CRYSTAL CHEMISTRY OF SYNTHETIC $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}\left(M^{2+}=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb}, \mathrm{Ba}\right)$ BERYLLOPHOSPHATES

Fabrice DAL BO, Frédéric HATERT ${ }^{\S}$, and Maxime BAIJOT
Laboratoire de Minéralogie, B18, Université de Liège, B-4000 Liège, Belgium

Abstract

Four beryllophosphates with general formula $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}\left(M^{2+}=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb}, \mathrm{Ba}\right)$ have been synthesized under hydrothermal conditions at $200^{\circ} \mathrm{C}$. Their crystal structures were solved by direct methods and refined by full-matrix least-squares techniques on the basis of F^{2} for all unique reflections to agreement indices R_{1} of $2.3,4.8,1.5$, and 2.1%, respectively. $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ is monoclinic, space group $P 2_{1} / c, Z=4, a 7.809(1), b 8.799(1), c 8.309(1) \AA, \beta 90.51(1)^{\circ}, V 570.98(2) \AA^{3} . \mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ is monoclinic, space group $P 2_{1} / c, Z=4, a 8.000(1), b 8.986(1), c 8.418(1) \AA, \beta 90.22(1)^{\circ}, V 605.10(6) \AA^{3}$. $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ is monoclinic, space group $P 2_{1} / c, Z=4, a 8.088(1), b 9.019(1), c 8.391(1) \AA, \beta 90.12(1)^{\circ}, V 612.22(1) \AA^{3} . \mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ is hexagonal, space group $P 6 /$ $\mathrm{mmm}, Z=1, a 5.028(1), c 7.466(1) \AA, V 162.51(1) \AA^{3}$. The three first compounds are isostructural and show a paracelsian-type structure composed of a framework of corner-sharing BeO_{4} and PO_{4} tetrahedra. These tetrahedra are assembled in four- and eight-membered rings showing the typical UUDD and DDUDUUDU patterns, respectively. The $M^{2+}(\mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb})$ cation occurs in a distorted $7+3$-coordinated polyhedron located in the eight-membered ring. $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ and $\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ are isostructural with the minerals hurlbutite and strontiohurlbutite, respectively. The structure of $\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ consists of double layers of tetrahedra, which contain both Be and P in a $1: 1$ ratio. Inside the layers, the $(\mathrm{Be}, \mathrm{P}) \mathrm{O}_{4}$ tetrahedra form six-membered rings by sharing corners. The Ba atoms are located in very regular 12-coordinated polyhedra and connect two successive double layers. This Ba beryllophosphate is the synthetic counterpart of minjiangite, and shows similarities with the mineral dmisteinbergite, $\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, a hexagonal polymorph of anorthite. Other hydrothermal experiments were performed in order to establish the stability of these $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ compounds as a function of temperature and pH ; the results show that synthetic hurlbutite can crystallize in acidic as well as in basic conditions. Furthermore, these experiments show that the four title compounds are stable at high temperatures and pressures ($600^{\circ} \mathrm{C}, 1 \mathrm{kbar}$).

Keywords: beryllophosphates, hydrothermal synthesis, crystal chemistry, paracelsian-type structure

Introduction

Only 27 natural beryllophosphates are reported in the literature, occurring mainly in granitic pegmatites and resulting from the reaction of beryl with P-bearing hydrothermal solutions (Kampf 1992, Černý 2002). The formation of these minerals is highly dependent upon the pH , temperature, availability of specific alkali cations, and $\mathrm{Be}: \mathrm{P}$ ratio of the solution (Kampf et al. 1992). Despite their low abundance, beryllophosphate minerals crystallize in many structure types, characterized by different polymerization degrees of the $\mathrm{BeO}_{4}-\mathrm{PO}_{4}$ tetrahedra; these compounds form chain structures [fransoletite $\mathrm{Ca}_{3} \mathrm{Be}_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, väyrynenite, $\operatorname{MnBe}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})$], sheet structures [herderite, $\mathrm{CaBe}\left(\mathrm{PO}_{4}\right)(\mathrm{F}, \mathrm{OH})$, uralolite, $\mathrm{Ca}_{2} \mathrm{Be}_{4}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{3}$. $5 \mathrm{H}_{2} \mathrm{O}$], framework structures [hurlbutite, $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, babefphite, $\mathrm{BaBe}\left(\mathrm{PO}_{4}\right) \mathrm{F}$, beryllonite, $\mathrm{NaBe}\left(\mathrm{PO}_{4}\right)$],
structures containing clusters of tetrahedra [gainesite, $\mathrm{Na}_{2} \mathrm{BeZr}_{2}\left(\mathrm{PO}_{4}\right)_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, and even zeolite-type structures [pahasapaite, $\mathrm{Li}_{8}(\mathrm{Ca}, \mathrm{Li}, \mathrm{K})_{10.5} \mathrm{Be}_{24}\left(\mathrm{PO}_{4}\right)_{24} \cdot 38 \mathrm{H}_{2} \mathrm{O}$] (Hawthorne \& Huminicki 2002). To date, structural data are still missing for two natural beryllophosphate minerals: faheyite, $\mathrm{MnFe}^{3+}{ }_{2} \mathrm{Be}_{2}\left(\mathrm{PO}_{4}\right)_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Lindberg \& Murata 1953), and glucine, $\mathrm{CaBe}_{4}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Grigoriev 1963).

The crystal chemistry of the beryllophosphates is exciting, as their structures are similar to those of aluminosilicates and borosilicates. For example, hurlbutite is topologically identical to danburite, $\mathrm{CaB}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ (Phillips et al. 1974); herderite is isostructural with datolite, $\mathrm{CaBSiO}_{4}(\mathrm{OH})$ (Foit et al. 1973), and bergslagite, $\mathrm{CaBeAsO}_{4}(\mathrm{OH})$ (Hansen et al. 1984); pahasapaite is topologically similar to the minerals of the faujasite group, $(\mathrm{Ca}, \mathrm{Na}, \mathrm{Mg})_{5}(\mathrm{Si}, \mathrm{Al})_{12} \mathrm{O}_{24} \cdot 15 \mathrm{H}_{2} \mathrm{O}$ (Pluth \& Smith 1972); and tiptopite, $\mathrm{K}_{2}(\mathrm{Li}, \mathrm{Na}, \mathrm{Ca})_{6}\left(\mathrm{Be}_{6} \mathrm{P}_{6}\right)$

[^0]$\mathrm{O}_{24}(\mathrm{OH})_{2} \cdot 1.3 \mathrm{H}_{2} \mathrm{O}$ (Peacor et al. 1987), is isotypic with the minerals of the cancrinite group, $(\mathrm{Na}, \mathrm{Ca})_{8}\left(\mathrm{Al}_{6} \mathrm{Si}_{6}\right)$ $\mathrm{O}_{24}\left(\mathrm{CO}_{3}, \mathrm{SO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. All these analogies can be explained by the Pauling bond-valance rule. Indeed, the O atoms shared by Be and P in beryllosphosphates, by Al and Si in aluminosilicates, and by B and Si in borosilicates receive exactly the same Pauling bondvalence sum of 1.75 (Kampf 1992).

Experimental Procedure

Hydrothermal synthesis

The single crystals of beryllophosphates used for this study were synthesized under hydrothermal conditions. Mixtures of $\mathrm{BeO}, \mathrm{H}_{3} \mathrm{PO}_{4}(85 \%), \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}, \mathrm{CaHPO}_{4}$, $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Table 1), and ultra-pure water (2 mL) were heated in a Parr $23-\mathrm{mL}$ autoclave with PTFE liner. The autoclave was then placed in a furnace and maintained at $200^{\circ} \mathrm{C}$ for seven days under autogeneous pressure. After rapid cooling to room temperature $\left(50^{\circ} \mathrm{C} / \mathrm{h}\right)$, the resulting products were recovered by filtration and washed with distilled water. When necessary, the pH of the solution was measured before and after heating the starting material.

Colorless crystals of $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ (CaBeP), SrBe_{2} $\mathrm{P}_{2} \mathrm{O}_{8}(\mathrm{SrBeP})$, and $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}(\mathrm{PbBeP})$ are generally small and reach 0.1 mm in length; the colorless crystals of $\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}(\mathrm{BaBeP})$ can attain more than 2
mm in length and form perfect hexagonal tablets. The single crystals used for the structure refinements were selected from experiments CaBeP200-1, SrBeP200-3, PbBeP200-1, and BaBeP200-1.

High-temperature hydrothermal experiments were also performed, using the synthetic products obtained in experiments CaBeP200-1, SrBeP200-3, PbBeP200-1, and $\mathrm{BaBeP} 200-1$ (Table 1). About 25 mg of each starting material was crushed and sealed into gold tubes with an outer diameter of 2 mm and a length of 25 mm , containing $2 \mu \mathrm{~L}$ of distilled water. The gold capsules were then inserted into a Tuttle-type pressure vessel (Tuttle 1949) and maintained at temperatures of 400 and $600^{\circ} \mathrm{C}$, under a pressure of 0.1 GPa . After seven days, the gold tubes containing the sample were quenched to room temperature in the autoclave in a stream of cold air.

X-ray diffraction

The synthesized compounds were identified by X-ray powder diffraction, with a Panalytical PW 3710 diffractometer using Fe $K \alpha$ radiation ($\lambda=1.9373 \AA, 40$ $\mathrm{kV}, 30 \mathrm{~mA}$). Single-crystal X-ray diffraction measurements were performed with an Agilent Technologies Xcalibur four-circle diffractometer (kappa geometry), using MoK α radiation ($\lambda=0.7107 \AA$, $40 \mathrm{kV}, 40 \mathrm{~mA}$), and equipped with an EOS CCD area detector. A summary of crystal data is presented in Table 2. The

TABLE 1. HYDROTHERMAL SYNTHESIS PERFORMED IN THE $M^{2+}-\mathrm{Be}-\mathrm{PO}_{4}$ SYSTEM

N° sample	BeO (mg)	CaHPO_{4} (mg)	$\underset{(\mathrm{mg})}{\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}}$	$\underset{(\mathrm{mg})}{\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}$	$\underset{(\mathrm{mg})}{\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}}$	$\underset{(\mathrm{mg})}{\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}}$	$\begin{gathered} \mathrm{H}_{3} \mathrm{PO}_{4} \\ (\mathrm{~mL}) \end{gathered}$	T (${ }^{\circ}$)	Time (days)	Synthesized compounds
CaBeP200-1	101	203	-	-	-	-	2	200	7	$\mathrm{CaBe} \mathrm{P}_{2} \mathrm{O}_{8}$
CaBeP200-2	50	400	-	-	-	-	2	200	7	$\mathrm{CaBe} \mathrm{P}_{2} \mathrm{O}_{8}$
CaBeP200-3	100	136	-	-	-	-	0.07	200	7	$\mathrm{CaBe} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{BeO}$
CaBeP200-4	50	408	-	-	-	-	0.07	200	7	$\mathrm{CaBe} \mathrm{P}_{2} \mathrm{O}_{8}$
CaBeP150-5	100	271	-	-	-	-	0.07	150	7	$\mathrm{CaBe} \mathrm{P}_{2} \mathrm{O}_{8}$
CaBeP200-7	50	407	-	-	-	115	-	200	7	$\begin{gathered} \mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8} \\ \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH}) \end{gathered}$
CaBeP200-8	100	135	-	-	-	115	-	200	7	$\begin{gathered} \mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \\ \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH}) \end{gathered}$
SrBeP200-1	25	-	212	-	-	117	-	200	7	$\begin{gathered} \mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8} \\ \mathrm{Sr}\left(\mathrm{HPO}_{4}\right), \mathrm{BeO} \end{gathered}$
SrBeP200-2	100	-	211	-	-	230	-	200	7	$\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{BeO}$
SrBeP200-3	100	-	212	-	-	-	2	200	7	$\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
PbBeP200-1	162	-	-	331	-	-	2	200	7	$\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
BaBeP200-1	150	-	-	-	315	-	2	200	7	$\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
CaBeP400	Products of the CaBeP200-1 experiment used as starting materials							400	7	$\mathrm{CaBe} 2_{2} \mathrm{O}_{8}$
CaBeP600								600	7	$\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
SrBeP400	Products of the SrBeP200-3 experiment used as starting materials							400	7	$\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
SrBeP600								600	7	$\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
PbBeP400	Products of the PbBeP200-1 experiment used as starting materials							400	7	$\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
PbBeP600								600	7	$\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
BaBeP400	Products of the BaBeP200-1 experiment used as starting materials							400	7	$\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
BaBeP600								600	7	$\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$

single-crystal intensity data were corrected for Lorenz, polarization, and absorption effects, the latter with an empirical method using the SCALE3 ABSPACK scaling algorithm included in the CrysAlisRED package (Agilent 2012). The structures were solved by direct methods using SHELXS, and then refined with SHELXTL (Sheldrick 2008); scattering curves for neutral atoms, together with anomalous dispersion corrections, were taken from the International Tables for X-ray Crystallography, Vol. C (Wilson 1992). The refinements were completed using anisotropic-displacement parameters for all atoms. Positional and displacement parameters are given in Table 3, and interatomic distances and angles are given in Table 4. Refined site occupancies for $\mathrm{CaBe} P, \operatorname{SrBeP}$, and PbBeP showed that all crystallographic sites are fully occupied; consequently, all sites were constrained to full occupancy in the final refinement cycles.

Infrared Spectroscopy

The infrared spectra of the four synthetic compounds (Fig. 1) were recorded using a Nicolet NEXUS spectrometer, from 32 scans with a $1 \mathrm{~cm}^{-1}$ resolution, over the $400-4000 \mathrm{~cm}^{-1}$ region. The samples were prepared by intimately mixing 2 mg of sample with KBr , in order to obtain a 150 mg homogeneous pellet, which was subsequently dried for a few hours at $110^{\circ} \mathrm{C}$. To
prevent water contamination, the measurements were performed under a dry air purge.

Crystal Structure Descriptions

The observed X-ray powder-diffraction pattern of $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ is identical to that of natural hurlbutite (Lindbloom et al. 1974); those of $\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ and $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ are also similar, but show a significant displacement of the diffraction peaks toward higher d values. The X-ray powder-diffraction pattern of $\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ shows similarities with that of dmisteinbergite, $\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, a hexagonal polymorph of anorthite (Takéuchi \& Donnay 1959). Note that $\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ and $\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ were already present in the ICDD data base, but their crystal structures were not provided (International Center for Diffraction Data, PDF card 00-026-0977 and 00-026-0140, respectively). The X-ray powder diffraction patterns indicate that the final synthesized compounds were completely crystallized (no amorphous phase) and exclusively composed of the beryllophosphates reported in the present study.
$\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, and $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
The compounds $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, and $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ crystallized in the same space group $\left(P 2_{1} / c\right)$ and are isostructural. Moreover, $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ and

TABLE 2. SINGLE-CRYSTAL DIFFRACTION DATA AND REFINEMENT PARAMETERS

	$\mathrm{CaBe} \mathrm{P}_{2} \mathrm{O}_{8}$	$\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$	$\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$	$\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
$a(\AA)$	7.809(1)	8.000(1)	8.088(1)	5.028(1)
b	8.799(1)	8.986(1)	9.019(1)	-
c	8.309(1)	8.418(1)	8.391(1)	7.466(1)
$\beta\left({ }^{\circ}\right)$	90.51(1)	90.22(1)	90.12(1)	-
$V\left(\AA^{3}\right)$	570.98(2)	605.10(6)	612.22(1)	163.51(1)
Space group	$P 2_{1} / \mathrm{C}$	P2 ${ }_{1} / \mathrm{C}$	$P 2_{1} / \mathrm{C}$	P6/mmm
Z	4	4	4	1
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.885	3.244	4.504	3.507
Absorption coefficient (mm^{-1})	1.666	9.443	28.086	6.567
$F(000)$	488	560	736	158
Radiation	MoK ${ }^{\text {d }}$			
$29 \max \left({ }^{\circ}\right)$	57.17	60.84	58.07	58.18
Reflection range	$-8 \leq h \leq 9$	$-11 \leq \mathrm{h} \leq 11$	$-10 \leq h \leq 10$	$-6 \leq h \leq 6$
	$-11 \leq \mathrm{k} \leq 5$	$-12 \leq \mathrm{k} \leq 12$	$-12 \leq \mathrm{k} \leq 12$	$-6 \leq \mathrm{k} \leq 6$
	$-11 \leq 1 \leq 6$	$-11 \leq 1 \leq 11$	$-11 \leq 1 \leq 11$	$-10 \leq 1 \leq 10$
Total no. of reflections	2380	10065	27292	7393
Unique reflections	1295	1742	1589	120
No. parameters refined	118	118	118	12
$\mathrm{R}_{1}, F>4 \sigma(F)$	0.023	0.048	0.015	0.021
R_{1}, all data	0.026	0.060	0.018	0.021
wR $R_{2}\left(F^{2}\right)$, all data	0.095	0.104	0.029	0.050
GOF	0.811	1.132	1.106	1.188
$\Delta \sigma_{\text {min }}, \Delta \sigma_{\text {max }}\left(\mathrm{e} / \AA^{3}\right)$	-0.496, 0.334	-0.845, 1.567	-0.638, 0.717	-1.774, 0.869

Fig. 1. Infrared spectra of (a) $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, (b) $\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, (c) $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, and (d) $\mathrm{BaBe}{ }_{2} \mathrm{P}_{2} \mathrm{O}_{8}$.
$\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ are isostructural with the minerals hurlbutite (Lindbloom et al. 1974) and strontiohurlbutite (Rao et al. 2012), respectively. Their structure consists of a framework of corner-sharing BeO_{4} and PO_{4} tetrahedra assembled in four- and eight-membered rings; these rings are nearly perpendicular to the a axis (Fig. 2a). The four-membered rings consist of a pair of tetrahedra pointing upwards (U) and a pair of tetrahedra pointing downwards (D), forming UUDD-type rings. The eight-membered rings are formed by linking four four-membered rings, and show only one pattern: DDUDUUDU (Fig. 2b). The BeO_{4} and PO_{4} tetrahedra are also connected by corner-sharing to form a double crankshaft chain running parallel to the a axis (Fig. 2c). Only linkages between BeO_{4} and PO_{4} tetrahedra are observed in the entire framework, and linkages such as $\mathrm{Be}-\mathrm{O}-\mathrm{Be}$ or $\mathrm{P}-\mathrm{O}-\mathrm{P}$ are strictly avoided. The divalent cations are located in the eight-membered rings and occur in distorted $7+3$-coordinated polyhedron, characterized by seven short bonds and three long bonds (Fig. 3). By considering only the seven shortest bonds,
this polyhedron can be described as a combination of a square pyramid and of a distorted trigonal prism, with one square face in common. The bond-valence sums for the $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, and $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ compounds are given in Table 5; the parameters of Brown \& Altermatt (1985) were used for $\mathrm{Ca}, \mathrm{Sr}, \mathrm{P}$, and Be , whereas the parameters of Krivovichev \& Brown (2001) were used for Pb . The bond valence sums for cations are very close to the ideal values, thus confirming the cationic distribution determined for these compounds.
$\mathrm{BaBe} \mathrm{C}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
$\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ showed a structure completely different from those of the other beryllophosphates investigated in this study, but similar to that of the recently described species minjiangite (Rao et al. 2013, 2014). The structure of $\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ is based on a double layer of tetrahedra containing both Be and P in a disordered distribution with a $1: 1$ ratio. The tetrahedra are characterized by one short (Be, P) $-\mathrm{O}(1)$ bond of $1.549(2) \AA$

Fig. 2. The crystal structure of $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}\left(M^{2+}=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb}\right)$ beryllophosphates. (a) View nearly perpendicular to the a axis. (b) Detailed view of the four- and eightmembered rings with tetrahedra pointed upward (U) and downward (D). (c) Detailed view of the double crankshaft chain running parallel to the a axis. PO_{4} tetrahedra are yellow, BeO_{4} are blue and M^{2+} atoms are represented by grey spheres.

Fig. 3. Coordination of the M^{2+} cation in the $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, and $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ compounds. Symmetry codes: i: $+\mathrm{x}, 3 / 2-\mathrm{y},-1 / 2+\mathrm{z}$; ii: $1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$; iii: $2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$.
length, and by three long (Be, P)-O(2) equivalent bonds of $1.569(1) \AA$ length. These tetrahedra are assembled in six-membered rings forming channels parallel to the c axis. In the $a-b$ plane, each ring is connected to six surrounding rings to form an infinite layer (Fig. 4a). In
the c direction, the tetrahedra are also linked by their O (1) apical oxygen atoms, thus forming a double layer with all tetrahedra of the same layer pointing in one direction (Fig. 4b). These double layers are connected by the Ba atoms, located in twelve-coordinated poly-
hedra. The Ba atoms are connected to the $\mathrm{O}(2)$ atoms by twelve indentical bonds $2.975(2) \AA$ in length. The refinement of the site occupancy factors indicates that the Ba site is fully occupied, and that the tetrahedral site is statistically occupied by P and Be in a $1: 1$ ratio. The bond-valence sums calculated using the empirical parameters of Brown \& Altermatt (1985) are 1.86 and $3.35 v u$ for the Ba and tetrahedral sites, respectively; these values are close to the theoretical values of 2 and 3.5.

INFRARED SpECTROSCOPY

The infrared spectra of the $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ beryllophosphates are shown on Figure 1, and the assignment of their absorption bands are given in Table 6. According to the fundamental vibrational frequencies of the PO_{4} tetrahedron (Farmer 1974), the absorption bands between 997 and $1153 \mathrm{~cm}^{-1}$ can be attributed to v_{3}, the antisymmetric stretching modes of the PO_{4} anions, and the bands between 531 and $539 \mathrm{~cm}^{-1}$ to v_{4}, their bending mode. A comparison with the infrared spectra of orthophosphates of the alluaudite supergroup (Hatert
et al. 2003, 2005a, 2005b, 2006, Hatert 2008, Kacimi et al. 2005, Rondeux \& Hatert 2010) shows the presence of strong absorption bands between ca. 650 and 900 cm^{-1} in the spectra of $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ (Fig. 1), bands which are absent in alluaudite-type phosphates. According to Farmer (1974), the absorption in the $700-850 \mathrm{~cm}^{-1}$ region is distinctive for beryllium phosphates and silicates; consequently, the bands between 649 and 869 cm^{-1}, in the spectra of the studied compounds, were assigned to v_{4}, the bending mode of BeO_{4} tetrahedra (Table 6). The bands between 1108 and $1189 \mathrm{~cm}^{-1}$ occur at a very high wavenumber, compared to the $v_{3} \mathrm{PO}_{4}$ bands; they are assigned to the v_{3} antisymmetric stretching vibrations of the BeO_{4} tetrahedra. As mentioned by Farmer (1974), however, some of these bands are certainly affected by a strong coupling between the vibrational frequencies of the BeO_{4} and PO_{4} tetrahedra (Table 6).

The $481-612 \mathrm{~cm}^{-1}$ region contains several absorption bands which can be attributed to the $v_{4} \mathrm{PO}_{4}$ bending vibration mode or to the vibrations of the $M^{2+}-\mathrm{O}$ bonds. As shown in Table 4, the $M-\mathrm{O}$ distances show a significant increase when Ca is replaced by Sr and Pb in the

TABLE 3. ATOM COORIDNATES AND ANISOTROPIC DISPLACEMENT PARAMETERS (\AA^{2})

	$\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$									
	x	y	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	$U_{\text {eq }}$
Ca	0.2560(1)	0.0856(1)	$0.1133(1)$	0.0133(2)	0.0116(2)	0.0149(2)	$0.0002(1)$	-0.0006(1)	-0.0004(1)	0.0132(1)
$\mathrm{P}(1)$ (T1m)	0.0608(1)	0.4178(1)	$0.2378(1)$	0.0094(2)	0.0100(3)	0.0095(2)	0.0003(2)	-0.0001(2)	0.0002(2)	0.0096(1)
$\mathrm{P}(2)$ (T2o)	0.5612(1)	0.3019(1)	-0.0589(1)	0.0100(2)	0.0090(2)	0.0098(2)	-0.0001(2)	-0.0001(2)	-0.0004(2)	0.0096(1)
$\mathrm{Be}(1)$ (T 2 m)	-0.0709(3)	0.3052(3)	-0.0552(3)	0.0141(1)	0.0118(1)	0.0112(1)	-0.0004(1)	-0.0006(9)	-0.0008(1)	0.0124(5)
$\mathrm{Be}(2)$ (T10)	0.5700(3)	-0.0777(3)	$0.2674(3)$	0.0129(1)	0.0127(1)	0.0133(1)	-0.0010(1)	0.0006(9)	0.0010(1)	0.0130(5)
$\mathrm{O}(1)$	0.0043(2)	0.0740(2)	0.3131(2)	0.0162(7)	0.0097(7)	0.0133(7)	-0.0010(5)	0.0012(5)	-0.0011(5)	0.0131(3)
$\mathrm{O}(2)$	0.0641(2)	0.3067(2)	0.0969(2)	0.0129(6)	0.0116(7)	0.0115(6)	-0.0005(6)	-0.0012(5)	0.0014(5)	0.0120(3)
$\mathrm{O}(3)$	0.2408(2)	0.4214(2)	0.3155(2)	0.0104(6)	0.0186(8)	0.0120(7)	-0.0008(6)	-0.0009(5)	-0.0003(6)	0.0136(3)
$\mathrm{O}(4)$	-0.0625(2)	0.3672(2)	0.3713(2)	0.0136(6)	0.0107(7)	0.0117(7)	0.0013(6)	0.0025(5)	0.0013(6)	0.0120(3)
O(5)	0.4434(2)	-0.1368(2)	0.1223(2)	0.0141(6)	0.0099(7)	0.0133(7)	-0.0015(6)	-0.0021(5)	0.0008(5)	0.0125(3)
O(6)	0.4320(2)	0.3089(2)	0.0792(2)	0.0122(6)	0.0134(7)	0.0113(6)	-0.0003(6)	0.0014(5)	-0.0014(5)	0.0123(3)
O(7)	0.4977(2)	0.0893(2)	0.3080(2)	0.0161(7)	0.0105(7)	0.0120(7)	-0.0012(5)	-0.0016(5)	0.0011(6)	0.0129(3)
O (8)	0.7387(2)	0.3447(2)	-0.0010(2)	0.0104(6)	0.0148(7)	0.0158(7)	-0.0036(6)	0.0004(5)	-0.0003(6)	0.0137(3)

		$\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$							
	x	y	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Sr	$1.2555(1)$	$0.0874(1)$	$1.1088(1)$	$0.0067(2)$	$0.0072(2)$	$0.0105(2)$	$0.0008(2)$	$-0.0002(2)$	$-0.0005(2)$
	$0.0081(2)$								
$\mathrm{P}(1)(\mathrm{T} 1 \mathrm{~m})$	$1.0621(1)$	$0.0854(1)$	$0.7319(1)$	$0.0047(5)$	$0.0063(5)$	$0.0061(6)$	$0.0002(5)$	$0.0001(4)$	$-0.0006(4)$
$\mathrm{P}(2)(\mathrm{T} 2 \mathrm{o})$	$0.5636(1)$	$0.1959(1)$	$0.4336(1)$	$0.0047(5)$	$0.0039(6)$	$0.0060(7)$	$0.0009(4)$	$-0.0001(4)$	$0.0005(4)$
$\mathrm{Be}(1)(\mathrm{T} 2 \mathrm{~m})$	$0.9261(8)$	$0.1937(7)$	$0.4363(8)$	$0.007(3)$	$0.009(3)$	$0.008(3)$	$0.003(2)$	$0.000(2)$	$0.002(2)$
$0.008(1)$									
$\mathrm{Be}(2)(\mathrm{T} 10)$	$0.4292(8)$	$0.4187(7)$	$0.2262(8)$	$0.007(3)$	$0.007(3)$	$0.009(3)$	$0.003(2)$	$-0.002(2)$	$-0.001(2)$
$0.008(1)$									
$\mathrm{O}(1)$	$0.9939(5)$	$0.0726(4)$	$0.3061(4)$	$0.014(2)$	$0.006(2)$	$0.010(2)$	$-0.001(1)$	$0.004(1)$	$-0.001(1)$
$0.0099(7)$									
$\mathrm{O}(2)$	$1.0556(4)$	$0.1878(4)$	$0.5871(4)$	$0.009(2)$	$0.008(2)$	$0.008(2)$	$0.001(1)$	$-0.001(1)$	$-0.002(1)$
$0.0084(7)$									
$\mathrm{O}(3)$	$0.2410(4)$	$0.4075(4)$	$0.3016(4)$	$0.004(2)$	$0.015(2)$	$0.008(2)$	$0.001(2)$	$-0.001(1)$	$0.002(2)$
$0.0093(7)$									
$\mathrm{O}(4)$	$0.9446(4)$	$0.1375(4)$	$0.8649(4)$	$0.008(2)$	$0.007(2)$	$0.009(2)$	$0.001(1)$	$0.002(1)$	$-0.001(1)$
O(5)	$0.5491(4)$	$0.3570(4)$	$0.3719(4)$	$0.009(2)$	$0.005(2)$	$0.008(2)$	$0.003(1)$	$-0.003(1)$	$0.000(1)$
$0.0079(7)$									
$\mathrm{O}(6)$	$0.4372(4)$	$0.3177(4)$	$0.0697(4)$	$0.006(1)$	$0.009(2)$	$0.010(2)$	$-0.001(1)$	$0.001(1)$	$0.001(1)$
$0.0083(7)$									
$\mathrm{O}(7)$	$0.4906(5)$	$0.5880(4)$	$0.1993(4)$	$0.015(2)$	$0.006(2)$	$0.008(2)$	$0.001(1)$	$-0.005(1)$	$-0.001(1)$
$0.0095(7)$									
$\mathrm{O}(8)$	$0.7384(4)$	$0.1629(4)$	$0.4921(5)$	$0.007(2)$	$0.012(2)$	$0.015(2)$	$0.003(1)$	$-0.001(1)$	$0.001(1)$
$0.0113(7)$									

TABLE 3. CONTINUED

$\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$										
	x	y	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	$U_{\text {eq }}$
Pb	0.7562(1)	0.5927(1)	0.1061(1)	0.0113(1)	0.0103(1)	0.0135(1)	0.0002(1)	0.0004(4)	-0.0006(5)	0.0117(1)
$\mathrm{P}(1)$ (T1m)	0.5637(1)	0.9135(1)	0.2313(1)	0.0063(4)	0.0056(4)	0.0071(3)	0.0001(3)	0.0005(3)	0.0002(3)	0.0063(1)
$\mathrm{P}(2)$ (T2o)	0.9338(1)	0.1969(1)	0.0675(1)	0.0068(4)	0.0040(3)	0.0077(3)	-0.0001(3)	0.0002(3)	-0.0004(3)	0.0061(1)
$\mathrm{Be}(1)$ (T2m)	0.5761(5)	0.1935(4)	0.0641(5)	0.008(2)	0.009(2)	0.009(2)	-0.002(1)	-0.001(1)	0.001(1)	0.0087(8)
$\mathrm{Be}(2)$ (T1o)	1.0725(5)	0.4184(5)	0.2730(5)	0.005(2)	0.011(2)	$0.101(2)$	0.001(1)	0.001(1)	0.001(1)	0.0089(8)
$\mathrm{O}(1)$	0.5175(3)	1.0730(2)	0.1966(3)	0.014(1)	0.004(1)	0.011(1)	0.0015(8)	0.0040(9)	0.0021 (9)	0.0099(5)
$\mathrm{O}(2)$	0.5554(3)	0.8154(2)	0.0834(2)	0.009(1)	0.009(1)	0.008(1)	-0.0019(8)	0.0004(8)	0.0017(9)	0.0089(4)
$\mathrm{O}(3)$	0.7412(3)	0.8980(2)	0.2997(3)	0.006(1)	0.018(1)	0.009(1)	-0.0004(9)	0.0004(9)	-0.0010(9)	0.0111(5)
$\mathrm{O}(4)$	0.5538(3)	0.3612(2)	0.1369(3)	0.011(1)	0.007(1)	0.010(1)	-0.0023(8)	0.0038(9)	0.0000(9)	0.0094(4)
O(5)	0.9533(3)	0.3570(2)	0.1299(3)	0.009(1)	0.006(1)	0.013(1)	-0.0003(9)	-0.0012(9)	0.0020(9)	0.0095(4)
$\mathrm{O}(6)$	0.9375(3)	0.8204(2)	0.0666(3)	0.008(1)	0.008(1)	0.011(1)	-0.0015(9)	0.0018(9)	-0.0025(8)	0.0093(4)
O(7)	1.0203(3)	0.5885(2)	0.2978(3)	0.014(1)	0.008(1)	0.010(1)	-0.0023(9)	-0.0017(9)	0.0005(9)	0.0107(5)
$\mathrm{O}(8)$	0.7621(3)	0.1689(2)	0.0045(3)	0.008(1)	0.012(1)	0.012(1)	-0.0050(9)	0.0001(9)	-0.0008(9)	0.0106(5)
$\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$										
	x	y	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	$U_{\text {eq }}$
Ba	1	1	1	0.0085(3)	0.0085(3)	0.0087(4)	0.000	0.000	0.0043(1)	0.0086(3)
$\mathrm{P}(1)^{*}$	0.3333	0.6667	0.7075(3)	0.0079(8)	0.0079(8)	0.007(1)	0.000	0.000	0.0040(4)	0.0075(5)
$\mathrm{Be}(1)^{*}$	0.3333	0.6667	0.7075(3)	0.0079(8)	0.0079(8)	0.007(1)	0.000	0.000	0.0040(4)	0.0075(5)
$\mathrm{O}(1)$	0.3333	0.6667	0.5	0.012(2)	0.012(2)	0.018(3)	0.000	0.000	$0.0061(1)$	0.014(1)
$\mathrm{O}(2)$	0.5	0.5	0.7871(5)	0.043(2)	0.043(2)	0.009(1)	0.000	0.000	0.0038(2)	0.024(1)

*site occupancy was constrained to 0.5 P and 0.5 Be .
studied compounds. This increase, as well as the very high atomic weights of Sr and Pb , is responsible for the significant shift of the bands at 612 and $497 \mathrm{~cm}^{-1}$ towards lower wavenumbers (Table 6). These bands are consequently assigned to the $M^{2+}-\mathrm{O}$ vibrations, while the band at $539 \mathrm{~cm}^{-1}$, characterized by a smaller shift, is assigned to PO_{4} vibrations.

The infrared spectrum of $\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ is significantly different from those of the hurlbutite-type beryllophosphates, since its absorption bands are extremely broad (Fig. 1). This broadening is due to the disordered distribution of P and Be at the unique tetrahedral site of the crystal structure. These broad bands can easily be assigned by comparison with the assignment previously described, with $M^{2+}-\mathrm{O}$ at $475 \mathrm{~cm}^{-1}, v_{4} \mathrm{PO}_{4}$ at $541 \mathrm{~cm}^{-1}$, $v_{4} \mathrm{BeO}_{4}$ at $670,694,745 \mathrm{~cm}^{-1}, v_{3} \mathrm{PO}_{4}$ at $1022 \mathrm{~cm}^{-1}$, and $v_{3} \mathrm{BeO}_{4}$ at $1305 \mathrm{~cm}^{-1}$.

Stability Fields of $M^{2+} \mathrm{BE}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ Compounds

The very low number of occurrences of natural beryllophosphates indicate that the conditions necessary for their formation are very uncommon. Kampf et al. (1992) attributed the paucity of beryllophosphate minerals to several factors, such as the requirement for nearby sources of P and Be , the resistance of beryl to alteration at the low temperatures where the beryllophosphate minerals crystallize, and the behavior of Be in aqueous solution, which is very sensitive to pH . The work of Harvey \& Meier (1989) on beryllophosphate
zeolites shows that pH is a critical parameter for the synthesis of this kind of compound. If the pH is below 4, the synthesized compounds are dense beryllophosphates containing neither cations nor water, and if the pH exceeds 7 no crystalline products are obtained. Moreover, it was demonstrated that using different types of alkali cations can lead to the formation of different types of zeolite structures.

In order to determine if synthetic hurlbutite, $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, is sensitive to pH variations, experiments at $200{ }^{\circ} \mathrm{C}$ were performed in a weakly basic solution (pH around 9), by using $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ instead of $\mathrm{H}_{3} \mathrm{PO}_{4}$ as a source of P (experiments $\mathrm{CaBeP} 200-3$, $\mathrm{CaBeP} 200-8$, $\mathrm{CaBeP} 200-4$, and $\mathrm{CaBeP} 200-7$; Table 1). The comparison between these syntheses, in which the $\mathrm{Ca}: \mathrm{Be}: \mathrm{P}$ ratio is the same, indicates that the hurlbutitetype compound $\mathrm{CaBe}{ }_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ can crystallize in a very strong acidic solution $(\mathrm{pH}=1)$ as well as in a weakly basic solution ($\mathrm{pH}=9$). The crystals of $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ are the same size in both cases and synthetic hydroxylapatite occurs, in association with $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, in the experiments at $\mathrm{pH}=9$. According to the observations of Harvey \& Meier (1989), it is not common to crystallize beryllophosphates with a dense structure from a solution with a pH above 7. However, the synthesis processes used in this study and in that of Harvey \& Meier (1989) are different, since in the present case, the pH was not modified by the addition of tetraethyammonium hydroxide (TEAOH) solution, which leads to the formation of a gel.

Fig. 4. The crystal structure of $\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$. (a) The $a-b$ projection showing the sixmembered rings. (b) View parallel to the c axis showing the stacking of the double layers of tetrahedra. $(\mathrm{Be}, \mathrm{P}) \mathrm{O}_{4}$ tetrahedra are green and Ba atoms are represented by grey spheres.

Hydrothermal synthesis experiments were also performed at 400 and $600{ }^{\circ} \mathrm{C}$ and 1 kbar (Table 1). The X-ray powder diffraction patterns of the resulting products show that the $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ compounds $\left(M^{2+}=\right.$ $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb}, \mathrm{Ba}$) remain stable at these high temperatures and pressures. This observation is in good agreement with the comments provided in the ICDD database, which indicate that $\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ and $\mathrm{BaBe}{ }_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ were synthesized from oxides by solid-state reaction in air at $1000{ }^{\circ} \mathrm{C}$.

DISCUSSION

Crystal chemistry of $\mathrm{M}^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
As previously mentioned, the M^{2+} cation in the $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ beryllophosphates $\left(M^{2+}=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb}\right)$
occurs at a site with a 7+3 coordination number. As shown in Table 4 and Figure 3, the seven shortest $M^{2+}-\mathrm{O}$ bonds are quite similar for the CaO_{7} and SrO_{7} polyhedra, with average values of 2.472(1) and 2.597(4) \AA, respectively. This increase is in good agreement with the increase of the ionic radius between Ca^{2+} $(1.06 \AA)$ and $\mathrm{Sr}^{2+}(1.21 \AA)$ in sevenfold coordination (Shannon 1976). In contrast, the seven shortest $\mathrm{Pb}-\mathrm{O}$ distances show a spread between 2.546(2) and 2.773(2) \AA, indicating a more distorted polyhedron with an average $\mathrm{Pb}-\mathrm{O}$ bond length of $2.641(2) \AA$. The $\mathrm{Pb}-\mathrm{O} 1$, $\mathrm{Pb}-\mathrm{O} 4, \mathrm{~Pb}-\mathrm{O} 5$, and $\mathrm{Pb}-\mathrm{O} 7$ bonds are the most affected by the distortion, with an increase of $0.07-0.09 \AA$, in comparison with the $\mathrm{Sr}-\mathrm{O}$ bond lengths. The $\mathrm{Pb}-\mathrm{O} 3$ bond, which points in the opposite direction from the O1, O4, O5, and O7 atoms, shows a sharp decrease in length of $0.1 \AA$. This pattern of deformation of the Pb

TABLE 4. INTERATOMIC DISTANCES AND ANGLES
FOR $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, AND $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$

T-O distances (\AA)					$\mathrm{O}-\mathrm{T}-\mathrm{O}$ angles $\left({ }^{\circ}\right.$)		
	CaBeP	SrBeP	PbBeP		CaBeP	SrBeP	PbBeP
$\mathrm{P}(1)-\mathrm{O}(1)$	1.523(1)	1.523(4)	1.515(2)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	111.9(1)	112.6(2)	112.6(1)
$\mathrm{P}(1)-\mathrm{O}(2)$	1.525(1)	1.528(4)	1.525(2)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(3)$	113.5(1)	112.9(2)	112.6(1)
$\mathrm{P}(1)-\mathrm{O}(3)$	1.542(1)	1.546(4)	1.551(2)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(4)$	104.5(1)	104.9(2)	106.1(1)
$\mathrm{P}(1)-\mathrm{O}(4)$	1.540(1)	1.538(4)	1.534(2)	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(3)$	108.2(1)	107.8(2)	106.7(1)
				$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(4)$	112.4(1)	112.2(2)	112.5(1)
<P(1)-O>	1.532(1)	1.534(4)	1.531(2)	$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{O}(4)$	106.1(1)	106.2(2)	106.3(1)
$\mathrm{P}(2)-\mathrm{O}(5)$	1.545(1)	1.543(4)	1.544(2)	$\mathrm{O}(5)-\mathrm{P}(2)-\mathrm{O}(6)$	106.2(1)	106.1(2)	105.8(1)
$\mathrm{P}(2)-\mathrm{O}(6)$	1.536(1)	1.536(4)	1.543(2)	$\mathrm{O}(5)-\mathrm{P}(2)-\mathrm{O}(7)$	109.4(1)	109.0(2)	108.7(1)
$\mathrm{P}(2)-\mathrm{O}(7)$	1.542(1)	1.542(4)	1.539(2)	$\mathrm{O}(5)-\mathrm{P}(2)-\mathrm{O}(8)$	111.2(2)	111.3(2)	111.8(1)
$\mathrm{P}(2)-\mathrm{O}(8)$	1.510(1)	1.510(4)	1.507(2)	$\mathrm{O}(6)-\mathrm{P}(2)-\mathrm{O}(7)$	107.5(1)	107.9(2)	108.0(1)
				$\mathrm{O}(6)-\mathrm{P}(2)-\mathrm{O}(8)$	111.1(1)	110.7(2)	110.5(1)
<P(2)-O>	1.533(1)	1.533(4)	1.533(2)	$\mathrm{O}(7)-\mathrm{P}(2)-\mathrm{O}(8)$	111.2(1)	111.8(2)	111.8(1)
$\mathrm{Be}(1)-\mathrm{O}(1)$	1.639(3)	1.638(8)	1.626(5)	$\mathrm{O}(1)-\mathrm{Be}(1)-\mathrm{O}(2)$	106.1(1)	106.7(4)	107.2(3)
$\mathrm{Be}(1)-\mathrm{O}(2)$	1.639(3)	1.636(7)	1.632(4)	$\mathrm{O}(1)-\mathrm{Be}(1)-\mathrm{O}(4)$	109.6(1)	109.8(4)	109.2(3)
$\mathrm{Be}(1)-\mathrm{O}(4)$	1.637(3)	1.638(7)	1.642(4)	$\mathrm{O}(1)-\mathrm{Be}(1)-\mathrm{O}(8)$	112.8(2)	113.2(4)	113.4(3)
$\mathrm{Be}(1)-\mathrm{O}(8)$	1.595(3)	1.599(7)	1.602(5)	$\mathrm{O}(2)-\mathrm{Be}(1)-\mathrm{O}(4)$	105.5(1)	104.9(4)	104.8(3)
				$\mathrm{O}(2)-\mathrm{Be}(1)-\mathrm{O}(8)$	112.0(1)	111.0(4)	111.6(3)
<Be(1)-O>	1.627(3)	1.627(7)	1.625(5)	$\mathrm{O}(4)-\mathrm{Be}(1)-\mathrm{O}(8)$	110.4(1)	110.8(4)	110.3(3)
$\mathrm{Be}(2)-\mathrm{O}(3)$	1.636(3)	1.639(7)	1.637(5)	$\mathrm{O}(3)-\mathrm{Be}(2)-\mathrm{O}(5)$	103.3(1)	102.9(4)	103.3(3)
$\mathrm{Be}(2)-\mathrm{O}(5)$	1.638(3)	1.650(7)	1.635(5)	$\mathrm{O}(3)-\mathrm{Be}(2)-\mathrm{O}(6)$	110.1(1)	108.9(4)	107.3(3)
$\mathrm{Be}(2)-\mathrm{O}(6)$	1.619(3)	1.601(8)	1.612(5)	$\mathrm{O}(3)-\mathrm{Be}(2)-\mathrm{O}(7)$	114.3(2)	113.1(4)	113.5(3)
$\mathrm{Be}(2)-\mathrm{O}(7)$	1.611(3)	1.614(7)	1.605(4)	$\mathrm{O}(5)-\mathrm{Be}(2)-\mathrm{O}(6)$	111.9(2)	113.3(4)	113.4(3)
				$\mathrm{O}(5)-\mathrm{Be}(2)-\mathrm{O}(7)$	103.5(1)	104.1(4)	105.3(3)
<Be(2)-O>	1.626(3)	1.626(7)	1.622(5)	$\mathrm{O}(6)-\mathrm{Be}(2)-\mathrm{O}(7)$	113.1(2)	113.9(4)	113.7(3)

M-O distances $(\AA)(\mathrm{M}=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb})$			
	CaBeP	SrBeP	PbBeP
$M-\mathrm{O}(1)$	$2.586(1)$	$2.681(4)$	$2.773(2)$
M-O(2)	$2.458(1)$	$2.583(4)$	$2.590(2)$
M-O(3)	$2.477(1)$	$2.589(4)$	$2.575(2)$
M-O(4)	$2.450(1)$	$2.588(3)$	$2.666(2)$
M-O(5)	$2.445(1)$	$2.599(4)$	$2.665(2)$
M-O(6)	$2.415(1)$	$2.551(3)$	$2.546(2)$
M-O(7)	$2.475(1)$	$2.589(4)$	$2.672(2)$
<M-O> [7]	$2.472(1)$	$2.597(4)$	$2.641(2)$
M-O(3)	$3.401(1)$	$3.304(4)$	$3.199(2)$
M-O(4)	$3.211(1)$	$3.251(4)$	$3.255(2)$
M-O(5)	$3.103(1)$	$3.127(4)$	$3.110(2)$
<M-O> [10]	$2.702(1)$	$2.786(4)$	$2.805(2)$

CaBeP for $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{SrBeP}$ for $\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ and PbBeP for $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$
polyhedron can be explained by the the presence of the Pb^{2+} lone-pair electrons, which creates a shift in the position of the Pb atom from the center of the cavity. Benna et al. (1996) observed the same kind of distortion for the Pb polyhedron in the synthetic ordered and disordered lead feldspar $\mathrm{PbAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$.

Figure 5a shows the correlation between the ionic radius of the M^{2+} cation and the average $M^{2+}-\mathrm{O}$ bond length, for seven- and 10 -fold coordination. In both the cases, the most significant increase in the $M^{2+}-\mathrm{O}$ bond length is between the Ca and Sr compounds; indeed, the difference between the ionic radius of Sr^{2+}
($1.21 \AA$) and $\mathrm{Pb}^{2+}(1.23 \AA$) in sevenfold coordination (Shannon 1976) is quite low. The unit-cell parameters are also affected by the nature of the cation located at the M site (Fig. 5b): as for the $M^{2+}-\mathrm{O}$ bond lengths, the most significant variations occur between the Ca and Sr-bearing compounds, due to the large variation in the ionic radii of Ca^{2+} and Sr^{2+}. Comparison between CaBeP and SrBeP shows that the unit-cell volume increases by 5.97%; the unit-cell volume of PbBeP increases by 7.22% when compared to that of CaBeP (Fig. 5b, Table 2).

Structural comparison with silicate analogues

$\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, and $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ have a typical paracelsian-type structure, characterized by fourmembered and eight-membered rings showing only the UUDD and DDUDUUDU patterns, respectively (Smith 1953, Smith \& Rinaldi 1962). The paracelsian structure is similar to the orthoclase structure, but differs slightly in the orientation of the double crankshaft chains. In both cases, the four-membered rings show the pattern UUDD, but the rotation of the crankshaft chains in orthoclase leads to the formation of two kinds of eightmembered rings: one type showing the DDUDUUDU pattern (as in paracelsian), and a second type showing the UUUUDDDD pattern (Fig. 6c). Figure 6 also shows that the paracelsian structure is topologically identical to the structure of the $M^{2+} \mathrm{B}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ borosilicates (M^{2+} $=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$, in which only the eight-membered ring with the DDUDUUDU pattern is observed (Fig. 6a and 6b; Phillips et al. 1974, Pautov et al. 2004). However, the ordering scheme of cations at the tetrahedral sites constituting the double crankshaft chain is different in borosilicates: as shown in Figure 7, a perfect alternation between BeO_{4} and PO_{4} tetrahedra is observed in the paracelsian structure (Fig. 7a), whereas connections between BO_{4} and SiO_{4} tetrahedra occur in $M^{2+} \mathrm{B}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$
borosilicates, thus leading to the formation of $\mathrm{B}_{2} \mathrm{O}_{7}$ and $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups (Fig. 7b).

The bond-angle distortion of tetrahedra was calculated using the $\sigma_{\text {tet }}$ parameter of Baur (1974) (Table 7). As previously mentioned by Phillips et al. (1975) and

b

Fig. 5. Variations of (a) the mean $M^{2+}-\mathrm{O}$ bond lengths and (b) the unit-cell parameters as a function of the ionic radius of the M^{2+} cation in the synthetic $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ beryllophosphates.

Fig. 6. Comparison between the structures of (a) $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ (hurlbutite), (b) $\mathrm{CaB}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ (danburite), and (c) $\mathrm{KAlSi}_{3} \mathrm{O}_{8}$ (orthoclase). Views perpendicular to the crankshaft chain axis.

Fig. 7. Comparison between the double crankshaft chains in (a) beryllophosphates and (b) borosilicates.

Lucas et al. (1998), the $T 1$ (P1 and Be2) and $T 2$ (P2 and Be 1$)$ sites are not structurally equivalent in the paracelsian structure type. The $T 1 \mathrm{O}_{4}$ tetrahedra always share more O atoms with the $\mathrm{M}^{2+} \mathrm{O}_{7}$ polyhedra than the $T 2 \mathrm{O}_{4}$ tetrahedra and, as a result, the $T 1 \mathrm{O}_{4}$ tetrahedra are always more distorted than the $T 2 \mathrm{O}_{4}$ tetrahedra. This feature is shown in Table 7 by a $\sigma_{\mathrm{T} 2} / \sigma_{\mathrm{T} 1}$ ratio that is always lower than 1 . The distortion coefficient is also influenced by the charge and the ionic radius of the tetrahedrally coordinated cations: the higher the charge and the smaller the radius, the more the tetrahedrally coordinated cation becomes polarized in its anionic environnment. Consequently, the distortion should decrease when the bond length increases (Lucas et al. 1998). However, despite the replacement of Ca by Sr or Pb in the $M^{2+} \mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ beryllophosphates, the distortion

TABLE 5. BOND-VALENCES SUMS ($v u$) FOR $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}, \mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, AND $\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$

	M^{2+}	$\mathrm{P}(1)$	$\mathrm{P}(2)$	$\mathrm{Be}(1)$	$\mathrm{Be}(2)$
$\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$	1.90	5.03	5.02	2.06	2.06
$\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$	2.08	5.01	5.02	2.05	2.06
$\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$	2.02	5.04	5.02	2.07	2.08
Ideal value	2	5	5	2	2

parameters are very constant for the four distinctive tetrahedra occurring in the structure (Table 7). These parameters are also very low, in comparison with those of other compounds showing a paracelsian-type structure; this feature cannot be explained satisfactorily. The
ratios between the distortion parameters of tetrahedra containing Be and those containing P , around 0.8 , are relatively close to 1.0 , thus indicating that the BeO_{4} and PO_{4} tetrahedra are similarly distorted.
$\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ is topologically identical to the mineral dmisteinbergite, $\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, a high-temperature polymorph of anorthite described by Chesnokov et al. (1990). The crystal structure of dmisteinbergite was refined by Takéuchi \& Donnay (1959) from synthetic crystals. The structure of $\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ is also similar to that of the synthetic hexagonal compound $\beta-\mathrm{BaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ (Takéuchi 1958). Furthermore, Lucas et al. (1998) reported that the compounds $\mathrm{SrZn}_{2} \mathrm{As}_{2} \mathrm{O}_{8}$ and $\mathrm{BaZn}_{2} \mathrm{As}_{2} \mathrm{O}_{8}$, synthesized at $1060-1070{ }^{\circ} \mathrm{C}$, show powder diffraction patterns similar to that of hexagonal celsian $\mathrm{BaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$. Finally, the work of Nedic et al.
(2008) indicates that crystals of $\mathrm{SrAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, synthesized at $1000{ }^{\circ} \mathrm{C}$, show a structure analogous to that of $\mathrm{BaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$.

Acknowledgements

This paper is dedicated to André-Mathieu Fransolet, Paul Keller, and François Fontan, for their outstanding contribution to the petrography, mineralogy, and crystal chemistry of pegmatite phosphate minerals. We would like to thank particularly André-Mathieu, who was director of the Laboratory of Mineralogy, University of Liège, for more than 20 years, and incited us to discover the complex but fascinating world of phosphates. Fabrice Dal Bo thanks the FRS-F.N.R.S. (Belgium) for a FRIA PhD grant n ${ }^{\circ}$ FC 93482.

References

TABLE 6. ASSIGNMENT OF THE INFRARED FREQUENCIES $\left(\mathrm{cm}^{-1}\right)$ FOR THE SYNTHETIC BERYLLOPHOSPHATES

$\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$	$\mathrm{SrBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$	$\mathrm{PbBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$	Assignment
1189	1189	1187	$v_{3} \mathrm{BeO}_{4}$
1153	1153	1139	$v_{3} \mathrm{PO}_{4}+\mathrm{BeO}_{4} ?$
1118	1118	1108	$v_{3} \mathrm{PO}_{4}+\mathrm{BeO}_{4} ?$
1068	1068	1065	$v_{3} \mathrm{PO}_{4}$
1041	1046	1033	$v_{3} \mathrm{PO}_{4}$
1000	1001	997	$v_{3} \mathrm{PO}_{4}$
869	853	-	$v_{4} \mathrm{BeO}_{4}$
837	827	816	$v_{4} \mathrm{BeO}_{4}$
774	770	753	$v_{4} \mathrm{BeO}_{4}$
755	754	738	$v_{4} \mathrm{BeO}_{4}$
720	-	-	$v_{4} \mathrm{BeO}_{4}$
686	686	674	$v_{4} \mathrm{BeO}_{4}$
-	-	649	$v_{4} \mathrm{BeO}_{4}$
612	609	598	$M^{2+}-\mathrm{O}^{2}$
584	-	-	$?$
539	531	531	$v_{4} \mathrm{PO}_{4}$
497	491	481	$M^{2+}-\mathrm{O}^{2}$

Agilent (2012) CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

BaUr, H.W. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica B30, 1195-1215.

Benna, P., Tribaudino, M., \& Bruno, E. (1996). The structure of ordered and disordered lead feldspar $\left(\mathrm{PbAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right)$. American Mineralogist 81, 1337-1343.

Brown, I.D. \& Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica B41, 244-247.

Calleri, M. \& Gazzoni, G. (1976) The structure of (Sr,Ba) $\left[(\mathrm{Al}, \mathrm{Ga})_{2}(\mathrm{Si}, \mathrm{Ge})_{2} \mathrm{O}_{8}\right]$. III. The crystal structures of the par-acelsian-like modifications of synthetic $\mathrm{SrGa}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}$ and BaGa $\mathrm{Ge}_{2} \mathrm{O}_{8}$. Acta Crystallographica B32, 1196-1205.

ČERNÝ, P. (2002) Mineralogy of beryllium in granitic pegmatites. In Beryllium: Mineralogy, Petrology, and Geo-

TABLE 7. BOND ANGLE DISTORTION PARAMETERS FOR TETRAHEDRAL SITES OF PARACELSIAN-TYPE COMPOUNDS

	SrGaSi	SrGaGe	BaGaGe	BaZnP	BaZnAs	SrZnAs	CaBeP	SrBeP	PbBeP
$\sigma_{T 10}$	5.06	5.60	5.06	6.36	5.22	7.06	3.60	3.71	3.76
$\sigma_{\mathrm{T} 1 \mathrm{~m}}$	3.32	4.51	4.58	2.44	1.22	2.46	2.89	2.86	2.83
$\sigma_{\mathrm{T} 20}$	1.61	2.06	2.14	1.83	1.81	2.13	1.58	1.64	1.76
$\sigma_{\mathrm{T} 2 \mathrm{~m}}$	2.79	2.63	2.71	4.42	2.93	4.00	2.17	2.17	2.14
$\sigma_{(S \mathrm{Si}, \mathrm{Ge}, \mathrm{P}, \mathrm{As})} /$ $\sigma_{(\mathrm{Ga}, \mathrm{Zn}, \mathrm{Be})}$ $\sigma_{\mathrm{T} 2} / \sigma_{\mathrm{T} 1}$	0.63	0.80	0.86	0.40	0.37	0.42	0.77	0.76	0.78

[^1]chemistry (E.S. Grew, ed.). Reviews in Mineralogy and Geochemistry 50, 405-444.

Chesnokov, B.V., Lotova, E.V., Nigmatullina, E.N., Pavlutchenko, V.S., \& Bushmakin, A.F. (1990) Dmisteinbergite, $\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, (hexagonal), a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 119, 43-46 (in Russian).

Farmer, V.C. (1974) The infrared spectra of minerals. Mineralogical Society Monographs 4, 539.

Foit, F.F., Phillips, M.W., \& Gibbs, G.V. (1973) A refinement of the crystal structure of datolite, $\mathrm{CaBSiO}_{4}(\mathrm{OH})$. American Mineralogist 58, 909-914.

Grigoriev, N.A. (1963) Glucine, a new beryllium mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 92, 691-696 (in Russian).

Hansen, S., Fälth, L., \& Johnson, O. (1984) Bergslagite, a mineral with tetrahedral berylloarsenate sheet anions. Zeitschrift für Kristallographie 166, 73-80.

Harvey, G. \& Meier, W.M. (1989) The synthesis of beryllophosphate zeolites. In Zeolites: Facts, Figures, Future (P.A. Jacops \& R.A. van Santen, eds.). Elsevier, Amsterdam, Netherlands.

Hatert, F. (2008) The crystal chemistry of the divalent cation in alluaudite-type phosphates: a structural and infrared spectral study of the $\mathrm{Na}_{1.5}\left(\mathrm{Mn}_{1-\mathrm{x}} \mathrm{M}^{2+}{ }_{\mathrm{x}}\right)_{1.5} \mathrm{Fe}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ solid solutions ($\mathrm{x}=0$ to $1, \mathrm{M}^{2+}=\mathrm{Cd}^{2+}, \mathrm{Zn}^{2+}$). Journal of Solid State Chemistry 181, 1258-1272.

Hatert, F., Hermann, R.P., Long, G.J., Fransolet, A.-M., \& Grandjean, F. (2003) An X-ray Rietveld, infrared, and Mössbauer spectral study of the $\mathrm{NaMn}\left(\mathrm{Fe}_{1-\mathrm{x}} \mathrm{In}_{\mathrm{x}}\right)_{2}\left(\mathrm{PO}_{4}\right)_{3}$ alluaudite-like solid solution. American Mineralogist 88, 211-222.

Hatert, F., Rebbouh, L., Hermann, R.P., Fransolet, A.-M., Long, G.J., \& Grandjean, F. (2005a) Crystal chemistry of the hydrothermally synthesized $\mathrm{Na}_{2}\left(\mathrm{Mn}_{1}\right.$ $\left.{ }_{x} \mathrm{Fe}^{2+}{ }_{x}\right)_{2} \mathrm{Fe}^{3+}\left(\mathrm{PO}_{4}\right)_{3}$ alluaudite-type solid solution. American Mineralogist 90, 653-662.

Hatert, F., Lefevre, P., Fransolet, A.-M., Spirlet, M.-R., Rebbouh, L., Fontan, F., \& Keller, P. (2005b) Ferrorosemaryite, $\mathrm{NaFe}^{2+} \mathrm{Fe}^{3+} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{3}$, a new phosphate mineral from the Rubindi pegmatite, Rwanda. European Journal of Mineralogy 17, 749-759.

Hatert, F., Hermann, R.P., Fransolet, A.-M., Long, G.J., \& Grandjean, F. (2006) A structural, infrared, and Mössbauer spectral study of rosemaryite, $\mathrm{NaMnFe}{ }^{3+} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{3}$. European Journal of Mineralogy 18, 775-785.

Hawthorne, F.C. \& Huminicki, D. (2002) The crystal chemistry of beryllium. In Beryllium: Mineralogy, Petrelogy, and Geochemistry (E.S. Grew, ed.). Reviews in Mineralogy and Geochemistry 50, 333-403.

ICDD (2012) WebPDF-4+. International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA.

Kacimi, M., Ziyad, M., \& Hatert, F. (2005) Structural features of $\mathrm{AgCaCdMg} 2\left(\mathrm{PO}_{4}\right)_{3}$ and $\mathrm{AgCd}_{2} \mathrm{Mg}_{2}\left(\mathrm{PO}_{4}\right)_{3}$, two new compounds with the alluaudite-type structure, and their catalytic activity in butan-2-ol conversion. Materials Research Bulletin 40, 682-693.

KampF, A.R. (1992) Beryllophosphate chains in the structure of fransoletite, parafransoletite, and ehrleite and some general comments on beryllophosphate linkages. American Mineralogist 77, 848-856.

Kampf, A.R., Dunn, P.J., \& Foord, E.E. (1992) Parafransoletite, a new dimorph of fransoletite from the Tip Top Pegmatite, Custer, South Dakota. American Mineralogist 77, 843-847.

Krivovichev, S.V. \& Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bound valence parameters? Zeitschrift für Kristallographie 216, 245-247.

Lindberg, M.L. \& Murata, K.J. (1953) Faheyite, a new phosphate mineral from the Sapucaia pegmatite mine, Minas Gerais, Brazil. American Mineralogist 38, 263-270.

Lindbloom, J.T., Gibbs, G.V., \& Ribbe, P.H. (1974) The crystal structure of hurlbutite: A comparison with danburite and anorthite. American Mineralogist 59, 1267-1271.

Lucas, F., Elfakir, A., Wallez, G., Quarton, M., \& Lagache, M. (1998) Synthesis and rietveld refinement of new phosphate and arsenate analogues of paracelsian. Canadian Mineralogist 36, 1045-1051.

Nedic, B., Kremenovic, A., Dimitrijevic, R., \& Dondur, V. (2008) Crystal structures of Sr-diphylloalumosilicates synthesized from LTA and FAU zeolites. Solid State Sciences 10, 154-159.

Pautov, L.A., Agakhanov, A.A., Sokolova, E., \& Hawthorne, F.C. (2004) Maleevite, $\mathrm{BaB}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, and pekovite, $\mathrm{SrB}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, new mineral species from the Dara-i-Pioz alkaline massif, northern Tajikistan: description and crystal structure. Canadian Mineralogist 42, 107-119.

Peacor, D.R., Rouse, R.C., \& Ahn, J.H. (1987) Crystal structure of tiptopite, a framework beryllophosphate isotypic with basic cancrinite. American Mineralogist 72, 816-820.

Phillips, M.W., Gibbs, G.V., \& Ribbe, P.H. (1974) The crystal structure of danburite: A comparison with anorthite, albite, reedmergnerite. American Mineralogist 59, 79-85.

Phillips, M.W., Kroll, H., Pentinghaus, H., \& Ribbe, P.H. (1975) The structures of synthetic paracelsian analogs, $\mathrm{SrGa}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ and $\mathrm{SrGa}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}$. American Mineralogist $\mathbf{6 0}$, 659-666.

Pluth, J.J. \& Smith, J.V. (1972) Positions of cations and molecules in zeolites with the faujasite-type framework VII.

Dehydrated Ca-exchanged X. Materials Research Bulletin 7, 1311-1322.

Rao, C., Wang, R., Gu, X., Hu, H., \& Dong, C. (2012) Strontiohurlbutite, IMA 2012-032. CNMNC Newsletter 14, 1285; Mineralogical Magazine 76, 1281-1288.

Rao, C., Hatert, F., Wang, R.C., Gu, X.P., Dal Bo, F., \& Dong, C.W. (2013) Minjiangite, IMA 2013-021. CNMNC Newsletter 16, 2705. Mineralogical Magazine 77, 2695-2709.

Rao, C., Hatert, F., Wang, R.C., Gu, X.P., DAl Bo, F., \& Dong, C.W. (2014) Minjiangite, $\mathrm{Ba}\left[\mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}\right]$, a new mineral from Nanping No. 31 pegmatite, Fujian Province, Southeastern China. American Mineralogist, submitted.

Rondeux, M. \& Hatert, F. (2010) An X-ray Rietveld and infrared spectral study of the $\mathrm{Na}_{2}\left(\mathrm{Mn}_{1-\mathrm{x}} M^{2+}{ }_{\mathrm{x}}\right)$ $\mathrm{Fe}^{2+} \mathrm{Fe}^{3+}\left(\mathrm{PO}_{4}\right)_{3}\left(\mathrm{x}=0\right.$ to $\left.1, M^{2+}=\mathrm{Mg}, \mathrm{Cd}\right)$ alluaudite-type solid solutions. American Mineralogst 95, 844-852.

Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A32, 751-767.

Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A64, 112-122.

Smith, J.V. (1953) The crystal structure of paracelsian, BaAl${ }_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$. Acta Crystallographica 6, 613-620.

Smith, J.V. \& Rinaldi, F. (1962) Framework structures formed from parallel four- and eight-membered rings. Mineralogical Magazine 33, 202-212.

TAKÉUCHI, Y. (1958) A detailed investigation of the structure of hexagonal $\mathrm{BaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ with reference to its $\alpha-\beta$ inversion. Mineralogical Journal 2, 311-332.

Takéuchi, Y. \& Donnay, G. (1959) The crystal structure of hexagonal $\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$. Acta Crystallographica 12, 465-470.

Tuttle, O.F. (1949) Two pressure vessels for silicate-water studies. Geological Society of America Bulletin 60, 1727-1729.

Wilson, A.J.C. (1992) International Tables for X-ray Crystallography, Volume C. Kluwer Academic Press, London, 883pp.

Received January 13, 2014. Revised manuscript accepted March 21, 2014.

[^0]: § Corresponding author e-mail address: fhatert@ulg.ac.be

[^1]: References: $\mathrm{SrGa}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}(\mathrm{SrGaSi})$ and $\mathrm{SrGa}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}$ (SrGaGe): Phillips et al. (1975); $\mathrm{BaGa}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}$ (BaGaGe): Calleri \& Gazzoni (1976); $\mathrm{BaZn}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$ (BaZnP), $\mathrm{BaZn}_{2} \mathrm{As}_{2} \mathrm{O}_{8}$ (BaZnAs), and $\mathrm{SrZn}_{2} \mathrm{As}_{2} \mathrm{O}_{8}$ (SrZnAs): Lucas et al. (1998); CaBeP, SrBeP, and PbBeP: this work.

