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The principle of sweeping to accelerate the solution of wave propagation prob-
lems has recently retained much interest, yet with di↵erent approaches (En-
gquist and Ying [2011], Stolk [2013]). We recently proposed a preconditioner
for the optimized Schwarz algorithm, based on a propagation of information
using a double sequence of subproblems solves, or sweeps (Vion et al. [2013],
Vion and Geuzaine [2014]). Although this procedure significantly reduces
the number of iterations when many subproblems are involved, the sequen-
tial nature of the process hinders the scalability of the algorithm on parallel
computer architectures. Here we propose a modified version of the algorithm
that concurrently runs partial sweeps on smaller groups of domains, which
e�ciently reduces the preconditioner application time on parallel machines.
We show that the algorithm is applicable to both Helmholtz and Maxwell
equations.

1 Non-overlapping optimized Schwarz algorithm

We consider the optimized Schwarz algorithm for the Helmholtz and Maxwell
equations. The algorithm makes use of impedance boundary conditions on the
artificial interfaces; although overlapping variants of it exist, we focus on the
non-overlapping version, with a partition of the domain into Nd subdomains
⌦

1iNd , such that [⌦̄i = ⌦̄ and with ⌃ij = ⌦̄i\ ⌦̄j the common boundary
between two adjacent domains. An iteration of the algorithm for Helmholtz
(see e.g. Peng et al. [2010] for the Maxwell formulation) is the solution of the
subproblems:

�(�+ k2)u(k+1)

i = 0 in ⌦i,

(@n + S)u(k+1)

i = g(k)ij on ⌃ij ,
(1)
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with boundary conditions on the external boundaries inherited from the orig-
inal problem. The iteration completes with the update relations:

g(k+1)

ij = �@nu
(k+1)

j + Su(k+1)

j on ⌃ij ,

= �g(k)ji + 2Su(k+1)

j .
(2)

The algorithm can classically be accelerated by rewriting it in a compact
form as a fixed point iteration involving an iteration operator A:

g(k+1) = Ag(k) + b. (3)

Its solution g satisfies the linear system Fg = b, with F = I �A and b the
right-hand side containing the contribution of the physical sources. Operator
F involves the solution of subproblems and the update of the interface quan-
tities gij ; as we will see in Section 2, it is non-symmetric, hence amenable to
a GMRes iterative solver. The optimal choice for the operator S used in the
transmission conditions is the Dirichlet-to-Neumann (DtN) map, as shown in
Nataf [2002]. It is a non-local operator, hence di�cult to manipulate in local
discretization methods like the Finite Element Method. The literature pro-
poses di↵erent local approximations of it, among which we choose a truncated
rational approximation of order (2, 2) (see Boubendir et al. [2012], Bouajaji
et al. [2014].)
In order to circumvent the di�culties associated with the so-called crosspoints
(points that are at the intersection of more than two subdomains), we will
consider two kinds of decompositions that naturally avoid them: layered or
1d-like decompositions, and cyclic decompositions around an object. Figure
1 shows basic examples of such decompositions.
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Fig. 1 Two topologies of a decomposed domain into non-overlapping subdomains, without
crosspoint: (a) ”layered” decomposition; (b) ”cyclic” decomposition around an object.
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2 Study of the iteration operator

Because the unknown g of the system can be regarded as a composite vec-
tor of unknown functions gij , the iteration operator F can be written as a
matrix F , whose coe�cients are operators acting on the interface functions.
They take as input a function defined on one side of a domain and transfer
the information over the domain, to the opposite interface, where a homoge-
neous transmission condition is imposed. We will refer to them as transport
operators. There are two transport operators defined on the i-th subdomain,
that we denote by Bf

i and Bb
i , where the f and b indices refer to the forward

or backward direction of the transfer. This distinction is important for what
follows, as we will see in Section 3 that the convergence of the algorithm can
be accelerated by propagating information over longer distances, simultane-
ously in the forward and backward directions.
We will first consider the case where the “true” DtN map D is used as trans-
mission operator, leading to a perfectly non-reflecting boundary condition
that lets the wave freely propagate outside the domain, without reflection.
The e↵ect of an imperfect transmission condition on the structure and the
properties of the operator will be considered in a second step. The matrix
writes, with the vector of unknown functions g = [g

12

, g
21

, g
23

, . . . ]T and a
layered topology of the decomposition:
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Even when the optimized Schwarz algorithm is used with the optimal choice
of transmission operator, its convergence is strongly impacted by the number
of subdomains Nd, and can become very slow for large numbers of domains.
This is classically understood as being caused by the local interactions of
the subdomains in the algorithm, that are able to exchange information only
with their direct neighbours at each iteration. There are situations, like in
waveguides, where the information needs to travel through all the domains
before the algorithm is able to build an acceptable solution everywhere. The
situation is even worse if the information is distorted while being passed
through a non-ideal transmission condition. That intuitive explanation is
supported by the spectral properties of the iteration operator, that is defective
(lacks a full basis of eigenvectors, while still being invertible) in the case of
exact DtN map, which is known to cause slow convergence of Krylov solvers.
With an approximate DtN map D̃ and large Nd, another source of poor
convergence resides in the fact that some of the eigenvalues get close to 0 for
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large Nd, leading to large condition numbers, while the operator can still be
considered close to defective.

3 Preconditioning strategy for convergence acceleration

We start from the principle that a preconditioner should be a good approxi-
mation of the inverse of the system to be solved, and observe that the inverse
of the matrix of the operator with exact DtN map can be easily obtained
via a recurrence relation, for an arbitrary number of subdomains. Therefore,
we design our preconditioner as the inverse of the ideal operator (4): F�1

D .
Its product with a vector can be obtained as a matrix-free routine that per-
forms a double sequence of subproblem solves, in the forward and backward
directions, hence the name “double sweep” preconditioner (Vion et al. [2013],
Vion and Geuzaine [2014]). This is made possible by the fact that we can give
an interpretation of the coe�cients of the inverse matrix, that are products

of transport operators B{f,b}
i , as the transport of information between dis-

tant subdomains. As the two sweeps are independent from each other, they
can be performed in parallel, as can be seen on the left diagram of Figure 3.
Because we do not need to know the exact nature of the transport operators,
the strategy is exactly the same for Helmholtz and Maxwell problems.
The e↵ect of the preconditioner on the spectrum of the preconditioned non-
ideal operator F

˜DF
�1

D is a strong clustering of the eigenvalues around (1, 0),
which ensures a good conditioning of the operator. That being so, the eigen-
vectors are now well distinct from each other, which enables fast convergence
of the modified algorithm.

4 Parallelization of the double sweep

An important shortcoming of the double sweep preconditioner is its sequential
nature, that destroys the scalability of the algorithm on parallel computers:
assigning each subdomain to a separate CPU makes the preprocessing and the
application of the iteration operator fully parallel, but these CPUs will remain
idle during most of the application of the sweeps. An alternative strategy is to
perform shorter sweeps over smaller groups of subdomains, independently of
the other groups, by cutting the long sequence into smaller ones. This method
still enables the sharing of information over longer distances than a single
domain, yet not over the whole domain as before. The advantage is of course
that the sweeps over each group can be performed simultaneously, therefore
partially restoring scalability. Consequently, one can expect a degradation
of the preconditioner performance compared to the original version, since it
approximates the inverse of the Schwarz operator less accurately. The timeline
of subdomains solves reported on Figure 3 highlights the improved level of
parallelism when using 2 cuts (right) instead of none (left).
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Fig. 2 Partial sweeps cover non-overlapping groups of domains, separated by the dashed
line. The position of the cut inside the domain is not important as the first and last domains
are not solved in our sweeps, as shown by the arrows.
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Fig. 3 Introducing 2 cuts in the double sweep preconditioner (right) enables parallel
execution of the partial sweeps, reducing the application time of the preconditioner without
cuts (left). The white diamonds indicate solves performed in the iteration operator; the
black circles and squares indicate solves in the forward and backward sweeps, respectively.
These time lines were obtained for the COBRA test case of Section 5, with 16 subdomains
and cuts in subdomains 6 and 11.

A similar preconditioning strategy can be followed when the domain is
decomposed as in Figure 1(b): introducing (at least) one cut in the cyclic
decomposition allows to use the double sweep preconditioner as is.

5 Numerical results

We present results obtained on three di↵erent test geometries: a straight 3d
(parallelepipedic) waveguide, a 3d S-shaped cavity (the COBRA benchmark
defined by the JINA98 workgroup) and the open 2d scattering problem by
a circular object. The first two are solved using a layered decomposition
while the third uses a cyclic decomposition. The COBRA is solved for both
Helmholtz and Maxwell, while the other two are solved for Helmholtz only.
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Earlier work (Vion et al. [2013], Vion and Geuzaine [2014], Boubendir et al.
[2012]) has shown that without preconditioner, the iteration count for such
problems typically grows linearly with the number of domains, and that with
the use of the double sweep it becomes almost independent for layered de-
compositions, provided that the approximation of the DtN map is su�ciently
accurate.
Tables 1–3 summarize the number of iterations required by each algorithm
to converge to the prescribed tolerance, together with an estimation of the
normalized times required for the completion of the algorithm. Provided that
at least 2 CPUs are alloted per group of domains, the time required for
the application of the standard Schwarz operator and the double sweep pre-
conditioner with Nd subdomains, Nc cuts and C

tot

CPUs (assumed evenly
distributed between the groups of subdomains) are approximately given, in
the case of a layered decomposition by:

T
Sch

=
Nd

C
tot

Tp and T
sw

(Nc) =

⇠
Nd �Nc � 2

Nc + 1

⇡
Tp,

with Tp the solution time for one subproblem (supposed identical for all
subdomains). Note that T

sw

would be doubled if only one CPU is available to
perform the double sweep per group of domains. Slightly di↵erent estimations
hold in the case of the cyclic decomposition. The total solution times for the

unpreconditioned and double sweep algorithms are then T (np)
sol

= TSchN
(np)
it

and T (ds)
sol

(Nc) = (T
Sch

+ T
sw

(Nc))N
(ds)
it .

Fig. 4 Geometry and typical decomposition of the 3d cobra cavity (JINA98) and 2d
scattering (unit sound-soft disc with Sommerfeld ABC at radius = 5m) test cases. They
di↵er by the topology of the decomposition (layered vs. cyclic) and by the type of wave
involved (guided vs. free.) The parallelepipedic waveguide (not pictured) has dimensions
0.91m⇥ 0.084m⇥ 0.11m, comparable to the COBRA.

Tables 1–3 show that in all cases the behaviour of the algorithm is similar.
The preconditioner strongly reduces the number of iterations, and thus the
number of overall linear system solves. Moreover, the parallel version of the
preconditioner makes it also an appealing proposition with respect to the
overall computational (wall-clock) time when the number of CPUs is smaller
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#CPU 2 4 6 8 14 22

Nc 0 1 2 3 6 10

N
(ds)

it

5 6 8 10 16 24

T
(ds)

sol

230 138 128 110 112 96

N
(np)

it

62

T
(np)

sol

992 496 331 248 142 91

#CPU 2 4 6 8 14 22

Nc 0 1 2 3 6 10

N
(ds)

it

116 153 174 188 241 308

T
(ds)

sol

5336 3519 2784 2068 1687 1232

N
(np)

it

766

T
(np)

sol

12256 6128 4086 3064 1751 1115

Table 1 Straight waveguide (left) and COBRA (right) cases for Helmholtz with 32 sub-
domains, k = 314.16 (relative residual decrease by 10�4).

#CPU 2 4 6 8 14 22

Nc 0 1 2 3 6 10

N
(ds)

it

21 34 48 62 104 160

T
(ds)

sol

966 782 768 682 728 640

N
(np)

it

448

T
(np)

sol

7168 3584 2390 1792 1024 652

#CPU 2 4 6 8 14 22

Nc 0 1 2 3 6 10

N
(ds)

it

44 74 105 135 230 354

T
(ds)

sol

2024 1702 1680 1485 1610 1416

N
(np)

it

> 1000

T
(np)

sol

> 16016 > 8008 > 5339 > 4004 > 2288 > 1456

Table 2 COBRA test case for Maxwell with 32 subdomains, k = 157.08 (left) and k =
314.16 (right) (relative residual decrease by 10�4).

#CPU 2 52 86

Nc 1 26 43

N
(ds)

it

24 27 31

T
(ds)

sol

4584 189 124

N
(np)

it

55

T
(np)

sol

3520 136 82

#CPU 2 52 86

Nc 1 26 43

N
(ds)

it

20 29 37

T
(ds)

sol

3820 203 148

N
(np)

it

85

T
(np)

sol

5440 210 127

Table 3 Scattering test case for Helmholtz with 128 subdomains, k = 6.28 (left) and
k = 25.13 (right) (relative residual decrease by 10�4).

than the number of subdomains, especially in the high frequency regime.
For example, in the challenging COBRA case for Maxwell, with 32 domains
on 8 CPUs (3 cuts), with k = 100⇡, the preconditioned version requires
135 ⇥ (32 + 2 ⇥ (32 � 2 � 3)) = 11610 system solves instead of > 1000 ⇥ 32
and runs about 3 times faster than the standard algorithm.

6 Conclusion

We have presented a double sweep preconditioning strategy for the optimized
Schwarz algorithm and a variant of it that performs the double sweeps in
parallel on groups of subdomains, rather than over all subdomains. Numer-
ical results highlight the potential of the approach for both Helmholtz and
Maxwell in the high frequency regime.
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