Spatial data
Spatial data are characterized by n statistical units, with known geographical positions, on which p non spatial attributes are measured.

Example: A conflict measure in 42 African countries.

Spatial outlier
Haslett et al. [3] distinguishes two types of outliers in spatial data.
- A global outlier is an observation that might have non spatial attributes with significantly differing values wrt the majority of the data points.
- A local outlier is an observation that might have non spatial attributes with significantly differing values wrt its neighbors.

Covariance matrix estimator
• Minimum Covariance Determinant (MCD) estimator

$$S_H = \frac{1}{|H|} \sum_{i \in H} (x_i - \bar{x}_H)(x_i - \bar{x}_H)^T$$

for some specific subset \(H \) of \{1, \ldots, n\} that minimize the determinant.

This estimator is robust but not invertible if \(|H| < p\).

• Regularized estimator

$$\hat{\mu}, \hat{\Sigma} = \arg\max_{(\mu, \Sigma)} \left\{ \log L(\mu, \Sigma) - \lambda J(\Sigma^{-1}) \right\}$$

where \(J \) is a penalty function (e.g., trace, L1 or L2 norm). The covariance matrix estimator is invertible.

• Regularized MCD

$$\hat{\mu}, \hat{\Sigma} = \arg\max_{(\mu, \Sigma)} \left\{ \log L(\mu_H, \Sigma_H) - \lambda J(\Sigma_H^{-1}) \right\}$$

for the optimal subset \(H \).

Detection technique of Filzmoser et al. [1]
• Global outlier detection:
 (a) Estimate robustly the general structure: MCD over the whole dataset gives \((\hat{\mu}, \hat{\Sigma})\).
 (b) Compute Mahalanobis distances between the center and each observation \(x_i (i = 1, \ldots, n) \):

$$MD_{(\hat{\mu}, \hat{\Sigma})}(x_i) = (x_i - \hat{\mu})^T \hat{\Sigma}^{-1} (x_i - \hat{\mu})$$

(c) If the distance \(MD_{(\hat{\mu}, \hat{\Sigma})}(x_i) \) is larger than a chisquare quantile then \(x_i \) is considered as a global outlier.

Proposition 1 : parametric technique
This proposition is an adaptation of the technique presented by Filzmoser et al. [1] for the local outlier detection. Two improvements are proposed.

1. Use a local structure estimated separately on each neighborhood instead of the general one.
 As the size \(k \) of the neighborhood can be smaller than the dimension \(p \), the local structure has to be estimated by a robust and regularized estimator.

2. Instead of testing the local outlyingness of each observation, we suggest to focus only on the observations corresponding to a positively spatially autocorrelated neighborhood.
 The multivariate autocorrelation of a neighborhood is estimated by means of the determinant of the regularized MCD covariance estimator computed on the neighborhood and only the neighborhoods yielding the smallest values are selected.

Proposition 2 : non parametric technique
This non parametric detection technique for local outliers is based on depth functions [1].

As in the first proposition, local outlyingness is tested only on positively spatially autocorrelated neighborhoods. By definition the neighbors of a local outlier are “far” from it according to other observations.

To compare an observation \(x_i \) and its neighbors, let’s make \(x_i \) the deepest point (the center) by using the symmetrized dataset [1]. Then calculate the depth values of its neighbors in this new dataset.

If the \((\beta k)^{th}\) depth is too small or equivalently, if more than a proportion \(\beta \) of its neighbors are too far according to other observations then \(x_i \) is considered as a local outlier.

On going research
Some partial findings are:
- Restricting the detection to the positively spatially autocorrelated neighborhoods is necessary to avoid increasing the “false-positive” detection rate;
- The chisquare distribution is not a good approximation for the distribution of the “regularized” robust distances;
- The tuning of the parameters \((k, \beta)\) still needs to be improved.

References: