Structure-morphology relationship of polyphosphate containing polymer micelles

Stéphanie Vanslambrouck1*, Benoît Clément1*, Raphaël Riva1, Guy Broze1, Véronique Préat2, Daniel Molin1, Léo Koole1, Philippe Lecomte1* and Christine Jérôme1*

1Center for Education and Research on Macromolecules, University of Liège, B6a Sart-Tilman, B-4000 Liège, Belgium
2Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Université catholique de Louvain, 73 Avenue Mounier, B1.73.12, B-1200 Brussels, Belgium
3BioMIMedics Interreg EMR IV-A Consortium: Lead Partner Maastricht University
Universiteitsingel 50, 6229ER Maastricht, The Netherlands

Thanks to their biocompatibility, biodegradability and their structure similar to natural biomacromolecules, such as nucleic acids [1], polyphosphates are appealing polymers for biomedical applications. In contrast to polyesters, polyphosphate properties and functionality are easily tuned via the chemical nature of the lateral chains (R on the scheme). For example, varying the length of the alkyl chain allows adjusting the hydrophobicity of polyphosphates.

In this work, a series of amphiphilic PEO-block-polyphosphate copolymers were synthesized by organo-catalyzed ring-opening polymerization of cyclic phosphates [2]. Our work aims at changing the length and architecture of the lateral chain of polyphosphates. Our goal is to study the investigation of the influence of this structural modification (i) on the micellization of these amphiphilic copolymers in water, (ii) on the encapsulation in the core of these micelles of an hydrophobic drug and, finally, (iii) on the release of this drug.

Acknowledgements
This study was performed within the Interreg Euregion Meuse-Rhine IV-A consortium BioMIMedics (2011-2014). The University of Liège (Belgium), Maastricht University (the Netherlands), University of Hasselt (Belgium), RWTH Aachen (Germany) and Fachhochschule Aachen (Germany), together with several local small biotechnological enterprises cooperate in BioMIMedics and for this study with financial support of Interreg EMR and region Wallonie. P.L. is Research associate by the FRS-FNRS.