
Experimental modal analysis of a beam travelled by a moving mass using Hilbert
Vibration Decomposition

Mathieu BERTHA, Jean-Claude GOLINVAL
Aerospace & Mechanical Engineering Department, Faculty of Applied Sciences, University of Liège, Liège, Belgium
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ABSTRACT: In this paper the problem of modal identification of time-varying system is investigated. To do so, a technique
based on the sifting process of the Hilbert Vibration Decomposition (HVD) method is presented. The key idea is to estimate the
instantaneous frequency of the dominant mode, to extract its corresponding component by demodulation of the recorded signals
and then to iterate with the subsequent dominant mode. In the case of multiple recorded signals, a source separation method is
used as a preprocessing step to facilitate the identification of the instantaneous frequency for the following demodulation step. To
illustrate the method, an experimental set-up consisting in a beam travelled by a non negligible mass is considered. The whole
structure is randomly excited during the travel of the mass and some responses on the beam are recorded.
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1 INTRODUCTION

Recently the field of identification of time-varying systems has
known a great increase of interest.

As the dynamic response of time-varying systems is non-
stationary, identification of such systems requires appropriate
signal processing tools. One of the most known technique is
the Empirical Mode Decomposition (EMD) method [1] which
is able to split a signal into its mono-components.

More recently, the Hilbert Vibration Decomposition (HVD)
method [2] was introduced with the same goal of splitting
signals into their constitutive mono-components. The present
work is based on this technique.

The paper is organized as follows. First, the definition of
the Hilbert Transform and both the EMD and HVD methods
are briefly recalled in Sections 2, 3 and 4. Additional signal
processing tools are introduced in the HVD method to extend its
application to multiple degrees-of-freedom (MDOF) systems.
The proposed method is then applied to the identification of
a time-variant system. The system studied in this work is a
beam on which a mass, which is not negligible with respect to
the mass of the beam, is moving. This system is presented in
Section 6 together with the results of the modal identification
of the beam subsystem only (Linear Time Invariant (LTI)
system) which are used as reference modal properties. Finally a
conclusion ends the paper.

2 THE HILBERT TRANSFORM

For seek of clarity, the definition of the Hilbert transform along
with some of its properties which will be used later in the EMD
and HVD methods are briefly recalled.

The Hilbert transform is a particular transform that remains
in the same domain as the processed signal (the time domain in
our case). It is defined as the convolution product between the
signal and the function h(t) = 1

π t :

H (x(t)) =
1

π
p.v.
∫ +∞

−∞

x(τ)

t− τ
dτ (1)

in which p.v. stands for the Cauchy principal value of the
integral in (1). It results in a signal which is phase shifted by
−π2 radian. Thus the analytic form of the initial signal is built by
adding the imaginary unit times the Hilbert transform of itself,
i.e.

z(t) = x(t) + iH (x(t))

= a(t)eiφ(t), (2)

where a(t) and φ(t) are instantaneous amplitude and phase of
the signal, respectively. The instantaneous frequency can then
be calculated by taking the time derivative of the instantaneous
phase, ωk(t) = φ̇k(t), but it is important to note that it
is meaningful only if applied on mono-components. Indeed,
for instance in the case of a multi-components signal, the
instantaneous frequency calculated in such a way can be
occasionally negative.

The Hilbert Vibration Decomposition method described in
section 4 will make use of the analytic form of the signal to
perform separation into mono-components.

2.1 Properties of the Hilbert transform

To apply the Hilbert transform to modal analysis, let us recall
two properties of the Hilbert transform:
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Derivative: The Hilbert transform of the (kth-)derivative of a
signal is the (kth-)derivative of the Hilbert transform of this
signal:

H
(
dk x(t)

dtk

)
=

dk

dtk

(
H (x(t))

)
. (3)

The Bedrosian’s theorem [3]: If a signal is itself the product of
two signals, one slowly varying and the second fast varying,
the Hilbert transform of this product is equal to the slowly
varying signal times the Hilbert transform of the fast one under
a particular condition. The latter condition implies that, if one
computes the spectrum of the slow and fast signals, they must
not overlap. In that case, if f(t) and g(t) are the slow and
fast signals, respectively and if the non-overlapping condition
is fulfilled, one has:

H (f(t)g(t)) = f(t)H (g(t)) . (4)

Let us consider the equation of motion of a multiple degrees-
of-freedom (MDOF) time-variant dynamical system:

M(t) ẍ(t) +C(t) ẋ(t) +K(t)x(t) = f(t). (5)

Now let us add to equation (5) its Hilbert transform multiplied
by the complex unit. According to the properties (3) and (4), the
analytic form of the motion equation (5) writes:

M(t) ẍ(t) +C(t) ẋ(t) +K(t)x(t) = f(t)

+ i×H
(
M(t) ẍ(t) +C(t) ẋ(t) +K(t)x(t)

)
=H

(
f(t)

)
M(t) z̈(t) +C(t) ż(t) +K(t)z(t) = g(t)

(6)

3 EMPIRICAL MODE DECOMPOSITION AND THE
HILBERT-HUANG TRANSFORM

The aim of the EMD method is to sift a signal into constitutive
mono-components which are named Intrinsic Mode Functions
(IMFs). To this purpose, the signal x(t) is assumed to be
modelled as

x(t) =
∑
k

ak(t) cos(φk(t)) + n(t), (7)

where ak(t) and φk(t) are instantaneous amplitude and phase of
the kth mono-component, respectively. n(t) is added to model
the noise present in the signal.

In this method, the sifting process is based on cubic-spline
interpolation of all the maxima and all the minima in the signal
which lead to the upper and lower envelopes of the signal. The
mean of these two envelopes is then calculated and retrieved
from the signal. This process is iterated until the resultant signal
has a local mean equal to zero and until the number of extrema
and zero crossing does not differ of more than one. The two
latter conditions correspond to the definition of an IMF. Once
they are fulfilled, the IMF can be extracted from the initial signal
and the whole process is repeated for the extraction of the next
IMFs.

Once all the IMFs are extracted from the signal, it remains to
compute their instantaneous properties. This is done using of the
Hilbert transform (described in Section 2) and the analytic form
of the signal in addition to the EMD method. This combination
is called the Hilbert-Huang transform (HHT) [1].

4 THE HILBERT VIBRATION DECOMPOSITION
METHOD

The Hilbert Vibration Decomposition method [2] uses the
analytic form of a signal to extract its mono-components
from the highest to the lowest instantaneous amplitude. In
the following, one will refer to thedominant mode for the
component having the highest instantaneous amplitude.

The HVD method is based on the following analytic
representation of the multi-components signal in the complex
domain:

z(t) = a(t)eiφ(t)

=
∑
k

ak(t)e
iφk(t). (8)

This multi-components model in the complex domain can
be seen as a sum of rotating phasors corresponding to each
component, each one having its own amplitude ak(t) and
phase φk(t). So, the trajectory in the complex plane is driven
by the dominant mode (highest ak) around which the other
components add some oscillations. This is illustrated in Figure 1
in the particular case of a two-components signal with constant
amplitudes and frequencies. The way to recover the dominant

Figure 1. Trajectory in the complex plane of a two-components
signal with constant amplitudes and frequencies. The
second component causes the signal to oscillate around the
trajectory of the dominant component

component by the HVD method is to low-pass the phase
of the signal to filter the oscillations due to the secondary
component(s) and isolate the phase evolution of the dominant
mode. The latter is used for the extraction of the dominant
component by synchronous demodulation. Once the dominant
component is extracted from the signal, the process is repeated
for the extraction of new dominant components.
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5 EXTENSION OF THE HVD METHOD TO MDOF
SYSTEMS

5.1 Limitations of the EMD and HVD methods

To be used for modal identification purpose, the mono-
components provided by both the HVD and EMD methods
should ideally correspond to one particular (time-varying) mode
of vibration, but to this end both methods have a weak point.
Indeed, each method extracts the component having the highest
instantaneous frequency (in the EMD method) or amplitude (in
the HVD method). It follows that, if in the multi-components
mixture there are crossings in frequency or amplitude between
mono-components, both methods will follow these crossings.
It will result that the extracted components may contain jumps
between different vibration modes.

5.2 Improvement of the HVD method

To overcome possible jump phenomena mentioned in the
previous subsection, add-in are proposed to the algorithm
presented in [2] in order to to handle MDOF systems. The
main modification of the algorithm is the addition of a source
separation method. Indeed, using a source separation technique
on multiple channels helps to make a preparatory separation
of the modes. Then using a separated source as input to
the decomposition algorithm reduces the occurrence of mode
switching. Further, to apply the initial algorithm on a MDOF
system, one has to do it in parallel on each channel. Doing this in
that way results in one frequency curve (and the corresponding
demodulated component) per channel. In that case, the mode
switching phenomenon can easily occur and nothing ensures
that switches will occur at the same time. So, using one
separated source in the algorithm gives one frequency curve that
is used to demodulate its corresponding component on all the
channels simultaneously. The source separation technique used
in the present work is the Second-Order Blind Identification
(SOBI) method [4].

A second improvement in the initial algorithm is to replace
the synchronous demodulation step. In the initial algorithm the
instantaneous frequency was obtained by low-pass filtering of
the instantaneous frequency and then used for the synchronous
demodulation. In our case, the phase is first smoothed by a
trend detection technique (a Hodrick-Prescott filter [5] here)
and then used in a Vold-Kalman filter [6] for the extraction of
its corresponding component. It has the advantage to be able
to simultaneously demodulate multiple components even in the
presence of frequency crossings.

In short, the Hodrick-Prescott filter models a signal as a trend
τ(t), oscillatory components c(t) and noise n(t):

φ(t) = τ(t) + c(t) + n(t) (9)

Applied to the phase of the analytic signal, the goal is to extract
the trend of the phase, which corresponds to the phase of the
dominant mode. In the Hodrick-Prescott method, the trend,

τ(t), is found by solving an optimisation problem :

min
τ

[
T∑
t=1

(φt − τt)2 + λ
T−1∑
t=2

((τt+1 − τt)− (τt − τt−1))2
]
.

(10)
The first term penalizes strong deviations from the trend and the
second penalizes fast variations of the trend. λ is a smoothing
parameter which tunes the smoothness of the trend.

The signal model in the Vold-Kalman filter is the same as
in (8). The Vold-Kalman filter is able to recover the complex
amplitude ak(t) when the signal and the instantaneous phase
φk(t) are provided. It is composed of two equations, the data
equation:

x(t)−
∑
k

ak(t)e
iφk(t) = δ(t) (11)

and the structural equation:

∇ak(t) = εk(t), (12)

in which δ(t) and εk(t) have to be minimized to get the complex
envelopes ak(t) in the signal. In Equation (12), ∇ represents a
difference operator and, as in the Hodrick-Prescott filter, this
equation adds a smoothness constraint on the result.

Applying the Vold-Kalman filter leads to express the signal as
a series of complex envelopes multiplied by a time oscillation
function at an instantaneous eigen-frequency of the system.
The similarity with the modal expansion of linear systems is
evident and the complex envelopes obtained in that way may be
assimilated to instantaneous unscaled mode-shapes:

Vold-Kalman filter: x(t) =
∑
k ak(t) eiφk(t)

l l
Modal expansion: x(t) =

∑
k Vk(t) ηk(t)

(13)

Finally, the kth component of the signal is obtained by taking
the real value of the multiplication between the complex
envelope and its corresponding phasor:

xk(t) =Re
(
ak(t)e

iφk(t)
)

(14)

Once xk(t) is obtained, it is removed from the signal and
the next component can be extracted. The full algorithm is
summarized in the flow chart of Figure 2.

6 EXPERIMENTAL SET-UP AND TIME-VARIANT ANAL-
YSIS

6.1 Set-up description

The example of application considered in this study consists in
a beam loaded by a travelling mass, what confers to the system
its time-variant behaviour.

The beam is a 2.1 m long aluminium beam with a rectangular
cross section of 8× 2 cm. As boundary conditions, each end of
the beam is connected to a steel box through roller bearings in
order to enable free rotations at both ends. Finally, these boxes
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH (s1(t))

Phase extraction
φ(t) = 6 z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
x(k)(t), V k(t)

Sifting process
x(t) := x(t)− x(k)(t)

Figure 2. Flow chart of the method.

are fixed on springs to elevate the structure and to facilitate the
placement of the shaker and accelerometers under the beam.

The moving mass consists in a 3.475 kg steel block. With
respect to the mass of the beam (9 kg), it corresponds to a ratio
of 38.6 %.

The excitation set-up consists in one shaker applying a
random force on the structure. Seven accelerometers are placed
along the neutral axis of the beam to measure the bending
modes. Their locations are x = {0, 0.4, 0.7, 1.05, 1.4, 1.7, 2.1}
m, respectively, the reference frame being located at the left
hand side of the beam (as shown in Figure 3). Data acquisition
and signal processing are performed using the LMS SCADAS
Mobile and the LMS Test.Lab software [7, 8] respectively.

Figure 3. Setup description.

6.2 Modal testing of the unloaded beam (LTI system)

A standard modal testing is first performed on the unloaded
beam. To this end, the structure is excited by a random force and

1300 1005010 20 30 40 60 70 80 90 110 120
Frequency [Hz]

C
M

IF

o s
v v
v v

o o v v
v v s s
v v s v
v s s s
s s s s
s v s s

o s s s s
v s s s s
v s s s s
v s s s s
v s s s s
s s s s s
s s s s s
v s s s v
s s s s s
v s s s s
v s s s s
v s s s s
s s s s s
v s s s s
v s s s s
v s s s v
s s s s s
s s s s s
s s s s s
s s s s s
s s s s s
v s s s v
s s s s s
s s s s s
s s s s s
s s s s s
s s s s s

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Figure 4. Stabilisation diagram of the unloaded beam
(LTI system). Tolerances: 1% vector, 1% frequency, 1%
damping.

the dynamic response is recorded by the seven accelerometers.
Modal identification is performed using the PolyMAX method
[9] implemented in the LMS Test.Lab environment. The
resulting stabilisation diagram and the selected modes are
shown in Figure 4 and are listed in Table 1.

Table 1. Experimental eigen-frequencies and damping ratio’s
of the unloaded beam
Mode # Frequency fr [Hz] Damping ratio ζr [%]

1 9.80 0.22
2 30.43 0.10
3 39.23 0.20
4 53.32 0.08
5 99.22 0.07

The mode-shapes corresponding to the five first modes are
plotted in Figure 5.

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4 (e) Mode 5

Figure 5. Experimental mode shapes of the beam subsystem.

6.3 Identification of the time-varying system

In this section, the dynamics of the beam loaded by the
travelling mass is examined. To this end, the mass is slowly
pulled along the beam while the beam is excited by a random
force. To have a first idea of the time-varying dynamics of the
system, the wavelet spectra of the second sensor (at 0.4 m) is
given in Figure 6.
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Figure 6. Wavelet spectra of the response of the second sensor.
The frequencies of the beam subsystem only are shown as
white dashed lines.

In Figure 6, several properties can be observed. First, it
appears that the first mode (close to 10 Hz) is not significantly
excited in the response. This is also the case in the other
channels. Second, the frequency variation due to the motion
of the mass is clearly visible. It appears as variations with top
values very close to the frequencies of the unloaded beam. In the
measurement process, the mass was pulled at an approximately
constant speed so that the time axis can be broadly linked to the
longitudinal axis of the beam. For each mode in Figure 6 the
frequency oscillates between minimum and maximum values
and if we compare with the mode-shapes shown in Figure 5, we
can easily see that the times when the frequency comes back
to the frequency of the unloaded beam correspond to the time
instants when the mass is located to a node of vibration of the
structure. In that configuration, the mass does not participate to
the mode so that the system has the same properties as the initial
one. On the contrary, when the mass is located at an anti-node
of vibration, its participation to the system inertia is maximum
so that the frequency decay is maximum. The last thing that can
be observed is that higher the frequency is, more important is
the perturbation due to the mass.

6.4 Application of the proposed identification algorithm

The HVD method is applied here with the modifications
proposed in Section 5.2.

6.4.1 Extraction of instantaneous frequencies and compo-
nents

The first step is to apply the source separation technique
(the SOBI method is considered here) on all the channels. In
Figure 7, the first computed source is illustrated. It broadly
corresponds to the vibration frequency of the fifth mode. Next,
the instantaneous unwrapped phase of this source is calculated
by the use of its Hilbert transform and the analytic form of
the source. The unwrapping avoids the 2π radians jumps in
the phase calculation. The phase is then smoothed using the
Hodrick-Prescott filter to remove the perturbations due to the

residue of the other modes and the instantaneous frequency
is calculated by time derivation. The instantaneous frequency
corresponding to that mode is shown by the white dashed line
in Figure 7.

Time [s]

Frequency [Hz]

0 10 20 30 40
0

20

40

60

80

100

120

Figure 7. Wavelet spectra of the first source computed by the
SOBI method. The instantaneous frequency calculated by
the use of the Hilbert transform is shown as a white dashed
line.

Once the instantaneous phase is known, it can be used to
extract the corresponding component in each channel using the
Vold-Kalman filter and equation (14).

For instance, the resulting component of the fifth mode and
the modulus of its amplitude are shown in Figure 8.

0 10 20 30 40
−1

−0.5

0

0.5

1

Time [s]

Amplitude [g]

Figure 8. The extracted component corresponding to the fifth
mode (gray) in the second channel and its amplitude
(black) with respect to time.

Once computed on each channel, the mono-components are
subtracted from their corresponding signal and the algorithm is
repeated for the extraction of the next mode.

After four iteration steps, the modes from two to five are
extracted from the response of all accelerometers. The first
mode is not enough excited to be well extracted by the method.
The identified instantaneous frequencies of the system are
shown in Figure 9 with the wavelet spectra of the channel 2
as background support.

6.4.2 Correlation of instantaneous modal deformations

As described in Section 5.2, the Vold-Kalman filter is able
to calculate the complex amplitude corresponding to a phase
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Figure 9. Instantaneous frequencies identified by the method
after four iterations. Numbers on the right vertical axis
indicates the order of extraction.

signal. With equation (13), we have seen than the complex
amplitudes can be seen as unscaled mode-shapes.

In the case of linear time-variant systems, the natural
frequency and mode-shape associated to a specific complex
amplitude and phase signal vary with time. To have an idea
of the correlation between the reference mode-shapes (those
calculated on the LTI unloaded beam) and the identified time-
variant mode-shapes (taking into account the moving mass), the
MAC criteria is used instantaneously. It means that, at each time
instant, the MAC matrix is calculated between the reference
modes and the instantaneous mode-shapes. Because of the
additional time variable, the MAC layout has to be modified
for graphical representation. To do so, at each time instant,
the calculated MAC matrix is reshaped in a column vector.
Then all the MAC vectors corresponding to one time instant
are concatenated in a global TV-MAC matrix as illustrated in
Figure 10. Whereas in LTI modal analysis a unitary diagonal
corresponds to perfect matching, here a perfect matching will be
given by unitary rows facing the right couples of similar modes.

On that time-varying MAC matrix, some characteristics of
the system can be seen. First, the global shape of the matrix
shows that the time-varying mode-shapes remain more or less
well correlated to the reference mode-shapes. Second, looking
to one specific correlated row, some drops of correlation appear
periodically, especially on the highest frequency modes. These
drops are due to mode-shape distortions caused by the presence
of the moving mass. This is exactly the same phenomenon as
explained in Section 6.3 where the instantaneous frequencies
show their maximum decrease when the mass passes at anti-
nodes of vibration. Concerning the mode-shapes, it is also in
those configurations that the effect of the mass is the most
significant.

As an example, let us take the fourth time-varying identified
mode-shape which correlates with the fifth mode-shape of the
unloaded beam and let us consider the particular time instants
t = {6, 12, 20, 28, 34} s. The evolution of the fourth mode-shape
at these time instants is illustrated in Figure 11.

First it can be seen that the instantaneous mode-shapes taken

Time [s]

TV modes | Reference modes

 

 

0 10 20 30 40

1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
2 | 1
2 | 2
2 | 3
2 | 4
2 | 5
3 | 1
3 | 2
3 | 3
3 | 4
3 | 5
4 | 1
4 | 2
4 | 3
4 | 4
4 | 5
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Figure 10. Time-varying modal assurance criterion. The y-axis
label indicates the couple of modes which are compared
and the time dependency appears along the x-axis.

at t = 12 s (Figure 11(b)) and 28 s (Figure 11(d)) are similar to
mode 5 of the unloaded beam (LTI analysis). The corresponding
frequencies of these two snapshots are 97.97 and 97.15 Hz
to be compared with 99.22 Hz in the LTI analysis. The slight
difference in frequency when the mass is located at these nodal
positions may be due to the inertia properties of the moving
mass.

Now let us take a look on Figures 11(a), 11(c) and
11(e). These three configurations correspond approximately to
configurations where the moving mass is located successively
at each anti-node of vibration of the fifth LTI mode-shape.
It is at these positions that the added inertia force has the
maximal effect on the mode-shape, decreasing the amplitude of
the anti-node where it is located with respect to the other anti-
nodes. At these three time instants, the identified instantaneous
frequencies are 83.96, 82.88 and 82.74 Hz, respectively.

(a) TV-mode 4 at t = 6 s (b) TV-mode 4 at t = 12 s

(c) TV-mode 4 at t = 20 s (d) TV-mode 4 at t = 28 s (e) TV-mode 4 at t = 34 s

Figure 11. Fourth identified time varying mode-shape at
particular times when the mass is located at nodes or anti-
nodes of vibration. The undeformed beam and mode 5
from the LTI PolyMAX identification are plotted in dotted
and solid lines, respectively.

7 CONCLUSION

In this work, the Hilbert Vibration Decomposition was used to
perform the modal identification of a time-varying system. The
addition of a source decomposition method enable the treatment
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of multiple channels and decreases the risk of mode switching
present in EMD and initial HVD methods.

We were able to identify the modifications on the system
cause by the mass moving on the beam and its impacts on the
frequencies and mode shapes of the system.
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