
individual shipping decisions for each item whereas, in practice, the quality of a
transportation plan depends to a large extent on the composition of the loads, that
is, on the efficient combinations of items within trucks. We now propose a so-
called Restricted Expectation algorithm (RE) which avoids the deconstruction of
near-optimal truckloads, which is inspired by the general framework described in
[Van Hentenryck & Bent, 2006].
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Just like Cons, our algorithm RE starts by generating a random sample S = {1,
. . . ,K} of calibrating scenarios and by computing the corresponding optimal sets of
patterns for period 1, say Θ1, . . . ,ΘK . We now look at Θ1, . . . ,ΘK as candidate deci-
sions, any of which could be implemented in period 1. By definition, Θ j is optimal
for scenario j, but not necessarily for alternative scenarios. In RE, the quality of de-
cision Θ j is evaluated for each scenario k ∈S \{ j}, as follows: all items included
in patterns of Θ j are discarded and model (6.2)–(6.4) is solved for the remaining set
of items with the release dates of scenario k. This allows us to estimate, the expected
cost E[Θ j] generated by decision Θ j over all scenarios in the sample S (hence the
name “restricted expectation”; this is also akin to estimating the expected value of
decision Θ j in the framework of approximate dynamic programming, see [Powell,
2011], or sample average approximation methods, see [Vermeij et al., 2002]). Then,
RE selects and implements in period 1 the decision Θ j with the smallest value of
E[Θ j]. The same process can be subsequently repeated for periods 2, 3,. . . , as in the
Rolling deterministic procedure.

Note that RE requires the solution of K2 integer programming problems for
each decision period, which may turn out to be prohibitive for large-scale instances
and/or for large values of K. In our experiments, we have used K = 10 calibrating
scenarios. Larger values of K did not appear to yield significant improvements for
most instances.

6.6 Numerical instances

In this section, we describe the numerical instances that we have used in our ex-
periments. Although the instances are randomly generated, their main features are
intended to mimic the industrial environment that motivated our study. In the fol-
lowing description, we distinguish between deterministic and stochastic parameters
of the instances.

6.6.1 Deterministic parameters

We consider four classes of instances involving, respectively, N = 80,120,160, and
200 items. The capacity of each truck is Cap = 23.5 tons. The weight wi of each
item i is randomly and uniformly generated, strictly between 0.2×Cap and 0.8×
Cap. This distribution puts an upper-limit of 4 items per truckload, similarly to
what happens in real life. (The weight of a coil typically ranges between 4.5 and 19
tons.) The delivery cost per ton varies between 30 and 34 monetary units per ton,
depending on the customer.

The data are generated over a “long term” horizon of T = 20 periods, and the
look-ahead horizon includes L = 4 periods beyond the current one, so as to re-
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flect the weekly operational setting. This results in 16 effective planning periods
{1,2, . . . ,16}, whereas periods {17, . . . ,20} account for the definition of the deliv-
ery time windows and for end-of-horizon effects (see Section 6.7.5).

For each item i, the delivery time window covers four consecutive periods
ai,ai +1,ai +2, and ai +3. Delivery before ai or after ai +3 is infeasible, meaning
that it carries an infinite penalty.

Note that, in view of these assumptions, there is no point in considering release
dates that would result in deliveries outside of the time window [ai,ai+3] for item i.
Consequently, the release dates of potential interest for item i must be four consecu-
tive periods ri,ri+1,ri+2, and ri+3, where ri is the first possible release period of
item i. Based on transportation times, these four periods can easily be calibrated to
match the delivery interval [ai,ai+3], or, equivalently, we can set the transportation
times to zero and identify the release intervals with the delivery intervals. Accord-
ingly, in the remainder of the paper, we do not distinguish any longer between ai

and ri. In order to create our instances, we generate ai uniformly between 1 and T .
The ideal target dates for delivery are ai +1 and ai +2. Early delivery in period

ai carries a penalty PE, late delivery in period ai +3 carries a penalty PL. For each
period when an item is available for shipment but the firm decides to postpone its
delivery, it incurs an inventory cost PI. We set PI = 15, PE = 40 and PL = 70
monetary units. These values are such that, if the item is available in period ai or
ai + 1, then the cheapest period for delivery is ai + 1, and the next cheapest period
is ai + 2. The most expensive delivery period is ai + 3. (These choices reflect a
“Just-in-Time” supply chain environment.)

In the industrial setting and, accordingly, in our numerical instances, the com-
putation of the transportation cost involves a number of additional factors which
further complicate it, but which do not have a direct impact on the performance of
our algorithms. For instance, the transportation cost charged by the transporter is
fixed up to a certain minimum load and increases linearly as a function of the load
beyond this minimum quantity. Moreover, when a truck picks up items from several
warehouses and/or delivers them to several customers, an additional handling fee
must be paid to the transporter, and so on.

6.6.2 Stochastic release dates

Let us now turn to the stochastic models of uncertain release dates. In view of
our previous assumptions, probability distributions of interest for the release date
of item i can be expressed in the form [pi,t ; pi,t+1; pi,t+2; pi,t+3], where t, t +1, t +
2, t +3 are the possible release dates of item i, and where pik is the probability that
item i is released in period k.

In our experiments, we use four distributions for each item i, namely:
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1. “Early": [40 %; 30 %; 20 %; 10 %] translating optimistic forecasts for the
release dates.

2. “Late": [10 %; 20 %; 30 %; 40 %] translating pessimistic forecasts.

3. “Uniform": [25 %; 25 %; 25 %; 25 %] translating maximal uncertainty.

4. “Binomial": [12.5 %; 37.5 %; 37.5 %; 12.5 %] translating Just-in-Time pro-
duction targets.

These distributions represent various stochastic profiles in the output of the indus-
trial production system. They are assumed here to be independent and identical for
all items. Note that this assumption would fail if the variability of release dates
was caused by special causes that simultaneously affect all produced items, such as
machine breakdowns or other structural disturbances of the production process. Al-
though the algorithms could still be applied, it would probably be more appropriate
to adapt them specifically to deal with such situations.

6.7 Algorithmic performance evaluation

When evaluating the performance of optimization algorithms, classical criteria are
the quality of the solutions that they deliver (optimality, performance ratio, etc.) and
their computing time (see [Barr et al., 1995], [Brownlee, 2007], [Hooker, 1995],
[Johnson, 2001], [Rardin & Uzsoy, 2001], [Ruml, 2010]).

The evaluation of algorithms for multi-period stochastic optimization problems,
however, presents numerous specific hurdles. We explain in this section how the
performance of the algorithms has been assessed in our study.

6.7.1 Evaluation scenarios

As explained in the previous section, a numerical instance I of the problem is com-
pletely defined by a selection of values for its deterministic parameters (weight wi

of each item, time windows [ai,ai +3], cost parameters, etc.) and by a choice of the
probability distribution of release dates (either Early, or Late, or Uniform, or Bino-
mial). In order to assess the performance of an arbitrary algorithm A on instance I,
we should be able to evaluate the expected value Z(I;A ) of the cost function over
all possible realizations of the random release dates, i.e., all possible scenarios.

In practice, we estimate this expected value over a random sample consisting of
evaluation scenarios over the long-term horizon {1, . . . ,T}. (These evaluation sce-
narios are generated independently from the calibrating scenarios used in the Con-
sensus and Restricted Expectation algorithms of Section 6.5.) In our experiments,
we have used V = 30 evaluation scenarios for each instance.
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Note that the computational burden of this evaluation phase is quite heavy. In
particular, with our previous notations, estimating the expected value of the solution
generated by the Restricted Expectation algorithm RE for a single instance requires
the solution of (T −L) ∗K2 ∗V medium scale IP problems. With T = 20, L = 4,
K = 10 and V = 30, this amounts to 48 thousand IP problems for the estimation of
Z(I;RE).

6.7.2 Statistical analysis of results

Since the cost function Z(I;A ) is estimated on the basis of a random sample of
evaluation scenarios for each algorithm, small differences between the values ob-
tained for two distinct algorithms A1 and A2 might be due to random effects only,
and their statistical significance must be assessed.

For each fixed instance, we generate the same sample of evaluation scenarios
for all algorithms so as to reduce the variance of the tests. This allows us to apply
a paired-sample t-test to compare the values µ1 = Z(I;A1) and µ2 = Z(I;A2). We
use both two-sided and one-sided tests:

1. test the hypothesis H0 : µ1 = µ2 vs. H1 : µ1 6= µ2;

2. test the hypothesis H0 : µ1 = µ2 vs. H1 : µ1 < µ2 (or H1 : µ1 > µ2).

We say for short that algorithm A1 outclasses algorithm A2 on a given instance
if we can conclude that µ1 < µ2 with a confidence level fixed at 95 %.

6.7.3 Fully or partially revealed information

In general, we are not able to compute exactly the optimal value Z(π∗) of an instance
I. But an optimistic estimate of Z(π∗) can in principle be computed as follows: for
each evaluation scenario s, solve the deterministic optimization problem (6.2)–(6.4)
over the long-term horizon {1, . . . ,T} to obtain the optimal value Z∗(s), and average
this value over all evaluation scenarios. Since this approach amounts to solving the
problem with fully revealed information, it yields a benchmark value O∗ (as Oracle)
which, for practical purposes, can be viewed as a lower bound on the optimal value
(except for the fact that we work with a sample of evaluation scenarios).

The value O∗, however, is overly optimistic since in an industrial setting, it is
unrealistic to assume that reliable information about the release dates is available
over a long horizon. A more relevant benchmark is obtained by assuming that in
period `, the firm has “partially revealed” deterministic information regarding the
actual release dates during the look-ahead horizon {`, . . . , `+ L} (see, e.g., [Sethi
& Sorger, 1991]). Then, the Rolling deterministic procedure of Figure 6.1 can be
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used to compute a policy with value Z∗(s;L) for each evaluation scenario s. Averag-
ing these values over all evaluation scenarios yields a value O∗(L), which gives an
indication of the best achievable performance in a production environment “under
control” over the look-ahead horizon.

6.7.4 Value of information

In order to reduce its total logistical costs, the firm may want to obtain more pre-
cise information about the release dates of items (e.g., by reducing the variability of
its production processes, by implementing data collection systems, or by improv-
ing its production planning systems), or it may want to improve the performance of
its vehicle loading algorithms. Both choices are likely to require additional invest-
ments that must be counterbalanced by the benefits that they bring. The following
measures bring insights into this trade-off (see, e.g., [Birge & Louveaux, 1997] and
[Van Hentenryck & Bent, 2006]).

The difference Z(π∗)−O∗ represents the Value of Perfect Information, since
Z(π∗) is the minimum cost that must be incurred if the firm makes the best possible
use of the probabilistic information, whereas O∗ is the cost that would be incurred
with perfect information. In our computational reports, we cannot compute Z(π∗),
and we use as a surrogate the best cost value obtained by any of our algorithms: that
is, we define V PI = minA Z(A )−O∗.

As mentioned in Section 6.7.3, the bound O∗ is overly optimistic, and it is more
realistic to assume that the firm could collect perfect information for the next L
periods only. Therefore, we also compute the Value of the Accessible Information:
VAI = minA Z(A )−O∗(L).

The difference between Z(π∗) and Z(Mean) represents the value of using the
probability distributions in the most effective way, instead of relying on their mean
values; we call this difference Value of the Stochastic Solution and we approximate
it as V SS = Z(Mean)−minA Z(A ).

Finally, we also propose to compute the Value of the Multi-Period Model as
V MPM = Z(LO) − O∗(L): this measures the performance deficit incurred by the
myopic mono-period policy LO when compared with the benchmark where perfect
information is available over the look-ahead periods.

111



6.7.5 Computational limitations and bias

We briefly comment here on some of the design choices that we made in our exper-
iments, and which are directly related to the dynamic, multi-period setting of our
problem.

6.7.5.1 Start and end of horizon

In a rolling horizon context, the first and last periods of the horizon {1, . . . ,T} are
somewhat special. In a real-world application, the first, or current period is generally
affected by past decisions, such as undelivered items carried over from previous
periods. Similarly, since the tests cannot be performed over an infinite horizon,
each instance suffers from boundary effects at the end of the horizon, as no further
item releases are forecast beyond period T . In order to alleviate these effects, we
work with a “sufficiently long” horizon T , which reduces the influence of the initial
conditions, and we make shipping decisions for periods 1 through T −L only.

6.7.5.2 Objective function

The total logistical costs represent the cost of all performed decisions, meaning that
only delivered items are taken into account. Because of the look-ahead periods
introduced at the end of horizon, and because it is in the nature of our problem
that some shipments may be postponed, all algorithms do not ship exactly the same
set of items during the last few periods. This potential bias in the comparison of
algorithms is mitigated, however, by the length of the horizon, and, mostly, by the
fact that the objective function actually is the average cost per ton shipped (see
Eq. (6.1)).

Let us also mention that in the industrial application, the total cost incurred for
each item is made up of a significant fixed cost (equal to the weight of the item
multiplied by a unit cost) which cannot be improved by any algorithm. Therefore,
we remove this fixed component from all our estimations, which only include im-
provable elements such as temporal penalties, multiple pick-up and unloading fees,
or opportunity costs for loading the truck under its purchased capacity (see Sec-
tion 6.6.1).
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6.7.6 Computing times

Our computational experiments have been performed on a personal laptop computer
(Core 2 Duo 2GHz, 2GB of RAM, Windows). The running time of the algorithms
is mostly determined by the number of integer programming subproblems that must
be solved. In our experiments, these IP subproblems have been solved using IBM
ILOG CPLEX 11 with default settings.

For the instance sizes that we consider in this paper, all our algorithms meet the
computing time requirements for operational daily use, namely the decision relating
to a single period is obtained in a few seconds. This is essentially due to the fact
that the number of items that come into consideration over L look-ahead periods
is relatively small so that the number of feasible patterns and the associated set
covering problems remain accordingly manageable. (Evaluating the quality of the
algorithms is a different matter, as we explained in Section 6.7.1, since this requires
the solution of a huge number of IPs.) Table 6.1 displays the computing time for
solving one instance of problem (6.2)–(6.4) with L = 4 and N items. For algorithm
RE, this computing time would be roughly multiplied by a factor K2, as mentioned
in Section 6.5.6.

Table 6.1: Problem size and computing speed for problem (6.2)–(6.4)
L = 4 N = 50 N = 100 N = 200

Average number of patterns 1403 6059 33399
CPU time (seconds) 0.3 1.3 13.0

Therefore, in the following sections, we do not discuss computing times and
we concentrate, rather, on a comparison of the quality of the solutions provided by
different algorithms.

6.8 Computational results

6.8.1 First results

Tables 6.2 to 6.5 report the expected value of the objective function (estimated over
the evaluation scenarios) for the different algorithms and probability distributions.
The best value obtained for each instance is in boldface.

For an easier understanding of the results, all values are expressed as percent-
ages of the lower bound O∗ (which corresponds therefore, to the value 100 %). Note
that this standardization of the objective function masks the decrease of the trans-
portation cost per ton when the number of coils increases from 80 to 200. This
scale effect is not surprising: indeed, when there is a large number of items with
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uniformly distributed weights, we can expect that it is possible to allocate the items
to a number of trucks that are loaded to full capacity, or very close to it in each
period (see for instance, [Rhee, 1988]). As a consequence, the transportation cost
per ton decreases, and the performance of most algorithms tends to improve as the
instances become somewhat easier.

Table 6.2: Algorithmic performance – Early distribution
Early N = 80 N = 120 N = 160 N = 200

O∗ 100 100 100 100
O∗(4) 107.2 105.3 103.8 105.6
LO 193.5 172.5 168.7 159.3

Mean 116.5 113.9 111.1 110.4
Mod 112.2 108.5 107.0 107.6
Cons 122.4 119.5 113.1 117.4
RE 111.0 111.7 109.2 111.8

O∗(4)−O∗ 7.2 5.3 3.8 5.6
VMPM 86.3 67.2 65.0 53.7

VPI 11.0 8.5 7.0 7.6
VAI 3.8 3.2 3.2 2.0
VSS 5.4 5.4 4.1 2.8

Table 6.3: Algorithmic performance – Late distribution
Late N = 80 N = 120 N = 160 N = 200
O∗ 100 100 100 100

O∗(4) 102.7 103.0 102.8 103.8
LO 154.3 144.0 142.3 136.8

Mean 119.6 115.0 112.0 113.2
Mod 120.1 117.0 117.9 115.4
Cons 109.7 110.1 109.8 111.2
RE 109.5 111.0 109.0 109.7

O∗(4)−O∗ 2.7 3.0 2.8 3.8
VMPM 51.6 41.1 39.5 33.0

VPI 9.5 10.1 9.0 9.7
VAI 6.8 7.1 6.2 5.9
VSS 10.0 4.9 3.0 3.5
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Table 6.4: Algorithmic performance – Uniform distribution
Uniform N = 80 N = 120 N = 160 N = 200

O∗ 100 100 100 100
O∗(4) 108.1 104.2 102.9 104.9
LO 179.5 159.2 154.6 147.5

Mean 117.7 112.3 109.6 109.9
Mod 125.1 118.6 113.9 113.3
Cons 115.7 114.7 111.6 113.3
RE 112.1 112.2 110.0 108.7

O∗(4)−O∗ 8.1 4.2 2.9 4.9
VMPM 71.4 55.1 51.7 42.6

VPI 12.1 12.2 9.6 8.7
VAI 4.0 8.0 6.7 3.8
VSS 5.6 0.1 0 1.2

Table 6.5: Algorithmic performance – Binomial distribution
Binomial N = 80 N = 120 N = 160 N = 200

O∗ 100 100 100 100
O∗(4) 107.2 105.8 104.4 106.1
LO 184.8 179.0 160.9 157.3

Mean 123.4 117.2 114.7 116.7
Mod 123.4 109.9 112.4 115.0
Cons 114.7 114.0 113.5 115.3
RE 113.0 111.6 112.1 111.9

O∗(4)−O∗ 7.2 5.8 4.4 6.1
VMPM 77.6 73.2 56.5 51.2

VPI 13.0 9.9 12.1 11.9
VAI 5.8 4.1 7.7 5.8
VSS 10.5 7.3 2.6 4.8

Here are some observations issued from these empirical tests:

1. The Value of the Multi-Period Model V MPM = Z(LO)−O∗(4) is quite large:
it varies from 30 % to more than 80 %. This underlines the important benefit
of taking several periods into account for transportation planning, rather than
only the current period as in the myopic policy LO.

2. On the other hand, although O∗(4) is significantly larger than O∗ at a confi-
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dence level of 99 %, O∗(4)−O∗ is not excessively large from a managerial
point of view. (See, e.g., [Rardin & Uzsoy, 2001] for a discussion of statisti-
cal versus practical significance.) This suggests that very good policies might
be achieved with relatively short look-ahead horizons, such as those that are
likely to be implemented in practice. In fact, in our preliminary experiments,
we have also computed O∗(L) for different values of L; the tests showed that
O∗(L) decreases rather quickly when L increases from 1 to 4, and decreases
at a slower pace for larger values of L.

3. Mean and Mod perform rather poorly in most cases. An intriguing exception
is the good performance of Mod for the Early distribution of release dates (we
return to it later). V SS = Z(Mean)−minA Z(A ) ranges from 0 up to 10 %,
meaning that practitioners may want to invest some efforts into the develop-
ment of algorithms making effective use of the probability distributions.

4. VAI = minA Z(A )−O∗(4) varies from 4 to 8 %: for some instances, there
is considerable value in reducing the uncertainty that surrounds the release
dates.

5. The Restricted Expectation algorithm RE performs well: it provides the best
expected values 10 times out of 16, the second best value 5 times, and the
third best value once.

The performance of RE is substantiated by the results of hypothesis tests displayed
in Table 6.6. Here, we have tested whether there is a significant difference between
the mean values obtained by RE and by any of three other algorithms, namely, Mean,
Mod, and Cons. (LO is clearly not in the same league.) The entries in the table
indicate the number of instances for which the null hypothesis H0 : µRE = µA is
rejected against the alternative hypothesis H1, for each algorithm A , at a confidence
level of 95 % (see Section 6.7.2).

Table 6.6 shows that RE outclasses all other algorithms on most instances. It
is statistically tied with Mean for a few instances, and with Cons for a majority of
instances, but it is never outclassed by any of these two algorithms. An interesting
exception is Mod, which significantly outclasses RE on three instances associated
with the Early distribution; we refer to Section 6.9 for an analysis of this exception.
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Table 6.6: Comparison of means for RE vs. alternative algorithms
A = Mean A = Mod A =Cons

Reject H0 vs. H1 Yes No Yes No Yes No
H1 : µRE 6= µA ? 12 4 13 3 7 9
H1 : µRE < µA ? 12 0 10 0 7 0
H1 : µA < µRE? 0 0 3 0 0 0

6.8.2 Robustness analysis

Robustness may take various meanings in operations research. In broad terms,
robust optimization aims at finding the (near)-optimal solution of a mathematical
progamming problem under a set of constraints that represent all possible realiza-
tions of uncertain parameters (see [Bertsimas et al., 2011] and [Kouvelis & Yu,
1997]).

Thus, typically in robustness analysis, the quality (say, the cost) of a solution is
measured under adverse realizations of the uncertain events. This focus on worst-
case scenarios, however, gives rise to optimization problems that are quite hard to
solve. More importantly, it may be seen as overly pessimistic in our planning frame-
work where decisions are repeatedly made over a long-term horizon, and where it
is, therefore, unlikely that adverse scenarios will systematically materialize.

Therefore, in our experiments, we have tested the robustness of the Restricted
Expectation algorithm RE in a different way: rather than assuming that the worst-
case scenario unfolds for a given policy, we have tried to understand what hap-
pens when the decision-maker has poorly estimated the distribution of release dates.
(This is akin to “distributional uncertainty” in the theoretical framework of [Bertsi-
mas et al., 2011].) Let us describe more precisely our experimental setting.

Let D be a fixed probabilistic distribution of release dates, D ∈ {Early, Late,
Uniform, Binomial}, and let RED be the variant of RE where all calibrating scenar-
ios are drawn according to D (see Section 6.5.6). This reflects the situation where
the decision-maker believes that D is the true distribution of release dates. Then,
for a given instance I, the expected cost of the policy generated by RED is estimated
by drawing V evaluation scenarios (as in Section 6.7.1) according to a different dis-
tribution R, which is meant to represent the real, unknown distribution of release
dates.

Our preliminary experiments were carried out with two “extreme choices”, na-
mely REEarly was evaluated over the late distribution R = Late, and conversely,
RELate was evaluated over the early distribution R = Early. These experiments
revealed that RELate performs rather poorly, whereas REEarly seems to resist quite
well to a wrong estimation of the distribution. The next section builds on these
observations.
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6.9 An optimistic algorithm

The previous results lead us to the hypothesis that an “optimistic” decision-maker,
who always assumes that future items will be released as early as possible, may turn
out to achieve a very good cost performance. This hypothesis is motivated, in part,
by the results of Section 6.8.2, where REEarly appeared to be a robust algorithm. But
it is also supported by the observations made in Section 6.8.1 regarding the perfor-
mance of algorithm Mod on the instances with an Early distribution (see Table 6.2
and Table 6.6). Indeed, when applied to the Early distribution [pi,t ; pi,t+1; pi,t+2;
pi,t+3] where pi,t > pi,t+1 > pi,t+2 > pi,t+3, the modal scenario used by Mod is ex-
actly the scenario where each item is released at the earliest possible date, namely
in period t.

Thus, we define a simple algorithm Optimist as follows: For each instance,
Optimist selects a unique scenario in which the release date of item i is equal to its
earliest feasible release date: t(i) = min{t : pit > 0}. Then, the procedure Rolling
deterministic of Section 6.4 is used with these release dates to define the policy
Optimist.

6.9.1 Comparative performance of algorithm Optimist

Procedures REEarly and Optimist have been tested on the 16 instances already used
in Section 6.8. Note that each instance I defines feasible release dates {t, t + 1, t +
2, t +3} for each item, as well as a (real) probability distribution R over these dates
(see Section 6.6.2). For REEarly, the calibrating scenarios are drawn from the Early
distribution over the feasible release dates of each item. For both algorithms REEarly
and Optimist, the evaluation scenarios are generated from the real distribution R
associated with the given instance. (So, when R is the Early distribution, REEarly
coincides with RE.)

The results are displayed in Tables 6.7 to 6.10. Quite remarkably, the simple
algorithm Optimist yields the best solution for 10 instances out of 16, and the second
best solution for three additional instances. The algorithm REEarly provides three
times the best value and seven times the second best one (beaten only by Optimist,
but often close to it in such cases).

Table 6.7: Algorithmic performance – Early distribution
Real R = Early N = 80 N = 120 N = 160 N = 200

O∗ 100 100 100 100
O∗(4) 107.2 105.3 103.8 105.6

REEarly 111.1 111.7 109.2 111.8
Optimist 112.2 108.5 107.0 107.6
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Table 6.8: Algorithmic performance – Late distribution
Real R = Late N = 80 N = 120 N = 160 N = 200

O∗ 100 100 100 100
O∗(4) 102.7 103.0 102.8 103.8

RE 109.5 111.0 109.0 109.7
REEarly 111.7 108.6 106.9 108.8

Optimist 110.1 109.2 107.3 108.3

Table 6.9: Algorithmic performance – Uniform distribution
Real R = Uniform N = 80 N = 120 N = 160 N = 200

O∗ 100 100 100 100
O∗(4) 108.1 104.2 102.9 104.9

RE 112.1 112.2 110.0 108.7
REEarly 113.7 111.4 107.8 109.5

Optimist 113.6 109.7 107.3 108.4

Table 6.10: Algorithmic performance – Binomial distribution
Real R = Binomial N = 80 N = 120 N = 160 N = 200

O∗ 100 100 100 100
O∗(4) 107.2 105.8 104.4 106.1

RE 112.9 111.6 112.1 111.9
REEarly 117.3 113.5 112.1 111.7

Optimist 116.0 109.0 109.5 110.3

These observations are confirmed in Table 6.11, where we display the conclu-
sions of several tests of hypotheses regarding the performance of Optimist. Here, the
algorithms competing with Optimist are A = REEarly (evaluated on all instances),
and A = RE (evaluated on the instances associated with the Late, Uniform, and Bi-
nomial distributions). The tests show that Optimist outclasses the other algorithms
on six instances and is never outclassed.
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Table 6.11: Comparison of means for Optimist vs. alternative algorithms
A = REEarly A = RE (L-U-B)

Reject H0 vs. H1 Yes No Yes No
µOptimist 6= µA 6 10 6 6
µOptimist < µA 6 0 6 0
µA < µOptimist 0 0 0 0

6.9.2 Additional results

The performance of Optimist has been further assessed on a larger testbed of 80
additional instances. Namely, for each probability distribution of release dates, we
have generated 10 random instances of size N = 120 and 10 instances of size N =
160 with different item characteristics, such as weight and first possible release
period. The unit transportation costs are smaller for the instances with 160 items.

The expected value of the solution produced by Optimist is reported in Ta-
ble 6.12 (averaged over 10 instances of the same class), as a percentage of the lower
bound O∗. We see that Optimist performs very well in all cases. On average, it
comes within 8 % of O∗ for the instances with 120 items, and within 5 % for the
instances with 160 items. The standard deviation is around 3 % in all cases. We
also observe that, not surprisingly, Optimist tends to perform slightly better when
the release dates follow the Early probability distribution.

Table 6.12: Algorithmic performance of Optimist over 80 instances
Optimist/O∗ N = 120 N = 160

Early 106.7 103.8
Late 108.7 105.1

Uniform 108.6 105.8
Binomial 109.1 106.8

6.9.3 Interpretation

The observations in Section 6.9.1 and Section 6.9.2 are quite unexpected and inter-
esting. Indeed,

1. Optimist is a much simpler and much faster algorithm than either RE, or
REEarly, or even Cons. At every period, it only relies on a single scenario and
it solves a single set covering problem (6.2)–(6.4) in order to determine the
items to be shipped, as opposed to K2 IP’s for RE and REEarly, or (K+1) IP’s
for Cons.
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2. The complexity of Optimist is similar to that of either Mean or Mod, but the
solutions that it produces are significantly better.

3. Most interestingly, perhaps, Optimist does not require any information re-
garding the probabilistic distribution of release dates! It only focuses on the
first feasible release date of each item, which essentially depends on its de-
livery time windows. Therefore, it can easily be implemented in an industrial
environment.

A possible explanation for the good performance of this simple algorithm goes as
follows. In the current period, say period 1, Optimist faces a subset of items that
are available for shipment. It establishes a scenario for the upcoming periods based
on earliest possible release dates. In comparison with a random scenario, this opti-
mistic scenario foresees relatively many releases over the look-ahead horizon (say,
in periods 2 to 5). Hence, this increases the likelihood of postponing the shipment
of an item i that is available in the current period, due to the perspective of shipping
i together with another item in the near future, at a lower cost.

There are now two possibilities for the next periods. Either the observed re-
leases are close to the optimistic forecast, in which case postponing item i was a
good decision, or the releases deviate from the forecast. In the latter case, the trans-
portation cost of i may increase, but there is still a reasonable chance that i will be
efficiently combined with other items so that the total penalty due to postponement
may not be too high (in practice, the inventory costs are small relative to the cost
of a truck). In summary, according to this tentative explanation, the algorithm Op-
timist would incite the manager to delay the shipments more frequently than, say, a
myopic strategy would do, and this postponement strategy should yield benefits.

Although it is not easy to validate completely the various elements involved in
this intuitive explanation, we can exhibit some evidence to support it. First, it ap-
pears that shipments are indeed more frequently postponed in the solutions gener-
ated by Optimist than in solutions generated by other algorithms. This is illustrated
by two instances from Table 6.7 on which Optimist performs, respectively, worse
(N = 80), or better (N = 200) than RE (the other instances yield similar conclu-
sions). For each instance, we have collected the average expeditions dates dOpt and
dRE of all items over the 30 evaluation scenarios, for the solutions generated by the
two algorithms. Table 6.13 shows the average difference dOpt −dRE , as well as the
standard deviation σd of these differences. Although the average difference may ap-
pear to be rather small, a t test significantly rejects the hypothesis that dOpt = dRE ,
to the benefit of the alternative hypothesis dOpt > dRE (at high significance levels
>> 0.99). We also observe that the differences tend to get larger when Optimist
performs better.
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Table 6.13: Difference in expedition dates for two instances from Table 6.7
N = 80 N = 200

dOpt −dRE 2.9 8.1
σd 3.6 5.2

t test statistics 4.33 8.37
Furthermore, we note that postponing shipments is unlikely to entail large penal-

ties when the number of items is relatively high in each period, since this increases
the number of favorable combinations of items and hence reduces the likelihood
that a postponed item may require an additional truck. The results in Tables 6.7
to 6.10 accordingly show that algorithm Optimist often performs better than other
algorithms when N gets larger.

These observations, by themselves, cannot fully validate our tentative explana-
tion according to which “postponing decisions tends to produce better outcomes
when facing an uncertain future”, but they provide partial support for this plausible
interpretation.

6.10 Conclusions

In this article, we have investigated an original multi-period vehicle loading problem
including stochastic information about releases from production. A main objective
of this research was to examine the benefits that the firm can draw from improving
the coordination between production and transportation. Improved coordination
means, in particular, that transportation of goods to the customers should not be
managed on a purely reactive and myopic mode, whereby items are shipped as soon
as they are released from the plant, but that it should be optimized on the basis of
forecasts derived from the production plan.

We have proposed a stochastic optimization model with rolling-horizon for this
problem. The deterministic version of the model, where all release dates are as-
sumed to be exactly known over a fixed horizon, can be formulated as a set cover-
ing problem (closely resembling the bin packing problem) and, for realistic problem
sizes, can be solved by a commercial IP solver. The stochastic model, however, is
much more difficult. We have proposed several efficient heuristic algorithms for its
solution.

The corresponding policies have been extensively tested on randomly-generated
instances which share the main characteristics of the industrial application that mo-
tivated our study. As we are dealing with stochastic optimization problems, particu-
lar attention has been paid to the estimation of the objective function (expected cost
over a rolling horizon), to the statistical significance of the comparisons, and to the
robustness of the results.
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Our main conclusions are as follows:

1. The multi-period setting provides a clear benefit over the myopic procedures
that are frequently used in practice. In our experiments, the value of the multi-
period model (VMPM) is very high and the Local Optimization algorithm
(LO) is dominated by all heuristics that take future scenarios into account.

2. Even though it does not make much use of the special structure of the prob-
lem, the generic Restricted Expectation algorithm (RE) yields very good re-
sults and is quite robust.

3. The simple heuristic Optimist, which combines point forecasts based on earli-
est release dates with truckload optimization over a short look-ahead horizon,
performs surprisingly well. It is at least on a par with and often superior to
much more complex algorithms. It allows us to close a large fraction of the
gap between the cost of the “optimal policy” (computed ex post under condi-
tions of perfect information) and the cost of the myopic policy LO. Moreover,
Optimist appears to be robust under a variety of assumptions regarding the
probability distributions of release dates.

4. The Value of the Accessible Information, i.e., VAI = minA Z(A )−O∗(L),
may be relatively large, which suggests that the firm would benefit from re-
ducing the uncertainty that surrounds the release dates, at least over a short
look-ahead horizon. In order to attain this ultimate goal of supply chain co-
ordination, the firm may have to rely on improvement practices derived from
lean management, total productivity management, or quality management.
Such developments are outside the scope of our study.

5. From a methodological point of view, these contributions illustrate the bene-
fits of bridging part of the existing gap between the pragmatic, but suboptimal
methods frequently used in the industry, and more sophisticated methods pro-
posed in the scientific literature in order to deal with decision-making situa-
tions that involve a significant amount of uncertainty. In particular, we believe
that the approaches proposed in this paper provide an interesting response to
two of the main limitations encountered in the implementation of stochastic
optimization models, namely, their computational hardness, and the difficulty
to provide detailed estimates of the relevant probability distributions in an
industrial setting. The resulting methods are easily implemented, computa-
tionally efficient, robust with respect to the estimation of model parameters,
and they deliver considerably better solutions than myopic procedures which
do not take forecasts into account.
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Chapter 7

Multi-period vehicle assignment
with stochastic load availability

Abstract1

This work investigates optimization techniques for a vehicle-load assignment prob-
lem. A company owning a limited fleet of vehicles wants to maximize its operational
profit over an infinite horizon divided into periods. The profit stems from revenues
for transporting full truckloads and costs derived from waiting idle and moving un-
laden. The stochastic component of the problem arises from projections on the
realization of each transportation order, i.e. load. The methodology is based on op-
timizing decisions for deterministic scenarios. Several policies are generated in this
way, from simple heuristics to more complex approaches, such as consensus and
restricted expectation algorithms, up to policies derived from network flow mod-
els formulated over subtrees of scenarios. Myopic and a-posteriori deterministic
optimizations models are used to compute bounds allowing for performance evalu-
ation. Tests are performed on various instances featuring different number of loads,
graph sizes, sparsity, and probability distributions. Performances are compared sta-
tistically over paired samples. The robustness of various policies with respect to
erroneous evaluations of the probability distributions is also analyzed.

Keywords: transportation, multi-period, stochastic, vehicle-load assignment
problem

1This chapter of the thesis is written as an article. It is unpublished yet. It has been written in
collaboration with Yves Crama and revised linguistically by Isabelle Peere.
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7.1 Introduction

7.1.1 Industrial problem

The present article investigates a Dynamic Vehicle Allocation problem (DVAP)
which is faced by major forwarding companies active in road transportation. A
company owning a limited fleet of vehicles wants to maximize its operational profit
over an infinite horizon divided into equal periods (days). The profit stems from
revenues for transporting full truckloads (FTL) and from costs derived from waiting
idle and moving unladen. A decision leading to a set of actions is made at every
period of time and is based on the dispatcher’s information over a restricted hori-
zon, called rolling horizon, as it evolves subsequently period per period. The data
provided by the customers concern their prospective loads or requirements for trans-
portation: locations of departure and destination cities, and a unique pick-up period
for each load. Moreover, the dispatcher has data regarding travel times between
cities, current location and status (unladen or loaded) of trucks. This is known for
sure and represents the deterministic part of the problem.

The stochastic component of the problem arises from the uncertainty on the
requirement for the transportation of loads. More precisely, the availability of each
load can be either confirmed, or denied, a few periods ahead of the loading period
(meaning that clients confirm their order, which the carrier may still decide to fulfill,
or not). For projected loads in the remote part of the rolling horizon, the dispatcher
only knows the load confirmation probability which represents the stochastic load
availability.

The decision problem faced by the dispatcher in each period is to accept or to
reject loads, then to assign the selected loads to trucks, taking into account prospec-
tive and confirmed loads as well as the availability and current location of trucks.
Rejected loads are supposed to be sub-contracted at no cost while bringing no profit.
The main objective of this research is to provide efficient algorithmic strategies to
tackle this multi-period vehicle-load assignment problem over a rolling horizon in-
cluding prospective transportation orders.

In practice, as a rule, trucking orders are communicated by the dispatching cen-
ter to the drivers and to the customers on the eve of the loading period at the latest.
The loading decisions are made when all available loads are known for the next
day. In the present work, it is slightly different, decisions are supposed to be taken
at the early morning of the current decision period when the information for the
current day are all known. So, this process is performed with short regular peri-
ods, typically equal to days. This results in a planning context which is different
from an on-line setting, where the system generates a decision whenever a piece
of information changes, or a model with long periods of time, such as in maritime
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transportation, wherein the accuracy of the probabilistic forecasts may evolve over
several weeks.

This problem is computationally difficult owing to the large number of possible
realizations of the random variables, and to the combinatorial nature of the deci-
sion space. Our methodology is based on optimizing decisions for deterministic
scenarios, so as to alleviate the stochastic aspect of the problem. By solving the
assignment problem for a sample of scenarios, by mixing solutions or by evaluating
them at each period, we aim at finding actions leading to profitable policies in the
long run.

7.1.2 Dynamics and stochasticity

Within the literature on transportation problems, many developments focus on find-
ing one approximate or exact solution to a single period deterministic problem such
as the vehicle routing problem (VRP) or the pick-up and delivery problem (PDP),
including their variants: limited or unlimited capacity, single vehicle or fleet, time
windows, etc. (See [Berbeglia et al., 2007] for a detailed review.)

In such problems, the temporal dimension is usually almost absent: it may be
restricted, for instance, to an upper bound on the duration of a tour, or to time win-
dows at customer locations. In other cases, such as when designing bus or train
schedules, the decision-maker may restrict his attention to the computation of pe-
riodic schedules. Even in this case, where the problem takes several periods into
account, a unique decision is made once and for all.

Yet, in other decision frameworks, the time dimension cannot be so easily dis-
regarded. In particular, long-haul transportation firms usually have to cope with a
rolling decision process, typically unfolding over days, where deterministic or un-
certain forecasts over subsequent periods are available from customers, and where
decisions can be possibly postponed or anticipated. This framework leads to a de-
cision process consisting of successive dependent optimization phases. The present
research aims at describing a strategy to tackle such problems, and techniques to
select a performing algorithmic policy.

We should also stress that the stochastic component of the problems that we
handle here is not quite standard. Indeed, in transportation models, the uncertain or
stochastic element frequently relates to a parameter value such as customer demand
or travel time which can be reasonably modeled by continuous probability distri-
butions (see [Gendreau et al., 1996] for an introduction). More importantly, even
though the realization of these random variables may affect the cost or the feasibility
of the solutions, it does not modify the set of decision variables.

In contrast with this situation, we consider here a discrete, Bernoulli random
variables (representing the availability of loads) whose realization profoundly af-
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fects the structure of the available solutions.
In fact, owing to this discrete distribution, the optimization techniques for the

model to be solved are scenario-based. Therefore, some decision variables may
typically appear in, or disappear from the models associated with these various
deterministic scenarios depending on the binary values assumed by these random
variables (as in [Thomas, 2007] for an application).

These binary values determine the problem size for every scenario and the set of
potential decisions. So, each scenario represents a particular set of loads available
for transportation within the rolling horizon. This set obviously contains the loads
confirmed in the deterministic part of the horizon, as well as the loads associated
with the specific scenario at hand. Consequently, the decision to be made, i.e., the
problem to be solved, changes significantly with each scenario, and in every period.
This is by far different from a slight variation in the values assumed by numerical
parameters, such as those that might result in scenarios associated with realizations
of continuous random variables.

Moreover, the classical two-stage formulation from stochastic programming is
not really appropriate in our rolling horizon framework. Indeed, the cost of the
exact recourse (or lost income) cannot be easily approximated in a rolling horizon
procedure wherein period costs are tightly dependent on each other and wherein the
information is only released on a sub-part of the whole horizon.

Our contribution in this chapter consists in testing the effectiveness of a generic,
practical methodology for tackling such multi-period transportation problems with
discrete stochastic forecasts. As an additional contribution, we also provide illus-
trative numerical estimations and discussions for the expected value of the multi-
period model (EVMPM), the expected value of the perfect information (EVPI),
the expected value of the accessible information (EVAI), the expected value of the
expected value solution (EEVS) and the expected value of the stochastic solution
(EVSS). Finally, we analyze the robustness of the algorithm with respect to the
accuracy of the estimation of the probability distributions, and we discuss the sensi-
tivity of the performance of the most promising algorithm with respect to the length
of the rolling horizon.

7.2 Literature review and theoretical framework

Even if much of the literature on the optimization of transportation problems deals
with single period deterministic models, a number of surveys dealing partially or
exclusively with dynamic and/or stochastic models can be mentioned: [Psaraftis,
1995], [Savelsbergh & Sol, 1995], [Crainic & Laporte, 1997], [Parragh et al., 2008],
[Berbeglia et al., 2010], [Pillac et al., 2013]). In the earliest reviews, models simul-
taneously dynamic and stochastic are mentioned as perspectives. Indeed, research
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on dynamic stochastic models is quite sparse. In papers dealing with such problems,
questions are often depicted in words, few formulations are proposed and solution
techniques may only be sketched. Therefore, we focus here on a few references
which seem to be directly relevant.

In its simplest deterministic version where the horizon is finite and where all
loads are known with certainty, the Dynamic Vehicle Allocation problem has been
studied for several decades, in particular in connection with the problem of reposi-
tioning empty vehicles (mostly, rail cars) in a transportation network; see, e.g., the
surveys by [Dejax & Crainic, 1987] and [Crainic, 2003]. Several authors have ob-
served that this version of the problem can be formulated as a min-cost network flow
problem and hence, can be solved in polynomial time; see section 7.4 hereunder.

[Tjokroamidjojo et al., 2006] and [Zolfagharinia & Haughton, 2014] have used
and solved this formulation in a deterministic rolling-horizon framework which fol-
lows the generic description provided in [Sethi & Sorger, 1991]. Their main ob-
jective was to examine the influence of the length of the rolling horizon, the load
density, the trip length and the fleet size on the quality of the solutions obtained.

The deterministic model can also be viewed as a special case of the generic
pick-up and delivery problems (PDP) discussed in [Savelsbergh & Sol, 1995], with
a profit maximization objective as in [Maes et al., 2013]. However, our formulation
only considers full truckloads, whereas the PDP literature usually allows less-than-
full truckloads. Moreover, the DVA problem does not include any typical PDP
side-constraints such as driver regulations, forcing the driver to come home, or time
windows.

In its dynamic and stochastic version, the Dynamic Vehicle Allocation prob-
lem has been almost exclusively studied by Powell in a series of papers [Powell,
1986], [Powell, 1988], [Frantzeskakis & Powell, 1990], [Powell, 1996], [Powell
et al., 2000], [Spivey & Powell, 2004], [Topaloglu & Powell, 2007], [Powell, 2011].
Crainic in [Crainic, 2003] provide a nice survey of these contributions. Powell and
his coauthors propose several approaches, such as Approximate Dynamic Program-
ming (ADP), for the solution of the DVAP and of its extensions to more abstract
resource allocation models. Most of these approaches are based on solving a se-
quence of multistage (typically, two-stage) problems with recourse, where the re-
course accounts for all future periods after the first one(s). As observed by [Crainic,
2003], the resulting models are increasingly complex. A main difficulty lies clearly
in the determination of appropriate recourse value functions. In the applications
considered by Powell, there are, on average, a few customers to be served (or trucks
requested) in each node of the transportation network, and the number of trucks is
very large with respect to the number of requests. This makes it possible to rely on
concepts like “the marginal value of serving a request”, or “the marginal value of
relocating a truck in a node”. Our focus, on the other hand, is on applications where
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a small or medium-size carrier faces demand that may be scarce and geographically
scattered. Purely combinatorial algorithms appear to be much better suited for this
type of instances.

We are interested, also, in evaluating the relative performance of generic heuris-
tic procedures, and in estimating the value of information in such settings. Evalu-
ating the performance of multi-period or stochastic optimization algorithms is dif-
ficult, since the value of the optimal policy is usually not known. Therefore, re-
searchers frequently rely on comparisons with (estimates of) lower bounds derived
from myopic strategic, as in [Yang et al., 2004] or [Angelelli et al., 2009], or on
a posteriori (optimistic) upper bounds, as in [Secomandi, 2000], [Mitrovic̀ Minic̀
et al., 2004], or [Spivey & Powell, 2004]. It is unusual to find both myopic and a
posteriori bounds in the same article; an example is [Tjokroamidjojo et al., 2006].
Authors in [Berbeglia et al., 2010] observe that, presently, there exists no standard
performance analysis framework for dynamic stochastic problems (such as comput-
ing time or number of iterations for static and deterministic problems), and they
stress the need to compute meaningful bounds.

7.3 Problem definition

A transportation company attempts to maximize its profit by delivering a selection
of transportation requests, referenced as loads or orders, from a set L with a fleet of
I trucks. Each load is transported individually (Full-Truck-Load FTL). The fleet is
constant, homogeneous and limited. The loads are loaded and unloaded according
to their pick-up and delivery periods a j and b j for j ∈ L: each load j is loaded at the
beginning of the pick-up period a j and unloaded at the end of the delivery period
b j. Periods a j,b j belong to the set of periods {1,2, . . . ,WH} where WH is assumed
to be very large, as {1,2, . . . ,WH} stands for the (potentially endless) sequence of
decision periods of the company. Loads (origins and destinations) and trucks are
located in a restricted set C of nodes (say, cities) of a network. The position of
truck i at time t is γi(t). The departure and destination cities of load j are α j and
β j, respectively. The trip duration d j for load j is equal to the number of periods
needed to travel from α j to β j. The distance between each pair of cities is expressed
by an integer number of time units (i.e., periods). So, the trip duration d j is equal
to the distance between α j and β j, denoted by d(α j, β j). Therefore, by definition,
the following relation holds: a j +d j−1 = b j, reflecting the fact that preemption is
forbidden.

We assume that the complete problem over WH periods is handled by solving a
sequence of subproblems over rolling horizons of length H. The periods taken into
account in each subproblem are {t, . . . , t +H} where t ∈ {1, . . . ,WH−H} stands
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for the current decision period. (The last decision period to be considered in the
rolling horizon process is period WH−H.)

At decision period t, some trucks are unladen (available to be loaded) and some
are already loaded (transporting an order). Loaded trucks are unavailable for a new
load assignment, and will only become available in a subsequent period, after having
delivered their current load. The loads for which a j = t are available for loading. If
the decision is made to load order j, then it will be assigned to an unladen truck i
which must be present and available in location α j at time t.

When t is the current decision period, the information included in periods
{t, . . . , t +RH} is fully revealed. So, RH is the number of periods that contain
deterministic information about the availability of loads. Those loads such that
a j ∈ {t +RH +1, . . . , t +H} are projections, or forecasts, meaning that the dis-
patcher is not sure whether the transportation orders will be confirmed or not by
the clients. All decisions regarding loads with a j in {t +1, . . . , t +H} might be re-
computed until a j becomes the decision period. (See [Tjokroamidjojo et al., 2006]
for details.) Also, waiting and unladen moves decisions are reevaluated at each
successive decision period.

In summary, at time t, the dispatcher must decide for each unladen truck i posi-
tioned in node γi(t):

• either to load on truck i any load j such that a j = t and γi(t) = α j; then, truck
i starts moving towards node β j, where it will arrive at time b j; truck i will be
available again for loading at the start of period b j +1;

• or to get truck i moving (unladen) towards another node c ∈C;

• or to keep truck i waiting at its current location: γi(t+1) = γi(t) (this can also
be viewed as a special case of the previous decision).

As there is a selection process, those loads with a j = t that are not allocated to
any truck in period t bring neither profit, nor penalty. As in [Maes et al., 2013],
we assume that a competitor, working as a sub-contractor, can be activated for any
single load during the decision period t, at no cost for the carrier. This implies that
all plans are feasible and that no recourse or penalty costs are incurred due to past
decisions. The total profit results from revenues earned for delivering loads and
from costs generated by unladen trips or by waiting on site. Related parameters are:

• g j revenue per period for transporting load j (equal for all trucks),

• e unladen trip cost per period (equal for all trucks between any pair of nodes),

• f waiting cost per period (equal for all trucks in all locations).
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In a mono-period or myopic setting, decisions might seem greedy. Therefore,
no feasible order is ever discarded myopically if the fleet is sufficient and available,
since the alternative options would consist in moving unladen or in waiting on site,
and since revenues are preferred to costs. In the multi-period model, this conclusion
does not necessary hold: it may be more profitable to wait or to move unladen
in order to pick up a load that is projected to be released in a future period. In
such cases, comparisons have to be made between various combinations of loading
actions, waiting times and unladen trips. The combinatorial aspect of the decision
making problem comes from this blend of feasible actions.

We assume that moving is more expensive than staying at standstill: e > f .
Sometimes, the decision for a truck i in the current decision period t may be to move
from its current location γi(t) towards a different city α j, with a view to loading an
order j in a future period a j = t+k. This might imply for the truck to move unladen,
but also to spend some time waiting at destination or along the way, in case the
travel time to α j is shorter than k. In such a case, we assume that the truck always
prefers to wait at γi(t) rather than to move, so as to avoid potentially useless unladen
trips (e.g., if the initial decision is modified after period t, the truck might have to
go back to its initial position). The reverse option would lead to a repositioning
strategy which is not in the scope of this research.

Moreover, still in order to avoid useless moves, we define a parameter D≤ RH
such that unladen trips of length larger than D are not allowed. This avoids useless
trips if a projected load j does not become available. Both restrictions to avoid
useless trips are issued from practice as drivers do not appreciate to drive to be
on-time in a place where an expected transportation order is canceled.

Each unladen trip between two cities (departure city γi(t), arrival city α j) con-
sists of a sequence of cities along a path. This path is taken to be the shortest one
(ties are arbitrarily broken). In fact, in a rolling horizon framework, only the first
intermediate city c1 on this path, reached after 1 period, is important as the location
of the truck is updated at the end of the decision period and a new decision is made
in the next period.

The uncertainty of the forecasts, or stochastic availability of a specific load j is
modeled by a Bernoulli distribution:

P(q j = x) =

{
p j i f x = 1
1− p j i f x = 0

(7.1)

where q j is a random variable which takes value 1 when order j is released (i.e.,
made available for transportation) in period a j, and value 0 otherwise, and p j is
a parameter in [0,1]. Our methodology is based on the simulation of scenarios.
Generating a single scenario means allocating values to q j for all loads j within

132



the unrevealed part of the horizon. In the rolling horizon procedure, the avail-
ability of load j, i.e., the value of q j is deterministically revealed in period a j −
RH. In subsequent periods, q j remains permanently fixed to that value. So, peri-
ods in the horizon {t, .., t +RH} contain exact deterministic information. Periods
{t +RH +1, .., t +H} (with RH < H) contain forecasts, known only through p j,
for loads that might become available in the future. As a consequence, the com-
binatorial choice either to load or not to load an order in the deterministic part of
the horizon can be influenced by information pertaining to the stochastic part of the
horizon, which might not be confirmed a posteriori.

7.3.1 Rolling horizon procedure

As explained, in practice, not all information can be known in advance for the whole
horizon WH. So, the problem is transposed to a rolling horizon setting. At each
decision period t, the rolling procedure includes information about load j if the
departure period a j is included in the rolling horizon {t, .., t +H}. This implies that
the set of loads under consideration keeps changing from decision period to decision
period. This set is labeled JH (the index t is omitted for short): JH = { j ∈ L : t ≤
a j ≤ t +H}.

Similarly for the set of trucks I, previous loading assignments of trucks must
be taken into account at every time. A truck-load assignment is represented by
a load parameter v j: if truck i is assigned to load j, then v j = i. The truck i is
allocated to load j temporarily, from loading to unloading. After unloading load j,
the assignment parameter is reset (v j = 0), the current truck location is adapted and
the truck status is “free for loading”.

At each period t, the dynamics of the system is due to:

• New loads j such that a j = t +H entering the rolling horizon.

• Loads j such that a j = t +RH entering the fully revealed horizon (if q j = 0,
then load j can be removed from JH).

• Loads such that a j < t being removed from JH .

• The actions of truck i:

1. either to load some load j; then, v j = i;

2. or to move unladen towards α j, the loading city of load j; then, at the
end of period t, truck i is repositioned in the first city c1 on the path from
γi(t) to α j;

3. or to wait in city γi(t);
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4. or to unload load j as a consequence of a previous decision if b j = t
and v j = i; recall that the destination β j is reached at the end of the
period and the truck is unloaded in the same period; so, the assignment
parameter v j is reset to 0 before the next period.

The expected profit µ(π) per period for a decision policy π over the entire hori-
zon is defined as:

µ(π) = lim
WH→∞

E[∑WH−H
t=0 C(St ,Aπ(St))]

WH−H
(7.2)

where St denotes the state of the system at time t (defined by the collection of
loads available for shipment at time t, additional information over the horizon {t +
1, . . . , t+H}, the truck locations and their status - loaded or not), Aπ(St) denotes the
actions taken in state St according to policy π , and C(St ,Aπ(St)) is the associated
profit collected in period t (revenues minus costs incurred at t). The objective is to
maximize µ(π) over all feasible policies π .

7.3.2 Time-space example

For a better understanding, let us consider a single-scenario deterministic example
(see Figure 7.1) where the current period is t = 1 and there are

• H = 4 periods

• D = 1 period

• RH = 1 period

• 6 cities C1, C2, C3, C4, C5, C6

C1
•

C2
•

C3
•

C4•

C5• C6•

1
1

1
1

1 1

Figure 7.1: Space Graph
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• 4 loads to be transported

1. load L1 from city C4 to C3 during periods 0 and 1 (a1 = 0, b1 = 1)

2. load L2 from city C1 to C2 during period 2 (a2 = b2 = 2)

3. load L3 from city C2 to C4 during periods 3 and 4 (a3 = 3, b3 = 4)

4. load L4 from city C2 to C3 during period 5 (a4 = b4 = 5)

• 2 trucks at the beginning of period 1

1. truck 1 located in city C1 and idle

2. truck 2 located in city C6 and currently on the move from C4 to C3,
loaded with L1.

For the revenue parameters, we assume that g j = g for all j, and that e, f are
arbitrary. It is easy to find manually two equivalent optimal solutions. They are
represented by the time-space graphs below (Figure 7.2 and Figure 7.3, where bold
solid lines are associated with the loads).

In solution 1 (see Figure 7.2), truck 1 is in standby for 1 period in C1. During
period 2, truck 1 transports load L2 from C1 to C2, then waits in C2 for 2 periods and
then transports load L4 from C2 to C3. Truck 2 continues to transport load L1 from
C4 to C3 for one period and drives through city C6 along the way. Then in period 2,
truck 2 moves unladen from C3 to C2, picks up load L3, transports it from C2 to C4,
and finally waits in C4 for one period.

C4

C3

C2

C1

0 1 2 3 4 5

•

• •

• •

• •

Carry L2
Carry L4

Carry
L1

C6

Carry L3C
5

Wait

Wait

Wait

Unla
den

Figure 7.2: Optimal solution 1 in a time-space graph
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In solution 2 (see Figure 7.3), truck 1 is in standby for one period in C1. During
period 2, it transports load L2 from C1 to C2, then transports load L3 from C2 to C4
and waits in C4 for one period. Truck 2 continues to transport load L1 from C4 to
C3 for one period. Then, it waits in C3 for two periods, and subsequently moves
unladen from C3 to C2 during period 4 to be on time to transport load L4 from C2 to
C3.

C4

C3

C2

C1

0 1 2 3 4 5

•

• •

• •

• •

Carry L2
Carry L4

Carry
L1

C6

Carry L3C
5

Wait

Wait

Wait

Unla
den

Figure 7.3: Optimal solution 2 in a time-space graph

In both solutions, the profit is equal to the revenues minus the costs : 5g−e−4 f .

The following facts can be observed from this simple example:

1. The optimal solution might not be unique because of the combinatorial sit-
uation but also because trucks are identical. Supposing that two trucks are
simultaneously in the same city, it is possible to exchange by symmetry the
truck locations at the end of the horizon.

2. The rule stating that a truck has to wait before moving unladen might in-
fluence the final policy. In fact, when the horizon unrolls, the next starting
position of the truck depends on whether the truck has waited or moved.

3. Due to temporal or spatial constraints, some connections from city to city are
feasible and others are not. Pre-processing the data can be used to reduce the
problem size and the computing time.
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7.4 Formulation

7.4.1 Scenario-based approximate deterministic models

As mentioned previously, for each decision period t, the loads j taken into account
have a j contained in the rolling horizon {t, . . . , t +H}. If a j ≤ t +RH, the infor-
mation is deterministic, while in {t +RH +1, . . . , t +H} the load information, its
availability, is stochastic with a discrete Bernoulli probability distribution. Conse-
quently, a deterministic equivalent representation could be obtained by a complete
scenario tree. The scenario tree is made of all possible scenarios that might arise in
the rolling horizon. Unfortunately, due to the huge number of potential scenarios,
this would lead to intractable instances as far as computing time and memory are
concerned.

Therefore, we will have to resort to heuristics using a deterministic but reduced
representation of the future. These heuristics may be based on single or multi-
ple scenarios, which may be viewed as independent of each other or as forming
a sub-tree representation of the problem. Each scenario transforms the stochas-
tic information into deterministic information for the uncertain part of the horizon,
and leads to an approximate deterministic model. To generate a random scenario,
we use a Monte-Carlo simulation based on the probability distribution of the avail-
ability variable q j, for each load j with a j ∈ {t +RH +1, .., t +H}. This process
leads to the occurrence or to the absence of load j in the sets of loads to be con-
sidered for this scenario, if q j = 1 or 0, respectively. The restricted subset of loads
J, J ⊆ JH ⊆ L, only includes load j if q j = 1 in the scenario. Note again that
all scenarios include the same set of loads in the deterministic part of the horizon
{t, . . . , t +RH}, but scenarios are differentiated by the loads that become available
in {t +RH +1, . . . , t +H}.

7.4.2 Formulation for a mono-scenario model

We now provide a formulation of the mono-scenario deterministic model (similar
to, e.g., [Tjokroamidjojo et al., 2006]).

In order to set up the model, two new families of parameters are introduced and
denoted by T L (for Truck to Load) and LL (for Load to Load) and: T L(i, j) = 1 if
city α j can be reached from the current location of truck i, namely γi(t), before the
loading period a j; and LL( j,k) = 1 if city αk can be reached before period ak after
unloading load j at city β j. More precisely,

T L(i, j) = 1 if d(γi(t),α j)≤ a j− t and d(γi(t), α j)≤ D

= 0 otherwise,
(7.3)
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LL( j,k) = 1 if d(β j,αk)≤ ak−b j−1 and d(β j, αk)≤ D

= 0 otherwise.
(7.4)

These parameters provide information on feasible connections and will reduce
the decision space.

Moreover, a decision concerning a truck might be to wait in its present location
for at least one period. Therefore, some nonnegative parameters related to waiting
times are introduced, based on trucks and loads information: w0

i j is the waiting time
for truck i to reach load j at period a j; w jk is the waiting time between unloading
load j and loading load k; wH

j is the elapsed time after delivering load j until the end
of the horizon; and w0H

i is the waiting time for a truck staying at a standstill over
the full horizon.

w0
i j = a j−d(γi(t),α j)− t if T L(i, j) = 1

= 0 otherwise (7.5)

w jk = ak−b j−d(β j,αk)−1 if LL( j,k) = 1

= 0 otherwise (7.6)

wH
j = max(0, t +H−b j), (7.7)

w0H
i = 1+H. (7.8)

In a first step, using these parameters leads to a representation based on a time-
space graph. The decision variables introduced hereafter represent either the arcs
followed by the trucks from city to city (unladen or loaded) or waiting decisions.
The connectivity parameters T L(i, j) and LL( j,k) provide two benefits by making
it possible to:

• remove useless variables associated with infeasible links (e.g., concomitant
projected orders),

• switch from a "multi-period" to a "timeless" model as temporal constraints
are embedded inside the feasible arcs corresponding to T L(i, j) = 1 and also
LL( j,k) = 1 (see below).

In fact, the two dimensional time-space graph can be reduced to a simple ori-
ented graph of feasible links between feasible locations for trucks (see [Desrosiers
et al., 1995]). The single dimension "feasibility" of an action is represented by
an arc simultaneously replacing the time and space constraints. These arcs exist
between to feasible locations for trucks along time. Notice that, as there are no un-
laden moves for repositioning due to a proactive waiting strategy, feasible locations
for a truck along time are related either to its present location for waiting or to the
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departure or arrival city of a load. Finally, neither temporal index (t for time or pe-
riod) nor positions in the space are required. This allows the multi-period problem
to be formulated as a network flow model.

If there are I trucks and a set J of loads in the deterministic problem (J ⊆ JH ⊆
L), the oriented graph G = (V,E) is as follows (see figure 7.4 for an illustration).
The set V consists of vertices

{
Pi,U j,Vj,T

}
for i = 1, . . . , I and j ∈ J where:

1. Pi is associated with (the initial location of) unladen truck i at time t,

2. U j is associated with the pick-up point and time of load j, U j = (α j,a j),

3. Vj is associated with the delivery point and time of load j, Vj = (β j,b j),

4. T is a sink node associated with the end of the rolling horizon t +H.

•

•
•

•

•

• • •
P2

P1

U1

V3

V1

U2 V2
T

1

1

1

Figure 7.4: Network flow: e.g. 3 trucks (1 loaded) and 2 potential loads

Arcs and Variables
The set of arcs E represents the set of feasible links, which can be divided into

several categories. Each arc is associated with a single binary variable (here, v j

denotes the initial assignment of load j):

• PUi j with arc (Pi,U j) if T L(i, j) = 1 and v j = 0, for i = 1, . . . , I and for j ∈ J;

• UVj with arc (U j,Vj) if v j = 0, for j ∈ J;

• VU jk with arc (Vj,Uk) if LL( j,k) = 1 and vk = 0, for j,k ∈ J and j 6= k;

• V Tj with arc (Vj,T ), for j ∈ J

• PTi with arc (Pi,T ) for i = 1, . . . , I such that, for all j ∈ J, i 6= v j.

We refer to figure 7.4 for an illustration of these arcs.
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By analogy with the time-space diagrams of Figure 7.2 and Figure 7.3,

• PUi j represents the decision for an unladen truck to pick-up load j for its
first loaded trip (this might mean to load j in the present truck location if
γi(t) = α j and a j = t, or to move unladen in order to pick-up load j in city α j

if γi(t) 6= α j and a j > t; in both cases, truck i may have to wait on site for a
few periods);

• UVj represents the decision to transport load j;

• VU jk represents the decision to travel between the destination city of load j,
and the departure city of load k;

• V Tj represents the decision to wait on site until the end of the horizon after
delivering j;

• PTi represents the decision for a truck i to stay idle in city γi(t) over the rolling
horizon

Arc capacities
The arcs represent feasible trips for trucks in an aggregated time-space dimen-

sion. Each load is transported individually (Full-Truck-Load). So, there can be only
one truck per arc representing an action in time and place. Therefore, the maximum
(indivisible) capacity is fixed to 1 on all arcs.

Arc costs
Let us now turn to a definition of the cost associated with each arc. At time t,

some trucks are already busy transporting a load. Such loaded trucks continue their
trip during the current decision period and we assume that their cost has already
been taken into account in previous periods.

Now, the variables affecting an unloaded truck i during the current period are
PUi j, UVj and PTi. If PUi j = 1 (and, by the flow conservation constraint, UVj = 1),
this can lead to the following actions:

• To load order j on truck i if γi(t) = α j and a j = t meaning that the truck
and the load are in the same city and that the load should be loaded without
waiting. In that case, the revenue generated by transporting the load is added
to the total value of the solution.

• To move unladen in order to reach load j if γi(t) 6=α j and a j = t+d(γi(t),α j).
In this case, the cost of the unladen move is subtracted from the solution value.

• To wait for one or several periods, either if γi(t) 6= α j and a j > t +d(γi(t),α j)
(i.e., the truck waits at least one period before it starts moving), or if γi(t) =α j
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and a j > t, (i.e., the truck waits before it picks up load j). In this case, the
cost of waiting is subtracted from the solution value.

The second type of decisions is when either V Tj = 1 or PTi = 1. They imply to
wait until the end of the rolling horizon and to incur the associated cost.

In summary, the arc costs are defined as follows:

• Departure arc to a load: CPUi j as cost of arc (Pi,U j):
unladen distance + waiting time =−(d(γi(t),α j)∗ e+ f ∗w0

i j)
for i = 1, . . . , I and for j ∈ J, if T L(i, j) = 1 and if v j = 0.

• Loaded arc: CUVj as cost of arc (U j,Vj):
revenue linked to the distance =+d(α j,β j)∗g j for j ∈ J, if v j = 0.

• Intermediate arc between two loads: CVU jk as cost of arc (Vj,Uk):
unladen distance + waiting time =−(d(β j,αk)∗ e+ f ∗w jk)
for j,k ∈ J and j 6= k, if LL( j,k) = 1 and if vk = 0.

• Final arc: CV Tj as cost of arc (Vj,T ): waiting time =−( f ∗wH
j ) for j ∈ J.

• Idle truck arc: CPTi as cost of arc (Pi,T ):
waiting time over the rolling horizon =− f ∗w0H

i
for i = 1, . . . , I such that, for all j ∈ J, i 6= v j.

Objective function
With the above notations, the objective function can be expressed as

max Z = ∑
j∈J

[
CV Tj ∗V Tj +CUVj ∗UVj + ∑

i=1,...,I
(CPUi j ∗PUi j)+ ∑

k∈J; k 6= j
(CVU jk ∗VU jk)

]
+ ∑

i=1,...,I
CPTi ∗PTi

(7.9)
The maximization of Z is subject to the following constraints:

Flow conservation for unladen trucks and unloaded orders

Node Pi : ∑
j∈J

PUi j +PTi = 1, for each unladen truck i = 1, . . . , I (7.10)

Node U j : ∑
i=1,...,I

PUi j + ∑
k∈J; k 6= j

VUk j =UVj, for each unloaded j ∈ J (7.11)

Node Vj : UVj =V Tj + ∑
k∈J; k 6= j

VU jk, for each unloaded j ∈ J (7.12)

Flow conservation for loaded orders

Node Vj : 1 =V Tj + ∑
k∈J; k 6= j

VU jk, for each loaded j ∈ J (7.13)
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Required flow constraint

Node T : I = ∑
j∈J

V Tj + ∑
i=1,...,I

PTi (7.14)

Constraints (7.10) express that each unloaded truck i either moves to reach a
load or stays idle. Constraints (7.11) ensure that if a load j is selected, it is because
this load has been reached by an idle truck at the beginning or after the unloading
of another load k. Constraints (7.12) show that if load j is selected on the path, after
unloading j either the truck reaches another load k or stops. Moreover, if load j is
not selected, none of these actions can take place. While if truck i is loaded with
j initially, constraints (7.13) imply performing one of the previous actions after the
delivery of load j.

As arc capacities are equal to one and indivisible, decision variables are binary.
Thus, the capacity constraints on each arc can be removed. In fact, they are inserted
in the flow conservation constraints (7.10) to (7.13). Consequently, the usual source
node is not required in the graph because the flow conservation constraints impose a
departure for each truck i either from its initial city γi(t) represented by vertex Pi if
truck i is unladen, or from Vj representing β j and b j if the truck has been previously
loaded with load j. So, an initial flow conservation constraint from a source node
would be redundant.

Finally, constraint (7.14) imposes that I trucks reach the sink node T . So, the
required total flow is equal to the number of trucks I originally loaded or unladen.

7.4.3 Complexity for a single scenario formulation

This network flow formulation is polynomially solvable (in our experiments, we
simply rely on the LP solver of IBM ILOG Cplex 12 to provide an optimal integer
solution). It may be worth noting that polynomial solvability is due to some implicit
restrictive assumptions of our model. Namely, the ending point at the end of the
horizon is not imposed to any truck; no intermediate city has to be mandatorily
visited (e.g., for refueling); no specific load has to be mandatorily transported; no
waiting periods are imposed for maintenance or to comply with driving regulations;
and so forth. Adding such constraints would make the problem theoretically harder
to solve (NP-hard), as established by [Keskinocak & Tayur, 1998].

7.4.4 Formulation for a deterministic subtree model

From the previous formulation which is valid for a single representation of the fu-
ture (i.e., scenario), it is easy to move to a formulation associated with a subtree
that represents a finite set of ST possible outcomes of the probability distribution.
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Scenarios differ because the outputs of the random generation process might differ
for load j with a j ∈ {t +RH +1, . . . , t +H}. For load j, the stochastic parameter
outcome q j for scenario s = 1, . . . ,ST is labeled qs

j. Considering all possible sce-
narios would yield an exact deterministic equivalent representation of the stochastic
problem, whereas any subtree of scenarios leads to an approximate formulation and
hence, to a heuristic solution of the problem. The approximation is due to two fac-
tors. First, obviously, the subtree does not contain all scenarios. But also, we do
not account in the formulation for the relative weight (probability of occurrence) of
each scenario within the subtree: each scenario weight is set equal to one. In the
deterministic equivalent representation, each scenario weight in the tree would be
equal to the probability Ws of realization of this scenario s:

Ws = ∏
a j ∈ {t+RH+1,..., t+H}; qs

j=1
p j ∗ ∏

a j ∈ {t+RH+1,..., t+H}; qs
j=0

(1− p j) (7.15)

Disregarding the weights appears to provide a reasonable approximation when
the sample of scenarios in the subtree is very small with respect to the total number
of scenarios (as in our practical applications). This should be investigated in further
tests. To generate the subtree formulation in a natural way, the deterministic for-
mulation of section 7.4.2 is replicated ST times and scenarios are indexed by s. In
practice for the implementation, all variables get an additional index s∈ {1, . . . ,ST}
and the set of loads under consideration, JH , includes all loads in the rolling horizon.
So, the graph introduced in section 7.4.2 is replicated ST times except for the sink
node T which remains unique. Moreover, some variables are useless for specific
scenarios when qs

j = 0.
In fact, these arcs do not exist in the model, so that they can be removed in a

preprocessing phase or the related variables can be set to zero (see equations 7.22
to 7.26).

Subtree variables

• PU s
i j ∈ {0,1} for s = 1, . . . ,ST , if T L(i, j) = 1 and v j = 0, for i = 1, . . . , I and

for j ∈ JH

• UV s
j ∈ {0,1} for s = 1, . . . ,ST , if v j = 0, for j ∈ JH

• VU s
jk ∈ {0,1} for s = 1, . . . ,ST , if LL( j,k) = 1 and vk = 0, for j,k ∈ JH and

j 6= k

• V T s
j ∈ {0,1} for s = 1, . . . ,ST , for j ∈ JH

• PT s
i ∈ {0,1} for s = 1, . . . ,ST , for i = 1, . . . , I such that, for all j ∈ JH , i 6= v j

The subtree formulation is a copy of the single scenario formulation (equations
(7.9) to (7.14)) indexed by s.
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Objective function:

max Z = ∑
s=1,...,ST

[
∑
j∈JH

[
(CV Tj ∗V T s

j +CUVj ∗UV s
j + ∑

i=1,...,I
(CPUi j ∗PU s

i j)

+ ∑
k∈JH ; k 6= j

(CVU jk ∗VU s
jk))

]
+ ∑

i=1,...,I
CPTi ∗PT s

i

] (7.16)

subject to the following constraints:
Flow conservation for unladen trucks and unloaded orders

Node Ps
i : ∑

j∈JH

PU s
i j +PT s

i = 1 (7.17)

for s = 1, . . . ,ST, and for each unladen truck i = 1, . . . , I

Node U s
j : ∑

i=1,...,I
PU s

i j + ∑
k∈JH ; k 6= j

VU s
k j =UV s

j (7.18)

for s = 1, . . . ,ST, and for each unloaded j ∈ JH

Node V s
j : UV s

j =V T s
j + ∑

k∈JH ; k 6= j
VU s

jk (7.19)

for s = 1, . . . ,ST, and for each unloaded j ∈ JH

Flow conservation for loaded orders

Node V s
j : 1 =V T s

j + ∑
k∈JH ; k 6= j

VU s
jk

for s = 1, . . . ,ST, and for each loaded j ∈ JH

(7.20)

Required flow
Node T : I = ∑

j∈JH

V T s
j + ∑

i=1,...,I
PT s

i

for s = 1, . . . ,ST
(7.21)

Due to the value assumed by some of the random variables, (i.e., qs
j = 0), some

decision variables could not appear in the model or equivalently could be imple-
mented through the following constraints.

Constraints for missing arcs

PU s
i j = 0, for s = 1, . . . ,ST and for i = 1, . . . , I and for j ∈ JH and if qs

j = 0
(7.22)

UV s
j = 0, for s = 1, . . . ,ST and for j ∈ JH and if qs

j = 0 (7.23)
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VU s
jk = 0, for s = 1, . . . ,ST and for j,k ∈ JH and k 6= j and if qs

j = 0 (7.24)

VU s
k j = 0, for s = 1, . . . ,ST and for j,k ∈ JH and k 6= j and if qs

j = 0 (7.25)

V T s
j = 0, for s = 1, . . . ,ST and for j ∈ JH and if qs

j = 0 (7.26)

As a unique set of actions will be performed, some constraints must be added
to ensure the consistency of the solutions over the different scenarios. They are
called non-anticipativity constraints. In the specific case of a rolling horizon, their
role is only to ensure the consistency of actions taken over the current decision
period t. Over the next decision step, in period t + 1, new actions will be taken
and all previous projected ones rescheduled. Hence, fixing common actions within
scenarios for periods {t +1, . . . , t +H} is not mandatory.

So, if a loading is performed in the decision period t or if a truck i moves un-
laden, or else waits in its present location, the same action must be performed in all
scenarios. For loading operations of truck i taking place in period t (see equation
7.27), replicated decision variables for loading j and moving unladen are forced to
be strictly equal in all scenarios s = 1, . . . ,ST .

Non-anticipativity constraints for period t
For an unladen truck i in period t:

PU1
i j−PU s

i j = 0, for i = 1, . . . , I, j ∈ JH , s = 2, . . . ,ST, (7.27)

if T L(i, j) = 1, if v j = 0, and if (t +d(γi(t),α j) = a j ≤ t +D))

If the decision leads neither to load an order, nor to move unladen, the action for
this truck is to wait. This action can be issued from decisions variables implying to
wait:

• over the whole horizon,

• before loading in a forthcoming period in the present location,

• before moving unladen to another city.

There is no need to explicitly express the equality among these waiting actions
in the scenarios of the subtree since they lead to unambiguous actions in the current
period. Therefore, a waiting action for a truck can be the aggregation over ST
scenarios of various decisions variables: PT s

i or PU s
i j with w0

i j > 0.
After optimizing the problem, actions for the decision period t have to be ex-

tracted to generate the value of the policy for this decision period (see section 7.4.2).
Given that loading operations, unladen movements and waiting decisions are consis-
tent in period t, analyzing one single scenario’s variables (e.g., for s = 1) is enough
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to recover the reward of the policy during this decision period. Consequently, at
each decision step, the policy evaluation is similar to what is done for the single
scenario representation. Practically, analyzing for each unloaded truck i whether
PU1

i j = 1, or PT 1
i = 1 is enough to deduce the cost or reward of truck i during period

t for all scenarios of the subtree.

7.4.5 Complexity for a subtree of scenarios

We mentioned earlier that the problem is polynomially solvable for a single scenario
if no tasks are preassigned (see section 7.4.3). As non-anticipativity constraints are
added, the network flow problem becomes an equal flow problem for some variables
(see equation 7.27). Equal flow problems are NP-hard, except in specific cases
(see [Meyers & Schulz, 2009]). It might still be possible to take advantage of the
network flow structure to develop a specific algorithm but it is beyond the scope of
our research. In practice, we observed that the commercial solver IBM ILOG Cplex
12 (using the simplex network solver or the default one) still provides an optimal
integer solution equal to the linear relaxation solution of the problem. Moreover,
even if the size of the model increases with a factor ST , we also observed that the
computing time does not increase exponentially but rather linearly. For the instances
that we handled, it remained within a few seconds, which is practically convenient.
This is an important feature of our model since usually, in transportation, subtree
formulations including integer variables are computationally intractable. Therefore,
we did not develop a specific algorithm to solve this subtree formulation.

7.5 Algorithms

In a rolling horizon framework, the sequence of decisions implemented in succes-
sive periods results from solving a sequence of optimization models using deter-
ministic and stochastic information over a sequence of restricted horizons of size
H. The sequence of decisions associated with solutions generated by an algorithm y
build up a policy π(y), where y ∈ Y and Y is the set of algorithms. The value of the
policy is denoted µπ(y). The aim is to select the best policy π∗ = π(y∗) maximizing
the profit. The value of the best policy selected is µπ∗ = max(µπ(y)) for y ∈ Y .

In general, the applied policy suffers from two drawbacks when compared to the
single optimal solution that could be computed if we had full deterministic knowl-
edge of the complete scenario over a fully revealed horizon of size WH. Firstly,
it results from a sequential process implementing, at each decision period, actions
issued from optimal solution over rolling sub-horizons of length H; but such a se-
quence of optimal short-term solutions does not build the optimal long-term one.
Secondly, each rolling horizon solution is based on stochastic information and not
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on the fully revealed deterministic information over the rolling horizon. So, the
policy might not be optimal even in a short-term perspective.

We denote by O∗ (for Oracle) the value of the (a posteriori) optimal solution
over the fully revealed complete horizon of length WH. This value provides an
upper bound over the best possible attainable value: µπ∗ ≤ O∗.

Similarly, the value, denoted O∗(H), of the policy obtained by solving a se-
quence of deterministic problems over fully revealed sub-horizons of size H can be
estimated. This value provides a very optimistic estimate of the expected value of
policy π∗. Formally, it cannot be proved that this policy issued from the repeated
implementation over the whole horizon of the optimal solutions over sub-horizons
will provide an upper bound on the optimal value of the stochastic problem (i.e., we
cannot be sure that µπ∗ ≤ O∗(H), always). But in practice it is empirically the case
except in some pathological instances (as in [Blackburn & Millen, 1980]). More-
over, the difference between O∗ and O∗(H) gives information on the loss due to the
limited size H of the rolling horizon usually imposed by the booking process and
by the forecasting possibilities.

Finally, we consider the value of the myopic policy derived by solving a se-
quence of deterministic problems over sub-horizons of size RH (which contain
fully revealed information, by definition). This value O∗(RH) provides an empir-
ical lower bound on the best policy value µπ∗ . Indeed, µπ∗ takes into account the
same deterministic information as O∗(RH), as well as additional stochastic infor-
mation over the rolling horizon. If µπ∗ < O∗(RH), this means that the extra-piece
of stochastic information and the algorithm developed to deal with it, are of no use.

Thus, in summary, the objective of our algorithms is to compute the best policy,
π∗, such that:

O∗(RH) ≤̃ µπ∗ ≤̃ O∗(H) ≤ O∗. (7.28)

7.5.1 Statistical validation of policy performance

As the aim is to evaluate the expected values µπ(y) of several policies π(y), each
optimization process should ideally be performed for each potential realization of
the stochastic parameters, i.e., for each potential scenario. In the present case, the
number of scenarios is finite as the stochastic variables can only take binary values.
Yet, this number is so huge that the expected value of each policy µπ(y) can only be
approximated on a restricted subset of scenarios. If F is a random sample of test
scenarios (see chapter 3), this leads to an estimate of µπ(y) labeled µ

′

π(y):

µ
′

π(y) = (1/|F |)∗∑
j∈F

C(y, j), (7.29)

where C(y, j) is the value of the policy generated by algorithm y over scenario j.
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The bounds presented in section 7.5 can be similarly approximated, leading to
the estimates of O∗(RH)

′
, O∗(H)

′
and O∗

′
. So, inequalities above (7.28) can only

be assessed statistically. They become:

O∗(RH)
′ ≤̃ µ

′
π∗ ≤̃ O∗(H)

′ ≤ O∗
′

(7.30)

For the sake of simplicity, the bounds are written like their estimates in the rest
of the document, i.e., O∗ represents its estimate O∗

′
, and so forth.

As small gaps between the estimated values µπ(1) and µπ(2) obtained for two
distinct policies π(1) and π(2) might be due to random effects, their statistical sig-
nificance must be assessed. For each fixed instance, we use the same set of test
scenarios F in order to reduce the variance of the observed values between policies.
After checking normality of the distribution of results (using a Shapiro-Wilk non-
normality test), we can apply a paired-sample Z-test to compare the values µπ(1) and
µπ(2). Two-sided and one-sided tests are available. In the discussions of our results,
only the second ones were used in order to test whether a policy outclasses another
or not:

H0 : µπ(1) = µπ(2) vs. H1 : µπ(1) < µπ(2) (or vs. H1 : µπ(1) > µπ(2)) (7.31)

As the objective function is profit maximization, we say for short that policy
π(1) outclasses policy π(2) on a given instance, if we can conclude that µπ(1) >
µπ(2) with a predefined confidence level.

7.5.2 Value of the stochastic information

If O∗(RH) is approximatively equal to O∗(H), i.e., if O∗(RH) is not statistically
smaller than O∗(H), it means that any reasonable algorithm y should generate a
profit µπ(y) which is close to both the lower bound and the upper bound. Therefore,
the stochastic information contained in the horizon {t +RH +1, . . . , t +H} appears
to be useless. Consequently, the optimization process can be based on the deter-
ministic information contained in the horizon {t, . . . , t +RH}, and the policy issued
from O∗(RH) approximates the optimal µπ∗ .

Therefore, a preliminary check in this research framework is to analyze whether
O∗(H) outclasses O∗(RH). If it is not the case, investigating other optimization poli-
cies or algorithms might be useless for some instance classes. As a contribution, we
stress the fact that a multi-period stochastic problem can be reduced to an approxi-
mate timeless deterministic scenario-based model which provides an efficient policy
for the complete problem. For instance, when the value of the stochastic informa-
tion is low. So, when one can prove that the stochastic information in the rolling
horizon H is statistically useless, the a-priori myopic policy with value O∗(RH) is
as efficient as the a-posteriori one over the rolling horizon, with value O∗(H).
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Finally, from these bounds and using a reduced set of scenarios F for validation,
we can estimate the expected values of some concepts:

• EVMPM: Expected value of the multi-period model = O∗(H)−O∗(RH)

• EVPI: Expected value of the perfect information = O∗−µπ∗

• EVAI: Expected value of the accessible information = O∗(H)−µπ∗

• EVTI: Expected value of the tail information = O∗−O∗(H)

If these differences between estimates of the theoretical expectations are sta-
tistically significant, economically relevant and technically reducible, it might be
interesting for a company to modify the information collection by:

1. investing in its information system or changing its processes so as to collect
more deterministic data over a longer horizon RH;

2. or changing the booking process or forecasting tool in order to increase H.

Instead of improving the data collection, another option resides in developing
optimization techniques leading to the best policy π∗. These techniques are de-
scribed hereafter and are the core of this article.

7.5.3 Single scenario algorithms

As described in section 7.4.2, our problem can be tackled with a formulation based
on a single scenario, such as what is performed for O∗(RH) and O∗(H) where the
perfect information is revealed either over the deterministically revealed part of the
horizon or over the rolling horizon. Any single scenario in between these two,
contains the deterministically revealed part of the horizon and one realization of
what might happen on the stochastic part of the rolling horizon. This realization
might be issued among other arbitrary choices from specific scenarios such as the
three detailed hereafter : Optimistic, Modal and Expected value scenarios. The
main advantage of these heuristic choices is that they are computationally efficient.

7.5.3.1 Optimistic scenario algorithm: Opt

In this scenario, all loads j are supposed to become available for transportation,
i.e., all q j are considered equal to 1 for all a j ∈ {t +RH +1, . . . , t +H}. The pol-
icy issued from this scenario is called Optimistic. This scenario is at the oppo-
site of the pessimistic scenario where all q j are considered equal to 0 for a j ∈
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{t +RH +1, . . . , t +H} which yields the value O∗(RH). These extreme cases rep-
resent scenarios wherein parameter values are correlated while they are in fact in-
dependent. It is clear that the optimistic scenario is extreme in the sense that its
occurrence probability is low or not representative except if the stochastic availabil-
ity is nearly deterministic. So, this scenario can highly distort the representativity
of the information in case of low value of p j within the probability distributions.

7.5.3.2 Modal value scenario algorithm: Mod

This scenario generates a policy based on the modal value of the probability distri-
bution. At the opposite of the above optimistic scenario, it is supposed to reduce
the scenario to interesting loads instead of the exhaustive set. So, if p j ≥ 0.5, the
scenario includes j (q j = 1). Conversely, if p j < 0.5, load j is not inserted in the
scenario (q j = 0). As for the previous scenario, the drawback of this one is that it
leads to two extremes decisions: discarding or keeping orders even if their availabil-
ity might be close to 50% or if there are numerous loads j with a low p j. Moreover,
the probabilistic gain of each load is not taken into account but only its availability
probability.

7.5.3.3 Expected value scenario algorithm: EG

To take the advantages and to avoid the drawbacks of previous scenarios, a policy
can be derived from a scenario that includes all j ∈ JH as if q j was equal to 1 (as in
Opt). Yet, in this scenario, the reward of the projected orders is modified according
to their availability probability p j (at the opposite of Mod). So, in the formulation of
section 7.4.2 the cost CUVj = dist(α j,β j)∗g j becomes CUVj = dist(α j,β j)∗g j ∗ p j

for all loads with a j ∈ {t +RH +1, . . . , t +H}. This scenario is called the expected
value scenario: it is based on the expected value of the gain for each load in the
uncertain part of the horizon. So, here, all orders are supposed to be available but
their reward is modified. Therefore, a slight variation of the formulation from sec-
tion 7.4.2 gives rise to a single-scenario heuristic denoted EG. The value of the re-
sulting policy π(EG) is called the "Expected value of the Expected Value Solution"
(EEVS): EEVS = µπ(EG). As in the previous section, this value can be estimated
on a sample of scenarios. It can also be used to derive the "Expected Value of the
Stochastic Solution" (EVSS) (see [Birge & Louveaux, 1997]), which is defined as
the difference between the value of the best policy π∗ and the EEVS: EVSS = µπ∗−
EEVS.

By analogy with section 7.5.1, if the upper bound O∗(H) or any more complex
heuristic y generating a policy π(y) do not statistically outclass π(EG), π(Opt) or
π(Mod), then single scenario heuristics (i.e., EG, Opt or Mod) can be sufficient
and efficient optimization techniques for the problem.
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7.5.4 Multiple-scenario approximations

To find a single scenario leading to the best policy requires some luck. Another
strategy might be to solve K independent scenarios, called calibration scenarios,
then to select or generate the best policy from the K solutions. After optimizing a
set of K scenarios generated randomly and independently in a Monte-Carlo fashion,
two particular optimization techniques based on multiple-scenario approximations
are used to generate some policies π(y): a Consensus algorithm Cs and a Restricted
Expectation algorithm RE∗ ([Van Hentenryck & Bent, 2006]).

7.5.4.1 Consensus algorithm: Cs

Once the K deterministic models issued from calibration scenarios have been solved
independently, K solutions are found for the current decision period t. These solu-
tions are labeled θk for k = 1, . . . ,K. Then, the aim of the consensus algorithm Cs re-
sides in trying to generate a new "compromise" solution based on the most frequent
decisions taken among these solutions. At first sight, a common decision means
that corresponding variable values have to be the same in different solutions. Yet,
identical decisions can also be issued from various variables in models issued from
several scenarios, such as for example waiting decisions. For instance, in a solution
θ j, the decision for a truck to wait in city c can be issued from a variable represent-
ing a complete standstill decision over the rolling horizon while in another solution
θk, k 6= j, the waiting decision for this truck might be issued from the expectation
to load in city c in the next period. Conversely, locally opposite, but globally equiv-
alent decisions can be taken within two solutions θ j and θk. Consider for instance,
two idle trucks located at the same time in the same city. In solution θ j, truck A
waits, truck B loads and conversely in solution θk. These decisions are equivalent,
even if the replicated variables are not indexed in the same way. So, there should
be an aggregation phase of variables representing identical or equivalent decisions.
These equivalent decisions can then be used to build a consensus solution. Notice
that from the selection of scenarios included in the calibration set to the collection of
variables according to their frequency in the solutions and to the construction of the
compromise solution, the consensus algorithm represents a family of heuristics or
an optimization framework. It is not a unique standardized optimization algorithm.
Therefore, this procedure must be more specifically described for our specific case.
The aggregation and the assignment parts contain two phases.

Initially, for the aggregation phase, we generate several counters for each city
c ∈C for each kind of decision: loading, moving unladen, or waiting.
At the current period t, the counters are:

• CL(c, j), number of solutions θ1, . . . ,θK such that load j ∈ JH is loaded in city
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c ∈C;

• CE(c,c1), total number of trucks planned to move unladen from city c to city
c1 in period t over all solutions θ1, . . . ,θK ;

• CWc, total number of trucks planned to wait in period t in city c ∈C over all
solutions θ1, . . . ,θK .

So, during this preliminary phase, the number of decisions per city is estimated.
However, for the loading decisions, the counters take into account each load j and
for the unladen moves each destination city c1. Therefore, in a second phase, all
loading operations and all unladen moves are aggregated per city c, so that the most
frequent decisions among loading, unladen move or waiting can be ranked per city.
Summing up over all loads j for CL(c, j) and over all cities c1 for CE(c,c1), three
counters representing the frequency of decisions per city c are obtained: CLc, CEc

and CWc.
These counters are divided by K and rounded to the nearest integer to get the

number of decisions of each type per city regardless of parameter K. These integer
values provide the number of similar decisions to be assigned to trucks located in
each city:

• NLc number of trucks that should load in city c,

• NEc number of trucks that should move unladen out of city c,

• NWc number of trucks that should wait in city c.

These indicator computations end the aggregation phase of decisions.

The assignment phase is also split into two parts.
For each idle truck currently located in city c, we allocate an operation according

to the values of the indicators NLc, NEc or NWc, representing the most frequent
decision in that city.

Thus, for each city c, decisions are assigned truck per truck according to an
iterative procedure starting from the largest of NLc, NEc or NWc. For instance, if
NLc ≥ NEc and NLc ≥ NWc, then the first truck should load an item. Each time an
action is allocated to a truck, the value of the current indicator NLc, NEc or NWc

is reduced by one. Therefore, for the next truck an other kind of decision might
be assigned. This first phase of the assignment procedure is repeated iteratively for
each truck in each city.

The second phase of the assignment procedure aims at defining which load j
should be loaded when a loading decision has been assigned to a truck and which
destination city c1 should be selected when an unladen move has been assigned to a
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truck. To select the load j to be loaded, loading counters from city c are ranked by
non-increasing values of CL(c, j) and each load is assigned once subsequently. Sim-
ilarly, unladen moves are specified according to non-increasing values of CE(c,c1).
The current largest counter value is reduced by one after each assignment and coun-
ters are re-sorted accordingly.

Note that, in case of equal values between NLc or NEc or NWc, preference is
given first to loading, then to unladen moves. Finally, if some trucks remain un-
allocated after all counter values (NLc, NEc, NWc) are reduced to zero, the action
assigned to these trucks is to wait. As a consequence, any plan issued from this
heuristic is feasible and a consensus solution can always be built.

At first sight, it seems promising to solve K scenarios rather than a single one
in order to generate a decision that is more resilient to the diversity of the exact
realization of the future. Yet, the consensus procedure has its own drawbacks. In
fact, the final plan is created from the cumulated frequency of single decisions ac-
cording to an aggregate-disaggregate method. This process might destroy the struc-
ture or consistency of the combinatorial solution which is optimal for each scenario
k = 1, . . . ,K. This revised solution might not retrieve a better combination of deci-
sions than any single scenario-based one, i.e. θ1, . . . ,θK .

7.5.4.2 Restricted Expectation algorithm: RE*

In order to avoid the drawback of Cs, the Restricted Expectation algorithm RE∗ is
based on the selection of one single solution θk associated with a scenario k where
k ∈ {1, . . . ,K} and K is the number of calibrating scenarios. In our setting, the K
scenarios are independently and randomly generated using a Monte-Carlo method.
Then, the model associated with each scenario k is solved and actions (load, move
unladen, wait) from θk for the current decision period t are recorded as θ t

k, as well
as the objective value vt

k over the rolling horizon. Afterwards, each decision θ t
k is

applied in every remaining scenario k′ = 1, . . . ,K, k′ 6= k. This is feasible as every
solution in the current period t is performed on the deterministic part of the horizon
{t, . . . , t +RH}. Doing so makes it possible to compute the optimal solution value,
vt
(k,k′), of a (H− 1) period scenario defined over {t +1, . . . , t +H} and issued from

scenario k′ but constrained by the applied actions θ t
k. Repeated over all scenarios

k,k′ = 1, . . . ,K and k 6= k′, we get the cumulated objective value Θt
k of action θ t

k in
a so called cross-evaluation procedure.

Θ
t
k = vt

k +
k′=K

∑
k′=1, k′ 6=k

vt
(k,k′) (7.32)

The solution θk with the highest cumulated value Θt
k = Θt∗

k is selected and ac-
tions θ t

k are applied.
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The name "Expectation" comes from the cross-evaluation procedure that is an
attempt to evaluate the expected value of each solution, if it should be effectively
applied. The qualifier "Restricted" is due to the fact that the number of calibrating
scenarios K is much lower than the complete set of possible scenarios. Notice that
even if K is equal to the number of possible scenarios, this does not ensure that the
solution with the highest expected value, Θt∗

k , computed from one single scenario
model k is equal to the decision issued from the best policy π∗. In other words,
the optimal solution π∗ might not be among the set of optimal solutions θ t

k issued
from each single scenario optimization. Conversely to Cs that tries to generate a
consensus, the policy θ t∗

k issued from RE∗ selects the best solution among a set
that contains only elitist solutions. Indeed, θ t

k is the optimal solution for scenario
k, but none of these optimal solutions might be efficient on average. θ t∗

k might be
the least damaging solution rather than a good one. Moreover, when K increases,
the confidence level based on the fact that the cross-evaluation statistically tends to
represent the expected value of any solution θ t

k increases. Nevertheless, this does not
ensure that π∗ belongs to the set of solution θ t

k, even when K becomes large. Finally,
while Cs requires K optimizations, RE∗ needs K2. It might become prohibitive in
practice if K is large even if each single optimization is polynomially solvable.

7.5.5 Subtree algorithm: TR

In order to avoid the previous drawbacks of Cs (solution deconstruction) and RE∗

(elitist solution selection), it is possible somehow to combine both algorithms Cs
and RE∗ in the formulation presented in section 7.4.4 which provides the best com-
promise solution over a subset of scenarios. Non-anticipativity constraints act like
the cross-evaluation procedure from RE∗ which fixes θ t

k for the current period while
allowing different decisions in the remaining part of the rolling horizon according
to each scenario (see [Ruszczyński & Shapiro, 2003]). Whereas these constraints
cannot ensure that the best decision has been taken for any single scenario, a com-
promise solution based on the highest reward on average over the subtree can be
selected. As in our problem, there are no extreme scenarios in terms of rewards
or any penalties for failure, the compromise might be linked to the most frequent
"good" decisions, as in Cs. Fortunately, the subtree formulation turns out to be easy
to solve even with the equal flow constraints. Therefore, we have not developed any
dedicated optimization techniques (such as Bender’s decomposition) to solve it.

As explained in section 7.4.5, the computing time increases with ST (in our
tests, linearly with the model size). The influence of parameter ST for the numerical
performance of the subtree is analyzed in section 7.8.1.
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7.6 Instances

7.6.1 Temporal data

In the experiments, to fit with practice and similarly to [Tjokroamidjojo et al., 2006],
the rolling horizon size H is set to 4 periods representing weekly forecasts. The de-
terministically revealed part of the horizon RH equals 1 day, so there are H−RH = 3
periods including stochastic forecasts. The whole horizon WH involves 20 effective
periods with load departures a j ∈ {1, . . . ,20}, allowing delivery outside the hori-
zon. This is manageable according to our timeless formulation. The rolling horizon
process generates 16 successive decision steps including loading from period 1 to
period 16 so that the last decision period includes the same rolling horizon as the
other decision periods. As a warm-up period, an initial "0" period is added to start
with a fleet of unladen trucks that might be moving unladen or waiting during the
starting phase. Therefore, there are 1+ 16 = 17 decision steps. This initial bias is
similar for all algorithms and just slightly modifies the expected reward value per
period. Finally, the maximum unladen distance D was set to its maximum RH = 1.
Thus, no shortest path problems need to be solved in a preliminary phase (see sec-
tion 7.3).
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Figure 7.5: Planning Horizon

• a : initialization period for locations of the unladen fleet

• b : preliminary repositioning period for unladen fleet

• c : decision period of the last rolling horizon

• c & d : deterministically revealed information periods of the last rolling hori-
zon

• e : stochastic information periods of the last rolling horizon
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7.6.2 Spatial data

Different sets C of cities are positioned on three grids of size 10 (3*3+1), 20 (4*5),
25 (5*5), (Figures 7.6, 7.7 and 7.8). They represent a permanent network of logis-
tical platforms aggregating the local clients’orders. All edges are of length 1 and
the speed is fixed so that it takes one period to cross an edge. The maximal distance
between cities is 4. Tests were performed with complete graphs where each node is
a city and also with sub-graphs where 15 or 20 nodes out of figure 7.8 are selected
among the 25 possible nodes to create grids representing three different (A, B or
C) spatial distribution of cities. It is usual (see Solomon or Li and Lim Instances
on http://www.sintef.no/Projectweb/TOP) to generate such clustering of clients
and to introduce diversity to avoid a uniform spatial distribution.
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Figure 7.6: Grid of 10 cities
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Figure 7.7: Grid of 20 cities
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Figure 7.8: Grid of 25 cities
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For the first set of instances, all cities are considered equivalent as departure
or arrival cities. For the second ones, cities are weighted. These city weights are
linked to the city ranges: large city (weight= 4), medium city (weight= 3), small
city (weight= 2). The larger the weight, the more loads are issued from or delivered
to a city. In table 7.1, the number of cities per range is provided for each subgraph.

City range Large Medium Small
City weight 4 3 2

Sub-graph 15/25 A: number of cities per range 4 6 5
Sub-graph 15/25 B: number of cities per range 5 5 5
Sub-graph 15/25 C: number of cities per range 2 4 9
Sub-graph 20/25 A: number of cities per range 5 8 7
Sub-graph 20/25 B: number of cities per range 6 7 7
Sub-graph 20/25 C: number of cities per range 3 5 12

Table 7.1: Number of cities per range in each sub-graph

The subgraphs are generated such that respectively the medium cities are more
abundant (A), then the larger ones (B) and finally the small ones (C). For example
in the sub-graph 15/25 A, there are 4 large cities of weight 4, 6 medium cities of
weight 3 and 5 small cities of weight 2.

7.6.3 Economic data

• g j : reward per period for load j is set randomly between [80, 120] monetary
units (MU)

• e : unladen trip cost per period is set to 100 MU

• f : waiting cost per period is set to 75 MU as fuel cost usually represents
approximatively 25% of the total cost e

(http://www.fntr.fr/sites/default/files/conjoncturetrm0212.pdf)
Consequently, the difference between f and e (25 MU) is lower than g j, so that
unladen moves towards a load are profitable compared to staying at standstill.

7.6.4 Trucks

Instances include 10 trucks uniformly randomly assigned to any of the cities.

157



7.6.5 Loads

Instances include either 150 or 200 loads. For a first set of instances, loads are
randomly and uniformly assigned over the horizon {1, . . . ,WH} for departure date
a j, for departure city α j and final destination β j. For the second set of instances,
α j and β j are randomly generated while taking the city weight into account. This
means that the probability to send or receive a load is proportional to the departure
or arrival city weight. This allows us to compute the percentage of loads issued
from every range of cities according to the city weights and the number of cities per
range.

City range Large Medium Small
City weight 4 3 2

Sub-graph 15/25 A: number of cities per range 4 6 5
Theoretical percentage of loads 36 41 23

Sub-graph 15/25 B: number of cities per range 5 5 5
Theoretical percentage of loads 45 33 22

Sub-graph 15/25 C: number of cities per range 2 4 9
Theoretical percentage of loads 21 32 47

Sub-graph 20/25 A: number of cities per range 5 8 7
Theoretical percentage of loads 35 41 24

Sub-graph 20/25 B: number of cities per range 6 7 7
Theoretical percentage of loads 41 35 24

Sub-graph 20/25 C: number of cities per range 3 5 12
Theoretical percentage of loads 24 29 47

Table 7.2: Number of cities and percentage of loads per range in each sub-graph

In the sub-graph 15/25 A, the percentage of loads equals (4∗4)
(4∗4+6∗3+5∗2) = 36%

for the large cities, (6∗3)
(4∗4+6∗3+5∗2) = 41% for the medium and 23% for the small ones.

7.6.6 Stochastic parameters

To model the probability distributions, i.e. the probability that an order becomes
available for transportation (p j), it is assumed that this probability depends on the
trip duration (see table 7.3) or is related to the city range (see table 7.4). The choice
of these parameters comes from the gravity model transposed in Reilly’s law of
retail gravitation (see [Reilly, 1931]). Consequently, in a first set of instances where
all cities are equal, the probability distributions are as follows:
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Duration 1 2 3 4
Distribution 1 1 0.5 0.33 0.25
Distribution 2 0.25 0.33 0.5 1
Distribution 3 0.75 0.5 0.33 0.25
Distribution 4 0.5 0.5 0.5 0.5

Table 7.3: Probability p j of load availability according to the trip duration: distri-
butions 1 to 4

For instance, according to distribution 3, for a load which has a trip du-
ration equal to 3, the probability to become available is 0.33. Notice that
p j = 1 implies q j = 1. So, some deterministic information can be included in
{t +RH +1, . . . , t +H}.

Likewise, according to the city range, the following distributions are generated:

City range Large Medium Small
City weight 4 3 2

Distribution 5 0.75 0.5 0.33
Distribution 6 1 0.5 0.25
Distribution 7 0.25 0.33 0.75
Distribution 8 0.5 0.5 0.5

Table 7.4: Probability p j of load availability according to the city range: distribu-
tions 5 to 8

For instance, according to distribution 5, for a load which is issued from a large
city, the probability to become available is 0.75.

The average probability parameter Av p j can be estimated over all loads j. For
the probability distributions based on the trip duration, it is possible also to estimate
the average trip duration Av d j over all loads according to the graph type. Hence, the
average load availability per graph Av p j is usually around 0.5 [min 0.37; max 0.67],
meaning that the average probability to have a transportation order that becomes
available is around 50%. The average trip duration Av d j is around 2 periods [min
1.62; max 3.04]. As a consequence, the probability distributions and the graph types
lead to various, though not drastically atypical instances.
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Av p j Av d j Av p j Av d j Av p j Av d j

City/Graph 10/10 20/20 25/25
Distribution 1 0.61 1.62 0.58 1.73 0.53 1.87
Distribution 2 0.37 2.34 0.41 2.56 0.47 2.86
Distribution 3 0.53 1.72 0.51 1.83 0.47 1.98
Distribution 4 0.5 2 0.5 2.15 0.5 2.36

City/Graph 15/25 A 15/25 B 15/25 C
Distribution 1 0.55 1.83 0.55 1.81 0.55 1.82
Distribution 2 0.48 2.92 0.45 2.78 0.45 2.77
Distribution 3 0.48 1.94 0.49 1.92 0.48 1.93
Distribution 4 0.5 2.35 0.5 2.29 0.5 2.30
Distribution 5 0.55 - 0.57 - 0.47 -
Distribution 6 0.63 - 0.67 - 0.49 -
Distribution 7 0.4 - 0.39 - 0.51 -
Distribution 8 0.5 - 0.5 - 0.5 -

City/Graph 20/25 A 20/25 B 20/25 C
Distribution 1 0.54 1.85 0.55 1.80 0.49 2.02
Distribution 2 0.45 2.80 0.43 2.70 0.44 3.04
Distribution 3 0.48 1.96 0.49 1.91 0.43 2.17
Distribution 4 0.5 2.32 0.5 2.25 0.46 2.57
Distribution 5 0.55 - 0.56 - 0.48 -
Distribution 6 0.61 - 0.64 - 0.5 -
Distribution 7 0.4 - 0.4 - 0.51 -
Distribution 8 0.5 - 0.5 - 0.5 -

Table 7.5: Average load availability and trip duration according to graph

7.7 Statistical validation and algorithmic parameters

7.7.1 Statistical validation parameters

To validate statistically the algorithmic performances, the number of scenarios per
instance |F | was fixed at 30. This enables us to check the normality of the results
and to use the tests explained in section 7.5.1 to determine whether an algorithm
outclasses another. The confidence level for the outclassement results is fixed at
95%, i.e.,policy π(1) outclasses policy π(2) if the Z statistic is larger than 1.65
(one-sided test).
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7.7.2 Algorithmic parameters

After preliminary testing, the algorithmic parameter K representing the number of
calibrating scenarios for algorithms Cs and RE∗ was set to 10. Indeed, initial anal-
ysis showed that for the consensus algorithm Cs, most of the decisions over the K
calibrating scenarios are similar. This leads to identical decisions for loading, mov-
ing unladen or waiting over most of the scenarios. Decision frequencies expressed
as percentages lie either between 0 and 10 % or conversely between 90 and 100%
when considering all calibrating scenarios. Therefore, increasing the number of sce-
narios is of no use as also demonstrated by a sensitivity analysis on the algorithmic
parameter K.

For the restricted expectation algorithm RE∗, the computing speed becomes an
issue as K2 optimizations have to be performed. A sensitivity analysis also showed
that increasing K beyond 10 calibrating scenarios does not statistically improve the
values obtained. For the subtree T R, the number of calibrating scenarios ST was set
either to 10 or 30 leading to subtree models labeled T R10 and T R30.

7.8 Numerical results

Results are provided hereafter in table 7.6 where instances are referenced in the form
"Distribution-x-Graph y"; so, for example, instance 1-20-25C is associated with the
graph 20-25C and with the probability distribution 1 from table 7.3. For each set
of instances, the first table contains the value of the objective function produced
by various algorithms. These values are expressed in percentage points, with the
lower bound O∗(RH) = O∗1 being set to 0% and the upper bound O∗(H) = O∗4
being set to 100%. Algorithms that make effective use of the stochastic information
should perform somewhere between these bounds (note that O∗16 approximates
the optimal value O∗ obtained when perfect information is revealed over the whole
horizon, and hence O∗16 is usually larger than 100%). This presentation allows us
to measure how each algorithm fills in the gap between myopic optimization and the
optimal policy that would benefit from deterministic information over each rolling
horizon. Table 7.7 delivers the value of the Z-test statistic which allows us to check
the pairwise relative performance of algorithms.
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7.8.1 Results for availability linked to duration (150 loads)

Info LB EEVS UB

Inst./Alg. O∗16 O∗1 Opt Mod EG Cs RE∗ T R10 T R30 O∗4

1-10 120.4 0 22.8 17.3 37.3 31.2 12.4 48.6 58.2 100
1-15-25A 153.0 0 12.9 38.8 38.4 51.4 43.1 65.7 70.2 100
1-15-25B 153.8 0 13.7 44.7 49.2 45.5 26.7 66.5 75.5 100
1-15-25C 176.0 0 32.8 43.5 67.1 45.2 36.9 72.8 85.2 100

1-20 135.0 0 14.8 41.3 52.5 38.9 46.5 69.8 71.0 100
1-20-25A 167.8 0 6.8 32.5 62.4 21.3 44.9 73.1 78.1 100
1-20-25B 149.6 0 23.3 41.0 46.2 42.0 31.8 70.6 60.0 100
1-20-25C 199.8 0 -22.1 30.1 24.1 27.0 -24.7 61.5 67.9 100

1-25 164.9 0 -83.6 6.5 7.9 12.6 -32.1 54.9 50.6 100
2-10 163.7 0 18.4 38.9 44.7 37.7 26.8 67.4 74.3 100

2-15-25A 221.3 0 69.2 70.2 65.8 70.9 63.7 77.2 76.4 100
2-15-25B 186.1 0 65.1 66.3 70.3 51.0 62.4 83.2 87.4 100
2-15-25C 136.6 0 36.7 60.4 67.5 73.1 42.5 78.3 82.4 100

2-20 204.6 0 59.6 74.5 57.7 53.0 39.3 71.6 70.1 100
2-20-25A 190.1 0 51.6 71.1 81.1 69.4 60.2 82.7 83.3 100
2-20-25B 150.9 0 30.4 40.0 54.5 57.4 53.2 77.5 74.2 100
2-20-25C 180.9 0 65.2 86.5 87.1 79.6 62.0 86.3 89.2 100

2-25 167.3 0 11.4 50.0 65.0 64.2 42.6 69.8 61.0 100
3-10 142.1 0 -7.5 47.5 32.1 37.9 20.7 62.9 63.9 100

3-15-25A 198.2 0 -8.4 50.7 33.3 57.1 29.3 68.0 83.0 100
3-15-25B 249.2 0 27.9 28.7 39.5 30.8 -13.2 91.8 92.6 100
3-15-25C 155.4 0 -5.3 17.3 24.8 31.2 6.6 51.1 61.6 100

3-20 154.1 0 9.0 31.5 33.1 38.9 32.7 56.0 60.6 100
3-20-25A 180.7 0 -37.6 11.2 25.8 11.8 -22.6 39.0 41.7 100
3-20-25B 199.2 0 -33.2 -9.5 26.7 16.8 2.9 54.8 69.1 100
3-20-25C 164.1 0 20.4 54.4 40.2 37.1 42.3 61.8 53.0 100

3-25 177.4 0 -1.3 43.7 22.8 28.7 15.7 61.5 63.4 100
4-10 121.5 0 51.4 51.4 60.4 68.0 45.5 64.8 63.9 100

4-15-25A 201.6 0 24.2 24.2 49.1 38.0 26.7 60.1 79.1 100
4-15-25B 155.8 0 25.5 25.5 48.5 53.3 25.5 64.2 69.0 100
4-15-25C 162.2 0 -19.0 -19.0 27.8 28.7 -9.4 52.1 55.1 100

4-20 165.0 0 -14.5 -14.5 27.6 30.2 7.2 55.6 63.1 100
4-20-25A 145.1 0 10.0 10.0 34.8 41.0 12.9 56.6 66.0 100
4-20-25B 142.8 0 53.9 53.9 52.0 62.7 42.3 68.7 72.4 100
4-20-25C 177.8 0 7.6 7.6 69.5 48.6 14.5 65.4 70.1 100

4-25 148.0 0 15.1 15.1 36.3 23.1 10.0 48.6 52.1 100
Average 168.4 0 15.2 35.6 46.2 43.2 25.8 65.6 69.3 100

Table 7.6: 150 loads and availability linked to duration: performance in percentage

From this table, we can observe that:

• Neither the probability distribution, nor the graph types or ranges appear to
be discriminating parameters.
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• Algorithms Opt, Mod and RE∗ give poor results and sometimes under-per-
form when compared to the myopic bound O∗1.

• The subtree algorithm with 30 calibrating scenarios T R30 is best 28 times out
of 36 instances.

• The subtree algorithm with 10 calibrating scenarios T R10 is best 6 times out
of 36 instances and close to T R30.

• The expected value of the perfect information (EVPI) over all instances is
high: 97.9% on average (O∗16−µπ∗ where µπ∗ is the best value obtained and
shown in bold).

• The expected value of the tail information (EVTI) (68.4%) is high, meaning
that the information after the rolling horizon is relevant and that increasing
the rolling horizon size might be interesting.

• T R30 closes the gap between the myopic algorithm O∗1 and the algorithm O∗4
based on the fully revealed information over the rolling horizon by 69.3% on
average.

• The expected value scenario algorithm EG, which gives the expected value of
the expected value solution (EEVS), yields the second best policy after T RST .

• Yet, the expected value solution performance (EEVS) varies a lot.

• The expected value of the stochastic solution (EVSS) is 24.4%.

• The consensus algorithm Cs is the third best policy, but is far behind by T RST

and sometimes under-performs.

Consequently, we decided to restrict our tests to T RST , EG and Cs. We provide
the outclassement results for the two first policies and for Cs only when it provides
the best policy value for a particular instance.

Table 7.7 shows that T R30 outclasses EG 24 times (Z > 1.65 in bold), mean-
ing that using the stochastic information and a dedicated algorithms is relevant.
Moreover, T R30 also outclasses T R10 twice, while T R30 is never outclassed by its
challenger T R10.

Moreover, the subtree algorithm T R30 is never outclassed by any other algo-
rithm, not even by the best policy µπ∗ found for any instance.

For the subtree algorithm T R, the speed increases almost linearly with the num-
ber of scenarios according to a factor 3 between ST = 10 and ST = 30.
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A deeper performance analysis on the algorithmic parameter ST was also per-
formed by setting ST = 50, leading to T R50. This allowed us to conclude that the
larger the subtree, the better T RST numerically performs on average while reduc-
ing the standard deviation. Similarly, the computing time increases by a factor 5
between ST = 10 and ST = 50. Yet, as T R30 is never statistically outclassed by
T R50, numerical experiments were eventually restricted to ST = 30 calibrating sce-
narios to reduce computing time. However in practice, as each optimization step is
performed only daily, T R50 might be used for each decision period.

Finally, an important observation is that, for six instances, T R30 is not outclassed
by O∗4, which means that it produces a profit that is not significantly lower than the
upper bound. Consequently, stochastic optimization techniques sometimes perform
just as well as the algorithm based on available deterministic information. (See
table 7.7)
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7.8.2 Results for availability linked to duration (200 loads)

Info LB EEVS UB

Inst./Alg. O∗16 O∗1 EG Cs T R30 O∗4

1-10 119.1 0 46.5 55.1 69.8 100
1-15-25A 164.2 0 47.0 41.7 63.1 100
1-15-25B 149.9 0 29.6 23.1 47.5 100
1-15-25C 156.5 0 26.7 31.2 56.5 100

1-20 165.4 0 29.6 56.1 79.2 100
1-20-25A 138.4 0 33.1 28.0 53.8 100
1-20-25B 147.8 0 17.3 18.2 50.1 100
1-20-25C 139.5 0 42.6 24.2 54.8 100

1-25 162.1 0 34.7 29.3 62.3 100
2-10 136.4 0 46.0 44.5 70.7 100

2-15-25A 197.1 0 54.1 87.8 79.9 100
2-15-25B 174.7 0 65.0 47.1 68.5 100
2-15-25C 190.3 0 48.3 44.5 68.0 100

2-20 145.7 0 70.7 83.1 90.0 100
2-20-25A 165.6 0 43.3 40.4 62.5 100
2-20-25B 188.1 0 53.0 70.9 84.3 100
2-20-25C 204.9 0 69.3 64.1 86.8 100

2-25 164.4 0 36.1 36.7 48.6 100
3-10 140.5 0 48.6 43.8 66.4 100

3-15-25A 164.1 0 32.5 50.3 73.9 100
3-15-25B 160.6 0 53.2 55.6 68.9 100
3-15-25C 172.1 0 43.0 10.8 59.0 100

3-20 127.9 0 30.4 26.4 52.2 100
3-20-25A 157.9 0 21.1 26.9 43.4 100
3-20-25B 153.7 0 29.9 36.9 52.7 100
3-20-25C 172.5 0 64.8 68.1 82.6 100

3-25 167.8 0 25.4 16.8 47.3 100
4-10 135.4 0 61.6 67.1 79.0 100

4-15-25A 204.3 0 3.9 -10.4 29.6 100
4-15-25B 204.6 0 57.5 68.5 65.8 100
4-15-25C 136.5 0 43.9 55.7 63.3 100

4-20 193.6 0 54.3 52.8 71.1 100
4-20-25A 175.7 0 46.8 50.0 70.3 100
4-20-25B 171.7 0 43.3 43.6 78.2 100
4-20-25C 180.3 0 36.8 5.6 62.4 100

4-25 220.1 0 59.9 11.9 51.4 100
Average 165.3 0 43.0 41.8 64.3 100

Table 7.8: 200 loads and availability linked to duration: performance in percentage

From this collection of figures, one can observe that:

• Neither the probability distribution, nor the graph types or ranges appear to
be discriminating parameters.

• The subtree algorithm T R30 is still the best policy, it closes the gap between
O∗1 the myopic policy and O∗4 the policy based on the fully revealed infor-
mation over the rolling horizon by 64.3% on average.

• The expected value of the perfect and tail information (EVPI, EVTI) (100.5%,
65.3%) and the expected value of the stochastic solution (EVSS) (21.8%) are
similar and remain still high on average.

• The subtree algorithm T R30 is beaten by the consensus Cs twice and by the
expected value scenario algorithm EG once.
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In the outclassement test (see table 7.9), T R30 outclasses EG 27 times, i.e., the de-
veloped stochastic policy is useful. Unfortunately, T R30 turns out to be as effective
as O∗4 only twice. This suggests that the expected value of the accessible informa-
tion (EVAI) is relatively high.

µπ(1) > µπ(2) O∗4 > O∗1 O∗16 > O∗4 O∗4 > EG O∗4 > T R30 T R30 > EG T R30 > π∗

1-10 15.47 6.47 10.25 6.23 3.86
1-15-25A 7.12 9.09 5.24 5.04 1.91
1-15-25B 8.70 5.53 7.51 3.75 1.18
1-15-25C 8.07 9.39 6.92 4.13 2.83

1-20 6.13 8.73 5.68 1.98 3.95
1-20-25A 11.05 8.62 7.83 8.11 2.57
1-20-25B 7.89 8.15 7.77 5.16 3.09
1-20-25C 6.32 7.45 4.87 4.50 1.23

1-25 5.88 7.06 3.79 4.32 1.89
2-10 7.06 4.88 4.86 3.24 2.78

2-15-25A 7.78 10.85 4.55 2.62 2.61 -1.06 (Cs)
2-15-25B 11.13 11.95 2.92 3.10 0.37
2-15-25C 6.54 8.78 3.71 2.42 2.01

2-20 9.04 5.95 3.69 1.35 3.39
2-20-25A 6.65 7.14 5.61 3.12 2.08
2-20-25B 8.17 9.00 4.31 2.34 4.10
2-20-25C 7.03 10.72 3.17 1.26 1.64

2-25 7.04 7.43 6.97 5.37 1.50
3-10 9.11 7.63 4.98 4.23 1.81

3-15-25A 7.06 6.22 5.87 3.73 3.64
3-15-25B 8.47 9.17 5.28 3.61 2.13
3-15-25C 8.17 7.58 5.57 4.66 1.61

3-20 8.89 4.59 6.59 7.26 2.34
3-20-25A 8.60 6.26 9.18 5.94 1.90
3-20-25B 9.21 6.44 7.87 5.24 1.89
3-20-25C 7.99 6.10 3.24 2.03 2.32

3-25 6.01 7.08 7.09 5.43 2.11
4-10 8.95 5.58 4.05 2.34 2.54

4-15-25A 4.82 6.84 5.10 3.76 1.88
4-15-25B 10.93 9.58 4.93 3.35 0.98 -0.30 (Cs)
4-15-25C 9.94 6.37 6.53 4.21 2.38

4-20 6.86 9.76 3.45 2.91 1.46
4-20-25A 8.03 8.61 4.62 3.16 2.54
4-20-25B 8.68 6.62 5.89 2.27 3.48
4-20-25C 6.17 7.62 4.43 3.24 1.70

4-25 3.64 11.19 2.30 3.02 -0.73 -0.73(EG)

Table 7.9: 200 loads and availability linked to duration: test (Z > 1.65)
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7.8.3 Results for the availability linked to departure city range

Info LB EEVS UB

Inst./Alg. O∗16 O∗1 EG Cs T R30 O∗4

5-15-25 A 222.0 0 73.6 80.0 79.2 100
6-15-25 A 156.1 0 78.6 90.8 89.7 100
7-15-25 A 171.0 0 57.2 68.0 70.7 100
8-15-25 A 187.3 0 54.3 13.8 53.4 100
5-15-25 B 153.1 0 57.7 61.2 81.6 100
6-15-25 B 165.7 0 55.8 42.8 60.3 100
7-15-25 B 194.7 0 56.5 60.4 61.0 100
8-15-25 B 201.4 0 86.7 60.8 100.0 100
5-15-25 C 192.4 0 64.1 53.8 78.8 100
6-15-25 C 125.9 0 62.7 78.3 88.0 100
7-15-25 C 179.2 0 63.9 49.6 70.4 100
8-15-25 C 192.0 0 47.0 20.0 63.5 100
5-20-25 A 195.1 0 63.9 45.2 65.9 100
6-20-25 A 153.8 0 52.1 54.4 74.3 100
7-20-25 A 253.9 0 38.6 32.1 44.5 100
8-20-25 A 225.7 0 7.3 -36.5 21.9 100
5-20-25 B 141.9 0 62.9 33.2 68.4 100
6-20-25 B 147.4 0 62.7 53.4 74.2 100
7-20-25 B 176.7 0 52.1 52.7 66.1 100
8-20-25 B 165.1 0 49.8 25.6 54.2 100
5-20-25 C 171.7 0 51.4 61.2 67.7 100
6-20-25 C 215.3 0 39.1 23.6 56.1 100
7-20-25 C 142.9 0 53.6 54.0 61.3 100
8-20-25 C 150.3 0 67.3 41.7 71.3 100
Average 178.4 0 56.6 46.7 67.6 100

Table 7.10: 150 loads and availability linked to city range: performance in percent-
age

From these results, one can notice that:

• Neither the probability distribution, nor the graph types or ranges appear to
be discriminating parameters.

• The subtree algorithm T R30 provides the best value except twice for Cs and
once for the expected value scenario EG, but it never under-performs.

• The average performance of T R30 remains around 2/3 of the gap between O∗1
the myopic policy and O∗4 the policy based on the fully revealed information.

• The subtree algorithm T R30 is equal to the upper bound O∗4 once.

• The expected value of the perfect and tail information (EVPI, EVTI) remain
high on average 110.7%, 78.4%.
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• The expected value scenario algorithm EG (EEVS) performs better than pre-
viously, only 11% behind T R30.

• So, the expected value of the stochastic solution (EVSS) decreases (11.1%).

µπ(1) > µπ(2) O∗4 > O∗1 O∗16 > O∗5 O∗4 > EG O∗4 > T R30 T R30 > EG T R30 > π∗

5-15-25 A 8.91 12.72 3.14 2.40 0.78 -0.10 (Cs)
6-15-25 A 9.29 9.65 3.98 1.87 2.41 -0.27 (Cs)
7-15-25 A 6.00 5.25 3.61 3.09 1.39
8-15-25 A 4.57 5.02 3.01 3.79 -0.08 -0.08 (EG)
5-15-25 B 10.06 5.54 4.40 2.15 3.74
6-15-25 B 6.78 7.34 5.00 3.96 0.50
7-15-25 B 6.25 7.70 3.77 3.18 0.49
8-15-25 B 8.37 9.84 1.15 0.00 1.81
5-15-25 C 7.87 7.37 3.58 1.65 1.39
6-15-25 C 10.18 7.16 6.40 3.80 4.26
7-15-25 C 6.95 9.22 3.98 2.97 0.73
8-15-25 C 5.99 9.12 4.27 3.59 1.44
5-20-25 A 7.69 10.11 3.87 3.30 0.22
6-20-25 A 10.46 8.99 4.33 3.32 2.77
7-20-25 A 4.47 6.82 3.61 3.11 0.48
8-20-25 A 4.00 5.74 4.46 3.57 0.62
5-20-25 B 6.39 4.27 3.13 2.78 0.75
6-20-25 B 8.12 7.11 5.54 3.05 1.43
7-20-25 B 7.98 9.37 4.64 3.16 1.32
8-20-25 B 9.60 8.88 5.90 5.42 0.51
5-20-25 C 7.00 7.68 4.92 4.10 1.99
6-20-25 C 7.53 9.85 5.67 3.52 1.66
7-20-25 C 5.80 5.13 3.72 3.51 0.97
8-20-25 C 7.91 7.64 4.42 4.04 0.59

Table 7.11: 150 loads and availability linked to city range: test (Z > 1.65)

One can check that:

• The subtree algorithm T R30 is never outclassed but outclasses 7 times the
expected value scenario algorithm EG.

• The fully revealed information algorithm over the rolling horizon O∗4 always
outclasses T R30 except once, i.e. the expected value of the accessible infor-
mation (EVAI) remains relevant.

The subtree algorithm T R30 still outperforms EG (EEVS), even if the relative
performances and also the expected value of the stochastic solution (EVSS) de-
crease when the probability distribution is linked to the departure city range instead
of the trip duration.
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7.8.4 Preliminary conclusions

From the previous results, we can conclude that the subtree algorithm including 30
calibrating scenarios T R30 is usually the best performing algorithm. It outclasses
all other algorithms (Opt, Mod, Cs, RE∗) while it is not outclassed itself. It closes
approximatively by 2/3 the gap between the lower bound provided by the myopic
algorithm O∗1 and the upper bound issued from the algorithm using the fully re-
vealed information over the rolling horizon O∗4. This proves that the expected
value of the multi-period model (EVMPM), which measures the gap between the
two bounds, is important and that information about the projected orders might be
useful to close this gap. Other tests show also that T R30 always outclasses O∗1
proving the interest of using the information from the rolling horizon. Unfortu-
nately, it statistically reaches the upper bound O∗4 only a few times. This means
that the stochastic information is useful but not sufficient to equal the performances
of an a-posteriori solution assessing the knowledge of the deterministic information
over the rolling horizon, the accessible information. So, the expected value of the
accessible information (EVAI) remains significant. In the same sense, by observ-
ing the gap between algorithms based either on fully revealed information over the
rolling horizon O∗4, or on fully revealed information over the whole horizon O∗16,
we see that the tail information (EVTI) remains high. One can conclude that in-
creasing the rolling horizon length might be useful. But in practice, this length may
be constrained by the commercial process and may not be increased on demand.
The expected value scenario algorithm EG that provides the expected value of the
expected value solution (EEVS) performs well. Nevertheless, EG is usually left
behind the subtree algorithm T R. So, the expected value of the stochastic solution
(EVSS) is high, meaning that using the stochastic information based on the proba-
bility distribution is profitable. Finally, the results show that the expected value of
the perfect information (EVPI) is high. One cannot conclude that this gap leads to
some room for improvement for the algorithms as the value of the best policy of the
stochastic problem over the rolling horizon µπ∗ could be by far different from the
policy for the fully revealed deterministic problem. Hence, we insist on highlight-
ing that EVPI, EVTI, EVAI do not measure the quality of the algorithms but the
interest to increase the rolling horizon length or to acquire deterministic data over
the rolling horizon.
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7.8.5 Subtree algorithm robustness analysis

In practice, it may be hard to determine p j (i.e., the exact probability distribution
of a specific load), as it can only be derived from the aggregation of historical data
or from expert opinions. Therefore, it is important to analyze the sensitivity of the
results to the exactitude of the valuation of the distribution. We call this process “ro-
bustness analysis” in the present framework. Except Opt, which radically rounds up
to 1 any outcomes of the probability distribution, meaning that Opt does not depend
on the probability distribution at all, all other algorithms are based on a presupposed
knowledge of the probability distribution p j which is a strong assumption. If we do
not know the exact probability distribution, a strategy should be set up to still per-
form efficiently with an approximate probability distribution. Consequently, tests
were performed when the probability p j used to generate the tests scenarios were
set to 20% or 80% while the probabilities p′j used to generate the subtrees were is-
sued from distributions assuming respectively 20%, 50% or 80% of load availability.
Consequently, the robustness in this case is linked to the ability of the algorithm to
still perform when under or over-estimating the load availability. Moreover, the re-
verse situation of an over (80%) or under (20%) estimation of the distribution p′j in
the generation of the subtree compared to an average real distribution of 50% for
the load parameter p j was also tested (see table 7.12). The following results from
table 7.12 show the performances of various algorithms in percentage between the
myopic planing O∗1 considered as 0% and O∗4 representing the fully revealed in-
formation over the rolling horizon. Algorithms EG50 represents the expected value
scenario algorithm calibrated with a 50% distribution. The subtree algorithm T RX

30
represents the subtree algorithm T R30 calibrated with a X% distribution. So, the
calibrating probability p′j equals X . Instances are based on 2 graphs 15-25 A and
20-25 A. A label d−Y or w−Y is added for the distribution which depends either
on the duration d or the city range w. Y % represents the distribution parameter of
the effective distribution, i.e. the real probability Y = p j.
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Info LB EEVS UB

Inst./Alg. O∗16 O∗1 EG50 T R20
30 T R50

30 T R80
30 O∗4

d-20-15-25 A 361.4 0 25.2 61.9 65.0 38.2 100
w-20-15-25 A 283.7 0 34.5 87.2 72.5 -0.1 100
d-20-20-25 A 229.0 0 31.9 70.5 45.3 35.6 100
w-20-20-25 A 298.4 0 3.7 -7.0 9.7 6.7 100
Average 20 293.1 0 23.8 53.2 48.1 20.1 100

d-80-15-25 A 152.6 0 91.0 71.4 111.2 106.1 100
w-80-15-25 A 217.0 0 44.4 43.1 87.1 87.4 100
d-80-20-25 A 129.7 0 85.3 47.5 96.1 99.3 100
w-80-20-25 A 184.4 0 20.8 39.2 45.4 47.2 100
Average 80 170.9 0 60.4 50.3 84.9 85.0 100

d-50-15-25 A 201.6 0 49.1 48.0 79.1 59.2 100
w-50-15-25 A 187.3 0 54.3 21.9 53.4 35.8 100
d-50-20-25 A 145.1 0 34.8 47.5 66.0 43.3 100
w-50-20-25 A 225.7 0 7.3 10.3 21.9 -17.6 100
Average 50 189.9 0 36.4 31.9 55.1 30.2 100

Table 7.12: 150 loads and robustness of distribution parameter: performance in
percentage

One can notice that :

• The expected value scenario algorithm EG50 under-performs.

• Numerically, no calibration of T RX
30 is robust to severe variations against re-

ality, except T R50
30. But any T RX

30 still provides a positive value on average as
compared to a myopic policy.

• A trend shows that the better the calibration X sticks to reality Y , the better
the results are.

• When the probability parameter increases in reality, meaning that Y is high,
T RX

30 fills the gap and sometimes overtakes the practical upper bound O∗4.
Conversely, when the probability parameter decreases in reality, meaning that
Y is low, T RX

30 is close to the lower bound O∗1. So, the expected value of the
accessible information (EVAI) decreases with the probability parameter Y .

• X = 50% is a compromise setting for T RX
30 that resists to under and over

availability in reality. T R50
30 avoids losses due to an underestimation (T R20

30) or
overestimation (T R80

30) of the availability parameter in the calibration during
the generation of the subtree scenarios.

Regarding the statistical significance, results are as follows (see table 7.13):

• The subtree calibrated with a probability parameter of 50%, T R50
30, is never

outclassed. Moreover, T R50
30 often outclasses T R20

30 and T R80
30 for Y = 50%.
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• Logically, T R20
30 or T R80

30 are often outclassed when the reality is contrary to
their estimation.

• Sometimes T R50
30 or T R80

30 reach the upper bound for Y = 80%.

As a consequence, it is recommended in practice to try to approximate the real
probability distribution Y starting from a calibration distribution X = 50%. In case
of an unstable probability distribution, it is better to stick to X = 50% in the algo-
rithmic setting.
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7.8.6 Subtree algorithm sensitivity to horizon length

Another drawback, that can happen in practice on the probability distribution is the
reduction of the number of forecasting periods inside the rolling horizon. In that
case, the interest for a sophisticated algorithm such as the subtree one might de-
crease. Taking back results from table 7.6, tests were performed for T R30 with a
reduced rolling horizon length of 3 and 2 periods instead of 4 initially. The la-
bel T R30−H3 in the following table stands for the subtree algorithm T R30 with a
rolling horizon H of 3 periods. The value for the expected value scenario EG is still
evaluated with a 4 periods rolling horizon length.

Info LB EEVS UB

Inst./Alg. O∗16 O∗1 EG T R30−H2 T R30−H3 T R30−H4 O∗4

1-10 120.4 0 37.3 33.3 42.1 58.2 100
1-15-25-A 153.0 0 38.4 30.7 53.6 70.2 100
1-15-25-B 153.8 0 49.2 56.0 63.4 75.5 100
1-15-25-C 176.0 0 67.1 47.4 74.7 85.2 100

1-20 135.0 0 52.5 44.4 60.8 71.0 100
1-20-25-A 167.8 0 62.4 47.7 65.4 78.1 100
1-20-25-B 149.6 0 46.2 21.4 55.7 60.0 100
1-20-25-C 199.8 0 24.1 34.7 55.8 67.9 100

1-25 164.9 0 7.9 37.3 47.1 50.6 100

Table 7.14: 150 loads and horizon length parameter: performance in percentage

The subtree algorithm always with 4 (and sometimes with but 3 periods in the
rolling horizon) outperforms the expected value scenario algorithm EG. So, the
expected value of the stochastic solution EVSS is already positive with a shorter
rolling horizon length. Providing an extra-period is valuable as T R30−H4 > T R30−
H3 > T R30−H2 > O∗1. Consequently, the subtree is resilient to a false valuation
of the probability distribution or a reduction of the rolling horizon length.

7.9 Conclusions

In this chapter, we present a methodology to tackle stochastic multi-period prob-
lems in transportation which are often reduced to a sequence of mono-period de-
terministic models in the scientific literature and practice. In this kind of settings,
several decision policies have to be compared; firstly with the bound provided by
the myopic optimization over the deterministic part of the horizon; and secondly
with the bounds generated by the a-posteriori optimization using the deterministic
information over the rolling and the whole horizon. Using the expected value of the
expected value solution and a toolbox of easily implementable algorithms, one can:
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Prove the managerial benefit a multi-periods model; Evaluate the profit of using the
stochastic information; Measure the expected value of perfect information. Sce-
nario simulations make it possible to statistically validate numerical results and also
to differentiate the performances of algorithms. In the present vehicle assignment
example, a commercial LP solver fortunately provides an optimal integer solution
to the subtree formulation. Moreover, this methodology and algorithmic develop-
ments significantly close the gap between the myopic and a posteriori bounds in
a wide range of datasets and for several probability distributions and graphs. Fur-
thermore, even if the performances slightly decrease on average, the subtree algo-
rithm facing a probability distribution which deviates from the calibration one is
robust when using a default 50% calibration parameter. Finally, despite the fact that
the framework does not ensure quantitative results in advance, this pragmatic and
generic approach is flexible and can be applied in a systematic way for other logis-
tical problems. This leads to measure several values of information which might
imply to modify the booking process or to valuate the benefit for using easily im-
plementable scenario-based algorithms.
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Chapter 8

Conclusions and perspectives

8.1 Conclusions

Finalizing the thesis requires to point the contributions brought by the research ac-
cording to the thesis subject proposed in the first chapter. It is also important to show
the limits of what has been performed and what could be done in future research by
depicting perspectives.

In the second chapter, the situation of multi-period stochastic optimization prob-
lems in transportation is analyzed and positioned within the scientific literature.
Even if some works in transportation management have investigated multi-period
models or stochastic optimization problems, the intersection of these three fields
is still sparse and consequently a prospective area of research. This sector suf-
fers from: a lack of standardization on the terminology, variations in the models
tackled, few benchmark instances, diverse ways to report results and to assess the
algorithmic performances. This does not lead to easy comparisons among models
and algorithms. A preliminary contribution of the thesis relies on this statement and
on proposing a methodology to face this situation.

In the third chapter, which focuses on problems in a multi-period deterministic
environment, successive theoretical notions are described in order to formalize the
rolling horizon procedure. The rolling horizon parts and sizes are discussed as well
as the dynamism of the rolling process. Then, the inherent warm-up and end-of-
horizon biases are explained. Moreover, a-priori and a-posteriori bounds and several
concepts of value of information are defined and some new ones are proposed as
contributions. All these bounds and information values are reported in a chart for
visualization. This leads to an understandable managerial tool to evaluate the benefit
of dealing with multi-period problems. Even if this framework is mostly a blend of
previously known notions, some new theoretical ones have been proposed and it is
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the first time that they are put together in such an explicit representation.

The fourth chapter states advantages and drawbacks of the algorithmic tech-
niques proposed to deal with stochastic optimization problems. Several scenario-
based models and related algorithms are depicted and used for simulation. This
refer to mono-scenario approximation, multiple scenario approaches and subtree
optimization. The value of the expected value solution and the value of the stochas-
tic solution are added to the decision framework. They allow managers to evaluate
the necessity of dealing with stochastic information and of using complex stochastic
optimization methods. These policy values and in particular the policy based on the
expected value scenario solution can be reported in the chart including bounds and
information values. As a contribution, a complete visualization framework aggre-
gating together all these notions is proposed.

In the fifth chapter, the statistical validation of policy performances is consid-
ered. Previous notions from the literature are evoked as a survey. Advantages and
drawbacks of these performance measurements are highlighted. This leads to pro-
pose a systematic validation methodology to check the statistical significance of
differences between policies. This allows to validate the selection of an optimiza-
tion strategy among others and to evaluate its performance by comparing the policy
values to the bounds. Even, if the statistical test is standard, its integration and repet-
itive utilization in the experimental process in this field of operations research can
be considered as a valuable contribution. Moreover, the importance of robustness
analysis which accounts for the variations of the projected probability distributions
is brought to light for the final selection of the optimization tool.

In the second part of the thesis, in chapters 6 and 7, two applications that were
the supports for the development of the methodology are presented. The process
leading to the methodology started from the field according to an inductive process.
Therefore, the chapters do not comply formally with all the aspects of the submit-
ted methodology which was issued from trials and errors while dealing with these
applications.

As practical contributions, both chapters propose new problems, formulations
and solution approaches, and they draw conclusions on performing algorithmic poli-
cies.

The first application proposes and tests solution methods for a vehicle loading
problem. A simple heuristic based on a single scenario optimization performs very
well. The selected heuristic is robust and drastically closes the gap between the my-
opic and the a-posteriori bounds. Hence, the multi-period stochastic problem gently
reduces to a timeless deterministic optimization one. This article is published. The
scientific contributions are a new model, its formulation and an efficient policy.
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The second application deals with a vehicle assignment problem. The prob-
lem is depicted and deterministic formulations are proposed to solve scenario-based
models approximating the stochastic problem. Mono-scenario approximations and
multiple scenario approaches are described and applied on various instances. Re-
sults are reported and this leads to eventually propose a more complex subtree op-
timization algorithm which closes on average two-thirds of the gap between the
a-priori and a-posteriori bounds. Moreover, this algorithm statistically outperforms
the expected value solution. This proves the benefit of more sophisticated optimiza-
tion techniques in some cases. Beside this, the subtree algorithm calibrated with a
50% probability distribution is not outclassed by other policies under variations of
the probability distribution; i.e., the subtree algorithm leads to a robust policy. Fur-
thermore, practically, the subtree formulation is solvable by a commercial solver as
in practice, the optimal integer solution is provided in a few seconds by the optimal
solution of the linear relaxation of the problem. Similarly to the previous applica-
tion, this research proposes a new model, two formulations and a performing policy.

As a summary, both applications are compared in the following table 8.1 to
demonstrate that the generic methodology for multi-period stochastic optimization
problems can be applied to various transportation settings.
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Criteria Application 1 Application 2
Problem name Vehicle loading Vehicle assignment

Stochastic parameter Release dates Load availability
Probability distribution % per period in a TW % in 1 period

Stochasticity characteristic Discrete Discrete
Routing importance Low High
Loading importance High None

Instance classes Natural Theoretical
Horizon length 20 Periods 20 Periods

Rolling horizon length 4 Periods 4 Periods
Deterministic periods [t] [t, t+1]

Action period Current period Current period
Frozen period None None

Objective function Min cost Max profit
Temporality in formulation Preprocessed Preprocessed

Preprocessing Cheapest period Infeasible links
Solution technique Cplex default Cplex default
Branch & Bound Yes None LP∼= IP

Complexity NP-Hard Network flow
CPU Time per decision period 0.5-13 sec 1-5 sec

Variables Binary Binary
Warm-up None (low influence) 1 period

End-of-horizon cost per ton sent loaded trips
Number of calibrating scenarios K 10 10 and 30

Sensitivity analysis on K 6-8-10...20 10-30-50
EVMPM High High

EVPI Low High
EVAI Low High
EVTI Low High
EEVS High High

A posteriori bound O∗T O∗ O∗16
A posteriori bound O∗H O∗(4) O∗4

Myopic bound O∗RH LO O∗1
Expected value scenario Outclassed Second best outclassed

Modal value scenario Outclassed Outclassed
Optimist scenario Not-outclassed Outclassed

Optimism definition At the earliest Everything available
Consensus Outclassed Outclassed

Restricted expectation Not-outclassed Outclassed
Subtree Intractable Best

Robustness Optimist Independent T R calibrated 50%

Table 8.1: Applications : a comparison
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Actually, one can see that opposite characteristics can be tackled:

• transportation problems focusing on loading or routing

• NP-Hard or polynomially solvable formulations of the deterministic model

• minimization or maximization objective functions

• various levels for the values of information

• various gaps between the policy values and the bounds

• relative performances of mono and multiple scenario approaches

As a general contribution, this thesis covers a broad area of the scientific re-
search field, including theoretical descriptions of multi-period and stochastic prob-
lems, statistical validation of results and managerial advices. Moreover, the applica-
tions propose interesting problem formulations and performing robust policies. So,
from theory to practice, this thesis brings original contributions and a reproducible
experimental framework.

Finally, as most simulation algorithms proposed in this thesis are based on
the optimization of a deterministic model, switching to the multi-period stochas-
tic model might not require much efforts for many well-known problems. Indeed,
this next step only requires some data management: a dynamic process setting, a
scenario generator, a statistical validation procedure, a set of bounds and several
values of information. Doing so, one gets for free several mono-scenario optimiza-
tion policies and with a few developments, consensus and restricted expectation
approximations. As a consequence and major contribution, the methodology pro-
posed in this thesis might serve as a generic sequence for researchers to switch from
mono-period deterministic problems to multi-period stochastic ones.
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8.2 Perspectives

The perspectives opened in this thesis are quite wide as the present work entered
many domains: problems, models, formulations, algorithms, multi-period decision
making, stochastic optimization, simulation, scenario generation, bounds, statistical
validation, robustness analysis and policy selection. In transportation, there is still
much to be done in all these domains. However, for the operational research com-
munity, as a recommendation, it might be of interest to standardize the description
of the dynamism of multi-period or on-line problems. Indeed, the dynamic part is
not always explicitly described. Another improvement would be to present results
together with myopic and a-posteriori bounds and to use a common statistical val-
idation technique for the results. Readers should tend to have similar requirements
for modeling, results presentation and statistical validation.

It would also be useful if warm-up and end-of-horizon effects could be analyzed
more closely in order to define good practices to define a measurable steady state.
Therefore, a standardized simulation framework could be of high interest.

Moreover, subtree optimization seems to be a promising optimization technique.
As it often suffers from computational complexity, it would be interesting to develop
more efficient solution techniques for subtree optimization such as column genera-
tion taking into account the structure of the non-anticipativity constraints.

Models and algorithms dealing with correlated and/or continuous probability
distributions should also be of interest. As another option, problems with multiple
stochastic parameters could also be modeled, e.g. vehicle routing problem with
stochastic customers, stochastic demand and stochastic transportation times, but this
seems more prospective than a short-term perspective.
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