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Abstract

We present a parallel version of the otherwise sequential double sweep precondi-
tioner, used to accelerate the convergence of an optimized Schwarz domain decompos-
ition method. The method is based on the same sweeping strategy, yet applied on a
shorter scale and in parallel, on distinct groups of subdomains. The modified algorithm,
unlike the original one designed for layered decompositions, has the advantage of being
directly applicable to cyclic decompositions as well. The whole method is described in
terms of combinations of transport operators and is therefore suitable to both Helmholtz
and frequency-domain Maxwell problems.
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1 Introduction

The idea of sweeping for the solution of wave propagation problems in the frequency domain,
of the form (A +k?)u = 0, is quite natural, since it somehow mimics the physical phenomenon
of a wave propagating inside a medium. It is therefore not surprising that techniques inspired
by this observation have proved successful [1, 2]. In the slightly different context of Domain
Decomposition solvers for these problems, we have recently proposed the double sweep pre-
conditioner for the non-overlapping optimized Schwarz algorithm [3]. A limitation of the
method is the sequential nature of the sweeping process that makes the iterative part of the
solution less scalable on parallel architectures—the factorization of the subproblems remain-
ing fully parallel. This paper addresses that issue, by proposing a modification of the algorithm
to partially restore its parallelism.

2 Algorithms

The double sweep preconditioner was originally designed as the inverse of the iteration oper-
ator in the particular case of a layered decomposition, supposing that perfectly non-reflecting
operators are used as transmission condition. In that case, the matrix that represents the it-
eration operator is easy to invert. Since it is, like its inverse, made of transport operators that
involve the solution of subproblems, we give it an interpretation in terms of a combination of
such subproblems. It is a double sequence of solves, that we call the forward and backward
sweeps. That inverse is then used to precondition more complex problems [3].



Unlike the standard algorithm, the application of the preconditioner is sequential and ex-
ploits no more than 2 CPUs simultaneously, which is a very suboptimal use of the resources
if more CPUs are available. By performing the sweeps independently and concurrently over
smaller groups of domains, we still benefit of the long range sharing of information provided
by the sweeps, while reducing the idleness of the CPUs (Figure 1). Introducing a cut in a cyclic
decomposition makes it topologically equivalent to a layered one, making the preconditioner
readily applicable.
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Figure 1: Timelines of the double sweep preconditioner application without cuts (left) and
with 2 cuts (right). The white diamonds indicate solves performed in the iteration operator;
the black circles and squares indicate solves in the forward and backward sweeps, respectively.

Table 1 shows the number of iterations and an estimation of the normalized time required
to attain convergence (||r||/||ro|| < 107*) for the solution of a Maxwell problem in the chal-
lenging COBRA cavity benchmark. The standard algorithm (np) failed to converge, while the
(wall-clock) time to solution with the preconditioned algorithm (ds) decreases when cuts are
added, though too many cuts are detrimental (the reported times do not include subproblem
factorization).

#CPU 2 4 6 8 14 22
N. o] 1 2 3 6 10
d
N® 44 74 105 135 230 354
T 2024 1702 1680 1485 1610 1416

NP > 1000

70 |5 16016 \ > 8008 \ > 5339 \ > 4004 \ > 2288 \ > 1456

sol

Table 1: COBRA test case for Maxwell with 32 subdomains (N, cuts) at k = 314.16.
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