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ABSTRACT: The first resonance frequency is a key performance characteristic of MEMS vibrometers. In batch fabrication, this
first resonance frequency can exhibit scatter owing to various sources of manufacturing variability involved in the fabrication
process. The aim of this work is to develop a stochastic multiscale model for predicting the first resonance frequency of MEMS
microbeams constituted of polycrystals while accounting for the uncertainties in the microstructure due to the grain orientations.
At the finest scale, we model the microstructure of polycrystaline materials using a random Voronoi tessellation, each grain
being assigned a random orientation. Then, we apply a computational homogenization procedure on statistical volume elements
to obtain a stochastic characterization of the elasticity tensor at the second scale of interest, the meso-scale. In the future, using a
stochastic finite element method, we will propagate these meso-scale uncertainties to the first resonance frequency at the coarser

scale.
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1 INTRODUCTION

Microelectromechanical systems (MEMS) are microsystems
made of at least one mechanical part. They are present in a
wide variety of fields, including aeronautics, automobile, or
medicine (e.g. heart catheter as blood pressure sensors) and
their use is growing fast. Predicting precisely one or more

mechanical properties is of major interest for some
applications. However, a scatter between a predicted
mechanical property and manufactured MEMS can be

observed. This scatter results from the uncertainties involved
in the manufacturing process.

These uncertainties can be of different natures. Two
different MEMS will have different microstructures (grain
sizes, grain orientations, surface profiles...). For a sufficiently
large macroscopic scale, such randomness is negligible.
However, for MEMS, the dimensions are comparable with the
microstructure of materials. Thus the influence of the
microstructure may not be negligible anymore.

The case study in this work is a clamped-free microbeam
used for gyroscopes. For MEMS gyroscopes, structural
dynamics may be of major importance. Interesting
macroscopic quantities for designers are the resonance
frequency of the first mode or the quality factor. The
microbeam is made of polysilicon. As the properties of
Silicon crystals are anisotropic, a first source of uncertainty is
the grain orientation (other sources will be considered in a
future work). The purpose of this work is the prediction of the
macroscopic resonance frequency of the first mode of a
microbeam from a random distribution of grain orientation at
the microscopic scale.

The resonance frequency can be predicted by using a 3-
scale stochastic model. This is necessary since modeling each
grain for the whole beam is computationally too heavy. The 3
scales are the following ones:

e The micro-scale or the grain scale is the smallest scale of
this model. It models each grain with its particular
elasticity tensor which depends on the orientation of the
grain.

e The meso-scale is the intermediate scale. It is the scale
over which the material properties of the grain are
homogenized.

e The macro-scale is the whole microbeam over which the
resonance frequency is sought, using homogenized
material properties at the meso-scale.

The link between these 3 scales is depicted in Figure 1.
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Figure 1- The 3-scale procedure

Samples of the microstructure can be generated with a
random orientation for each silicon grain. They are referred to
as the Statistical Volume Elements (SVE). A Monte-Carlo
procedure along with a homogenization technique permits to
estimate a distribution of the material properties at the meso-
scale, as proposed in [1,2,3]. However computational
homogenization is used here, based on [4,5,6] (see section
2.3) as it is more efficient although it requires the stiffness
matrix of the microstructure. The support of the distribution
can be bounded (from below and above) to match better the
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observed behavior of the material. The bounds’ information
can be added with the maximum entropy principle (MaxEnt)
[7]. The final objective of this step is to be able to generate
samples of the elasticity tensor that would mimic the
microstructure randomness.

Once the distribution of the elasticity tensor is obtained at
the meso-scale, the uncertainties can be propagated up to the
macro-scale. A deterministic finite element method can be
used in the frame of a Monte-Carlo procedure. Other methods
can be considered to improve the computational efficiency.
Polynomial chaos expansion can be considered [8], [9].
Stochastic Finite Element methods exist, such as spectral
stochastic finite element [10]. The Perturbation approach can
also be used. It gives a solution at a low computational cost,
even though it may lack accuracy [11], [12], [13]. Finally, the
Perturbation Stochastic Finite Element Method (PSFEM)
considers a Taylor expansion around the mean to determine
the output distribution. This meso-macro procedure will be
investigated in the future.

The sections that follow focus on the microscopic part. The
material, polysilicon, is first described. The homogenization
procedure is then discussed. The last section derives the
distribution of the material property at an intermediate scale:
the meso-scale. From samples of the microstructure,
distributions of the homogenized property can be constructed.

2  THE MICROSCOPIC PART

2.1  Silicon

Silicon is the most common material in microelectromechanical
systems. It is an aggregate of cubic crystalline materials. The
properties of a silicon grain depend on its orientation with
respect to the crystal lattice. What follows here is based on
[14]. The notation (hkl) represents a plane with the integers
h, k, and [ being the Miller indices. [hkl] represents a
direction (in the basis of the direct lattice vectors).

In the [100], [010] and [001] directions, the same Young
modulus is seen: 130 GPa, the minimum value for silicon. The
maximum value of the Young modulus is obtained in the
[111] direction: 188 GPa. The range of possible values for
Poisson’s ratio is between 0.048 and 0.40. The behavior of the
Young modulus and the Poisson ratio is depicted in Figure 2
in the plane (100).
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Figure 2 - Silicon material properties based on [14]

Based on [14], which uses Hall measurements [15], Table 1
contains the different properties of Silicon. The x, y and z
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axes are aligned with the [100], [010] and [001] directions. E
stands for the Young modulus while v and G correspond
respectively to the Poisson ratio and the shear modulus. The
parameters c,;, are the (a,b) elements of the matrix Voigt
notation of the fourth order elasticity tensor C.

Table 1. Measured mechanical properties

Parameter  Hall meas.
E, [GPa] 130
Vyy[-] 0.28
Gy [GPa] 79.6
c11 [GPa] 165.6
c12 [GPa] 63.9
C44 [GPa] 79.5

2.2 Homogenization: overview

Let us consider the micro to meso part: the homogenization of
a volume element of the microbeam is sought. A portion of
the material taken into consideration can be named a volume
element. An example of a FE model, obtained with gmsh, can
be seen in Figure 3. When this volume is large enough to have
accurate, deterministic homogenization, it is called a
representative volume element (RVE). The material properties
can be extracted by applying suitable boundary conditions on
the FE model. The Hill-Mandel condition must be verified
[4,5,6] as it will be discussed later on. The homogenized
computed property is called effective and does not depend on
the boundary condition. If the volume element is too small to
be representative, the homogenization possesses a random
nature. It is a statistical volume element (SVE). The
homogenized computed property is called apparent. The
apparent properties of a SVE depend on the boundary
condition.

Figure 3 - A sample of the microstructure

At first, let us consider a RVE. The volume average
< a,, > of a,, over the volume V is defined as

1
<a,>= —fam(x)dV
Vi

The subscript m will refer to the microstructure while the
subscript M will refer to the homogenized case over the
volume element. ¥V and T are respectively the volume and
boundary while x is the position vector. An effective elasticity
tensor C/” can be defined over an RVE. As said earlier, it is
independent of the boundary conditions and thus unique for
elastic material. C:/”can be defined through the relationship
between the averaged stress tensor < @, > and the averaged
strain tensor < &,, > [16]:
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<o,>=CT:<¢g, > (1)

If a' is the fluctuation of a,, around its volume average<
a,, >, then the following can be written ([16]):

CI i< gy >=< Cp >1< £y > +< Chpi £y >

Thus Cj{f usually differs from < C,,, >. The latter is the
approximate solution proposed by Voigt: the homogenized
elasticity tensor is approximated by its average local value. As
said by Hill, that solution is an upper bound for (C,ewff. It is
named the Hill-Voigt bound.

The same reasoning can be done with the compliance
tensor. <S,, >"1 is then a lower bound for the effective
elasticity tensor. It is named the Hill-Reuss bound.

Bounds will be important in this section. How can we
define ordering between 2 tensors? A tensor A is (strictly)
greater than a tensor B if their difference is positive
semidefinite (positive definite).

A > (=) B iif A — B is positive (semi)definite

Let us define the boundary conditions that respect the Hill-
Mandel principle:

e Kinematic Uniform Boundary Condition (KUBC)
e  Static Uniform Boundary Condition (SUBC)

e  Mixed Boundary Condition (MBC)

e Periodic Boundary Condition (PBC)

The independence of an RVE with respect to the boundary
condition, when performing homogenization, can be used to
define the concept of RVE. A volume element is said to be
representative when the homogenized values obtained with
KUBC and SUBC coincide [5]. If it is not the case, the
volume element is too small to be representative and is stated
statistical (SVE). KUBC and SUBC are two extreme
boundary conditions (BC).

While the mixed and the periodic cases are estimates of the
effective elasticity tensor, the uniform displacement (KUBC)
overestimates the elasticity tensor while the static uniform BC
underestimates it. For a SVE, the KUBC solution is an upper
bound for the elasticity tensor while the SUBC case is a lower
bound. A range of elasticity tensors is possible and one may
talk about apparent properties. This can be seen in Figure 4.
The most accurate estimate of the effective property is the
PBC case: it converges in a faster way with respect to the size
of the volume element. On the other hand, the mixed case is
easier to implement.
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Figure 4 - Young modulus for different SVE
under different BCs

2.3 Homogenization: implementation

This paper is strongly influenced by the work of both [1] and
[2]. In these works, the elasticity tensor at the meso-scale is
computed with uniform displacement BC (KUBC), uniform
traction BC (SUBC) as well as mixed boundary condition
(MBC) along with Huet’s partition theorem [16]. The latter is
used to compute the apparent elasticity tensor. The volume
averages of both the deformation and the stress are required,
with the help of a minimization procedure. When one has
access to the stiffness matrix of the FE model, there is another
way to get the elasticity tensor: computational
homogenization. It is more efficient than [1,2] but requires the
stiffness matrix.

Here the work done in [4,5], dealing with computational
homogenization, is used. The macro stress tensors o,, and the
macro strain tensor &,, are defined from the volume averages
of their corresponding micro tensors:

1
oy =<0, >= Efv 0,dV

@

1
ey =< &, >= ?fv £,dV

The Hill-Mandel principle implies the equality of the
internal energy at both scales yielding:

1
Oy €y = ?fv O €AV 3

In the absence of body forces it can be shown [6] that this
relation reduces to

0= J(tm =0y Mp) Uy — &y x)dl (4)

where n,, is the normal to the boundary T' of the micro-
volume, t,, = o, ‘- n,, is the surface traction, and where u,,
is the micro-displacement field. To introduce consistent
boundary conditions at the micro-scale, the displacement field
u,, can be decomposed into an average u,, = & - x and into
a fluctuation field u;, so that

Uy =Uy +Uy, =&y - x+Up,

The fluctuation u;,, comes from the resolution of the micro-
scale problem. As seen in [6], the Hill-Mandel principle (4)
becomes:
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Jotm W dl' =0 )

This condition is satisfied for each of the previously defined
boundary conditions, which are now specified.

e No microstructural fluctuations over the whole volume
element:

U, =&y X, VXEV

This case is the Voigt assumption.

e No microstructural fluctuations over the boundary:
U, =&y X, VXET (6)

It is the kinematic uniform case (KUBC).

e Periodicity can also be enforced with volume elements of
periodic geometry. Therefore the microstructural
fluctuations of an edge u.,* are equal to the fluctuations
of the opposing edge u;,,".

e The whole boundary integral (4) can vanish as a whole. It
is the weakest possible constraint. It is named the
minimal kinematic boundary conditions and it can be
written as :

t,=0y -n, VXx€eTl

This corresponds to a uniform traction over the boundary,
or SUBC and can be simulated by considering

Jrs(ty ® My ) dl =0 (7

on the opposite RVE faces I't as proved in [5]. Note that
this equation can be enforced by constraining the
displacement of the volume faces.

e The mixed case is a combination of KUBC and SUBC in
the x and y directions. Equation (6) or (7) is used,
depending on the boundary.

e Finally, the equality between the stresses at the micro and

macro scales over the whole volume corresponds to the
Reuss assumption:

O, =0y, VXEV (8)

Let us now define a way to compute the elasticity tensor.
More details can be found in [5,6]. At first, the macroscopic
stress tensor can be written as:

oy = Jpt @ xdl ©
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When applicable boundary conditions, in the Hill-Mandel
sense, are considered, there are N,,; nodes with prescribed
displacements, N,,; depending on the type of boundary
condition. With xP being their position vector in the deformed
state, equation (9) can be rewritten as:

Gy = =Ty fP © xP (10)

where fP corresponds to the resulting external nodal forces at
the prescribed nodes. In linear elasticity, the equilibrium
between external and internal forces can be written the
following way:

Y K29 ud = f 11)

where p and q corresponds to the different N,, prescribed
nodes, and where K% is obtained thanks to a condensation of
the internal nodes [5]. This condensation depends on which
boundary condition is used.

Including (11) in (10) results in:

Ou = %gg(wuq )®

or again, as the displacement of the constraint nodes directly
comes from the deformation tensor:

1 pq
Oy =VZZxP®KM ® x7: gy
P q

The homogenized elasticity tensor C,, can be defined as:

and thus, one can write:
Cu =33 x" @ Kifl @ x (13)

2.4  Extraction of the mesoscopic properties

Now the elasticity tensor of a volume element will be
computed. The size, number of grains and number of samples
for different considered SVE are given in Table 2.

Table 2. Different SVEs realizations

Case xy Number of  Number of
area[um?] grains samples
1 0.03 2 400
2 0.088 6 300
3 0.164 11 150
4 0.224 15 100
5 0.282 19 100

The different SVE can be seen in Figure 5.
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Different SVE sizes

Figure 5 - the different SVEs

The Voronoi tessellation for one SVE size is deterministic.
Only the orientation of each grain is random. A set of
orientations, one for each grain, defines a realization 6, of the
microstructure. 8, represents the randomness of each sample
k among the N; realizations of the microstructure. There is no
preferred direction. The stiffness matrix K(0,) of the
microstructure, when applying mixed BC, is used to compute
the elasticity tensor. The results obtained from the Monte-
Carlo simulations (N, realizations) are represented in Figure 6
and Figure 7.

65 _ Coefficient of variation of Ex
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Figure 6 - Coefficient of variation of E,,

In Figure 6, the coefficient of variation(COV) is depicted.
The COV is linked to the standard deviation and the mean:
COV = o /u. As expected, increasing the size of the volume
element decreases the coefficient of variation of the Young
modulus (from = 6% to = 2%).
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Figure 7 - E,, for different boundary conditions

In Figure 7, one can see the mean Young modulus in the x
direction: it does not vary much with the SVE size. The
bounds for a single crystal Silicon are 130 GPa and 188 GPa
as presented in Figure 7. Whatever the size of the SVE (and so
the number of grains), there is a chance that each grain is
orientated in one of these extreme case. Thus having a SVE of
130 GPa or 180 GPa is always possible. However it is less
likely with a growing number of grains. It is seen in Figure 7:
the colored curves are the probability density function of the
Young modulus in the x direction based on a beta distribution,
directly obtained from the Monte-Carlo simulations (the
bounds being those of a single Silicon crystal). The
probability to be close to the silicon bounds decreases
drastically as the size of the SVE grows.

3  THE MESOSCOPIC PROPERTIES

In the previous section, the generation of a sample of the
microstructure was described. The randomness was expressed
through grains of random orientation. Different boundary
conditions can be applied over this microstructure.
Furthermore the homogenized elasticity tensor of this sample
can be computed.

In this section, with the aim of predicting stochastic macro
properties, the use of the mesoscopic properties in a FE
context is expanded.

&l™

Next macro sample

Figure 8 - Procedure without generator

2695



Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014

Say we want to perform a Monte-Carlo simulation to get the
distribution of the resonance frequency f; of a microbeam. To
achieve this, Ny;,,, samples of f; are required and they can be
computed thanks to a Finite Element method. A sample for
the elasticity tensor is required for each Gauss point of this FE
model. If we have N;g Gauss points and if we want Ng,
simulations of the FE model, then we need N, - Ng;,,, Samples
of the elasticity tensor. Furthermore, in order to perform
another simulation with a different set of samples, one needs
to compute all the micro parts again. This process is depicted
in Figure 8: at each Gauss point, a new set of the
microstructures is required. Evidently, it is less costly to
compute enough samples of the microstructure to capture its
statistical behavior and to use a generator. Correlation
between different Gauss points can also be added. This
solution is represented in Figure 9.

Distribution

Next macro sample
Figure 9 - Procedure with generator

To apply this solution, we first need to define a distribution
of the material property of interest and to compute its
parameters. Then samples need to be generated according to
this distribution.

The mixed boundary condition provides an estimation of the
elasticity tensor. Therefore we can estimate the mean and the
variance of material properties given by the elasticity tensor as
the Young modulus. A gamma distribution can be derived
from this information and samples can be generated from
various libraries.

Also one may want to generate the whole elasticity tensor.
Things are however more difficult when working with tensors,
especially when lower and upper bounds constrain the desired
tensor. Such bounds are present in this case with the help of
the KUBC and SUBC [1,2,3].

3.1 1D case for E,

The distribution considered here is based on the samples of
E,.. Furthermore, it possesses a lower bound E. as well as an
upper bound E¥. For a constant SVE size, samples of bounds
can be obtained with KUBC and SUBC. As it is a set of real
numbers, the bounds are simply the maximum (minimum) of
EXUBC (EXUP€). A mean E, and a variance of can be
estimated from the samples of EFB¢ or EMBC. Here the mixed
case is used.
The following linear change of variable can be made:

_ Ex—E}
EY—EL

(14)
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It is assumed that u follows a beta based distribution
between 0 and 1.The parameters of the distribution « and 8
are:

_wl-n)

The samples of E, are used to compute # and g,
respectively the mean value and the standard deviation of u.
The distributions obtained with different sizes of the volume
element can be seen in Figure 10. This set of curves is similar
to the set which was directly obtained from the probability
density function of the Young modulus in the x direction
based on a beta distribution, directly obtained from the
Monte-Carlo simulations reported in Figure 7. The main
difference is that in the new distribution the bounds narrow
the Young modulus range with an increasing size of the
volume element.

Univariate beta distributions
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g 15 grains
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=
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=
=
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2
(=M
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/.’ .".
0.0055 130 140 150 160 170 180 190

Young modulus [GPa]

Figure 10 - Univariate beta distributions of different SVE
sizes

3.2 3D case

In this section we deal with the distribution of the whole
elasticity tensor C,,. The problem is simplified with the help
of the Voigt notation; from a fourth order C,,, we can define a
second order matrix € (we omit the subscript M for clarity).

321

The first problem we face is the definition of 2 absolute
bounds €, and C;. Samples of bounds can be computed with
the different boundary conditions. What is needed is one
upper bound, above each sample, and one lower bound, below
each sample. This is not as easy as in 1D: tensors face
Loewner partial ordering. The solution is not the supremum
and the infimum based on a set of realizations.

For each microstructure, we know that the elasticity tensor
is below the KUBC case. Therefore C,, is defined as a tensor
higher than each KUBC case. In order to use as much
information as we can, it will also be the closest tensor to each
of them. The same reasoning can be performed for C, and the
SUBC case.

Absolute bounds



Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014

In [1] and [2], the absolute bounds are defined the following
way:
N
€, = arg mip ) [€V7¢(8,) - Clly
cect , L=
k=1
Ng

C,= arg mip ZHC — C*UBC(O )|l
ad k=1

with |lal|z being the Frobenius norm of a. These two
equations ensure that the absolute bounds are close to the
sampled bounds. Both sets C',; and €%, ensure that C; and C,,
are bounds for each sampled microstructure:

C.; = {CeM;(R)|C < CUB(O,),k=1,..,Ng}
aa = {€ € MI(R)|CSVP€(0,) < Ck =1,..., N}

To reduce the size of this problem, one can assume that the
bounds are isotropic or orthotropic. The problem remaining is
an optimization procedure of dimension 2 (isotropic
assumption) or 3 (orthotropic assumption).

3.2.2  Maximum entropy

For now, we have samples of the elasticity tensor and two
absolute bounds. What remains to be defined at the meso-
scale is the distribution of the elasticity tensor as well as to be
able to generate samples from this distribution. To achieve
this, the maximum entropy principle can be used.

As recalled in [1], the maximum entropy principle consists
of maximizing the measure of entropy S(p) under a set of
constraints encompassing the available information. The
measure of information entropy can be defined as:

5(11»)=—f

P(C) In(P(C)) dC
M7 (R)

where, dC;; being Lebesgue measure on R, the measure dC

IS:
[ <

1<i<jsn

n(n-1)

dc =2 4

To define a probability density function for C, one step
remains; the definition of the constraints. It can be done in
various ways. In [3], they are defined as:

~
[, P(C)dC =1 (15)
% E[ln(det(C, — ©))] = ¢, (16)
E[In(det(C — C)))] = ¢ (1))
E[C] =C (18)

The scalar parameters ¢, and ¢; can be computed from the
generated samples as well as the matrix mean C.

As can be seen in [1], maximizing entropy under constraints
(15)-(18) gives a generalized matrix variate Kummer-Beta

distribution for the probability density function of the
elasticity tensor:

P(C) = 1(C)c, det(€ — €)* det(C, — C)* etr(—AcC)

where etr(X) = exp[tr(X)] and ¢, is the normalization
constant based on A,: ¢, = exp(4,). The 3 scalar parameters
Aoy A, and A; and the matrix parameter A, are the Lagrange
multipliers of constraints (15) to (18) respectively. Each of
them can be computed following [3]. More information
concerning matrix variate Kummer Beta distribution can be
found in [17]. How to generate matrix variate Kummer Beta
distribution is explained in [3]. Computing the parameters of
this distribution involves non-linear optimization and matrix
hypergeometric functions. Generating matrices from this
distribution implies slice sampling strategies, Gibbs sampling
or Markov-chain Monte-Carlo methods.

An alternative was proposed in [1] and [2]: thanks to a
change of variable, only the generation of Gaussian and
Gamma random numbers is required. The change of variable
is the following:

N=(C-C)' = (C,—CP7! (19)

This change of variable is powerful because, when the
elasticity tensor C is in between its two bounds, N is positive
definite. Ensuring the constraint:

c,<C<C,
is thus equivalent to:
O0<N
The probability density function of N is then (see [18]):
P(N) = Iy gy (N)cg det(N)*~* etr (—=AyN)

It is the maximum-entropy probability distribution for
positive-definite matrices [7]. Replacing N by its elasticity
tensor counterpart using equation (19) gives the probability
density function of € with the use of the random matrix N. ¢}
is the new normalization constant while 1 and A, are the
Lagrange multipliers of the problem defining random matrix
N.

The determination of the parameters of the distribution and
the generation of its random matrices are made easier using
random matrix N thanks to Soize work on positive-definite
random matrices [7,18,19,20].

Using the random matrix N also possesses drawbacks.
Although the same amount of information is used, more
flexibility can be obtained with the matrix-variate Kummer-
beta distribution (more parameters are present as more
constraints are enforced). Furthermore, at least in a direct
way, constraining the mean value of C is not possible with the
use of the random matrix N (hon-linear transformation from C
to N).

A third possibility is the random matrix N’ which is defined
as:

N' =C-(
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4  CONCLUSION

This work described a way to propagate uncertainties from a
random microstructure up to the meso-scale. The material
considered was polysilicon, an anisotropic material, in linear
elasticity. The randomness was expressed through a random
orientation of the different grains of the microstructure.
Computational homogenization was used to define the
homogenized elasticity tensor. With the help of different
boundary conditions, realizations of the elasticity tensor could
be obtained along with samples of bounds. This information
can be brought in a matrix-variate Kummer-Beta distribution.
The latter can be replaced by a different distribution, easier to
generate, with the help of an efficient change of variable.
The objective of this work is to propagate the uncertainties
from the microstructure up to a macro-scale quantity. From
the distribution of the homogenized elasticity tensor at the
meso-scale, the computation of the uncertainties concerning a
macro-scale property can be sought. This propagation will be
considered in a future work. The perturbation method can
provide a faster solution than Monte-Carlo based procedures.
However the main problem is to define the SVE size that
would provide relevant uncertainties at macro-scale.
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