

Intraspecific variation of copper tolerance of four endemic plant species from the katangan Copperbelt (D. R. Congo)

Sylvain Boisson, Olivier Garin, Maxime Séleck, Soizig Le Stradic,
Grégory Mahy

9th European
Conference on
Ecological Restoration |
August 3-8, 2014, Oulu
(Finland)

Natural metalliferous habitats

La Calamine, Wallonie, Belgium

©Biodiversite.wallonie.be

Coyote Ridge, California, USA

© BioDiverse Perspectives

Copperbelt, Katanga, D.R.Congo

Natural metalliferous habitats

La Calamine, Wallonie, Belgium

Coyote Ridge, California, USA

Copperbelt, Katanga, D.R.Congo

Natural metalliferous habitats

- Small size
- Extreme ecological conditions
- Ecologically isolated

→ Island nature

- Speciation processes

→ Endemic species

→ Specialized species

Katangan Copperbelt (D.R.Congo)

Katangan Copperbelt (D.R.Congo)

Katangan Copperbelt (D.R.Congo)

More than 150 copper and cobalt outcrops (hills)

Katangan Copperbelt (D.R.Congo)

- 600 plant species
- 10 % endemics

Katangan Copperbelt (D.R.Congo)

Katangan Copperbelt (D.R.Congo)

Unique plant communities

Séleck et al. 2013, Ilunga et al. 2013

Mining activities

Impact on the katangan ecosystem

IUCN revision of copper endemics (Faucon, 2010)

CR 67 %

EN 3 %

VU 9 %

EX 9 %

Potential in rehabilitation strategies

600 species (55 endemics)

Metal tolerance capacities

(Hyper)accumulators

= phylogenetic resources

Potential in rehabilitation strategies

600 species (55 endemics)

Metal tolerance capacities

(Hyper)accumulators

= phytogenetic resources

(Whiting et al. 2004)

Potential in rehabilitation strategies

600 species (55 endemics)

Metal tolerance capacities

(Hyper)accumulators

= phytogenetic resources

To conserve and use these species, we have to improve the knowledge about their ecology and their biology

This study aims to...

Identify intraspecific copper tolerance of 4 endemic plant species from 3 sites of the katangan copperbelt in native conditions

Studied species

Crotalaria cobalticola

Fabaceae
Annual
Habitat : Steppes
Strict endemic

Diplolophium marthozianum

Apiaceae
Perennial
Habitat : Steppes/Steppic savanna
Broad endemic

Gladiolus ledochtei

Iridaceae
Perennial
Habitat : Steppes
Broad endemic

Triumfetta welwitschii

Malvaceae
Perennial
Habitat: Steppic savanna
Strict endemic

Proposed IUCN status by Faucon 2010

Seeds collection

Species populations :

3 populations
between Tenke and
Fungurume

One population/area

At the same year

Random sampling

Experimental design

BY SPECIES

Experimental design

BY SPECIES

3 POPULATIONS
T-M-F

Experimental design

BY SPECIES

3 POPULATIONS
T-M-F

X

3 COPPER CONCENTRATIONS IN SOIL	0 ppm
	100 ppm
	1000 ppm

Contaminated with $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$
+ 0.2 % compost

Experimental design

BY SPECIES

3 POPULATIONS
T-M-F

X

3 COPPER CONCENTRATIONS IN SOIL	0 ppm
	100 ppm
	1000 ppm

Contaminated with $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$
+ 0.2 % compost

X

10 repetitions with 5
seeds/bag

Measures, monitoring and analyses

- November 2013 – May 2014
- Before sowing, seedlots were weighed
- After February, 20 → 1 plant/bag

Measures, monitoring and analyses

- November 2013 – May 2014
- Before sowing, seedlots were weighted
- After February, 20 → 1 plant/bag

- Perennial species
 - Germination
 - Nb of leaves, height (cm)

- Annual species (*C. cobalticola*)
 - Germination
 - Nb of branches, height, root system length (cm)
 - Dry weight/modality (g)

Measures, monitoring and analyses

- November 2013 – May 2014
- Before sowing, seedlots were weighted
- After February, 20 → 1 plant/bag

- Perennial species
 - Germination
 - Nb of leaves, height (cm)

- Annual species (*C. cobalticola*)
 - Germination
 - Nb of branches, height, root system length (cm)
 - Dry weight/modality (g)

- Analyses: AV2 (R software)

Seed weight and germination

- No significant differences of seedlots weight between populations
- Mean germination rate

<i>C. cobalticola</i>	44.1 \pm 4.8 %
<i>D. marthozianum</i>	12.0 \pm 2.6 %
<i>G. ledoctei</i>	49.3 \pm 28.3 %
<i>T. welwitschii</i>	13.3 \pm 2.6 %

Seed weight and germination

- No significant differences of seedlots weight between populations
- Mean germination rate

<i>C. cobalticola</i>	44.1 \pm 4.8 %
<i>D. marthozianum</i>	12.0 \pm 2.6 %
<i>G. ledoctei</i>	49.3 \pm 28.3 %
<i>T. welwitschii</i>	13.3 \pm 2.6 %

No effect of copper concentrations on germination rates
Population effect on germination of *T. welwitschii*

Growth of perennial species

- Population effect on perennial species

D. marthozianum

T. welwitschii

Growth of perennial species

- Copper concentration effect on perennial species

D. marthozianum

T. welwitschii

Growth of perennial species

- Copper concentration effect on perennial species

D. marthozianum

T. welwitschii

Growth of the annual species: *C. cobalticola*

- No population effect
- Copper concentration effect on perennial species

Growth of the annual species: *C. cobalticola*

- No population effect
- Copper concentration effect on perennial species

Lowest concentrations

Dry weight: 0.89 ± 0.16 g

Growth of the annual species: *C. cobalticola*

- No population effect
- Copper concentration effect on perennial species

Lowest concentrations

Dry weight: 0.89 ± 0.16 g

Highest concentrations

Dry weight: 1.72 ± 0.09 g

To conclude

- According to species
 - **Populations** have an effect on growth AND/OR
 - **Copper concentrations** have an effect on growth

To conclude

- According to species
 - **Populations** have an effect on growth AND/OR
 - **Copper concentrations** have an effect on growth
- For *C. cobalticola*
 - Performance seems to be higher at 1000 ppm than 0 ppm Cu added
→ specialist
 - Few individuals had flowers and fruits → no statistical analyses

To conclude

- According to species
 - **Populations** have an effect on growth AND/OR
 - **Copper concentrations** have an effect on growth
- For *C. cobalticola*
 - Performance seems to be higher at 1000 ppm than 0 ppm Cu added
→ specialist
 - Few individuals had flowers and fruits → no statistical analyses
- For *G. ledoctei*
 - No significant effect of population and copper concentration

To conclude

- According to species
 - **Populations** have an effect on growth AND/OR
 - **Copper concentrations** have an effect on growth
- For *C. cobalticola*
 - Performance seems to be higher at 1000 ppm than 0 ppm Cu added
→ specialist
 - Few individuals had flowers and fruits → no statistical analyses
- For *G. ledoctei*
 - No significant effect of population and copper concentration
BUT

Resources allocated in bulbs ?
!! plants stay until next year

In conservation and rehabilitation

- It is possible to regenerate endemic species from steppic savanna in normal soils
 - <> *C.cobalticola* (steppe)
- Population involve the growth of some perennial species
 - Prioritizing the conservation of performant populations in the first step
 - Then adding new populations to increase the diversity
- *C. cobalticola* present the highest tolerance level to copper → use in rehabilitation

Thank you for your attention

Pictures: O. Garin, S.
Boisson & copperflora.org

Copperflora.org
info@copperflora.org

Seeds collection

