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Spatial Data
Spatial data

e geographical positions

e non spatial attributes

0 E‘«“’,

Unemployment rate in the
Walloon region in Belgium

Example 1

b
Legend

3a8%

Google
ga12% [l12a16% [16220% MM20228%
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Qutlier definitions
Two types of outliers (Haslett et al. (1991)) :
e |ocal outlier : extreme behavior wrt neighbors

o global outlier : extreme behavior wrt all observations
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Objectives in dimension p

Global outliers detection

o Geographical components not used

e Usual outlier detection techniques can be used = not considered here

Local outliers detection

e Review of some existing techniques
e Suggestion of an adaptation

o Comparison on examples and simulations



Review

Considered Techniques

Chen et al. (2008)
Harris et al. (2014)
Filzmoser et al. (2014)

e A new proposal: regularized version of Filzmoser et al. (2014)

Review of Shubert et al. (2014)
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Chen et al. (2008)

Approach
Using Componentwise median and robust Mahalanobis distances

@ Preliminary global step: standardization

@® Local step: h; = zi — g(z;), for an observation z; € RP and the
componentwise median g(z;) over its neighborhood

© Global step: work on {h1,...,h,}

* Robust estimation of the general structure: (fi,2)
e Mahalanobis distances: MD,;, ¢(h;) = (hi — i)' X~ (hi — f1)
e If the distance is larger than a predefined threshold = local outlier



Harris et al. (2014)

Approach
Using Geographically Weighted PCA with robust estimator

@ Preliminary global step:
If the dimension is too large = Robust PCA to retain g components
® Local step:

Local PCA on each neighborhood

Comparison of local score distances with a theoretical quantile
Comparison of orthogonal distances with empirical quantiles
Comparison of PCA scores with empirical quantiles



Filzmoser et al. (2014)

Approach
Robust “Mahalanobis-type” detection

@ Preliminary global step: Example 2
Robust estimation of the general
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Filzmoser et al. (2014)

Approach
Robust “Mahalanobis-type” detection

@ Preliminary global step:

S Example 2
Robust estimation of the general

structure: (fi,3)
® Local step:
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Approach
Robust “Mahalanobis-type” detection

@ Preliminary global step:
Robust estimation of the general
structure: (f1, %)

® Local step:

e Centring the general structure on the

observation

Filzmoser et al. (2014)
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Approach
Robust “Mahalanobis-type” detection

@ Preliminary global step:
Robust estimation of the general
structure: (f1, %)

® Local step:

e Centring the general structure on the

observation
e Determination of the ellipsoid
containing the next neighbor

Filzmoser et al. (2014)
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Filzmoser et al. (2014)

Approach
Robust “Mahalanobis-type” detection

@ Preliminary global step:

S Example 2
Robust estimation of the general

structure: (fi,3)

@® Local step: P

e Centring the general structure on the '
observation

e Determination of the ellipsoid 2 : )

containing the next neighbor ‘ IR
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e If its tolerance level is larger than a L
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Regularized Filzmoser

Approach: adaptation of Filzmoser et al. (2014)
Work with local structure and only on most homogeneous neighborhoods

@ Local step:

e Estimation of the local structure: (i, 37)

e Homogeneity measure: det(X;)
® Global step: Selection of 10%, 20%, 30% or 40% of smallest values
© Local step: work only on selected neighborhoods

e Centring the Jocal structure on the observation
e Determination of the ellipsoid containing the next neighbor
e If its tolerance level is larger than an empirical quantile = local outlier

Local structure
Robust and regularized estimator



Robust and regularized estimator

Robust estimator : MCD
|H| Dien(Xi = XH)(xi — xu)"
for some specific subset H of {1,...,n}. = Not invertible if |H| < p

Regularized estimator
(i1, f) = argmax {log L(11, £) — AJ(Z 1)}
(1,x)
where J is a penalty function.

Regularized MCD!
(7, ) — argmax {log L{u. E) — M(E51))
(1H,ZH)
for the optimal subset H.

'Fritsch et al (2011).



Wallonia: 14 variables for the 262 municipalities

[l Chen et al.
[l Harris et al.
[l Filzmoser et al.

B Regularized Filzmoser
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What is the truth? = Use simulated data



Example 3 (Simulated data)?

Outliers for Filzmoser et al.
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Simulations

Generation of spatial data of p variables for n locations (grid or Wallonia)

Simulation set-up

e Matérn model to generate spatial data

e Contamination by swapping observations with high/small PCA scores®
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3Harris et al. (2014) or <5 =



Results

Performance criteria

e False Positive (FP): regular observations classified as local outliers.

o False Negative (FN): local outliers not detected.

Goal: minimization of FP and FN
Priority: minimization of FP
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Bivariate simulations on Walloon municipalities
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Ranking for these bivariate simulations

False Positive Error Rate

@ Filzmoser et al. (< 5%) © Chen et al.
@® Regularized Filzmoser (< 5%) O Harris et al.

False Negative Error Rate

@ Chen et al.
® Filzmoser et al. and its regularization
® Harris et al.



Simulations in 5 dimensions
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Conclusion of the preliminary simulations study

e Filzmoser et al. (2014) and its regularization perform better than the
two other techniques, especially on irregular spatial domains.

e The regularization tends to increase the FP rate wrt the intial technique,
but it gets better as the dimension increases.



Future work

The simulations study provides an objective way for comparing the detection
techniques but...
e Other configurations need to be considered (higher dimensions, other
correlation structures, other spatial set-ups,...).
e Other performance criteria might be useful to add to the FP and FN
measures.

e The real-life application should be further explored to interpret in an
economic way the local outliers detected.
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