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Introduction

La miniaturisation est une des clés de l’évolution technologique actuelle. Cette réduction
d’échelle ouvre de nouveaux horizons ainsi qu’une diminution des coûts et une augmenta-
tion de la fiabilité. Depuis une dizaine d’années, l’industrie est ainsi capable de produire des
dispositifs de mesure et des actionneurs utilisant une structure mécanique dont les dimen-
sions caractéristiques sont largement inférieures au millimètre. Les défis posés par de tels
systèmes ne se situent pas uniquement au niveau de leur fabrication car le passage à l’échelle
micrométrique confronte la phase de conception à des comportements inhabituels et parfois
inattendus. Ainsi, les phénomènes physiques qui sont soit négligés soit étudiés séparément
pour un système de taille macroscopique ne peuvent plus l’être à l’échelle microscopique.
Par exemple, une interaction forte entre les phénomènes électrostatiques et mécaniques est
fréquemment rencontrée.

Ce travail porte sur l’étude du phénomène de pull-in apparaissant suite au couplage
électromécanique introduit dans certains microsystèmes et pouvant éventuellement mener
à leur destruction. Le pull-in se caractérise par un comportement instable du dispositif à
partir d’une tension électrique critique appelée tension de pull-in. Ce phénomène ainsi que les
méthodes permettant sa modélisation seront décrits au cours du premier chapitre.

Dans certains cas, le phénomène de pull-in est indésirable et il peut donc être intéressant
de maximiser la tension de pull-in de manière à retarder son apparition. L’objectif de ce travail
est d’utiliser l’optimisation topologique à cette fin. La présentation des principes généraux
de l’optimisation topologique fait l’objet de la première partie du second chapitre. Outre
l’intérêt propre de la maximisation de la tension de pull-in, l’application de l’optimisation
topologique à un problème multiphysique représente le second intérêt de ce travail. En effet,
les travaux portant sur l’optimisation topologique dans le contexte multiphysique sont encore
peu nombreux. Mais, ils sont néanmoins prometteurs quant aux possibilités offertes par cet
outil de conception systématique et rationnel. La seconde partie du chapitre 2 propose une
revue détaillée des principaux travaux existants dans ce domaine.

Ce travail constitue une étude préliminaire destinée à estimer l’applicabilité de l’optimi-
sation topologique aux problèmes électromécaniques fortement couplés. Afin de procéder par
étapes, nous allons dans le cadre de ce travail réduire la difficulté du problème d’optimisation
à l’aide d’hypothèses adéquates. Ces hypothèses ainsi que le problème d’optimisation résultant
sont présentés au début du chapitre 3. Ensuite, ce chapitre est dédié à la présentation de la
procédure d’optimisation et à la justification des choix effectués au cours de sa construction.
L’algorithme d’optimisation est développé dans le logiciel Oofelie ce qui permet de profiter
d’un ensemble d’outils d’analyse multiphysique par éléments finis [28] et de calcul matriciel
existants ainsi que d’une interface avec l’optimiseur ConLin V3 [17].
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L’illustration des capacités de l’outil développé est finalement proposée à l’avant dernier
chapitre. Les différents cas tests présentés au cours de ce chapitre montrent l’efficacité et la
fiabilité de l’algorithme d’optimisation. Toutefois, les solutions obtenues proposent des struc-
tures difficilement réalisables à l’aide des procédés de fabrication classiquement utilisés pour
les microsystèmes. Dès lors, le chapitre 4 propose également l’ajout au problème d’optimi-
sation d’une contrainte de fabrication. Les principes ainsi que la mise en pratique de cette
contrainte font l’objet de la seconde partie de ce chapitre.

Le mémoire se termine par une synthèse des apports des travaux exposés avant de conclure
par quelques réflexions sur les perspectives de développement.



Chapitre 1

Modélisation électromécanique du
phénomène de pull-in

1.1 Introduction

Ce chapitre est consacré à la présentation du phénomène de pull-in apparaissant dans
les microsystèmes électromécaniques. Ce phénomène résulte du couplage entre les forces
électrostatiques d’une part et mécaniques de l’autre. Au delà de certaines valeurs du
déplacement mécanique, il en résulte un comportement potentiellement instable du dispo-
sitif pouvant mener à son endommagement ou à sa destruction. Dès lors, le pull-in est une
caractéristique importante du comportement de ces microsystèmes et de nombreux efforts ont
déjà été consacrés à sa simulation. Suite au caractère multiphysique du phénomène d’instabi-
lité de pull-in, les outils de simulation doivent prendre en compte le couplage existant entre
les effets électriques et mécaniques. De plus, le caractère fortement non-linéaire du problème
étudié impose l’utilisation de méthodes de continuation numérique pour le calcul précis des
conditions de pull-in. Dans le cadre de ce travail, une modélisation par éléments finis forte-
ment couplée a été utilisée conjointement avec un algorithme de continuation pour le calcul
des conditions de pull-in. La seconde partie du chapitre sera consacrée à la description de la
formulation éléments finis ainsi que de deux méthodes de continuation. Mais avant cela, la
première partie nous permettra de présenter le phénomène de pull-in.

1.2 Phénomène de pull-in dans les microsystèmes
électromécaniques

Les microsystèmes électromécaniques ont pour objectif principal d’intégrer aux circuits
électroniques des parties mécaniques pouvant servir par exemple de capteur ou directement
d’actionneur. Le fonctionnement de ces parties mécaniques nécessite par nature la produc-
tion de forces. Cependant du fait du changement d’échelle, les forces prédominantes dans
les microsystèmes ne sont pas les mêmes que celles existant à l’échelle macroscopique. Dans
le domaine des microsystèmes, des forces d’origine thermique, magnétique ou électrique sont
donc fréquemment dominantes. Par conséquent, les microsystèmes mécaniques présentent très
souvent un couplage fort entre plusieurs phénomènes physiques.

Dans le cadre de ce travail, les dispositifs utilisant la force électrostatique sont étudiés.
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Ceux-ci fonctionnent suivant un principe similaire au condensateur. Deux électrodes sont
soumises à une différence de potentiel électrique engendrant une force électrostatique qui
tend à rapprocher les électrodes. La déformation obtenue sous cette force peut ensuite être
utilisée de différentes manières comme cela est montré dans la suite.

Cependant, le caractère non linéaire de la force électrostatique par rapport au déplacement
peut provoquer l’instabilité du dispositif. Ce phénomène porte le nom d’instabilité de pull-
in. Le pull-in est intéressant lorsqu’on cherche à fabriquer un système bistable par exemple
mais il peut également être nuisible dans d’autres applications puisqu’il peut conduire à la
destruction du microsystème. Cet effet sera étudié en détails ci-dessous.

1.2.1 Microsystèmes électromécaniques

Cette section présente quelques microsystèmes où la force électrostatique est mise en
œuvre. Les microsystèmes électromécaniques les plus répandus sont les switchs RF (radio
fréquence) [36] utilisés principalement dans le domaine des télécommunications. Deux concep-
tions différentes sont fréquemment rencontrées en fonction de l’utilisation : les switchs série
(Fig. 1.1) et les switchs par effet de shunt (Fig. 1.2). Les commutateurs série fonctionnent
simplement comme un interrupteur classique mis à part le fait qu’une force électrostatique
est créée entre la poutre et la grille (Fig. 1.1) afin de fléchir la poutre et d’établir un contact
ohmique entre la poutre et le drain. Ces dispositifs présentent l’avantage de fonctionner même
si le signal est à basse fréquence.

Fig. 1.1 – Micrographie d’un switch série [36]

D’autre part, les switchs par effet de shunt se basent sur un couplage capacitif entre une
membrane reliée à la masse et la piste conductrice située en dessous. Lorsque la membrane
est en position haute, la capacité entre la piste et cette membrane est faible et n’a donc pas
d’effet significatif. Par contre lorsque la membrane descend au contact de l’isolant suite à
l’application d’une différence de potentiel, la capacité augmente. Pour autant qu’il possède

Fig. 1.2 – Schéma et micrographie d’un switch par effet de shunt [36]
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une fréquence suffisante, le signal est transmis à la masse à travers cette capacité.

Les deux applications précédentes sont relativement simples du point de vue de la structure
mécanique. Afin d’utiliser la force électrostatique dans des applications mécaniquement plus
complexes, les peignes électrocapacitifs interdigités sont souvent utilisés (Fig. 1.3). Du fait de
leur géométrie, ils fournissent une force pratiquement linéaire en fonction du déplacement. Ce
qui est très intéressant car la force électrostatique varie normalement en fonction de l’inverse
du carré de la distance entre électrodes. Ces peignes peuvent servir à créer une capacité
variable utilisée dans les télécommunication également. Le microsystème est alors composé
soit de deux paires de peignes, l’une servant d’actionneur et l’autre de capacité soit d’une
seule paire servant à la fois d’actionneur et de capacité. Par ailleurs, les peignes capacitifs
sont également inclus dans les résonateurs mécaniques en tant que moyen d’excitation.

Fig. 1.3 – Micrographie d’un actionneur à peignes capacitifs (source : Sandia,
http ://mems.sandia.gov/scripts/images.asp)

Suite à la non linéarité de la force électrique, les microsystèmes présentés ci-dessus peuvent
subir volontairement ou non l’effet de pull-in. La description et l’explication de ce phénomène
d’instabilité est effectuée dans la section suivante.

1.2.2 Phénomène de pull-in

Afin de modéliser l’effet qui nous intéresse, prenons l’exemple simple d’une capacité
composée de deux électrodes planes séparées par le vide représenté à la figure 1.4. La première
électrode est fixe tandis que la seconde est suspendue par l’intermédiaire d’un ressort. Lors-
qu’une tension V est appliquée entre les deux armatures du condensateur, il en résulte une
force électrostatique fe donnée, en négligeant les effets de bords, par l’expression

fe =
ε0

2
AV 2

(d0 − x)2

avec A la surface d’une armature, d0 la distance au repos entre les armatures et ε0 la permit-
tivité du vide. Suite à l’existence de cette force électrostatique, l’électrode mobile se déplace
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V

k

d

x

Fig. 1.4 – Exemple simple d’un actionneur électromécanique

et se rapproche de l’électrode fixe jusqu’à ce qu’il y ait équilibre entre la force électrique et
la force de rappel du ressort donnée par

fr = −kx

où k désigne la raideur du ressort. En égalant l’expression de ces deux forces, il est possible
d’obtenir l’équation d’équilibre du système ainsi que l’équation reliant la tension appliquée
au déplacement de l’électrode mobile.

V =

√
2kx (d0 − x)2

ε0A
(1.1)

Cette équation permet d’obtenir la courbe d’équilibre normalisée tracée à la figure 1.5. Cette
figure montre que la courbe d’équilibre possède un maximum en tension. Le point maximum

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/d
0

V
/V

pi

Stable
Instable
Pull−in

Fig. 1.5 – Courbe d’équilibre du système simple

est appelé point de pull-in et correspond à la tension de pull-in Vpi. Si une tension supérieure
à la tension de pull-in est appliquée, la force de rappel du ressort n’est plus en mesure de
compenser la force électrostatique qui augmente proportionnellement à l’inverse du carré de la
distance entre les électrodes. Il n’existe alors plus de position d’équilibre et l’électrode mobile
descend au contact de l’électrode fixe. La courbe d’équilibre est donc divisée par le point de
pull-in en deux parties l’une stable et l’autre instable.

Cette inversion de stabilité est vérifiable en calculant la raideur effective du système.
La raideur effective aux environs d’une position d’équilibre xe est calculée en dérivant la
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résultante des forces s’appliquant sur l’électrode mobile, ce qui donne,

keff = − df

dx

∣∣∣∣
x=xe

= k − ε0AV 2
e

(d0 − xe)
3

et remplaçant Ve par son expression en fonction de xe (équation (1.1)),

keff = k − 2kxe

d0 − xe

La force électrostatique revêt à travers le second terme de cette expression une importance
significative. En effet, à mesure que les électrodes se rapprochent, ce terme va réduire la
raideur effective et mener à l’instabilité. L’évolution de la raideur adimensionnelle keff

k est
tracée à la figure 1.6. Cette figure montre que la raideur linéarisée s’annule en xe = d0

3 c’est-
à-dire au point de pull-in et devient négative pour xe > d0

3 . Par conséquent, à partir du point
de pull-in, le système est instable.

0 0.1 0.2 0.3 0.4 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
e
/d

0

k ef
f/k

k
eff

/k

Pull−in

Fig. 1.6 – Evolution de la raideur adimensionnelle avec le déplacement

Le phénomène de pull-in limite donc la plage de tension utilisable pour un tel micro-
système. Ce phénomène est parfois recherché dans certains dispositifs comme les switchs
capacitifs mais peut également être dommageable dans d’autres cas. En effet dans un mi-
crosystème, lorsque les deux électrodes entrent en contact, il n’est pas garanti qu’elles se
sépareront une fois la tension annulée, elles peuvent donc rester indéfiniment collées. Dans ce
cas, le microsystème est inutilisable.

1.3 Modélisation éléments finis fortement couplée

La méthode des éléments finis va être utilisée dans ce travail en vue de simuler le com-
portement et de servir de base à l’optimisation de la topologie de structures à géométrie
complexe. Cependant, différentes formulations éléments finis sont disponibles et, il convient
de choisir la plus adéquate au problème posé. Dans le domaine multiphysique, deux grandes
classes de méthodes s’opposent, les méthodes dites étagées et les formulations monolithiques.

Les méthodes étagées sont a priori les plus faciles à mettre en œuvre. En effet, ces méthodes
utilisent un calcul séparé et séquentiel de chacun des champs physiques du domaine d’analyse.
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De cette manière, il est possible d’utiliser des codes de calcul séparés pour chacun des domaines
physiques et ainsi de profiter de logiciels existants. Plusieurs itérations sont ensuite effectuées
de manière à converger vers un équilibre entre les différents domaines physiques.

Cependant, la convergence de la méthode étagée vers l’équilibre devient de plus en plus
difficile au fur et à mesure que l’interaction entre les champs physiques s’accrôıt. Ainsi, l’uti-
lisation d’une formulation fortement couplée est parfois nécessaire. Au contraire du couplage
faible, le couplage fort procède à une résolution simultanée de l’ensemble des problèmes phy-
siques. De ce fait les formulations fortement couplées sont également appelées formulations
monolithiques. Il n’existe alors plus qu’un seul problème à analyser même si bien sûr suite
aux non-linéarités résultant du couplage il est nécessaire d’itérer afin d’obtenir une solution.

1.3.1 Approche variationnelle

Le cas de la modélisation du couplage électromécanique dans un microsystème est discuté
par Rochus et Rixen à la référence [28]. Cet article montre tout d’abord qu’il est préférable,
voire, nécessaire d’utiliser une formulation éléments finis fortement couplée dans ce cadre.
L’article propose également une formulation électromécanique fortement couplée qui sera
utilisée dans ce travail. Une approche variationnelle est utilisée en partant de la définition de
la densité d’énergie de Gibbs G d’un système électromécanique,

G =
1
2
STT− 1

2
DTE (1.2)

Le premier terme de cette densité d’énergie correspond à la partie mécanique du problème et
contient le produit du tenseur de déformation S avec le tenseur de contrainte T. Le second
terme reprend la contribution électrique grâce au produit du déplacement électrique D avec
le champ électrique E. Les lois constitutives reliant ces grandeurs sont les suivantes,{

T = HS
D = εE

L’énergie interne du système est obtenue en intégrant la densité d’énergie de Gibbs (1.2) sur
l’entièreté du domaine électromécanique Ω,

Wint =
1
2

∫
Ω

STT−DTE dΩ =
1
2

∫
Ω

STT dΩ︸ ︷︷ ︸
Wm

− 1
2

∫
Ω(u)

DTE dΩ︸ ︷︷ ︸
We

Notons ici la différence entre le domaine d’intégration de l’énergie mécanique Wm et ce-
lui de l’énergie électrique We. En effet, l’énergie mécanique est intégrée sur le domaine de
référence Ω (formulation lagrangienne) tandis que l’énergie électrique va dépendre fortement
des déplacements mécaniques u et doit donc être intégrée sur le domaine déformé Ω (u). Ces
différents domaines d’intégration sont schématisés à la figure 1.7 pour un domaine d’analyse
contenant deux matériaux différents.

Les inconnues du problème éléments finis sont d’une part les déplacements aux nœuds pour
la partie mécanique et le potentiel électrique en chacun des nœuds pour la partie électrique.
Ces inconnues sont reliées aux déformations et au champ électrique par les relations suivantes,{

Sij = 1
2

(
∂ui
∂xj

− ∂uj

∂xi

)
E = −∇φ
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Fig. 1.7 – Description des domaines d’intégration et des conditions aux limites

Les conditions aux limites du problème éléments finis sont par conséquent pour chacun
des champs (Fig. 1.7), {

u = u sur Γu

t = t sur Γt

{
φ = φ sur Γφ

d = d sur Γd

où t désigne les forces de surface, d les charges électriques surfaciques tandis que Γu, Γt, Γφ

et Γd sont des portions du contour Γ du domaine électromécanique Ω. Ces quatres ensembles
vérifient les relations,

Γu ∪ Γt = Γ Γφ ∪ Γd = Γ
Γu ∩ Γt = ∅ Γφ ∩ Γd = ∅

L’énergie externe s’exprime alors,

Wext =
∫

ω
uT f dΩ +

∫
Γt

uT t dΓ−
∫

Ω
φρ dΩ−

∫
Γd

φd dΓ

où f désigne les forces de volume imposées et ρ la densité de charge imposée sur le domaine
Ω. Notons que dans la formulation choisie, les charges électriques aux nœuds jouent le même
rôle dans le domaine électrostatique que les forces aux nœuds dans le domaine mécanique.

Le principe des travaux virtuels est ensuite appliqué en perturbant les variables u et φ à
l’aides des déplacements virtuels admissibles δu et δφ et en égalant les variations de l’énergie
interne δWint et de l’énergie externe δWext résultantes. Une des principales particularités de
ce calcul se situe au niveau du calcul de la variation de l’énergie interne et plus précisément de
l’énergie électrique We. En effet, We dépend du vecteur u à travers son domaine d’intégration
et sera donc influencée par le déplacement virtuel de celui-ci. Il faut donc passer par un
changement de variables de manière à calculer l’énergie électrique avec et sans déplacement
virtuel δu sur un même domaine d’intégration de référence afin de pouvoir les comparer, les
détails du calcul sont disponibles à la référence [28].

1.3.2 Matrice de raideur tangente

L’étude variationnelle du problème fortement couplé mène à une équation de comporte-
ment linéarisée aux environs d’une position d’équilibre. Cette expression fait apparâıtre la
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matrice de raideur tangente KT , un incrément de déplacements généralisés ∆q à partir de
la position d’équilibre, et la variation des forces généralisées correspondante ∆g. Rappelons
que les déplacements généralisés sont composés des déplacements mécaniques u et des poten-
tiels électriques aux nœuds φ, par ailleurs, les forces généralisées sont constituées des forces
mécaniques fm et des charges électriques qe.(

∂2Wm
∂u2 − ∂2We

∂u2 −∂2We
∂φ∂u

−∂2We
∂u∂φ −∂2We

∂φ2

)
︸ ︷︷ ︸

KT

(
∆u
∆φ

)
︸ ︷︷ ︸

∆q

=
(

Kuu Kuφ

Kφu Kφφ

)(
∆u
∆φ

)
=
(

∆fm
∆qe

)
︸ ︷︷ ︸

∆g

Comme cela est suggéré dans l’équation précédente, la matrice de raideur tangente peut
être découpée en plusieurs blocs. Considérons tout d’abord le bloc Kuu, ; il s’agit de la partie de
la matrice reliant les déplacements mécaniques aux forces mécaniques. Hormis la contribution
classique de l’énergie mécanique (matrice de raideur habituelle), Kuu possède également une
contribution du domaine électrique provenant de la dépendance de l’énergie électrique vis-à-
vis de déplacements mécaniques. L’influence de l’énergie électrique sur la raideur mécanique
est à mettre en relation avec les observations effectuées sur le système à un degré de liberté
étudié ci-dessus. En effet, nous avions alors constaté que la raideur linéarisée diminuait lorsque
les électrodes se rapprochaient suite à l’effet des forces électrostatiques.

Deuxièmement, les termes non diagonaux de la matrice tangente introduisent un couplage
entre les inconnues mécaniques et électriques. Ces termes proviennent également de l’influence
des déplacements mécaniques sur l’énergie électrique. Il parâıt en effet logique qu’une variation
de déplacement résulte en une variation des charges électriques et qu’inversement une variation
des potentiels électriques aux nœuds génère une variation des forces électrostatiques.

Enfin, Kφφ correspond simplement à la matrice de raideur d’un problème électrostatique
pur. Ceci découle du fait que l’énergie mécanique ne dépend pas directement du poten-
tiel électrique car si les déplacements mécaniques sont fixés, une modification des variables
électriques n’a pas d’influence sur l’énergie mécanique. Par conséquent, la seule contribution
à ce bloc provient de l’énergie électrique.

1.3.3 Résumé

L’approche éléments finis fortement couplée permet donc d’obtenir la matrice de raideur
tangente du problème électromécanique. Le caractère fortement couplé de la formulation ainsi
que la connaissance de la matrice de raideur tangente correspondante sont deux excellents
atouts qui vont permettre l’utilisation d’outils de résolution très efficaces tel que les méthodes
de continuation numériques. Cette association permettra un calcul précis des conditions de
pull-in de la structure étudiée.

1.4 Calcul de la courbe d’équilibre

Comme nous allons le constater dans la suite de ce travail, le calcul des sensibilités de
la tension de pull-in par rapport aux variables de conception de l’optimisation topologique
nécessite la connaissance des conditions de pull-in. Le comportement d’un microsystème
électromécanique étant fortement non linéaire, il est nécessaire d’utiliser un algorithme de
calcul adéquat afin d’obtenir les conditions de pull-in. Habituellement, les problèmes non-
linéaires sont résolus à l’aide de l’algorithme de Newton-Raphson mais comme le montre la
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section suivante, cet algorithme n’est pas capable d’atteindre le point de pull-in avec suffi-
samment de précision et de fiabilité. Par conséquent, d’autres méthodes numériques telles
que l’algorithme de Riks-Crisfield [27, 35] ou l’algorithme du normal flow [1, 25] doivent être
utilisées pour calculer les conditions de pull-in.

1.4.1 Algorithme de Newton-Raphson

Considérons par exemple, un modèle éléments finis non-linéaire décrit par l’équation
d’équilibre,

K (q) · q = λf (q)

où K désigne la matrice de raideur, q le vecteur des déplacements généralisés et f le vecteur
des forces généralisées. Notons que les forces généralisées ainsi que la matrice de raideur
dépendent tout deux des déplacements généralisés ce qui confère au système son caractère
non-linéaire. De plus, une variable de charge λ est ajoutée de manière à pouvoir appliquer
progressivement les forces généralisées d’itération en itération.

Pour résoudre ce type de système d’équation, il est possible d’utiliser la méthode itérative
de Newton-Raphson. Cette méthode comme la plupart des méthodes de calcul itératives se
compose d’une première phase de prédiction suivie d’une seconde phase de correction. En
pratique, la méthode de Newton-Raphson cherche à annuler le vecteur de résidu r égal à la
différence entre les forces internes et les forces externes. Si la matrice de raideur n’est pas
fonction du déplacement, l’expression du résidu est simplement,

r (q, λ) = Kq− λf

La recherche d’un résidu nul est effectuée en faisant varier le vecteur q pour λ fixé. Pour ce
faire, l’expression du résidu est tout d’abord linéarisée aux environs d’une position connue
(q0, λ0). La phase de prédiction est en principe effectuée à partir d’un point d’équilibre, ce
qui signifie que r (q0, λ0) = 0. Le développement en série de Taylor au premier ordre vaut
alors,

r (q0 + ∆q, λ0 + ∆λ) ' r (q0, λ0)︸ ︷︷ ︸
=0

+
∂r
∂λ

∣∣∣∣
(q0,λ0)

∆λ +
∂r
∂q

∣∣∣∣
(q0,λ0)

∆q = 0

soit,
KT0∆q0 = ∆λ0f (1.3)

où la matrice KT0 est appelée matrice de raideur tangente au point (q0, λ0) et est définie par,

KT0 =
∂r
∂q

∣∣∣∣
(q0,λ0)

L’équation (1.3) permet ainsi de calculer une première estimation de la variation de q due à
l’augmentation de charge ∆λ0 en utilisant une approximation linéaire de la courbe d’équilibre
comme cela est montré sur la figure 1.8. Suite à l’approximation linéaire effectuée, le point
(q1, λ1) n’est pas sur la courbe d’équilibre, il en résulte que les forces internes fint1 corres-
pondant aux déplacements q1 ne seront pas égales aux forces externes λ1f en ce point. Par
conséquent, l’équilibre n’est pas satisfait et le vecteur de résidu est non nul. Le processus
itératif doit donc se poursuivre avec la résolution d’un nouveau système d’équations

KT1∆q1 = −r1
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avec,

KT1 =
∂r
∂q

∣∣∣∣
(q1,λ1)

et r1 = fint1 − λ1f

Cette première correction donne comme résultat le vecteur q2. Celui-ci n’étant pas encore
suffisamment proche de la courbe d’équilibre, le processus itératif doit être poursuivit, jus-
qu’à ce que la norme du vecteur résidu soit inférieure à la tolérance choisie. Une nouvelle
modification de la variable de charge peut alors avoir lieu.
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Fig. 1.8 – Schéma d’itération de Newton-Raphson

L’inconvénient de la méthode de Newton-Raphson est que le processus de correction s’ef-
fectue à charge constante comme il est possible de le constater sur la figure 1.8, sous l’hy-
pothèse que les forces généralisées ne dépendent pas des déplacements. Par conséquent, si
dans l’exemple dessiné un incrément de charge trop important est choisi et que la charge
résultante λ1f est supérieure au maximum de la courbe, l’algorithme est incapable d’obtenir
un nouveau point d’équilibre et diverge.

C’est pourquoi, la méthode de Newton-Raphson n’est pas adaptée au calcul des conditions
de pull-in. En effet, le point de pull-in se trouvant au maximum d’une courbe, il est très difficile
en pratique d’atteindre ce point avec un tel algorithme comme cela est expliqué aux références
[27] et [28]. En effet, la procédure de recherche du point de pull-in est alors basée sur une
stratégie d’essais et erreurs. En réalité, c’est le voltage maximal pour lequel le processus itératif
parvient à converger qui est déterminé mais sans garantie réelle que celui-ci corresponde à la
tension de pull-in.

1.4.2 Algorithme de Riks-Crisfield

La section précédente a montré que la méthode de Newton-Raphson était mal adaptée
au problème considéré ici. L’inconvénient de cette méthode est qu’elle effectue une recherche
de la position d’équilibre à charge constante. Dès lors, [27] suggère d’utiliser la méthode de
Riks-Crisfield également appelée méthode de Riks-Wemper [35]. Cette méthode considère à
la fois le vecteur des déplacements généralisés et la variable de charge en tant qu’inconnues
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au cours du processus itératif ce qui permet une plus grande liberté de mouvement et facilite
l’obtention d’une solution. La nouvelle inconnue ajoutée au problème nécessite l’introduction
d’une nouvelle contrainte, ce qui a donné naissance à plusieurs variantes de la méthode de
Riks-Crisfield. La version utilisée et décrite dans ce travail est l’algorithme de Riks-Crisfield
qui évolue sur une hypersphère. Ceci signifie que les itérés successifs sont contraints à rester sur
une hypersphère de rayon fixé et centrée sur le dernier point convergé sur la courbe d’équilibre.
La méthode de Riks-Crisfield est en fait une amélioration de l’algorithme de Newton puisque
chaque itération comporte un calcul similaire à Newton-Raphson et une correction de manière
à replacer le nouveau point sur la sphère. La figure 1.9 illustre le principe de fonctionnement
de la méthode.
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Fig. 1.9 – Schéma de principe de la méthode de Riks-Crisfield

Partant d’une position d’équilibre au point 0, la première itération est identique à celle
utilisée par la méthode de Newton-Raphson. Un incrément de charge ∆λ0 est appliqué et une
estimation de l’évolution du vecteur des déplacements généralisés est calculée par,

KT0∆q0 = ∆λ0f

Cette première itération détermine la position du point 1 et va permettre de déterminer le
rayon ∆S de la sphère. Celui-ci est calculé comme étant la norme du vecteur tangent reliant
le point 0 au point 1,

d1 =
[

∆q0

∆λ0

]
L’itéré suivant peut alors être évalué. Ce calcul s’effectue en deux étapes. Tout d’abord, la
méthode de Newton-Raphson est utilisée pour calculer un nouvel incrément ∆q1NR donné
par l’équation habituelle

KT1∆q1NR = −r1
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Cet incrément nous amène au point 2NR. Ensuite, une correction est appliquée de manière à
ramener ce point à l’intersection entre la sphère et la tangente à la courbe d’équilibre en q1

comme montré sur la figure 1.9. En d’autre mots, puisque le point 2NR se trouve déjà sur la
tangente en q1, il faut obtenir deux corrections ∆q1C et ∆λ1C tels que premièrement,

KT1∆q1C = ∆λ1Cf

de manière à suivre la tangente à la courbe. Et deuxièmement, il faut également se trouver
sur le cercle ce qui signifie si le vecteur d2 relie le point initial (q0, λ0f) au nouvel itéré,

d2 · d2 = ∆S2 (1.4)

Compte tenu des corrections, les incréments finaux seront exprimés par,{
∆q1 = ∆q1NR −∆q1C

∆λ1 = ∆λ1C

Si bien que d2 peut être écrit comme suit,

d2 =
[

∆q0 + ∆q1

∆λ0 −∆λ1

]
Dans ce cas, la contrainte de positionnement sur la sphère (1.4) devient,

(∆λ0 −∆λ1)
2 + ∆qT

0 ∆q0 + 2∆qT
0 ∆q1 + ∆qT

1 ∆q1 = ∆S2 (1.5)

Or ∆S est défini par,
∆S2 = ∆qT

0 ∆q0 + ∆λ2
0

Et en substituant cette dernière équation dans (1.5) le système d’équation à résoudre,{
∆λ2

1 − 2∆λ0∆λ1 + 2∆qT
0 ∆q1 + ∆qT

1 ∆q1 = 0
KT1∆q1C = ∆λ1f

En partant de la seconde équation et de manière à exprimer simplement ∆q1C en fonction de
∆λ1, définissons q1I tel que,

q1I = K−1
T1f ⇔ q1C = ∆λ1q1I

⇔ ∆q1 = ∆q1NR −∆λ1q1I

Dès lors, en explicitant ∆q1 dans la première équation, cela donne l’équation du second degré
en ∆λ1 suivante,(

1 + ∆qT
1I∆q1I

)
∆λ2

1 − 2
(
∆λ0 + ∆qT

0 ∆q1I + ∆qT
1NR∆q1I

)
∆λ1

+
(
2∆qT

0 ∆q1NR + ∆qT
1NR∆q1NR

)
= 0

Cette équation du second degré possède deux solutions ∆λ+
1 et ∆λ−1 . Ces deux valeurs donnent

lieu à deux vecteurs d+
2 et d−2 . Le choix entre ces deux vecteurs est effectué en considérant

le cosinus de l’angle formé par chacun d’eux avec d1. Il est ainsi possible de s’assurer que le
processus itératif va continuer à progresser sur la courbe dans même direction. Les itérations
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suivantes sont effectuées en suivant le même principe jusqu’à convergence du processus à l’in-
tersection entre la sphère et la courbe (marqué par un cercle vide sur la figure 1.9). L’équation
générale à résoudre à l’itération k est,(

1 + ∆qT
kI∆qkI

)
∆λ2

k − 2
(
∆λTot + ∆qT

Tot∆qkI + ∆qT
kNR∆qkI

)
∆λk

+
(
2∆qT

Tot∆qkNR + ∆qT
kNR∆qkNR

)
= 0

avec, {
∆qTot = ∆q0 + ∆q1 + . . . + ∆qk−1

∆λTot = ∆λ0 −∆λ1 + . . . + ∆λk−1

1.4.3 Algorithme du normal flow

Cette algorithme fait partie des méthodes d’homotopie [2]. Les méthodes d’homotopie ou
de continuation sont utilisées pour résoudre un système de N équations non linéaires à N
variable exprimé par

F (x) = 0

Le principe général de ces méthodes est de créer une fonction continue H (x, λ) : RN×R → RN

respectant les conditions, {
H (x, 0) = F (x)
H (x, 1) = G (x)

où G (x) : RN → RN est une fonction continue dont les zéros sont connus. A partir d’un
point connu (x1, 1) solution du l’équation H = 0, l’objectif est alors de suivre une courbe
respectant H = 0 pour obtenir un point (x, 0). Le point x est donc solution de F (x) = 0.
L’idée est donc d’utiliser cette méthode de continuation afin de suivre la courbe d’équilibre
du système mécanique r (x, λ) = 0 en partant du point (0, 0).

Par conséquent, la méthode du normal flow considère également les déplacements
généralisés et une variable de charge comme inconnues. L’algorithme du normal flow [1, 25]
diffère de la méthode précédente par la procédure de correction utilisée. La correction est
cette fois essentiellement basée sur le Davidenko flow défini par l’ensemble des solutions de
l’équation d’équilibre perturbée suivante

r (q, λ) = δ

où le vecteur δ est quelconque. Le Davidenko flow est représenté à la figure 1.10. Sur cette
figure la courbe d’équilibre à calculer est tracée en trait continu tandis que les solutions
perturbées sont tracées en trait discontinu. Le principe de la méthode du normal flow est
de corriger la prédiction tangentielle en suivant une trajectoire normale au Davidenko flow
comme cela est également montré sur le schéma.

La phase de prédiction est donc équivalente à celle de Newton-Raphson c’est-à-dire un
déplacement tangentiel à la courbe d’équilibre. La phase itérative de correction est ensuite
effectuée à partir de l’équation d’équilibre linéarisée,

KT ∆q−∆λf = −r
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Fig. 1.10 – Schéma de la méthode du normal flow [25]

qui peut être exprimée sous la forme matricielle,

[
KT −f

]︸ ︷︷ ︸
Dr

·
[

∆q
∆λ

]
︸ ︷︷ ︸

Dc

= −r

Ayant ajouté l’inconnue λ au problème, ce système possède n équations et n + 1 inconnues.
De manière à pouvoir le résoudre, il faut donc lui rajouter une équation de contrainte. Cette
condition supplémentaire permet d’imposer la normalité du vecteur c par rapport au Davi-
denko flow. Pour ce faire, la direction tangente au Davidenko flow u est extraite en calculant
le noyau de la matrice Dr.

[
KT −f

]
· u = 0 ⇒ u =

[
v
dλ
ds

]
avec v le mode propre de la matrice de raideur tangente KT et s l’abscisse curviligne sur la
courbe d’équilibre. La normalité de c par rapport au Davidenko flow est simplement imposée
en ajoutant l’équation u · c = 0. Le système d’équation devient donc,[

KT −f
vT dλ

ds

]
·
[

∆q
∆λ

]
=
[
−r
0

]
Grâce à ce système d’équation, l’incrément c obtenu est perpendiculaire au Davidenko flow.
Cette étape de correction est répétée jusqu’à obtenir un vecteur de résidu r suffisamment
faible.

Notons finalement qu’au point maximum de la courbe (Fig. 1.10), dλ
ds est nul puisque la

courbe atteint un maximum en termes de λ. Par conséquent, en ce point, le vecteur v est égal
au premier mode propre de la matrice de raideur tangente KT .
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1.5 Conclusion

Du fait de leurs petites dimensions, les microsystèmes sont souvent soumis à des
phénomènes non linéaires couplés inexistants à l’échelle macroscopique. C’est le cas par
exemple de l’effet de pull-in présenté dans ce chapitre. Suite à l’instabilité introduite par
le couplage électromécanique, la modélisation du pull-in n’est pas aisée. C’est pourquoi, une
formulation éléments finis fortement couplée ainsi que deux méthodes d’homotopie ont été
présentées afin de suivre les non linéarités de la courbe tension-déplacement. Ces outils vont
permettre dans la suite de ce travail d’obtenir avec précision les conditions de pull-in.



Chapitre 2

Optimisation topologique

2.1 Introduction

L’amélioration des performances a toujours eu une importance fondamentale dépassant
le cadre de l’activité humaine. L’évolution naturelle a en effet mené au cours du temps à
une efficacité croissante des êtres vivants. De son côté, l’Homme a également toujours été en
quête d’une solution répondant au mieux aux problèmes posés pour un coût minimum, c’est
ainsi qu’au cours de l’histoire il développa des outils d’optimisation de plus en plus efficaces.
Si à leurs débuts, les techniques d’optimisation étaient plutôt simplistes et empiriques, les
fondements mathématiques sur lesquels sont basées les méthodes modernes leurs confèrent
une grande rigueur ainsi qu’un vaste champ d’application. De plus grâce à l’augmentation
fulgurante de la capacité de calcul due à la naissance et à l’évolution rapide de l’informatique
nous sommes maintenant en possession d’outils d’optimisation très efficaces et largement
éprouvés. Ainsi, à l’heure actuelle, l’utilisation de ces méthodes s’est généralisée à de nom-
breux secteurs si bien qu’elles sont devenues omniprésentes. Citons par exemple l’ingénierie,
le secteur des transports ou le domaine de la finance. Dans toutes ces applications, l’optimi-
sation est dorénavant utilisée de manière extensive en tant qu’instrument d’aide à la décision
et à la conception.

Comme déjà mentionné, le métier de l’ingénieur n’est bien évidemment pas en reste. L’op-
timisation est plus particulièrement utilisée dans des secteurs de pointe tels que l’aéronautique
ou le spatial, là où il est important de mâıtriser les coûts et le poids. Ces quinze dernières
années ont vu l’apparition et l’arrivée à maturité d’une nouvelle méthode d’optimisation
bien plus générale que les précédentes, l’optimisation topologique. Appliquée dans un premier
temps à la conception de structures mécaniques, l’application de l’optimisation topologique
tend maintenant à se généraliser à de nombreux domaines. La description détaillée de l’optimi-
sation topologique fait l’objet de la suite de ce chapitre. Cependant, l’optimisation topologique
étant originellement destinée à la mécanique, nous allons tout d’abord présenter les méthodes
classiques d’optimisation en mécanique afin de mettre en évidence l’apport de l’optimisation
topologique dans ce domaine.

2.2 Méthodes d’optimisation en mécanique

L’optimisation a pour but premier d’affranchir le processus de conception de ses aspects
fastidieux et de la part d’arbitraire induite par les choix intuitifs ou empiriques du concepteur.

21
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En mécanique, elle permet ainsi de guider les choix de l’ingénieur et de l’orienter vers une
structure plus résistante ou plus raide par exemple. D’une manière générale, l’optimisation
sera d’autant plus efficace si elle nécessite peu de choix préalables, même si ceci se payera
généralement par un volume de calcul accru. De ce fait, au fil du temps, les méthodes d’op-
timisation ont évolué et gagné en généralité en parallèle avec l’accroissement de la puissance
des outils de calcul.

Les débuts de l’optimisation structurale étaient essentiellement basés sur les critères d’op-
timalité. Cette méthode suppose que les conditions que doivent satisfaire les variables de
conception pour assurer l’optimalité sont connues a priori. Un système d’équation dont les
variables de conception sont les inconnues peut alors être obtenu et résolu. Les critères d’op-
timalité sont utilisés et développés depuis les années soixante et le sont encore de nos jours.
Le plus réputé d’entre eux étant le Fully Stressed Design. Cependant, ils ne sont adaptés que
pour un nombre limité de problèmes d’optimisation comme par exemple l’optimisation de
treillis ou de structures minces. De plus ils ne fournissent pas toujours la solution exacte du
problème d’optimisation.

La difficulté de l’optimisation structurale provient du caractère non linéaire et implicite
des problèmes qui en résultent. Par conséquent, au début des années soixante, Schmit [29]
proposa d’utiliser la combinaison d’une analyse de sensibilité et d’un algorithme de program-
mation mathématique afin de résoudre de manière itérative les problèmes d’optimisation
structurale. A chaque étape du processus itératif, les dérivées des réponses appelées sensibi-
lités sont calculées sur base de l’analyse précédente, un problème approché mais explicite est
alors construit à partir de ces sensibilités et ensuite résolu par programmation mathématique.
La nouvelle structure obtenue est alors réanalysée et le processus se poursuit jusqu’à l’opti-
mum. Cette méthode présente l’avantage de fournir une grande vitesse de convergence vers
l’optimum. De plus, les algorithmes d’optimisation ainsi obtenus sont beaucoup plus flexibles
et généraux que ceux utilisant les critères d’optimalité puisque la seule partie spécifique au
problème d’optimisation est dorénavant l’analyse de sensibilité. Les algorithmes de program-
mation mathématique appliqués aux structures les plus célèbres sont ConLin [17], MMA [33]
ou le SQP [30].

2.2.1 Dimensionnement automatique

Le dimensionnement automatique des structures est une des premières méthodes modernes
d’optimisation en mécanique en ce sens qu’elle fut un des premiers domaines d’application
des critères d’optimalité. Et qu’il suivi l’avènement de l’informatique et de la méthode des
éléments finis.

Le dimensionnement automatique s’applique à des cas simples d’optimisation où la forme
et la connectivité de la structure sont déjà déterminées a priori. Les variables de conception
sont généralement les dimensions transversales des éléments structuraux comme par exemple
des épaisseurs de plaques ou des sections de barres. Si le processus d’optimisation nécessite
plusieurs itérations avant de parvenir à l’optimum, le maillage élément fini utilisé pour la
simulation peut être conservé d’une itération à l’autre puisqu’il n’y a pas de modification de la
géométrie en dimensionnement. Un grand nombre de travaux on été consacrés à l’application
des critères d’optimalité dans le cadre du dimensionnement automatique. Le plus connu des
critères d’optimalité est le Fully Stressed Design (FSD) où l’optimiseur cherche à atteindre la
contrainte maximale dans chaque élément structural. Pour un treillis de barres de sections ai
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une expression simple de ce critère est,

a∗i =
σi

σ

ce qui donne la nouvelle section a∗i de la barre i avec σi la contrainte actuelle dans cette barre
et σ la contrainte maximale acceptable. Ce critère permet d’obtenir une solution exacte en une
itération pour un treillis isostatique. En revanche, un treillis hyperstatique nécessitera plu-
sieurs itérations et donnera lieu à une solution approchée de l’optimum. D’autres critères
d’optimalité plus efficaces et plus complexes permettant de prendre en compte plusieurs
contraintes de déplacement par exemple ont été développés dans la suite par entre autres
Berke [7] , Taig [34] et Fleury [15].

Dans un même temps, le dimensionnement automatique a également profité des progrès
de la programmation mathématique dans le domaine de l’optimisation. Ainsi la combinaison
de la programmation mathématique avec les méthodes duales donna lieu à une équivalence
avec les critères d’optimalité pour le dimensionnement automatique des structures [16].

2.2.2 Optimisation de forme

Alors que le dimensionnement automatique ne s’intéresse qu’aux dimensions transversales
des composants de la structure, l’optimisation de forme a un but plus ambitieux. En effet,
l’objectif est maintenant d’optimiser la forme des frontières intérieures ou extérieures d’une
structure sans pour autant modifier sa topologie, c’est-à-dire sans ajouter ou supprimer de
trous et sans changer le nombre d’éléments structuraux. Les variables de conception peuvent
alors être simplement les dimensions géométriques de la pièce (épaisseur, rayon ...), ou de
manière plus générale les points de contrôle d’une B-spline ou d’une NURBS par exemple.
Le développement de cette méthode basée sur la programmation mathématique et le calcul
de sensibilités remonte aux années septante, avec Zienkiewicz et Campbell [38] elle a ensuite
subit une évolution rapide et continue pour finalement devenir un outil industriel.

+

Fig. 2.1 – Optimisation de forme d’une bielle avec contrôle d’erreur [13]

La première difficulté de cette méthode se situe au niveau de l’évaluation des sensibi-
lités. En effet, lorsque les frontières du domaine mécanique se déplacent suite à la modifica-
tion d’une variable de conception, il faut également connâıtre le mouvement correspondant
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des points intérieurs pour calculer les réponses mécaniques ainsi que leurs sensibilités. Par
conséquent, les sensibilités doivent généralement être calculées par un procédé semi-analytique
[12]. Deuxièmement, le maillage éléments finis doit être adapté au cours du processus d’op-
timisation suite au mouvement des bords de la pièce. Dans un premier temps, le maillage
était simplement déformé pour suivre le mouvement du contour avec le risque d’obtenir
après quelques itérations des éléments très mal conditionnés. Ensuite, grâce à l’apparition
de mailleurs automatiques de fiabilité croissante, des méthodes de remaillage et de contrôle
d’erreur ont été ajoutées au processus d’analyse permettant un contrôle efficace de la qualité
du maillage et de la précision des résultats au cours du processus d’optimisation [13].

2.3 Optimisation topologique

Les deux méthodes d’optimisation structurale décrites précédemment souffrent d’une li-
mitation commune qui est la conservation de la topologie de la structure optimisée. En effet,
le dimensionnement automatique et l’optimisation de forme n’appliquent à une structure que
des transformations homéomorphes et ne sont pas en mesure de modifier la topologie de
la structure c’est-à-dire la connectivité du domaine ou encore les relations de voisinage au
sein de celui-ci. Suite à cette restriction, le résultat du processus d’optimisation n’est au fi-
nal qu’une amélioration de la structure de départ sans modification fondamentale de cette
dernière. Dans ce cadre, les choix initiaux effectués par le concepteur influencent lourdement
le résultat du processus d’optimisation. Pourtant, la topologie d’une structure est un facteur
des plus déterminants de la performance finale. Idéalement, le processus d’optimisation de-
vrait pouvoir choisir de lui même en toute liberté la connectivité de la structure ainsi que
les éléments structuraux dont elle est composée. L’optimisation topologique a été développée
au cours des vingt dernières années et les références [14, 6] proposent une large revue des
nombreux travaux qui lui ont été consacrés.

Domaine de 
conception )

Fig. 2.2 – Minimisation de la compliance par optimisation topologique

2.3.1 Formulation du problème général d’optimisation topologique

Une des pistes pour obtenir une méthode d’optimisation topologique est de supprimer
tout paramétrage de la surface ou du contour de cette structure. Le problème d’optimisation
topologique peut alors être formulé comme étant la recherche de la distribution optimale de
matière dans un volume de conception fixé. La distribution de matière est représentée par une
fonction de pseudo-densité définie sur le domaine de conception. Cette fonction détermine la
présence ou non de matière en un endroit du domaine, elle est égale à 0 lorsque cet endroit
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est vide et à 1 lorsqu’il est solide. En pratique pour des raison numériques, l’optimisation
topologique se base sur un maillage éléments finis du domaine de conception et la distribu-
tion de pseudo-densité est approchée par une approximation dans laquelle une variable de
densité est affectée à chaque élément. Dans ce cadre, le problème d’optimisation s’exprime
mathématiquement comme suit,

min
µ

f (µ)

avec

{
cj (µ) 6 cj ∀j = 1, . . . ,m

µi ∈ {µmin, 1} ∀i = 1, . . . , n

où f est la fonction objectif à maximiser dans le cas présent, les cj sont les contraintes à
satisfaire et le vecteur µ reprend l’ensemble des pseudo-densités discrétisées. Notons qu’en
pratique, de manière à éviter toute singularité de la matrice de raideur, la pseudo-densité ne
prend jamais une valeur nulle mais une valeur très petite notée µmin.

Malheureusement, le problème en variables entières 0-1 est mathématiquement mal condi-
tionné et l’existence de la solution n’est pas garantie. Par exemple, la solution obtenue est
alors dépendante du maillage. En effet, l’algorithme tend généralement à créer la microstruc-
ture la plus fine possible en fonction de la taille des éléments du maillage. Une modification
de la taille des éléments se traduit alors nécessairement par une modification de la structure
et de sa topologie. Par ailleurs, d’une manière générale, les problèmes d’optimisation en va-
riables discrètes sont même à l’heure actuelle encore fort difficiles à résoudre. De ce fait, le
nombre relativement important de variables requises en topologie a été très pénalisant pour
cette approche.

Par contre, il est possible d’obtenir un problème d’optimisation correctement conditionné
en relaxant le problème discret c’est-à-dire en élargissant l’espace de conception aux densités
non entières comprises entre 0 et 1. Ces densités intermédiaires peuvent alors être interprétées
comme représentant un matériau possédant une microstructure poreuse. Ce principe basé sur
la méthode de l’homogénéisation fut proposé par Bendsøe et Kikuchi dans la référence [5]. Le
problème général peut alors être formulé comme suit,

min
x

f (x)

avec

{
cj (µ (x) ,x) 6 cj ∀j = 1, . . . ,m

xi ∈ [xi,min, xi,max] ∀i = 1, . . . , k

ou le vecteur x désigne les variables de conception c’est-à-dire l’ensemble des paramètres de la
microstructure sur chaque élément fini. Ces paramètres varient continûment entre les bornes
xi,min et xi,max dépendantes de leur nature. Par conséquent, les pseudo-densités µ peuvent
également varier continûment puisqu’elles sont calculées sur base des variables microstructu-
rales x.

Une seconde solution est d’utiliser une contrainte sur le périmètre ou une méthode de
filtrage des sensibilités empêchant la formation d’une microstructure. Ces méthodes alter-
natives combinées avec la relaxation du problème discret permettent d’obtenir un problème
correctement posé et résultant en une structure plus réaliste. Beckers [3] a également montré
qu’avec de telles contraintes, le problème discret était soluble à l’aide d’une méthode duale.
La description générale de ces deux solutions fait l’objet de la section suivante.



Optimisation topologique 26

2.3.2 Régularisation du problème par une approche microstructurale

L’approche microstructurale consiste donc à relaxer le problème discret d’optimisation
topologique en autorisant les variables de conception à prendre une valeur comprise entre 0
et 1. Les densités non entières représentent alors un matériau composite fait de vide et de
solide dont la proportion varie en fonction de la pseudo-densité. Cette approche fut initia-
lement développée à l’aide d’un matériau microperforé par Bendsøe et Kikuchi en 1988 [5]
et en utilisant une microstructure feuilletée 2D par Bendsøe en 1989 [4]. Ces deux types de
matériaux étant par nature orthotropes l’angle d’orientation du matériau sur chaque élément
est également ajouté aux variables de conception.

Matériaux microperforés

Le premier matériau considéré par Bendøe et Kikuchi [5] est obtenu à partir d’un matériau
isotrope dans lequel des microperforations rectangulaires sont creusées périodiquement comme
montré à la figure 2.3. Les cavités étant rectangulaires, deux paramètres α1 et α2 sont
nécessaires afin de définir leurs dimensions. De plus, comme déjà mentionné, à ces deux
paramètres s’ajoute l’orientation θ de la microstructure. Grâce à ces microperforations de
taille variable, il est possible de représenter toutes les densités intermédiaires, la densité du
composite étant alors donnée par la relation

µ = 1− α1α2

Il est donc possible d’obtenir un matériau purement solide avec α1 = α2 = 0 et vide lorsque
α1 = α2 = 1. Ces deux paramètres sont avec l’angle θ les variables de conception du problème
d’optimisation.
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Fig. 2.3 – Schéma de la microstructure du matériau microperforé

De manière à pouvoir étudier et optimiser le comportement d’une structure mécanique
composée de matériaux composites microperforés, il faut pouvoir calculer le comportement
équivalent d’un échantillon macroscopique quelconque. Cette étape fait appel à la méthode
de l’homogénéisation qui permet de calculer un tenseur de Hooke équivalent en fonction de la
microstructure du composite définie ici par les trois paramètres α1, α2 et θ. Ceci est effectué
en faisant tendre la longueur caractéristique de la microstructure (l sur la figure) vers 0 pour
un volume de composite donné. L’échantillon de composite est alors percé d’une infinité de
cavités microscopiques.
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Matériaux feuilletés

Une seconde classe de matériaux utilisés en optimisation topologique sont les matériaux
feuilletés (référence [4]). En toute généralité, ces matériaux composites sont constitués de deux
matériaux de raideurs différentes. En optimisation topologique, le matériau le moins raide
est généralement du vide ou tandis que le plus raide est un matériau classique au choix. Le
matériau feuilleté le plus simple est constitué d’une superposition alternée de couches des deux
matériaux, il est appelé d’ordre un. Le premier paramètre de ce composite est simplement
la proportion α du matériau le plus raide dans un volume donné de composite. De plus,
ce matériau étant évidemment orthotrope, l’angle d’empilement des couches successives est
également un paramètre. Une microstructure d’ordre un est schématisée à la figure 2.4(a). En
optimisation topologique le second matériau étant du vide, la pseudo-densité est simplement
égale au paramètre α.

Le matériau d’ordre deux est quant à lui constitué de feuilles successives du matériau
le plus raide en proportion volumique α2 et d’un stratifié d’ordre un. Le stratifié d’ordre
un de paramètre α1 est considéré comme étant homogène à l’échelle du composite d’ordre
deux dont il fait partie. Ce qui signifie que l’épaisseur des couches successives est nettement
plus faible pour le stratifié d’ordre un. En définitive, le composite d’ordre deux est en réalité
constitué d’un matériau raide et d’un second matériau moins raide. Par ailleurs, le matériau
d’ordre deux n’a pas nécessairement la même orientation que le matériau d’ordre un dont il
est constitué. Il existe donc deux angles d’orientation θ2 pour le composite d’ordre deux et θ1

pour le composite d’ordre 1. Ceci donne lieu à la représentation donnée à la figure 2.4(b). La
pseudo-densité peut quant à elle être aisément calculée par,

µ = α1 + (1− α1) α2

l

®l µ

(a) Ordre 1

l 2

® 2
l 2 µ2

(b) Ordre 2

Fig. 2.4 – Schéma des matériaux feuilleté d’ordre un et deux

En suivant le même procédé, il est possible de créer un matériau feuilleté d’ordre n. De
même, il est possible d’étendre ce schéma à un matériau tridimensionnel. Les propriétés
mécaniques des matériaux feuilletés peuvent également être évaluées en moyenne par la
méthode d’homogénéisation. Pour l’optimisation de la compliance, dans le cas bidimension-
nel, il est possible de montrer qu’il est inutile d’utiliser un matériau d’ordre supérieur à trois
car ces matériaux suffisent pour couvrir l’ensemble des tenseurs de raideur résultants d’un
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matériau d’ordre n > 3. De plus, sous un seul cas de charge, l’utilisation d’un matériau d’ordre
deux avec orientations orthogonales est optimale. Si plusieurs sollicitations sont appliquées il
faut alors passer à l’ordre trois.

Notons finalement que les matériaux feuilletés fournissent une relaxation totale du
problème d’optimisation topologique uniquement pour l’optimisation de la compliance ou
de fréquences propres. Dans un cas plus général, ils ne fournissent qu’une relaxation partielle.
Cependant, les matériaux feuilletés présentent une grande facilité d’utilisation. En effet, leurs
propriétés homogénéisées peuvent être obtenues analytiquement alors que dans le cas général,
comme pour les matériaux microperforés, il faut recourir à un calcul numérique coûteux.

2.3.3 Méthodes alternatives de régularisation

L’utilisation de composites homogénéisés pour la relaxation du problème d’optimisation
présente deux inconvénients principalement d’ordre pratique. Premièrement, l’approche mi-
crostructurale possède le désavantage de fournir un résultat faisant souvent largement appel
aux densités intermédiaires. Par conséquent, la structure optimale utilise des matériaux mi-
croperforés difficiles à mettre en œuvre en pratique. Par ailleurs, le coût de calcul parfois élevé
requis par la procédure d’homogénéisation mena à la recherche de lois analytiques et expli-
cites reliant la pseudo-densité au tenseur de Hooke du matériau. La fonction d’interpolation
la plus célèbre ainsi obtenue est la loi SIMP (Solid Isotropic Microstructure with Penalty)
proposée par Bendsøe [4]. Cette loi utilise une fonction de type puissance de la pseudo densité
pour relier le module de Young réel E0 du matériau de conception au module de Young E du
pseudo-matériau. Plus précisément, elle est exprimée par,

E = µpE0

ρ = µρ0

0 6 µ 6 1 et p > 1

Cette loi permet de relaxer le caractère discret de l’optimisation topologique en fournissant
une interpolation du comportement mécanique pour les pseudo-densités non entières. De plus,
suite à l’utilisation d’un exposant p supérieur à un, la raideur donnée par une pseudo-densité
comprise entre 0 et 1 est faible vis-à-vis du coût en termes de volume de matière évalué sur
base de ρ. De ce fait, la loi SIMP pénalise l’utilisation des pseudo-densités intermédiaires et
favorise par conséquent les valeurs entières 0 et 1. L’élimination des densités intermédiaires
est extrêmement intéressante en pratique puisqu’elle donne lieu à une structure beaucoup
plus réaliste et facile à interpréter en vue de sa fabrication. Cette tendance déjà observée
avec certains composites microstructuraux associée à la simplicité du modèle, fut à l’origine
du succès de la loi SIMP en optimisation topologique. D’une manière générale, une valeur de
l’exposant égale à 3 ou 4 est recommandée.

Malheureusement suite à son caractère artificiel, l’interpolation SIMP ne garantit pas
la relaxation totale du problème et de ce fait, le résultat obtenu peut être dépendant du
maillage éléments finis utilisé. L’influence du maillage sur la solution s’exprime généralement
par l’apparition de nouveaux membres structuraux de plus en plus fins lorsque le maillage
est lui même raffiné. Le processus d’optimisation tend en réalité à recréer une microstructure
optimale de lui-même mais la taille des éléments agit comme une contrainte et l’en empêche.

De plus, un problème numérique déjà présent avec l’approche microstructurale apparâıt
à nouveau ici. Cette erreur numérique se manifeste par l’apparition de structure de type
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damier dans la solution d’optimisation topologique. Cet effet indésirable est illustré à la
figure 2.5 où plusieurs zones sont recouvertes d’une alternance de cases blanches et noires. Il
est évident qu’en pratique, une telle structure est loin d’être réaliste et optimale du fait des
concentrations de contraintes qu’elle pourrait engendrer. Diaz et Sigmund [8] on suggéré que
l’apparition de cette structure était due à une surestimation de sa raideur par la méthode
des éléments finis, principalement lors de l’utilisation d’éléments du premier degré. De même
ils ont également montré qu’il était possible de supprimer le phénomène dans de nombreux
cas par l’utilisation d’éléments de degré deux. Cependant, comme nous allons le voir dans la
suite, les outils permettant d’éliminer la dépendance de la solution en fonction de la taille du
maillage permettent dans un même temps d’éviter l’apparition de damier dans la solution.
C’est pourquoi, afin de réduire le coût de l’analyse nous utiliserons malgré tout des éléments
finis d’ordre un.

DensityDensity
0.000 0.000 0.200 0.200 0.400 0.400 0.600 0.600 0.800 0.800 1.00  1.00  

Fig. 2.5 – Exemple de structure de damier

Plusieurs méthodes ont donc été proposées au cours de ces dernières années afin d’obtenir
un problème d’optimisation bien conditionné et exempt d’instabilités numériques. Les deux
méthodes les plus réputées vont être présentées dans cette section. La première méthode
est basée sur la limitation du périmètre de la structure mécanique et la seconde utilise une
méthode de filtrage issue des techniques de traitement d’image pour lisser les sensibilités du
problème d’optimisation.

Méthode du périmètre

L’apparition de membres structuraux plus fins et plus nombreux dans la structure optimale
suite à un raffinement du maillage éléments finis se traduit par une augmentation du périmètre
de cette structure. De même l’introduction d’une structure en damier provoque également
un accroissement du périmètre. Par conséquent, il parait judicieux de chercher à limiter le
périmètre de la structure afin d’éviter ces deux problèmes. De manière à évaluer le périmètre
d’une structure mécanique possédant éventuellement des densités non entières, Haber et ses
coauteurs [18] proposèrent d’utiliser une fonction inspirée de la fonction de variation totale
de la densité définie par,

P (µ) =
∫

Ω\Γi

√
∇µT∇µ +

(
ξ

h

)2

− ξ

h
dΩ +

∫
Γi

√
〈µ〉2 + ξ2 − ξ dΓi

Le premier membre de cette fonction correspond à l’intégrale du gradient de la pseudo-densité
sur les régions où elle varie continûment. En effet, Ω désigne le domaine de conception et
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Γi les courbes sur lesquelles la pseudo-densité est discontinue. Cependant, en optimisation
topologique classique, la densité est généralement constante sur les éléments. Par conséquent,
ce premier terme est généralement nul. Grâce à l’opérateur 〈.〉, le second membre sert à intégrer
le saut de pseudo-densité sur les discontinuités c’est-à-dire sur les frontières des éléments. La
fonction P (µ) diffère de la variation totale par l’introduction du paramètre de lissage ξ. Cette
variable est ajoutée afin de rendre la fonction P (µ) différentiable, car la fonction de variation
totale est non différentiable puisqu’elle contient des valeurs absolues. Le paramètre ξ est donc
fixé à une faible valeur positive. Enfin, le paramètre h est une longueur caractéristique du
maillage élément finis.

En tenant compte de l’annulation du premier membre et du caractère spatial discret de
l’optimisation topologique, l’expression de la fonction périmètre peut se réduire à une somme
sur les k interfaces entre les éléments, c’est-à-dire,

P (µ) =
∑

k

lk

(√
〈µ〉2k + ξ2 − ξ

)
avec 〈µ〉k la variation de pseudo-densité à travers l’interface k de longueur lk. Notons que
sous l’hypothèse d’une distribution entièrement discrète de pseudo-densités, la valeur de P
est égale à celle du périmètre de la structure puisqu’alors, 〈µ〉k vaut 1 sur le contour de la
structure (si ξ = 0).

Pratiquement, une contrainte supplémentaire est ajoutée au problème d’optimisation to-
pologique afin de limiter la valeur de la fonction périmètre à une borne supérieure P . Les
figures 2.6 tirées de la référence [9], montrent la capacité de la contrainte de périmètre à sup-
primer les structures en damiers mais aussi à rendre la topologie insensible à un changement
de maillage tout comme cela a également été fait par Haber [18]. Cependant cette méthode
pose quelques problèmes au niveau de son utilisation. Premièrement, le caractère global de
la contrainte introduite peut autoriser dans certains cas la formation de très fins éléments
structuraux. Deuxièmement, le choix de la borne supérieure sur le périmètre est relativement
difficile a priori et nécessite parfois quelques itérations. Finalement, l’introduction de cette
contrainte peut déstabiliser la convergence du processus d’optimisation [10].

(a) Cas de référence (b) Avec contrainte de périmètre (c) Avec contrainte de périmètre,
maillage raffiné

Fig. 2.6 – Application de la méthode du périmètre [9]

Filtrage

Cette seconde méthode de régularisation est inspirée des techniques de traitement
d’images. Le filtrage des sensibilités proposé par Sigmund [31] a pour but de lisser ou de
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rendre plus floue la distribution des sensibilités sur le domaine de conception. Ce lissage est
effectué en modifiant la sensibilité correspondant à chacun des N éléments en tenant compte
de la sensibilité associée à ses voisins, selon l’expression suivante.

∂f̂

∂µk
=

N∑
i=1

Ĥkiµi
∂f

∂µi

µk

N∑
i=1

Ĥki

avec Ĥki = max (0, rmax − dist (k, i))

Il s’agit donc essentiellement d’une moyenne pondérée des sensibilités sur le voisinage de
chaque élément, le coefficient de pondération diminuant avec la distance. La distance rmax

est choisie par l’utilisateur, elle permet de définir le voisinage à prendre en compte lors du
filtrage pour chaque élément. Afin de prévenir l’apparition de damier dans la solution, la
bonne pratique suggère de donner à rmax une valeur au moins égale à 1.5 fois la dimension
des éléments. De cette manière, pour un maillage quadrangulaire régulier, les 8 voisins directs
de chaque élément sont pris en compte lors du lissage des sensibilités. Ceci empêche de trop
fortes différences de sensibilité entre éléments voisins et par conséquent évite la création de
damier.

La technique de filtrage donne également de bons résultats en terme de stabilité de la
topologie obtenue vis-à-vis du maillage éléments finis. En conservant une distance absolue de
filtrage constante lors d’un raffinement du maillage, le lissage des sensibilités empêche l’ajout
de nouveaux éléments structuraux plus fins. Par ailleurs, ce filtre peut également permettre
de prendre en compte une contrainte de fabrication portant sur la dimension minimale des
membres structuraux.

Par rapport à la méthode du périmètre, la méthode de filtrage présente le grand avantage
d’agir localement et donc d’empêcher toute apparition d’une pièce trop fine dans la structure.
De plus, le choix du paramètre rmax est très facile a priori et ne nécessite généralement
pas de procédure d’essais et erreurs. Malheureusement, cette méthode ne possède pas de
base théorique elle est donc classée dans les méthodes heuristiques. En effet, le lissage des
sensibilités modifie le problème d’optimisation résolu. Néanmoins, cette méthode a déjà été
appliquée dans de nombreux cas de figure et a toujours fourni de bonnes performances, la
structure finale étant sans damier et indépendante du maillage. Finalement, suite au lissage
des sensibilités, les résultats d’optimisation topologique possèdent généralement une frontière
floue entre la structure et le vide. La distribution de densité obtenue n’est donc pas strictement
entière, mais ce léger inconvénient peut également retarder la tendance du modèle SIMP à se
bloquer dans une conception entièrement 0-1 [6].

2.4 Optimisation topologique de valeurs propres

Un des problèmes aux valeurs propres couramment résolu en mécanique est l’extraction
des fréquences propres d’une structure. De fait, l’environnement d’utilisation possédant tou-
jours des sources d’excitation oscillatoires, il faut éviter qu’au cours de son utilisation la
pièce soit victime de phénomènes dynamiques invalidants ou destructeurs. Par conséquent,
les fréquences de résonance d’une structure mécanique sont parfois une des premières
préoccupations lors de l’étape de conception. L’intervention des méthodes d’optimisation dans
ce domaine est donc naturelle. Le plus souvent, l’optimisation a pour but de repousser les
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fréquences propres au delà d’une fréquence fixée ou bien d’exclure la présence de fréquences
à l’intérieur d’une bande dangereuse.

D’une manière générale en mécanique, l’extraction des fréquences propres ν est effectuée
en résolvant le problème aux valeurs propres suivant,

(K− λM)x = 0 avec ν =

√
λ

2π

Les matrices K et M désignent respectivement la matrice de raideur et la matrice de masse
du modèle éléments finis associé. Outre le problème dynamique, cette équation aux valeurs
propres est également utilisée en stabilité linéaire pour le problème du flambement, le problème
aux valeurs propre est alors exprimé par (K− λKσ)x = 0. Sans perte de généralité, l’équation
aux valeurs propres permet d’obtenir l’expression de la sensibilité d’une valeur propre unique
λk vis-à-vis de la pseudo-densité µk suivante [9],

∂λk

∂µk
=

1
mk

xT
k

(
∂K
∂µk

− λk
∂M
∂µk

)
xk avec mk = xT

k Mx

A partir de cette expression des sensibilités, il est possible d’obtenir un algorithme d’op-
timisation topologique des valeurs propres. Cependant, à la différence des autres méthodes
d’optimisation, l’optimisation topologique rencontre une difficulté particulière au cours du
processus d’optimisation en particulier lorsque la loi SIMP est utilisée. En effet, comme cela
est montré par N. Pedersen [23], la réduction de la pseudo-densité sur de larges plages du
domaine de conception entrâıne une forte diminution de la raideur sur ces zones. Or, l’in-
terpolation SIMP donne un rapport très faible entre la raideur et la masse pour les faibles
pseudo-densités. L’exposant p étant généralement égal à 3, et la densité réelle étant simple-
ment proportionnelle à µ, cela donne un rapport raideur sur masse en µ2 qui s’approche donc
très rapidement de zéro lorsque µ est faible. Ceci a pour conséquence de créer des zones très
souples mais relativement massives qui peuvent donc vibrer à basse fréquence.

Fig. 2.7 – Schéma de la poutre et du domaine d’optimisation [23]

Un exemple de mode local est proposé à la référence [23]. La figure 2.7 représente la
poutre rectangulaire placée dans un domaine d’optimisation topologique. La poutre est donc
entourée d’éléments vides auxquels une pseudo-densité de 0.001 est affectée. Comme il est
possible de le constater sur la figure 2.8, le premier mode propre de la poutre placée dans
le domaine d’optimisation (figure 2.8(a)) est très éloigné du mode propre réel de la poutre
(figure 2.8(b)) du point de vue fréquentiel et géométrique. Le rôle joué par les régions de faible
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densité entourant la poutre est clairement visible sur la figure 2.8(a). En effet, l’essentiel des
déformations relatives au premier mode propre se produisent dans ces régions ce qui explique
la faible fréquence de résonance correspondante.

(a) Mode propre de l’optimisation topolo-
gique

(b) Mode propre réel

Fig. 2.8 – Modes propres de la poutre [23]

Différentes possibilités sont envisageables pour contourner ce problème. La solution la plus
simple a priori est de d’augmenter la pseudo-densité minimale µmin l’inconvénient étant que
les éléments ”vides” conservent alors une raideur beaucoup plus élevée. Le problème d’op-
timisation se transforme alors plutôt en un problème de renforcement. Une autre possibilité
est de retirer les éléments vides du domaine de calcul au cours du processus d’optimisation.
Cependant cette méthode est un peu trop contraignante puisqu’elle empêche l’optimiseur de
revenir en arrière et de remplir les trous qu’il avait précédemment créés. Une seconde solution
plus complexe utilise une méthode de suivit du mode structural à l’aide du coefficient de
corrélation modal (MAC) [20]. Il est ainsi possible de retrouver parmi les modes propres le
mode structural d’intérêt à chaque itération, en sélectionnant le mode possédant le coefficient
de corrélation le plus élevé avec le mode structural de l’itération précédente.

N. Pedersen envisage une approche différente. D’une part certains degrés de liberté sont
ignorés lors du calcul des modes propres. Ces degrés de libertés sont ceux des noeuds entourés
d’éléments possédant une faible densité. D’autre part, il utilise une modification de la loi
SIMP de manière à empêcher une diminution excessive du rapport raideur sur masse. Pour
ce faire, la loi SIMP est remplacée par une loi linéaire pour les faibles densités. Ce qui donne
une loi de la forme,

E = f (µ) E0 avec f (µ) =
{

µ3 si 0.1 6 µ 6 1
µ/100 si µmin 6 µ 6 0.1

Il en résulte un rapport constant entre la raideur et la masse pour les faibles densités.
Cette loi présente l’inconvénient de ne pas être différentiable au point µ = 0.1 ce qui peut
éventuellement perturber le processus d’optimisation. Toutefois, grâce à la combinaison de
ces deux modifications, le calcul des modes propres peut être mené à bien.

D’autres précautions doivent également être prises lors de l’optimisation de modes propres.
Par exemple, lorsqu’un seul des modes propres est optimisé, il faut malgré tout surveiller
l’évolution des modes voisins de manière à prévenir un croisement des fréquences propres.
D’autre part, l’approche décrite ci-dessus doit être modifiée en présence de valeurs propres
multiples, car le problème est alors non différentiable
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2.5 Optimisation de microsystèmes électromécaniques

Les méthodes d’optimisation ont bien entendu déjà été appliquées au domaine des mi-
crosystèmes. Ce travail portant sur les microsystèmes électromécaniques, cette section est
plus particulièrement consacrée aux travaux appliquant l’optimisation structurale à ces mi-
crosystèmes.

2.5.1 Optimisation de la tension de pull-in

L’optimisation de la tension de pull-in de micropoutre a déjà été effectuée par Abdalla et
ses coauteurs [1]. Cet article propose d’utiliser une méthode de dimensionnement de manière
à maximiser la tension de pull-in d’une micropoutre en modifiant l’évolution de son épaisseur
ou de sa largeur. Différentes conditions d’appuis sont considérées. Le schéma général du
microsystème étudié est repris à la figure 2.9.

Fig. 2.9 – Schéma de la micropoutre optimisée dans [1]

Modélisation électromécanique

Le microsystème électromécanique est modélisé à l’aide d’éléments finis de poutre. Cha-
cun des éléments de poutre possède une épaisseur et une largeur supposées constantes sur
l’élément. La force électrostatique est calculée sur base de l’équation reliant la tension ap-
pliquée entre deux électrodes et la force résultante sans prendre en compte les effets de bords.
Ce qui donne à l’abscisse x de la poutre une force,

p (x) =
1
2

ε0b (x) V 2

(d− w (x))2

La largeur b (x) de la poutre est bien entendu reprise dans cette expression car elle influence
la surface de celle-ci. De même, la déformation de la poutre w (x) apparâıt également dans
cette expression suite à la modification de la distance séparant les électrodes qu’elle implique.
Par contre, l’épaisseur h qui est aussi éventuellement variable le long de la micropoutre n’est
pas reprise dans le calcul de p. La distance entre les électrodes au repos est donc supposée
constante quelque soit la distribution d’épaisseur de la poutre. Les conditions de pull-in sont
calculées sur base du modèle éléments finis à l’aide de l’algorithme du normal flow [25].

Problème d’optimisation

Le rôle du processus d’optimisation sera donc de déterminer les épaisseurs ou largeurs op-
timales de chaque élément de manière à obtenir une tension de pull-in maximale. Le problème
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d’optimisation considéré est formulé comme suit,

max
y(x)

λcr

avec

{∫ 1
0 y dx = 1

y − y (x) 6 0

La fonction objectif λcr correspond à la charge critique de pull-in adimensionnelle et est
proportionelle au carré de la tension de pull-in. Les variables de conception y (x) corres-
pondent soit aux épaisseurs adimensionnelles h(x)

h0
soit aux largeurs adimensionnelles b(x)

b0
.

Deux contraintes sont imposées. Premièrement, une contrainte sur le volume de matière dis-
ponible fixant ce volume au volume initial. Et deuxièmement, une borne inférieure sur les
variables de conception permettant de prendre en compte une contrainte de fabrication sur
la plus petite dimension usinable. L’optimisation est menée sur base d’un critère d’optimalité
issu de l’expression du lagrangien du problème d’optimisation.

Applications

Partant d’une distribution initiale uniforme y = 1, les principaux résultats obtenus sont
présentés aux figures 2.10 en ce qui concerne l’optimisation sur l’épaisseur et 2.11 pour l’op-
timisation de la largeur. Sur ces figures, la configuration initiale, qui correspond également à
la borne sur le volume, est tracée en trait discontinu.

Fig. 2.10 – Distributions optimales d’épaisseur pour différentes conditions d’appuis [1]

Les exemples proposés d’optimisation de l’épaisseur sont calculés avec une borne inférieure
sur l’épaisseur h = 0.2. Le tableau 2.1 compare les λcr optimisés aux λcr initiaux. Remarquons
que pour les quatre configurations, le gain dépasse pratiquement systématiquement 50%.
L’analyse des distributions obtenues figure 2.10 montre une tendance logique de l’optimiseur
à placer la matière afin de maximiser la raideur de l’ensemble.

SS CC CF CS
Initiale 1,1492 5,8413 0,1401 2,7880
Finale 1,700 10,0136 0,3391 4,4405

Augmentation (%) 47,93 71,32 142,06 59,27

Tab. 2.1 – Evolution de λcr suite à l’optimisation de l’épaisseur

L’optimisation de la largeur offre à l’optimiseur un degré de liberté supplémentaire puis-
qu’il peut également modifier la distribution des forces électrostatiques sur la structure. En
effet, en modifiant, la largeur d’un élément il modifie également sa surface et par conséquent
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la force électrostatique qui s’y applique. Dès lors, comme le montrent les figures 2.11, l’op-
timiseur tend à rapprocher la matière des encastrements de manière à minimiser le bras de
levier de la force électrostatique tout en continuant à chercher une raideur maximale. Grâce
à la possibilité de déplacer le point d’application des forces électrostatiques, l’augmentation
de λcr obtenue est plus élevée que précédemment et peut atteindre plus de 400% dans le cas
encastré libre.

Fig. 2.11 – Distributions optimales de largeur pour différentes conditions d’appuis [1]

2.5.2 Optimisation topologique d’actionneurs électrothermiques

Tout comme les forces électrostatiques, les forces électrothermiques sont fréquemment
utilisées dans les microsystèmes. Les actionneurs électrothermiques fonctionnent sur base de
l’effet Joule généré par un courant électrique traversant une partie du dispositif. Il en résulte
une augmentation de la température de la portion du système soumise au passage du courant
et par conséquent une dilatation de celle-ci. L’application de l’optimisation topologique à la
conception de tels actionneurs a été considérée par Sigmund [32], Yin [37] et Mankame [21].

Le problème d’optimisation est bien entendu multiphysique puisque trois phénomènes
interviennent simultanément à savoir, la conduction électrique, le transfert de chaleur et la
déformation mécanique. Cependant, le couplage entre ces différents phénomènes est purement
séquentiel et unidirectionnel car il suit toujours l’ordre suivant,

Conduction électrique Effet Joule−−−−−−→ Transfert de chaleur Dilatation−−−−−−→ Problème mécanique

Dès lors, la simulation numérique du dispositif peut être effectuée suivant un schéma étagé
sans nécessiter d’itération en résolvant chacun des problèmes physiques dans l’ordre logique.

Sigmund [32] et Yin [37] traitent le problème de la maximisation du déplacement d’un
point du domaine pour un milieu continu. L’interpolation des propriétés du matériau entre
le vide et le solide est effectuée pour chaque domaine physique sur base d’une loi de type
puissance. La conception de microsystèmes bi-matériaux est également envisagée par les deux
références. La présence de deux matériaux permet de profiter de deux coefficients de dilatation
différents ce qui augmente les possibilités de design et les performances du microsystème. De
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plus, Sigmund montre que la procédure d’optimisation peut être utilisée avec plusieurs cas de
charge. Ces cas de charge peuvent différer par la position des électrodes et par la direction
du déplacement résultant. Un exemple est présenté figure 2.12. Le premier cas de charge
correspond à un déplacement horizontal pour une tension appliquée à l’électrode V1 tandis
que le second impose un déplacement vertical si l’électrode V2 est sollicitée. Yin propose quant
à lui une modélisation plus élaborée de la perte de chaleur par convection et montre l’influence
de cette modélisation sur l’optimum obtenu.

Fig. 2.12 – Schéma du problème d’optimisation en milieu continu et déformées de la structure
optimale pour chacun des cas de charge [32]

Le problème de l’optimisation d’un treillis de barres est considéré par Mankame [21]. Hor-
mis l’avantage que la structure optimale est généralement plus claire qu’avec l’optimisation
d’un milieu continu, l’intérêt de l’utilisation d’éléments de barre est qu’ils permettent une
modélisation plus simple des phénomènes électriques et des transferts de chaleur. Toutefois,
le problème d’optimisation obtenu est soumis à des contraintes géométriques supplémentaires
puisque l’emplacement des membres structuraux est fixé a priori. La figure 2.13 reprend une
des applications présentées à la référence [21]. Le schéma de gauche présente les fixations
disponibles, l’emplacement des deux électrodes ainsi que le nœud dont le déplacement doit
être maximisé. La structure déformée obtenue est dessinée à droite, sur cette figure les traits
discontinus représentent les éléments de barre ayant atteint leur borne inférieure et ne parti-
cipant donc pas à la structure.

Fig. 2.13 – Schéma d’un problème d’optimisation de treilli et déformée du treilli résultant
[21]
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2.5.3 Optimisation topologique d’actionneurs électrostatiques

Les travaux d’Abdalla et al. [1] présentés précédemment considèrent l’application d’une
technique d’optimisation de dimensionnement dans le cadre d’un couplage entre les effets
électrostatiques et les phénomènes mécaniques. Cependant, Raulli et Maute [26] ont montré
qu’il est également possible d’adapter l’optimisation topologique à ce type de problèmes mul-
tiphysiques. Cette approche, décrite ci-dessous, permet d’obtenir un problème d’optimisation
très général où le processus d’optimisation peut jouer sur la conception des deux domaines
physiques à la fois.

La modélisation électromécanique utilisée par Raulli est basée sur une méthode étagée.
Ceci signifie que les deux problèmes physiques sont résolus séparément, l’équilibre entre le
domaine mécanique et le domaine électrique n’étant rétabli qu’à l’aide d’un processus itératif.

Modification de la loi SIMP

En dehors d’un algorithme d’optimisation topologique, un problème électromécanique
peut être résolu de manière étagée en maillant séparément la structure mécanique et le vide
qui l’entoure. Le problème mécanique est alors simplement résolu à partir du maillage de la
structure tandis que les équations de l’électrostatique sont solutionnées uniquement sur le
maillage du vide.

Cependant, lorsqu’une procédure d’optimisation topologique est ajoutée, il n’est plus pos-
sible de mailler a priori et individuellement les deux domaines. En effet, à chaque itération, la
topologie des domaines physiques est modifiée. De plus, suite à la présence de pseudo-densités
non entières représentant un mélange de vide et de matière, il est difficile de séparer clairement
les deux domaines physiques.

De manière à contourner ces deux obstacles, Raulli [26] propose d’étendre le maillage
électrostatique à l’entièreté du domaine de conception. La figure 2.14 représente cette super-
position de maillages, où E0 représente le domaine purement électrostatique dans lequel le
processus d’optimisation ne place pas d’éléments mécaniques et Eδ le maillage électrostatique
recouvrant le domaine d’optimisation.

Fig. 2.14 – Représentation schématique des domaines de calcul [26]

Il faut alors tenir compte de la présence de deux matériaux différents (vide et solide)
sur le domaine électrostatique. Par analogie avec l’optimisation topologique mécanique, la
transition entre ces deux matériaux est effectuée en modifiant la permittivité du matériau
de chaque élément sur base de sa pseudo-densité. La structure étant considérée parfaitement
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conductrice, la permittivité εmax y est très grande (théoriquement infinie) par rapport à celle
du vide fixée à ε0 = 8.85 10−12. Les lois du comportement matériel deviennent donc,{

E = µpEEsolide

ε = εmax (µ− µmin)pε + ε0 avec εmax = ε0

µ
pE
min

La permittivité de la structure εmax étant calculée pour que son rapport avec ε0 soit équivalent
au rapport entre Esolide et Evide c’est-à-dire µ−pE

min .
De plus, de nouvelles variables de conception sont également ajoutées sur le domaine pu-

rement électrique (E0) afin d’optimiser la topologie de l’électrode inférieure. Ces variables
de conception permettent de simuler l’introduction d’une couche d’isolant sur l’électrode
inférieure en modifiant la permittivité des éléments du domaine E0. L’isolant, permet de
masquer l’électrode inférieure de manière à annuler l’effet des parties recouvertes. L’interpo-
lation de la permittivité est simplement donnée par

εi = µi ∗ ε0 avec µmin,ε 6 µi 6 1

En outre, un troisième maillage cöıncidant avec le maillage électrique est adjoint au
modèle. La résolution d’un problème mécanique fictif sur ce dernier maillage est utilisée afin
d’adapter le maillage électrostatique aux déplacements de la structure mécanique.

Les deux difficultés principales sont ensuite d’appliquer d’une part le voltage imposé au do-
maine de calcul électrique et d’autre part, les forces électrostatiques à la structure mécanique.
Ces deux conditions aux limites doivent normalement être imposées à la frontière entre la
structure et le vide. Cependant, suite à l’existence de densités intermédiaires, cette frontière
est généralement mal définie. De ce fait, il n’est pas possible d’appliquer les conditions aux
limites suivant un schéma ”on/off” ce qui de surcrôıt déstabiliserait l’optimisation. Les solu-
tions proposées par Raulli permettent d’imposer les conditions aux limites en tenant compte
de la présence de densités intermédiaires. Ces solutions sont parfois artificielles et compliquent
l’interprétation physique de la modélisation. Néanmoins, l’application présentée à la fin de
cette section montre l’efficacité et l’intérêt de la méthode développée.

Voltage imposé

La condition aux limites de voltage aux nœuds doit donc être appliquée de manière pro-
gressive. Pour ce faire, chaque nœud est relié à un élément ou plus précisément à la pseudo-
densité de cet élément. En fonction de cette pseudo-densité, une modification du problème
électrostatique est utilisée de manière à imposer artificiellement la condition de voltage au
nœud. Le problème électrostatique original s’écrit,

Kφ = q

avec φ le vecteur des potentiels aux nœuds, q le vecteur des charges électriques et K la matrice
de permittivité du problème électrostatique, les modifications suivantes sont appliquées,

K̂jj = wv0Kavg
µj − µmin

1− µmin
+ Kjj

q̂j = wv0Kavg
µj − µmin

1− µmin
φ0j + qj
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Dans ces équations, Kavg désigne la moyenne des éléments de la matrice et φ0j le potentiel
imposé au nœud j. De cette manière, pour une valeur du paramètre de pondération wv0

suffisamment grande pour que les termes initiaux de la matrice K soient négligeables par
rapport à K̂jj et qj négligeable vis-à-vis de q̂j , la jième équation du système devient,

wv0Kavg
µj − µmin

1− µmin
φj = wv0Kavg

µj − µmin

1− µmin
φ0j

⇔ φj = φ0j

de sorte que φj est progressivement imposé à φ0j lorsque µj tend vers 1. Cet artifice permet
donc d’imposer la condition aux limites de voltage de manière progressive en fonction de la
densité de l’élément.

Calcul des forces électrostatiques

Raulli [26] utilise des éléments d’interface afin de calculer les forces électrostatiques. Ces
éléments sont normalement placés uniquement sur la frontière séparant le vide et le solide.
Cependant, cette frontière étant mobile et floue, Raulli propose de procéder de la même
façon que pour le calcul électrostatique. Le maillage d’éléments d’interface est donc étendu à
l’ensemble du domaine d’optimisation comme cela est montré à la figure 2.15. La permittivité
des éléments d’interface est ensuite modifiée selon un schéma SIMP de manière à prendre en
compte les variations de densité, ce qui donne

εi
j = ε0

(µj − µmin)pi

(1− µmin)pi
(2.1)

Cette interpolation a pour conséquence de permettre un calcul normal des forces sur les
éléments solides et de l’annuler sur les éléments vides.

Fig. 2.15 – Position des éléments d’interface pour le calcul des forces [26]

Toutefois, cette modification n’est pas suffisante car le calcul des forces par les éléments
d’interface nécessite la connaissance du champ électrique en leurs nœuds. Ces valeurs du
champ électrique sont calculées par interpolation à partir du champ électrique connu sur les
éléments du maillage électrostatique. Cependant, il faut éviter d’inclure un élément solide
dans l’interpolation du champ électrique aux nœuds, le champ électrique de chaque élément
est donc multiplié par le facteur de pondération suivant,

we
j =

1− µj

1− µmin

de manière à ne pas considérer les éléments solides dans l’interpolation.
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Application

Une application de cette méthode présentée à la référence [26], est la conception d’un
inverseur de force tridimensionnel. Le schéma du problème d’optimisation est repris à la
figure 2.16. L’objectif que doit atteindre la structure est de convertir la force électrostatique
agissant vers le bas en un mouvement vers le haut du point t représenté sur la figure.

Fig. 2.16 – Schéma du problème d’optimisation de l’inverseur [26]

La distribution matérielle obtenue ainsi qu’une interprétation schématique de la structure
sont présentées sur la figure 2.17. Comme il est possible de le constater sur le schéma, la
portion de la structure prenant appui au centre du support sert de pivot et ne se déplace pas.
Par contre la partie accrochée à l’extrémité du support et située au dessus de l’électrode va
permettre de générer une force électrostatique la tirant vers le bas. Ensuite par effet de levier
grâce à l’appui fourni par le pivot, le point t se déplace logiquement vers le haut.

Fig. 2.17 – Résultat d’optimisation de l’inverseur de force [26]

Cet exemple a montré que la méthode développée par Raulli fait preuve d’une grande
efficacité pour la conception de systèmes électromécaniques. Les résultats obtenus sont en effet
assez originaux et prometteurs. De plus, ils bénéficient d’une flexibilité importante permettant
de modifier chacun des domaines physiques. Cependant, il semble que certains points de la
méthode pourraient être améliorés comme par exemple l’application du voltage imposé. En
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effet, le voltage est imposé de manière très artificielle. Par ailleurs, il pourrait être intéressant
de remplacer la méthode étagée par une formulation monolithique afin d’obtenir un problème
mieux unifié.

2.6 Conclusion

L’optimisation topologique présente de nombreux avantages par rapport à l’optimisation
de forme et au dimensionnement. En effet, grâce à un espace de conception beaucoup plus
large, cette technique gagne en efficacité. Cependant, différentes méthodes de régularisation
doivent être utilisées. Depuis une dizaine d’années, l’optimisation topologique est arrivée à
maturité et commence depuis peu à être industrialisée. Par ailleurs, son champ d’application
continue de crôıtre avec des applications de plus en plus ambitieuses comme le montre le
dernier article présenté sur l’optimisation topologique de microsystèmes électromécaniques.
Cette méthode conserve donc un grand potentiel d’application et de recherche.



Chapitre 3

Procédure d’optimisation de la
tension de pull-in

3.1 Introduction

Ce chapitre étudie l’application de l’optimisation topologique au problème de maximi-
sation de la tension de pull-in. Cette fonction objectif a tout d’abord été choisie au vu des
inconvénients présentés par le phénomène de pull-in car il limite l’étendue des tensions utili-
sables sur un microsystème et peu mener à sa destruction. Par ailleurs, suite au caractère
multiphysique et non linéaire du pull-in, l’application de l’optimisation topologique à ce
problème est un bon test en vue d’une utilisation plus générale de cette méthode dans le
domaine multiphysique.

Le présent travail étant une première étude, quelques hypothèses simplificatrices ont été
considérées. La première partie de ce chapitre sera donc consacrée à la description du problème
d’optimisation choisi ainsi qu’aux hypothèses formulées. Dans le cadre des hypothèses posées,
nous montrerons qu’il est possible d’obtenir une expression semi-analytique des dérivées de la
fonction objectif vis-à-vis des variables de conception. Afin de vérifier la validité de l’expression
semi-analytique, les valeurs des sensibilités calculées selon cette expression seront ensuite
confrontées à une analyse de sensibilité par différences finies.

Le calcul semi-analytique des sensibilités nécessitant la connaissance des conditions de
pull-in, la seconde partie de ce chapitre étudiera la recherche précise du point de pull-in. Cette
recherche pouvant être basée soit sur l’algorithme de Riks Crisfield soit sur celui du normal
flow présentées au chapitre 1, nous décrirons tout d’abord son implémentation pour chacune
des méthodes. Ensuite, l’efficacité et la fiabilité des deux méthodes seront comparées à l’aide
de deux applications. Cette comparaison permettra de vérifier la bonne implémentation de
celles-ci et au final de choisir la méthode la plus performante pour le processus d’optimisation.

Enfin, nous verrons que la loi d’interpolation SIMP peut être insatisfaisante dans le cas
du problème d’optimisation qui nous occupe. La dernière section de ce chapitre présentera
donc la solution utilisée de manière à obtenir un algorithme d’optimisation fonctionnel.

3.2 Description du problème d’optimisation

Le chapitre introductif sur l’optimisation topologique a montré que cette méthode est
appliquée avec succès depuis plusieurs années dans le domaine des structures mécaniques. Si

43
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l’application de l’optimisation topologique pour les problèmes ne faisant intervenir qu’un seul
champ physique est généralement bien mâıtrisée, sa mise en œuvre dans le domaine multi-
physique est moins courante et reste parfois délicate comme cela est présenté par l’article de
Raulli [26]. Cet article considérant l’optimisation topologique d’un domaine électromécanique
a montré que l’interaction entre les différents champs physiques est alors difficile à gérer car
l’interface entre les deux domaines n’est pas définie a priori. De plus, la présence de nouveaux
phénomènes physiques requiert l’interpolation de propriétés matérielles supplémentaires.

Tout comme les travaux de Raulli, le présent travail porte sur l’optimisation topologique
d’un domaine électromécanique. Cependant, dans le cadre de cette étude préliminaire, afin
de séparer les difficultés de ce problème complexe, nous avons voulu empêcher le processus
d’optimisation de modifier l’interface entre les deux domaines physiques. C’est pourquoi, nous
supposons que le domaine d’optimisation est séparé du domaine électrique par une électrode
parfaitement conductrice non modifiable par le processus d’optimisation. Le problème général
d’optimisation ainsi obtenu est schématisé à la figure 3.1. L’électrode imposée correspond à
l’électrode mobile, et isole le domaine d’optimisation du champ électrique. Le domaine d’op-
timisation est donc purement mécanique et il n’est pas nécessaire d’interpoler les propriétés
électriques de la matière. De plus, l’électrode imposée cöıncide avec l’interface entre le domaine
mécanique et le domaine électrique. Cette interface est clairement définie et non modifiée
par le processus d’optimisation. Dès lors, les nœuds sur lesquels sont appliquées les forces
électrostatiques ainsi que le domaine de calcul électrique ne seront pas modifiés au cours de
l’optimisation. Dans ces conditions, le problème d’optimisation considéré est équivalent à la
conception d’une suspension mécanique optimale pour l’électrode mobile. Cependant, cette
hypothèse n’affecte pas le caractère multiphysique du domaine de calcul puisqu’un couplage
fort entre les deux domaines physiques est toujours présent.

V

f f f f f f f

Domaine 
électrique

Domaine 
d'optimisation

Electrode fixe

Electrode 
mobile

Fig. 3.1 – Schéma de principe du problème d’optimisation

Partant d’une structure répondant aux hypothèses décrites ci-dessus, l’objectif est donc
de distribuer la matière dans le domaine de conception mécanique de telle sorte que la tension
de pull-in Vpi soit maximale. Cependant afin d’éviter une solution triviale, il est nécessaire
d’ajouter une contrainte limitant la quantité de matière disponible. Une borne supérieure v
est par conséquent imposée sur le volume de la structure. Le problème peut alors être formulé
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mathématiquement comme suit,

max
µ

Vpi (µ)

avec

{∑
i µivi 6 v

µmin < µi < 1 ∀i

avec µi la valeur de la pseudo-densité attachée à l’élément i et vi son volume.

3.3 Calcul des sensibilités

La connaissance des dérivées de la fonction objectif par rapport aux variables de conception
est fondamentale pour un processus d’optimisation basé sur la programmation mathématique.
Le problème d’optimisation ainsi que les hypothèses sur lesquelles il repose étant posé, il est
maintenant possible d’obtenir une expression générale de ces sensibilités en appliquant une
démarche similaire à celle proposée dans la référence [1].

Lors du calcul des sensibilités il faut garder à l’esprit que la modification d’une variable
de conception ne va pas seulement modifier la tension de pull-in mais aussi les déplacements
de la structure au point de pull-in comme le montre la figure 3.2. Par conséquent, il faut
donc tenir compte de la dérivée des déplacements généralisés au point de pull-in vis-à-vis des
densités.

q

V

(¢q,¢V)
¹+¢¹

¹

Pull-in

Fig. 3.2 – Influence de la perturbation d’une variable de conception sur la courbe d’équilibre

Le système considéré peut être modélisé par l’équation d’équilibre suivante,

Kq− f (V,q) = 0 (3.1)

avec K la matrice de raideur linéaire du système, q le vecteur des déplacements généralisés et
f le vecteur des forces généralisées reprenant ici l’ensemble des effets non-linéaires. Ce vecteur
des forces généralisées dépend donc de la tension appliquée et des déplacements généralisés.
En dérivant cette équation d’équilibre par rapport à la densité µi, nous obtenons

∂K
∂µi

q + K
∂q
∂µi

− ∂f (V,q)
∂µi

= 0

Et en explicitant la dérivée des forces généralisées par rapport aux variables de conception, il
vient

∂K
∂µi

q + K
∂q
∂µi

− ∂f
∂µi

− ∂f
∂q

∂q
∂µi

− ∂f
∂V

∂V

∂µi
= 0



Procédure d’optimisation de la tension de pull-in 46

Or, suite à l’hypothèse de séparation entre le domaine d’optimisation et le domaine électrique,
f ne dépend pas directement des densités µi et cette dérivée partielle est donc nulle. L’équation
précédente peut donc être mise sous la forme

∂f
∂V

∂V

∂µi
=

∂K
∂µi

q +
(
K− ∂f

∂q

)
︸ ︷︷ ︸

KT

∂q
∂µi

(3.2)

La matrice KT est la matrice de raideur tangente du système couplé puisqu’elle est égale à la
dérivée de l’équation d’équilibre (3.1) du système par rapport aux déplacements généralisés
q. Au point de pull-in, cette matrice est singulière suite à l’instabilité qui caractérise ce point.
Dès lors, le premier mode propre r de la matrice de raideur tangente fait également partie de
son noyau. Par conséquent, l’égalité suivante est vérifiée au point de pull-in,

KT r = 0

De plus, en considérant que le vecteur r est normalisé de sorte que

rT ∂f
∂V

= 1 (3.3)

Et en multipliant l’équation (3.2) au point de pull-in à gauche par rT , cela nous donne
l’expression de la dérivée de la tension de pull-in par rapport à la variable de conception µi.

∂Vpi

∂µi
= rT ∂K

∂µi
q

Cette expression analytique permet un calcul rapide des sensibilités de la fonction objectif.
Cependant, il ne faut pas oublier que ce calcul nécessite la connaissance de la dérivée partielle
du vecteur des forces généralisées par rapport à V pour normaliser le vecteur propre de la
matrice de raideur tangente du système (équation (3.3)). Cette dérivée partielle peut être
calculée par différences finies sans grande perte d’efficacité ou de précision. La nécessité d’uti-
liser des différences finies pour calculer la valeur des sensibilités fait de l’expression obtenue
une expression semi-analytique.

3.4 Vérification par différences finies

La validité de l’expression semi-analytique des sensibilités peut-être vérifiée à l’aide d’un
calcul des sensibilités par différences finies. Pour ce faire, les dérivées de la fonction objectif
sont évaluées numériquement par différences centrées à partir une topologie de référence. La
tension de pull-in est donc calculée à deux reprises pour chaque variable de conception avec à
chaque fois une perturbation de la variable par rapport à la topologie de référence. La valeur
de la perturbation est fixée par expérience à ±10−4 cette valeur étant suffisamment grande
pour donner une variation significative de la tension de pull-in sans pour autant fausser le
calcul par différences finies.

La figure 3.3(a) représente les conditions aux limites du problème de référence. A gauche,
seule l’électrode imposée est fixée tandis que des conditions aux limites de symétrie sont
imposées à droite. Le domaine de conception est constitué d’un maillage quadrangulaire de 13
fois 14 éléments ce qui donne donc 182 variables de conception. De plus, de manière à se placer
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Fig. 3.3 – Configuration de référence

dans une configuration la plus générale possible, une distribution de pseudo-densités aléatoire
présentée sur la figure 3.3(b) est imposée. L’interpolation du comportement mécanique du
matériau est effectuée par une loi SIMP de paramètre 3.

Les sensibilités obtenues par différences finies et par l’approche semi-analytique sont super-
posées à la figure 3.4(a). De plus, la figure 3.4(b) présente l’écart en pourcents entre les deux
approches. Ces deux figures montrent clairement la validité de l’approche semi-analytique.
En effet, les deux courbes sont parfaitement superposées et l’écart entre les sensibilités est
toujours largement inférieur au pourcent. Ces différences résultent probablement d’erreurs
d’arrondi et d’imprécisions numériques lors du calcul des conditions de pull-in et des sen-
sibilités par voie semi-analytique ou par différences finies. Cependant, au vu de la bonne
corrélation entre les sensibilités, nous pouvons conclure que l’expression semi-analytique des
sensibilités est correcte.
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Fig. 3.4 – Comparaison des résultats du calcul de sensibilité

Notons finalement que le temps de calcul requis par l’évaluation des différences finies est
considérable en comparaison du temps pris par une analyse de sensibilité semi-analytique. De
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fait, malgré le faible nombre de variables du cas de référence choisi, il faut environ 40 minutes
pour calculer l’ensemble des sensibilités par différences finies alors que la voie analytique
nécessite quelques dizaines de secondes. Par conséquent, il est très avantageux de disposer
d’une expression au moins semi-analytique des sensibilités.

3.5 Implémentation de la recherche des conditions de pull-in

L’algorithme de Riks Crisfield et l’algorithme du normal flow ont été présentés au premier
chapitre de ce travail. Ces deux algorithmes peuvent être utilisés afin de calculer la courbe
d’équilibre d’un système électromécanique. Sur base de ces méthodes de calcul il faut mainte-
nant établir une stratégie permettant de localiser précisément le point de pull-in sur la courbe
d’équilibre. Grâce à la connaissance des conditions de pull-in l’analyse de sensibilité pourra
ensuite être effectuée.

3.5.1 Algorithme de Riks-Crisfield

L’algorithme de Riks-Crisfield étant déjà implémenté dans Oofelie [27], nous n’allons pas
entrer ici dans les détails de cette implémentation mais allons directement nous concentrer sur
la recherche du point de pull-in. L’étude du système électromécanique à un degré de liberté du
chapitre 1 a montré que la raideur effective du système diminuait à l’approche du pull-in pour
s’annuler en ce point. Or, la raideur effective calculée pour le système à un degré de liberté
correspond en fait à sa raideur tangente. Par ailleurs, l’annulation de la raideur tangente pour
le système à un degré de liberté se traduit dans les systèmes à plusieurs degrés de liberté par
la singularité de la matrice de raideur tangente au point de pull-in.

Cette propriété pourrait donc permettre de détecter le passage par le point de pull-in.
Cependant, au vu du coût de calcul élevé du déterminant d’une matrice, il est équivalent et
plus efficace de résoudre le problème aux valeurs propres KTx = λx. Toutefois, suite à la
présence de degrés de liberté électriques, certaines valeurs propres de la matrice de raideur
tangente sont négatives et de faible module ce qui complique la recherche de la valeur propre
s’annulant au pull-in. Par contre, pour le problème aux valeurs propres dynamique linéarisé
exprimé par,

(KT − λM)x = 0

M étant la matrice de masse, toutes les valeurs propres sont positives tant que le système est
stable, c’est-à-dire avant de passer le point de pull-in. A partir du point de pull-in, le système
devient instable et la première valeur propre dynamique du système devient négative comme
illustré figure 3.5. Cette méthode présente l’avantage de ne nécessiter que l’extraction de la
première valeur propre, ce calcul pouvant être effectué simplement par un algorithme de la
puissance.

La recherche du point d’annulation sur la courbe d’équilibre de la première valeur propre
permettra par conséquent de localiser le point de pull-in. A cette fin, la méthode de la regula
falsi a été couplée avec l’algorithme de Riks-Crisfield. Pour rappel, la regula falsi est une
méthode itérative de recherche de zéro d’une fonction basée sur un intervalle d’incertitude
incluant le zéro recherché. Son principe est illustré à la figure 3.6. L’intervalle d’incertitude
est délimité par deux points, α0 et α1, pour lesquels la fonction prend des valeurs de signes
différents. Afin d’obtenir un nouveau point α2 plus proche du zéro, une approximation linéaire
de la fonction est effectuée sur base de α0 et α1 et de la valeur de f en ces points. Le point
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Fig. 3.5 – Evolution de la première valeur propre en fonction du déplacement sur la courbe
d’équilibre

α2 est ensuite défini comme étant le zéro de l’approximation linéaire, ce qui donne,

α2 = α0 +
α1 − α0

f (α1)− f (α0)
f (α0) (3.4)

En fonction du signe de f (α2), le nouveau point va remplacer α0 ou α1 de manière à conserver
un intervalle d’incertitude incluant le zéro.
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Fig. 3.6 – Principe de la regula falsi

Cependant, l’algorithme de Riks-Crisfield ne peut pas fournir directement deux points
donnant lieu à des valeurs propres de signes opposés. Par conséquent, la regula falsi est
inactive lors de la première phase de recherche du pull-in qui consiste à suivre la courbe
d’équilibre en partant du point de repos. Pendant cette première phase, la première valeur
propre est calculée pour chaque point convergé, elle est en principe positive au début. La
seconde phase débute dès qu’une valeur propre négative est trouvée. A partir de ce moment,
la regula falsi est activée.

La méthode de regula falsi a du être légèrement adaptée pour être couplée à l’algorithme
de Riks-Crisfield. Tout d’abord, la regula falsi doit être basée sur le rayon de l’hypersphère de
la méthode de Riks-Crisfield puisque c’est la seule variable influençant le pas de progression
sur la courbe d’équilibre. Cette variable n’est pas idéale car la regula falsi va supposer que
le nouveau point α2 se trouvera sur la droite reliant α0 à α1. Cependant, ce n’est pas le
cas comme le montre la figure 3.7 puisque Riks-Crisfield va ramener ce point sur la courbe
d’équilibre. Il n’existe donc pas de correspondance réelle entre le point estimé par la regula
falsi et le point obtenu sur la courbe. Il s’en suit une légère erreur qui heureusement doit
progressivement diminuer à mesure que l’intervalle d’incertitude se réduit, puisque la courbe
d’équilibre sera alors fort proche d’une droite sur cet intervalle.
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Fig. 3.7 – Non correspondance entre le rayon de l’hypersphère et de l’abscisse curviligne

Par ailleurs, il est préférable de conserver le sens de progression initial sur la courbe
d’équilibre suite à la structure interne de l’algorithme de Riks-Crisfield. La procédure est
donc la suivante, dès qu’un point donnant une valeur propre négative est trouvé, l’ensemble
des données correspondant au dernier point à valeur propre positive rencontré sont conservées
de sorte que ce point va servir de point de départ à l’itération suivante. Riks-Crisfield est donc
relancé à partir du dernier point à valeur propre positive avec un rayon d’hypersphère réduit
selon l’équation (3.4) où α0 est posé à 0 et α1 à l’ancien rayon. Le nouveau rayon permet
après convergence d’obtenir un nouveau point. Si ce dernier correspond à une valeur propre
positive, le point est alors pris comme nouveau point de départ pour les itérations futures.
Par contre si la valeur propre est négative, le rayon est simplement à nouveau réduit.

3.5.2 Algorithme du normal flow

La méthode du normal flow a été utilisée avec succès par Abdalla et al. [1], afin de localiser
le point de pull-in d’une poutre soumise à des forces électrostatiques. De ce fait, il nous a
semblé intéressant d’essayer d’appliquer cet algorithme décrit par la littérature comme plus
efficace que Riks-Crisfield [1, 25]. Cette méthode, présentée au premier chapitre, se résume
simplement à la résolution du système suivant,[

KT −f̃
vT dλ

ds

]
·
[

∆q
∆λ

]
=
[
−r
0

]
Le calcul des conditions de pull-in est en fait effectué de manière étagée par Abdalla

et al. [1] car les forces électrostatiques sont calculées séparément sur base d’une formule
analytique en fonction du voltage appliqué et de la déformée. La variable de charge λ choisie
est logiquement proportionnelle à la tension au carré puisqu’il s’agit de forces électrostatiques.
Ceci permet de définir f̃ comme suit,

f̃ =
f
λ

où f désigne le vecteur des forces électrostatiques. De cette manière, il existe un bon accord
entre la prédiction ∆λf̃ de l’évolution des forces suite à un ∆λ et les forces résultant du calcul
basé sur l’augmentation de tension correspondant au ∆λ.
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Ce travail utilise une approche plus générale où les forces électrostatiques sont obtenues
par résolution d’un problème éléments finis fortement couplé. Par conséquent, il est préférable
d’adapter l’algorithme du normal flow afin de résoudre le problème de manière monolithique
en vue d’améliorer la stabilité et la vitesse de convergence. Dans une formulation monolithique,
le vecteur des forces généralisées inclut les forces électrostatiques sur la structure mécanique
ainsi que les charges électriques aux nœuds correspondant au problème électrostatique. Si
les forces électriques sont également en première approximation proportionnelles à la tension
imposée au carré, les charges électriques sont elles plutôt directement proportionnelles à cette
tension. Par conséquent, il est difficile de trouver une expression de la variable de charge λ
telle que les forces généralisées lui soient simplement proportionnelles.

Cependant, grâce à la connaissance de la matrice de raideur tangente du problème
électromécanique couplé, il est possible de connâıtre la dérivée des forces généralisées d’origine
électrique en fonction du voltage imposé. En repartant du développement en série de Taylor
au premier ordre du résidu r,

r (q + ∆q, V + ∆V ) ' r (q, V ) +
∂r
∂q

∆q +
∂r
∂V

∆V = r (q, V ) +
∂r
∂q

∆q +
∂r

∂qVf

∂qVf

∂V
∆V

où qVf
désigne le vecteur des degrés de liberté de potentiel électrique imposés tandis que

q représente toujours le vecteur des déplacements généralisés libres. L’équation de base du
normal flow peut ensuite être écrite comme suit,

KT ∆q +
∂r

∂qVf

∂qVf

∂V︸ ︷︷ ︸
− ∂f

∂V

∆V = −r

Le facteur multiplicatif de ∆V correspond au signe près à la dérivée des forces généralisées
d’origine électrostatique f vis-à-vis de la tension appliquée V. Cette dérivée se décompose
en deux facteurs. Le premier facteur ∂r/∂qVf

est en fait la portion de la matrice de raideur
tangente globale reliant les degrés de liberté libres aux degrés de potentiel électrique fixés, elle
est notée KT (q,Vf ). Le second facteur ∂qVf

/∂V = Vf unit est la dérivée des potentiels imposés
par rapport à la variable de potentiel imposé. Les composantes du vecteur de potentiel imposé
étant soit égales à V soit à 0, les composantes de Vf unit prennent respectivement la valeur 1
ou 0. La dérivée des forces généralisées peut donc être exprimée sous une forme rappelant le
calcul des forces engendrées par des déplacements imposés,

∂f
∂V

= −KT (q,Vf ) ·Vf unit (3.5)

A partir de cette expression, il est possible d’obtenir la dérivée des forces généralisées par
rapport à une variable de charge quelconque dont l’expression en fonction du potentiel imposé
est connue et dérivable. Le système d’équations linéaires du normal flow peut alors s’écrire,[

KT − ∂f
∂λ

vT dλ
ds

]
︸ ︷︷ ︸

Dr

·
[

∆q
∆λ

]
︸ ︷︷ ︸

Dc

=
[
−r
0

]
(3.6)

Le choix de la variable de charge étant libre, elle a simplement été prise proportionnelle à
la tension appliquée. Ce qui donne,

λ = NV
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Le facteur de proportionnalité N permet de normaliser la dérivée des forces de manière à
obtenir une matrice Dr homogène. La dérivée des forces généralisées par rapport à λ est
donnée par,

∂f
∂λ

=
1
N

∂f
∂V

L’importance de cette normalisation va être expliquée dans ce qui suit.

Influence de la normalisation

Le noyau peut être séparé en deux parties, d’une part le vecteur v correspondant aux
degrés de liberté mécaniques et d’autre part dλ

ds , le dernier élément du noyau, se rapportant
à la variable de charge. L’équilibre entre les valeurs de ces deux parties dépend directement
du facteur de normalisation N . En effet, N définit l’importance relative entre les termes de
raideur et de force de la matrice Dr qui se répercute logiquement sur les termes du noyau.

Sur base du noyau, une équation supplémentaire est ajoutée au système d’équations afin
qu’il soit déterminé (équation (3.6)). Cette équation impose que l’incrément sur les inconnues
Dc soit orthogonal au noyau. Par conséquent, si dans ce noyau, les éléments de v sont faibles
par rapport à dλ

ds , il s’en suivra un incrément Dc portant essentiellement sur les déplacements
mécaniques et ne modifiant que très peu la variable de charge et donc le voltage appliqué.

Cet effet est illustré à la figure 3.8. Les deux courbes correspondent à deux valeurs de N
différentes. N étant plus faible pour la figure de gauche, il en résulte un λpull−in également
plus faible. D’un point de vue géométrique, le noyau représente la tangente au Davidenko flow.
Par ailleurs, le Davidenko flow est lui même pratiquement parallèle à la courbe d’équilibre.
La contrainte supplémentaire sur la correction signifie qu’elle doit être perpendiculaire au
Davidenko flow. Dès lors, la courbe de gauche étant très horizontale, les corrections seront
pratiquement verticales et n’auront presqu’aucune influence sur les déplacements généralisés.
A l’inverse, la figure de droite montre qu’un facteur de normalisation plus élevé donne lieu à
une correction plus horizontale.

q

¸

¸
pull-in

q

¸
pull-in

¸

Fig. 3.8 – Influence du facteur de normalisation sur la correction du normal flow : à gauche
N faible, à droite N élevé

En réduisant suffisamment N , il est possible de rendre la correction totalement horizon-
tale ce qui peut être problématique pour la résolution du problème. En effet, dans ce cas,
la variable de charge n’est absolument plus modifiée par le processus de correction. Cette
situation similaire à celle rencontrée avec l’algorithme de Newton-Raphson est à éviter car
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lorsque la prédiction donne une valeur de λ supérieure à celle du point de pull-in, l’algorithme
est incapable de réduire la variable de charge et de converger.

Implémentation

La figure 3.9 décrit l’organisation de la routine implémentée. La phase de prédiction est
simplement composée d’une progression similaire à Newton-Raphson. Elle est basée sur la
matrice de raideur tangente du système et sur la dérivée des forces généralisées par rapport au
voltage imposé (3.5). De plus, une routine de déplacement de maillage est ajoutée de manière
à conditionner au mieux le maillage électrostatique avant la correction. Ce déplacement de
maillage est effectué sur base d’un problème mécanique fictif [28] et est suivi d’un calcul
électrostatique.

Prévision tangente et déplacement du maillage

Assemblage et mise à échelle de Df

Décomposition en valeurs singulières
et extraction du noyau

Assemblage et mise à échelle
du problème du normal flow 

Résolution du normal flow

Convergence ?
Non

Oui

Boucle de correction

Prévision

Calcul du pas

Déplacement du maillage

Fig. 3.9 – Implémentation du normal flow

La boucle de correction est ensuite effectuée. Comme cela est montré sur le schéma, le
corps de cette boucle est décomposé en plusieurs étapes. Tout d’abord, la partie supérieure
de la matrice Dr est assemblée à partir de la matrice de raideur tangente KT et de la dérivée
du vecteur de forces généralisées.

Drsup =
[

KT − ∂f
∂λ

]
Après mise à échelle de Drsup, le noyau de la matrice est obtenu sur base d’une

décomposition en valeurs singulières. Cette procédure d’extraction du noyau a été choisie
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car d’une part elle est utilisée par Matlab et d’autre part, la décomposition en valeurs sin-
gulières était déjà implémentée dans Oofelie. La matrice Drsup étant rectangulaire, il existe
nécessairement une valeur singulière très proche de zéro, le vecteur correspondant à cette
valeur singulière est le noyau recherché.

Dès que le noyau est connu, le système d’équation du normal flow est assemblé, mis à
échelle et résolu avec un membre de droite égal aux forces internes. La boucle de correction
continue ensuite tant que le critère d’arrêt n’est pas satisfait. Ce critère d’arrêt est basé sur
la norme des forces internes et permet d’arrêter la boucle lorsque cette norme est suffisam-
ment faible. Finalement, la boucle de correction est éventuellement suivie d’une procédure
d’uniformisation du maillage électrique avant de passer à une nouvelle prévision.

Recherche du point de pull-in

Le calcul du pas est effectué sur base d’une regula falsi de manière similaire à celle utilisée
avec l’algorithme de Riks-Crisfield. Cependant, le normal flow calcule pendant la phase de
correction la valeur de dλ

ds c’est-à-dire la dérivée de la variable de charge par rapport à l’abscisse
curviligne de la courbe d’équilibre. Le pull-in se produisant pour une valeur maximale de la
variable de charge, cette dérivée est par conséquent nulle au pull-in. C’est pourquoi comme
suggéré à la référence [1], la procédure de regula falsi cherchera à annuler la fonction dλ

ds .
Pour le normal flow, lorsque la regula falsi est active, le pas de progression correspond

au déplacement du nœud de référence au cours de la prédiction. Le nœud de référence est
simplement un nœud de l’électrode imposée choisi au début du processus d’optimisation (le
nœud central pour une poutre bi-encastrée par exemple). Ce choix du pas de progression est
a priori meilleur que la norme de la prédiction utilisée dans Riks-Crisfield. Mais, au vu de la
procédure de correction, la position du noeud de référence n’est pas nécessairement constante
au cours de celle-ci. Par conséquent, le point estimé par la regula falsi ne correspondra pas
en général au point obtenu à l’itération suivante. Tout comme pour l’algorithme de Riks-
Crisfield, la recherche du pull-in sera donc entachée d’une erreur. La procédure de regula falsi
est arrêtée lorsque la taille relative de l’intervalle de confiance descend en dessous d’un seuil
prédéterminé.

3.5.3 Application des méthodes

Système à un degré de liberté

Les deux méthodes présentées ci-dessus vont être mises en application et comparées sur
base d’un cas test simple. Le modèle éléments finis de référence est représenté à la figure
3.10. Il s’agit d’un système à un degré de liberté composé d’un élément ressort de raideur
k = 4 · 1011 N/m et d’un élément électromécanique d’air (en trait discontinu) de permittivité
ε = 8, 84 · 10−12 F/m et de raideur très faible (10−3 N/m). Le potentiel électrique est imposé
aux deux nœuds de l’élément électromécanique ; seul le nœud situé entre les deux éléments
reste donc libre de se déplacer. Une expression analytique de l’équation d’équilibre est obtenue
simplement à partir de l’étude du système à un degré de liberté effectuée au chapitre 1. La
surface étant unitaire, l’équation d’équilibre est donnée par,

V =

√
−2 · 4 · 1011x (10−6 + x)

8, 84 · 10−12



Procédure d’optimisation de la tension de pull-in 55

La tension de pull-in théorique est quant à elle égale à 115,7762 V pour un déplacement de
−1/3 · 10−6. Au vu de la valeur de cette tension de pull-in, le facteur de normalisation de la
méthode du normal flow va être fixé à 5 · 10−9 de manière à obtenir une variable de charge λ
qui soit du même ordre de grandeur que les déplacements du nœud libre.

V=0

x

V=V
imp

 0,5¹m 

 1¹m 

Fig. 3.10 – Schéma du cas test à un degré de liberté

Les deux algorithmes sont d’abord utilisés de manière à obtenir la courbe d’équilibre du
système, la regula falsi étant désactivée. La figure 3.11 représente l’ensemble des points suivis
par chacun des algorithmes superposés à la courbe d’équilibre analytique. La structure en
dents de scie résulte de l’alternance entre les phases de prédiction et de correction. Ces figures
permettent tout d’abord de vérifier que malgré le pas relativement grand, les deux méthodes
convergent très vite vers la courbe d’équilibre après chaque prédiction et fournissent des
résultats fort semblables. De plus, en ce qui concerne le normal flow, il est clairement visible
que les corrections sont effectuées en suivant une perpendiculaire à la courbe d’équilibre.
C’est afin de mettre en évidence cette perpendicularité que l’ordonnée du graphe est λ pour
le normal flow.
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Fig. 3.11 – Courbes d’équilibres obtenues avec chacune des méthodes

En ce qui concerne la recherche du point de pull-in, les deux méthodes fournissent des
résultats très similaires. En effet, la tension de pull-in calculée est de 115,78 V dans les deux
cas, avec un déplacement de 3, 3335 · 10−7 pour Riks-Crisfield et 3, 3336 · 10−7 pour le normal
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flow. Ces deux dernières valeurs sont acceptables étant donné que la limite d’arrêt est placée
à un intervalle de confiance relatif de 10−4. Par contre, le temps de calcul diffère fortement
entre les deux méthodes il passe en effet de moins d’une seconde pour Riks-Crisfield à environs
trois secondes pour le normal flow.

Cet exemple permet également d’illustrer le comportement de la méthode du normal flow
en fonction du facteur de normalisation. Les figures 3.12 reprennent le parcours itératif de
l’algorithme pour différentes valeurs de N . La situation de référence (figure 3.12(a)) corres-
pond au facteur de normalisation choisi plus haut. Cette figure montre qu’un choix adéquat
du facteur de normalisation permet d’obtenir une correction pratiquement perpendiculaire
également dans le plan (q, V ).
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(a) Situation de référence
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(b) Facteur de normalisation faible
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Fig. 3.12 – Influence du facteur de normalisation sur l’algorithme du normal flow

Cependant, ce n’est plus le cas si ce paramètre est réduit d’un facteur 1000 (figure 3.12(b)).
Dans ce cas, la correction est pratiquement verticale ce qui ne pose pas de problème important
ici. Néanmoins, cette situation doit être impérativement évitée au point de départ étant donné
que la tangente est également verticale en ce point. Par conséquent, une correction verticale
ramènerait le système au point de départ et l’algorithme serait incapable de progresser sur la
courbe.

Logiquement, l’algorithme se comporte de manière opposée lorsque le facteur de norma-
lisation est augmenté d’un facteur 1000 comme le montre la figure 3.12(c). Dans ce cas la
correction porte uniquement sur les déplacements et plus sur la variable de charge. La cor-
rection étant horizontale, le problème rencontré avec la méthode de Newton-Raphson se pose
également. En effet, dès que le voltage prédit est supérieur à la tension de pull-in, l’algorithme
n’est plus capable de trouver une position d’équilibre puisqu’il lui est impossible de réduire
la tension.

Système électromécanique couplé

L’exemple précédent a permis de vérifier et de comparer le comportement des deux
méthodes sur un modèle très simple. Cependant, cet exemple est assez peu représentatif des
systèmes qu’il faudra analyser au cours du processus d’optimisation topologique. En effet, les
modèles considérés par l’optimisation topologique comportent un nombre de degré de liberté
beaucoup plus important. De plus, ces degrés de liberté ne sont pas uniquement mécaniques
mais peuvent également être électriques.

C’est pourquoi, les deux méthodes vont maintenant être appliquées à l’analyse du com-
portement d’une micropoutre électrostatique bi-encastrée schématisée à la figure 3.13(a).
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Le modèle de la micropoutre construit à l’aide d’éléments quadrangulaires est quant à lui
représenté à la figure 3.13(b). Les deux rangées inférieures d’éléments finis correspondent à
la couche d’air de permittivité ε = 8, 84 · 10−12 F/m avec un module de Young très faible
(théoriquement nul) tandis que la dernière rangée correspond au maillage de la poutre en
quartz d’un module de Young E = 86, 79 GPa et un coefficient de Poisson ν = 0, 17. La
poutre est maillée à l’aide de 20 éléments non-conformes linéaires.

V

10µm

0,
15
µm

1µ
m

(a) Vue schématique de la micorpoutre

Young ModulusYoung Modulus
0.001000.00100 8.68e+0108.68e+010

(b) Modèle élément finis

Fig. 3.13 – Micropoutre électromécanique

Ne disposant pas d’expression analytique de la courbe d’équilibre pour ce microsystème,
nous allons comparer directement les résultats de la méthode du normal flow avec une courbe
d’équilibre de référence calculée à l’aide de Riks-Crisfield. La figure 3.14(a) montre le par-
cours suivit par le normal flow pour un pas de progression relativement grand tandis que la
figure 3.14(b) montre la courbe d’équilibre établie pour un pas plus fin. L’abscisse de ces deux
figures correspond au déplacement du nœud central de la poutre et l’ordonnée à la tension
appliquée. Cette fois, sur la figure 3.14(a), la correction ne parâıt pas perpendiculaire à la
courbe d’équilibre contrairement à ce qui était montré précédemment. Cette différence pro-
vient du nombre plus important de degrés de liberté du modèle. En effet, la correction est
orthogonale au Davidenko flow dans l’espace à n dimensions engendré par les n degrés de li-
berté mais ne l’est plus nécessairement après projection dans un plan. Hormis cette différence,
les résultats fournis par le normal flow sont toujours en excellent accord avec ceux fournis par
Riks-Crisfield comme en attestent les deux figures.
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Fig. 3.14 – Courbe d’équilibre de la micropoutre
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Cependant, la méthode de décomposition en valeurs singulières rencontre parfois quelques
difficultés de convergence qui ont pour conséquence un calcul inexact du noyau. Ces erreurs
sont illustrées à la figure 3.15(a) où la direction du noyau est représentée pour chaque itération,
l’état du système étant représenté par la croix centrale de chaque segment. En principe,
ces segments doivent être tangents au Davidenko flow et donc pratiquement parallèles à la
courbe d’équilibre au vu de la faible distance qui les sépare. Malheureusement, certains de
ces segments ne sont pas du tout tangents à la courbe. Le phénomène se limite à la partie
instable de la courbe mais peut également se produire sur la partie stable comme le montre
la figure 3.15(b) pour laquelle l’épaisseur de la poutre a été réduite à 0.1 µm. Or un calcul
précis du noyau est très important puisque celui-ci conditionne non seulement la direction de
recherche vers une position d’équilibre mais également la recherche du point de pull-in.
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(a) Micropoutre de référence (épaisseur 0.15µm)
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Fig. 3.15 – Direction du noyau au cours des itérations

Considérons maintenant la recherche du point de pull-in de la micropoutre. Une estimation
de la tension de pull-in de cette structure peut-être obtenue à l’aide des expressions approchées
fournies par la référence [22]. L’analyse proposée par cet article défini une raideur effective
Keff et une surface effective Aeff qui sont injectées dans l’équation donnant la tension de
pull-in d’un système à un degré de liberté. Soit,

Vpi =

√
8Keffd3

0

27ε0Aeff

d0 étant égal à la distance entre les électrodes au repos. Dans le cas qui nous occupe, puisqu’il
n’existe pas de précontrainte, la raideur effective est calculée en fonction de l’épaisseur h, de
la largeur b et de la longueur l par,

Keff =
32Ebh3

l3 (1− ν2)

La surface effective est quant à elle obtenue comme suit,

Aeff =
√

1− βb

(
1 + 0, 65

(1− β) d0

b

)
l
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où β est pris égal à 0,4 pour les poutres fixées-fixées. De plus, étant donné que la largeur est
unitaire pour les éléments 2D utilisés, le rapport d0/b est négligeable et le facteur relatif aux
effets de bords peut être négligé. Ce qui donne

Aeff ≈
√

1− βbl

Au final, ces expressions donnent une tension de pull-in approchée égale à 204,346 V ce qui
est en accord avec les courbes d’équilibre obtenues précédemment.

La méthode de Riks-Crisfield donne une tension de pull-in égale à 195,855 V pour un
déplacement du nœud central de la poutre de −3, 954 · 10−7 m. Pour la méthode du normal
flow, le pull-in se produit pour un déplacement de −3, 956 · 10−7 m et un voltage égal à
195,855 V. Les deux algorithmes donnent donc des résultats concordants, de plus, la tension
de pull-in obtenue est proche de l’estimation analytique. Néanmoins la méthode du normal
flow s’avère beaucoup moins robuste et toujours plus lente que l’algorithme de Riks Crisfield.
Comme nous pouvions nous y attendre, les problèmes de convergence de la décomposition en
valeurs singulières provoquent fréquemment l’échec de la recherche du pull-in par le normal
flow.

3.5.4 Conclusion

Pour chacune des applications présentées, les deux méthodes de calcul ont montré qu’elles
étaient en mesure de fournir les conditions de pull-in. Cependant, suite aux instabilités de
la décomposition en valeurs singulières, la méthode du normal flow parâıt moins fiable que
l’algorithme de Riks-Crisfield. De plus, Riks-Crisfield permet d’obtenir un résultat plus rapi-
dement que le normal flow. Malgré son bon fonctionnement général, la méthode du normal
flow nécessite donc encore quelques perfectionnements comme par exemple l’amélioration de
la procédure d’extraction du noyau pour atteindre le niveau de la méthode de Riks-Crisfield.

Au vu de l’analyse effectuée au cours de cette section, la méthode de Riks-Crisfield nous
semble être la plus adaptée au processus d’optimisation. Par conséquent, c’est cette méthode
qui sera utilisée dans la suite de ce travail afin de permettre le calcul des sensibilités.

3.6 Traitement des modes locaux

L’utilisation de la méthode de Riks-Crisfield nécessite le calcul de la première valeur propre
du système pour localiser le point de pull-in. L’algorithme de la puissance a été choisi pour
effectuer cette tâche. Cependant, il s’est avéré qu’après quelques itérations de l’optimiseur,
la première fréquence propre devient indépendante du potentiel électrique imposé et reste
constante tout au long du parcours de la courbe d’équilibre. L’algorithme est alors incapable
de s’arrêter au point de pull-in et la recherche échoue. La cause de cet échec s’explique par
l’apparition d’un mode local possédant une faible fréquence propre comme cela est illustré à
la figure 3.16. En effet l’algorithme de la puissance fournit la fréquence propre de plus faible
module avec son signe. Par conséquent, si le pas de progression n’est pas suffisamment faible
et que la fréquence du mode local est suffisamment petite, la fréquence du mode local est
calculée à chaque itération et aucune valeur propre négative n’est jamais obtenue.

Afin d’illustrer ce phénomène prenons l’exemple représenté à la figure 3.17. Ce problème
d’optimisation considère une électrode imposée bi-encastrée et un domaine d’optimisation
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Fig. 3.16 – Evolution de la valeur absolue des valeurs propres

aux frontières totalement libres. Le matériau mécanique est du quartz isotrope avec un mo-
dule de Young E = 86790 MPa et un coefficient de Poisson ν = 0, 17. L’interpolation du
comportement du matériau est effectuée par une loi SIMP ; E = µpE0 de paramètre p = 3.
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Fig. 3.17 – Conditions aux limites et configuration du problème d’optimisation

Les premières recherches du point de pull-in se produisent normalement. Comme le montre
la courbe 3.18(a) correspondant à la première itération, le carré de la pulsation propre s’annule
au point de pull-in situé approximativement au tiers de la distance initiale entre les électrodes.
Par contre, dès la cinquième itération, la situation change comme le montre la figure 3.18(b)
où le carré de la pulsation est pratiquement constant quelque soit le déplacement.
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(b) Evolution pour la cinquième itération

Fig. 3.18 – Différentes évolution du carré de la fréquence propre en fonction du déplacement

Comme cela a déjà été mentionné plus haut, le phénomène s’explique simplement en met-
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tant en relation le premier mode propre et la distribution des densités tout deux représentés
à la figure 3.19. Cette figure rappelle fortement les modes locaux rencontrés par N. Pedersen
[23] présentés au chapitre précédent. En effet, la majeure partie des déformations du mode
propre a lieu dans une plage de faible densité. Ce mode apparaissant dans une zone non
structurale est donc tout à fait fictif.
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Fig. 3.19 – Premier mode propre

3.6.1 Loi d’Halpin-Tsai

Ce problème pourrait être résolu en remplaçant l’algorithme de la puissance par une autre
méthode d’extraction des fréquences propres comme l’algorithme de Lanczos. Cependant d’un
point de vue physique, il nous a paru plus propre et plus simple d’éviter l’apparition de modes
locaux à trop faible fréquence propre en adoptant une solution similaire à celle proposée par
N. Pedersen [23]. Ici ce problème résultant principalement d’une modélisation inappropriée
de la raideur et de la masse par la loi SIMP pour les densités proches de zéro, cette loi a été
remplacée par la loi d’Halpin-Tsai,

f (µ) =
ξµ

(1 + ξ)− µ
(3.7)

Cette expression est dérivée les équations générales de Halpin et Tsai [19] permettant
de prédire les caractéristiques mécaniques d’un matériau composite à fibres unidirection-
nelles. Les équations de Halpin et Tsai sont basées sur les nombreuses études théoriques et
expérimentales du comportement mécanique de ces matériaux composites ainsi que sur la
méthode d’homogénéisation. Dans le plan perpendiculaire aux fibres, Halpin et Tsai pro-
posent la loi suivante pour obtenir le module de Young, le coefficient de Poisson ou le module
de cisaillement,

M = Mm
1 + ξηVf

1− ηVf
avec η =

Mf/Mm − 1
Mf/Mm + ξ

où Mm est la grandeur d’intérêt de la matrice (module de Young, module de cisaillement ...),
Mf celle des fibres et M celle du composite contenant une fraction volumique Vf de fibres. Le
paramètre ξ est quant à lui représentatif du renforcement ou de l’affaiblissement de la matrice
par les fibres.
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Dans le cadre de l’optimisation topologique les fibres sont remplacées par du vide, un
matériau microperforé est donc obtenu. En posant donc Mf à zéro cela donne η = −1/ξ et
mène bien à l’équation (3.7) si µ = 1 − Vf . Le paramètre ξ permet d’introduire différentes
lois de mélange [9],

• ξ = 0 ⇔ f (µ) = 0 Equivalent à une mise en série des composants

• ξ = ∞ ⇔ f (µ) = µ Equivalent à une mise en parallèle des composants

• ξ = 1 ⇔ f (µ) = µ/(2− µ) Le résultat correspond à la raideur diagonale d’un
matériau de rang deux pseudo-isotrope

• ξ = 1
2(1−ν2)

Le résultat correspond à l’estimation analytique de la
raideur d’un assemblage de cylindre composites

La figure 3.20 montre l’influence du paramètre ξ sur le profil de la loi. Comme nous pouvons
le constater, le paramètre ξ permet de modifier la pénalisation des densités intermédiaires. Ce
paramètre joue donc un rôle analogue à l’exposant p de la loi SIMP même si la pénalisation
évolue en sens inverse par rapport au paramètre.
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Fig. 3.20 – Evolution de la loi d’Halpin-Tsai en fonction de ξ

L’avantage de la nouvelle loi sur la loi SIMP est illustré aux deux figures 3.21.
Premièrement, il est clairement visible sur la figure de gauche que la loi d’Halpin-Tsai per-
met de conserver une raideur bien plus importante pour les densités approchant de zéro
par rapport à la loi SIMP. Nous observons en effet, une décroissance pratiquement linéaire
d’Halpin-Tsai pour les faibles densités. Sur cette figure le paramètre ξ a été posé à 0,27 cette
valeur a été choisie de manière à minimiser le carré de la différence entre la loi d’Halpin-Tsai
et une loi SIMP d’exposant 3. Par ailleurs, le gain de raideur pour les faibles densités est
également confirmé par la figure de droite où le rapport raideur sur masse est tracé pour
différentes valeurs du paramètre. Avec la loi d’Halpin-Tsai, ce rapport est toujours non nul
ce qui n’est pas le cas pour la loi SIMP puisqu’il vaut µp−1.

Cette loi semble donc intéressante car elle se rapproche de la solution utilisée par N. Peder-
sen à savoir imposer un rapport constant entre masse et raideur pour les faibles densités. Par
contre, elle possède l’avantage de ne pas présenter de point anguleux et d’être par conséquent
différentiable quelque soit la valeur de la pseudo-densité. Cependant, étant donné qu’elle
fourni une raideur plus importante pour les faibles densités, il faut également veiller à réduire



Procédure d’optimisation de la tension de pull-in 63

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

µ

f(
µ)

SIMP p=3
Halpin−Tsai ξ=0.27

(a) Comparaison avec la loi SIMP

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

µ

f(
µ)

/µ

ξ=10
ξ=1
ξ=0.1

(b) Rapport raideur sur masse avec Halpin Tsai

Fig. 3.21 – Avantages de la loi d’Halpin Tsai

la borne inférieure µmin sur les pseudo-densités. La raideur des éléments vides doit en effet
toujours être suffisamment faible par rapport à celle des éléments solides. La borne inférieure
est donc fixée à 10−6 ce qui donne pour ξ = 0, 27 une raideur relative de 2 · 10−7.

En utilisant la loi d’Halpin-Tsai avec ξ = 0, 27, le cas test d’optimisation topologique
peut-être relancé et mené à bien. Le résultat obtenu est présenté à la figure 3.22. Malgré les
larges régions couvertes par des éléments vides présentées par la structure, aucun mode local
n’a cette fois perturbé le processus d’optimisation. Ceci prouve l’efficacité de la loi d’Halpin-
Tsai pour résoudre le problème rencontré. De plus, la structure obtenue possède très peu
d’éléments à densités intermédiaires ce qui montre que la loi d’Halpin-Tsai offre de bonnes
propriétés de convergence.
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Fig. 3.22 – Résultat d’optimisation obtenu avec Halpin-Tsai

3.7 Conclusion

Ce chapitre a tout d’abord permis de décrire le problème général d’optimisation ainsi que
ses hypothèses. Les hypothèses posées dans le cadre de cette étude préliminaire simplifient
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fortement le problème d’optimisation en permettant de considérer une interface non modifiable
entre les deux domaines physiques. Néanmoins, le problème d’optimisation résultant conserve
un caractère multiphysique et sa mise en œuvre constitue donc une étape importante en vue de
l’application de l’optimisation topologique à un problème plus général. Sur base du problème
d’optimisation décrit, nous avons ensuite pu obtenir et valider une expression semi-analytique
des sensibilités.

Le calcul semi-analytique des sensibilités nécessitant la connaissance des conditions de
pull-in, deux méthodes basées sur les méthodes de continuation de Riks-Crisfield et du normal
flow ont été développées et comparées. A l’issue de la comparaison, nous avons constaté que
l’algorithme de Riks-Crisfield est, dans l’état actuel, plus fiable que la méthode du normal flow.
Riks-Crisfield a donc été choisi afin de remplir la tâche d’analyse du processus d’optimisation.

Finalement, la dernière section a montré que l’interpolation SIMP est inadéquate lorsque
la détection du point de pull-in est basée sur la première fréquence propre du système. En
effet, l’apparition de modes locaux empêche la recherche d’être menée à bien Cependant, la
loi SIMP peut être remplacée avec succès par une loi d’Halpin-Tsai qui grâce à un rapport
raideur-masse plus élevé pour les faibles pseudo-densités évite l’apparition de modes locaux.
La recherche du point de pull-in peut alors se terminer correctement.



Chapitre 4

Applications

4.1 Introduction

Sur base des deux premiers chapitres décrivant les méthodes utilisées, le chapitre précédent
a permis d’élaborer une procédure d’optimisation topologique de la tension de pull-in. La
méthode d’optimisation étant maintenant décrite, nous allons proposer quelques applications
permettant d’illustrer cette méthode. Ces applications nous permettrons tout d’abord de
tester la méthode pour différentes conditions aux limites. Ensuite, afin d’obtenir des solution
plus réalistes une contrainte de fabrication sera ajoutée au problème d’optimisation.

4.2 Micropoutre bi-encastrée

Le premier exemple choisi porte sur la conception d’une suspension optimale pour une
micropoutre bi-encastrée. Comme le montre la figure 4.1, les seules fixations du domaine
mécanique sont les encastrements de l’électrode imposée. Le domaine d’optimisation ne
comporte par conséquent pas de fixations supplémentaires. La micropoutre considérée est
constituée de quartz isotrope de module de Young E = 86, 79 GPa et d’un module de Pois-
son ν = 0, 17. Le volume de matière disponible est fixé à 40 % du volume du domaine de
conception. Par ailleurs, le problème étudié étant symétrique, une seule moitié du domaine
est étudiée comme précédemment sur base d’un maillage de 48 par 16 éléments.
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Fig. 4.1 – Dimensions et conditions aux limites du premier cas test

L’optimisation topologique est tout d’abord effectuée avec un matériau de Halpin-Tsai de
paramètre ξ = 0, 27, cette valeur étant équivalente à une loi SIMP de paramètre 3. Le critère
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d’arrêt du processus d’optimisation est basé sur la plus grande variation parmi les variables
de conception à chaque optimisation. Si cette variation maximale descend en dessous d’un
seuil déterminé, l’optimisation est considérée convergée et le processus est arrêté. Dans le cas
présent, ce seuil est fixé à 0,01.
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Fig. 4.2 – Résultat de l’optimisation pour ξ = 0.27

Dans ces conditions, partant d’une distribution homogène de pseudo-densités, le résultat
obtenu est présenté à la figure 4.2. L’optimisation topologique propose une structure en forme
d’arche afin d’augmenter la tension de pull-in. Grâce à cette structure, la tension de pull-in
initialement égale à 371 V passe à 611 V en quarante itérations. L’évolution de la tension de
pull-in au cours de l’optimisation est tracée figure 4.3. Cette courbe montre une augmenta-
tion rapide et monotone de la tension de pull-in qui semble ensuite converger vers l’optimum.
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Fig. 4.3 – Evolution de la tension de pull-in au cours des itérations pour ξ = 0, 27

Cependant, les deux figures 4.2 indiquent la présence de membres structuraux très ténus re-
liant la partie centrale de l’électrode imposée à l’arche. La présence de larges plages d’éléments
possédant une densité intermédiaire révèle que la distribution de pseudo-densité n’est pas suf-
fisamment claire. Il est donc nécessaire de modifier les paramètres afin d’obtenir une structure
plus réaliste.
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Afin d’éviter l’existence de densités non entières dans le résultat final d’optimisation to-
pologique, nous allons premièrement augmenter la pénalisation de celles-ci en réduisant le
paramètre ξ ce qui aura également pour conséquence d’accélérer le processus d’optimisation.
D’autre part, la limite d’arrêt portant sur la variation maximale des variables de conceptions
est également réduite de manière à permettre au processus itératif de se poursuivre plus long-
temps. Par conséquent, le paramètre ξ est donc réduit à 0,15 tandis que le critère d’arrêt est
fixé à 0,005. La topologie obtenue avec les nouveaux paramètres est représentée figure 4.4(a).
Grâce à l’augmentation de la pénalisation des densités intermédiaires, le domaine d’optimi-
sation est maintenant pratiquement exempt de celles-ci. Par ailleurs la suspente située en
dessous de l’arche est clairement définie et présente des densités unitaires.
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Fig. 4.4 – Résultat de l’optimisation topologique pour ξ = 0, 15 : (a) Structure et (b) Evolu-
tion de la tension de pull-in

La figure 4.4(b) présente l’évolution de la tension de pull-in durant l’optimisation. Eton-
namment, la tension de pull-in effectue un palier au cours du processus itératif. Durant ce
palier, la structure est fort similaire à celle obtenue précédemment avec une pénalisation plus
faible (Fig. 4.2). Cependant à la différence du cas précédent l’optimisation se poursuit et trans-
forme la suspente en une structure possédant des densités unitaires. Ceci permet une nouvelle
augmentation de la tension de pull-in pour parvenir à 613,3 V soit une amélioration de 94%
par rapport à la configuration initiale. Malgré l’amélioration au point de vue structural, la
tension de pull-in n’a donc pas fortement évolué par rapport au résultat obtenu précédemment
avec ξ = 0, 27. Ceci est probablement provoqué par la diminution de raideur des éléments
à densité intermédiaire résultant de la réduction du paramètre de la la loi d’Halpin-Tsai.
L’existence d’éléments à densité intermédiaire dans le domaine de conception étant inévitable
suite à l’utilisation d’une technique de filtrage.

Notons finalement que la structure obtenue est en accord avec l’observation faite par
Bendsøe et Sigmund à la référence [6]. Ces derniers avaient remarqué, dans le cadre de l’opti-



Applications 68

misation de la compliance, que les structures soumises à une seule charge ponctuelle donnaient
lieu à un treillis possédant des cellules triangulaires. Par contre, si plusieurs charges sont ap-
pliquées dans le même cas de charge, certaines cellules du treillis résultant sont en forme de
quadrilatères. Or, dans notre cas, la structure est soumise à une charge répartie. Il n’est donc
pas étonnant que la cellule centrale soit trapézöıdale.

4.2.1 Convergence en fonction du maillage

La stabilité de la solution par rapport à une modification du maillage doit également être
vérifiée. Celle-ci est principe garantie par l’utilisation d’une méthode de filtrage. Néanmoins, il
nous a semblé important de vérifier que notre procédure d’optimisation fournit une topologie
insensible à la discrétisation du maillage.

La distance de filtrage choisie précédemment valait une fois et demi la taille des éléments.
Cette distance permet une régularisation efficace du problème d’optimisation puisqu’elle évite
l’apparition de structures en damier. Par ailleurs, en maintenant la distance absolue de fil-
trage constante et en raffinant le maillage il est également possible de montrer que la to-
pologie résultante est inchangée. Par exemple, la figure 4.5, compare la structure obtenue
précédemment pour un maillage du demi-domaine de 48 par 16 éléments à celle obtenue avec
un maillage de 96 par 32 éléments. Ces deux figures prouvent l’efficacité de la méthode de
filtrage pour la régularisation du problème d’optimisation puisque les deux topologies sont
identiques. Par ailleurs, la tension de pull-in optimale n’est pratiquement pas modifiée par ce
raffinement de maillage puisqu’elle passe à 613,7 V.
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(a) Maillage de base (48 x 16)
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(b) Maillage raffiné (96 x 32)

Fig. 4.5 – Influence du maillage sur le résultat d’optimisation topologique

4.2.2 Evolution des fréquences propres

L’optimisation de la tension de pull-in est basée sur le premier mode propre de la ma-
trice de raideur tangente. Cependant, suite aux modifications de la structure engendrée par
le processus d’optimisation, il est possible que deux modes propres s’inversent ou deviennent
confondus au cours des itérations. Ces deux phénomènes peuvent rendre le problème d’opti-
misation non différentiable et provoquer des oscillations de l’optimiseur.

Afin de vérifier qu’il n’existe pas d’inversion de valeurs propres ou que la première valeur
propre ne se confond pas avec la seconde, l’évolution des quatre premières fréquences propres
au point de pull-in a été tracée figure 4.6. Cette figure montre tout d’abord que la première
fréquence propre est logiquement toujours nulle au pull-in. Ensuite, nous pouvons constater
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que l’évolution des fréquences propres d’ordre supérieur est continue et ne présente pas de croi-
sement. Cependant, la forte diminution des fréquences d’ordre supérieur indique malgré tout
qu’une inversion ou une confusion de fréquence propre n’est pas à exclure systématiquement.
Ce point devrait donc faire l’objet d’une étude plus approfondie dans le futur.
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Fig. 4.6 – Evolution du carré des quatre premières pulsations propres au pull-in

Par ailleurs, la figure 4.7 compare le premier mode propre de la matrice de raideur tangente
pour la structure initiale et la structure finale. Sur ces figures seule une moitié du domaine
de conception est affichée. Les deux modes sont fortement semblables ce qui confirme bien
qu’il n’existe pas d’inversion avec un mode d’ordre supérieur au cours du processus itératif.
L’optimisation effectuée est donc bien valide.
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Fig. 4.7 – Premier mode propre de la matrice de raideur tangente

4.3 Micropoutre encastrée-libre

Les conditions aux limites ainsi que les dimensions de cette seconde application sont
schématisées figure 4.8. L’électrode imposée est maintenant encastrée uniquement du côté
gauche. De plus, de ce côté, des fixations sont également placées sur toute la hauteur du
domaine d’optimisation. Une dernière différence par rapport à l’application précédente se
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situe au niveau de l’électrode inférieure qui est cette fois située uniquement en dessous de la
seconde moitié de l’électrode mobile comme cela est indiqué sur la figure 4.8. Par ailleurs la
quantité de matière est limitée à 40 % du volume du domaine de conception pour un matériau
identique au précédent. Le paramètre de pénalisation de la loi d’Halpin-Tsai est choisi égal à
0,27. Le domaine mécanique est discrétisé à l’aide d’un maillage de 60 par 24 éléments.
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Fig. 4.8 – Dimensions, conditions aux limites et configuration initiale de la seconde application

Le seuil du critère d’arrêt est différent pour cette application car il est apparu que la
limite précédente donnait lieu à un nombre d’itérations trop important sans gain significatif
au niveau de la tension de pull-in ou de la topologie. La nouvelle limite de variation maximale
est donc moins sévère et est placée à 0,02. Le processus d’optimisation s’arrête après 149
itérations et le résultat obtenu est représenté figure 4.9(a).

OOfelie GraphOOfelie Graph

DensityDensity
0.000 0.000 0.200 0.200 0.400 0.400 0.600 0.600 0.800 0.800 1.00  1.00  

(a)

OOfelie GraphOOfelie Graph

IterationsIterations
0.000 0.000 30.0  30.0  60.0  60.0  90.0  90.0  120.  120.  150.  150.  

VpiVpi

1.48e+0031.48e+003

1.38e+0031.38e+003

1.28e+0031.28e+003

1.18e+0031.18e+003

1.08e+0031.08e+003

980.  980.  

880.  880.  

(b)

Fig. 4.9 – Résulat de l’optimisation pour la poutre encastrée-libre : (a) Structure et (b)
Evolution de la tension de pull-in

La suspension optimale tire pleinement profit des fixations proposées sur le côté gauche du
domaine d’optimisation puisqu’elle prend appui dans les coins supérieur et inférieur gauches.
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Par ailleurs, suite à la position de l’électrode fixe, la moitié gauche de l’électrode mobile n’est
pratiquement soumise à aucune force électrostatique. Il est donc logique qu’elle ne soit pas
soutenue. Au contraire, la suspension est ancrée sur l’électrode mobile dans le coin inférieur
gauche profitant ainsi de la raideur propre de l’électrode mobile. La seconde moitié est à
l’inverse soutenue en deux points. Leur position montre également que l’optimiseur utilise, à
cet endroit également, la raideur de l’électrode mobile.

La tension de pull-in obtenue est de 1395 V contre 884 V initialement ce qui correspond à
une augmentation relative de 58 %. L’évolution de la tension de pull-in tracée à la figure 4.9(b)
présente un long palier de la tension de pull-in avant l’arrêt de l’optimisation. Par conséquent,
le critère d’arrêt pourrait encore être relaxé de manière à réduire le nombre d’itérations, car
la structure n’évolue plus de manière significative durant ce palier. Toutefois, le problème
d’optimisation posé par cette seconde application semble plus simple que le précédent. En
effet, la tension de pull-in évolue très rapidement vers le palier final et le domaine de conception
ne présente pas de densités intermédiaires malgré la faible pénalisation choisie.

4.4 Contrainte de fabrication

Les procédés de fabrication des microsystèmes les plus souvent utilisés sont basés sur la
technique de lithographie. Celle ci consiste en un dépôt successif de couches de matière sur une
gaufrette de Silicium suivies d’étapes de gravure en surface par attaque chimique ou physique.
La lithographie donne généralement lieu à des structures essentiellement planes composées de
couches successives parallèles à la surface du substrat initial. Malheureusement les résultats
obtenus précédemment présentent une structure incluant de nombreuses cavités fermées. De ce
fait, ces structures sont trop complexes pour être produites à l’aide des méthodes habituelles
de lithographie.

Afin d’obtenir des résultats plus facilement réalisables, il est donc nécessaire d’inclure une
contrainte de dépôt dans le problème d’optimisation de manière à éviter la création de poches
vides à l’intérieur de la structure. Le problème de fabricabilité rencontré dans cette étude se
rapproche fortement d’un problème déjà étudié précédemment en optimisation topologique. Il
s’agit de la conception de pièces mécaniques démoulables [24]. De fait, pour qu’une pièce soit
démoulable, il est tout d’abord nécessaire qu’il n’y existe aucune cavité fermée. De plus, il faut
également que toutes les cavités ouvertes soient orientées suivant une direction déterminée
correspondant à la direction de démoulage.

Par conséquent, si une telle contrainte est ajoutée à notre problème d’optimisation avec
une direction de démoulage verticale orientée vers le haut, nous serons certains d’obtenir
une structure exempte de cavités fermées. De plus, les seules cavités existantes seront alors
nécessairement ouvertes sur la face supérieure du domaine d’optimisation, la structure sera
plus facilement ”usinable” par dépôt de couches.

4.4.1 Contrainte de démoulage

L’obtention d’une structure démoulable en optimisation topologique repose généralement
sur l’utilisation d’un maillage transfini aligné suivant la direction de démoulage. Cet aligne-
ment permet de créer des groupes d’éléments orientés selon la direction de démoulage. Nous
prenons la convention que la direction de démoulage est celle selon laquelle les cavités doivent
être ouvertes. Par exemple, si nous considérons une direction de démoulage verticale orientée
vers le haut, les groupes seront formés à partir des colonnes du maillage éléments finis et les
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cavités doivent être ouvertes sur la face supérieure du domaine. La contrainte de démoulage se
traduit alors par l’obligation pour les pseudo-densités d’être décroissantes suivant la direction
de démoulage sur les éléments de chaque groupe. Par exemple, pour un groupe de n éléments
C sur lequel les éléments sont numérotés de 1 à n de proche en proche selon la direction de
démoulage (cfr. figure 4.10 dans le cas vertical), nous avons,

1 > µ1 > µ2

...
µi−1 > µi > µi+1 si 2 6 i 6 n− 1

...
µn−1 > µn > µmin

(4.1)

Si une distribution entière de pseudo-densités était considérée cela signifierait que dès qu’un
groupe contiendrait un élément de densité nulle, les éléments suivants devraient également être
vides. De ce fait, il est impossible de refermer une cavité en plaçant un élément solide après un
élément vide. Puisqu’à la fin du processus itératif, les pseudo-densités sont en principe entières,
toutes les cavités existantes sont nécessairement ouvertes dans la direction de démoulage.

1
2

n
.
......
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Groupe C

Fig. 4.10 – Contrainte de démoulage verticale orientée vers le haut

Il existe différentes possibilités pour prendre en compte de telles contraintes (4.1) comme
par exemple l’utilisation d’un Lagrangien augmenté ou l’utilisation de contraintes de borne.
Dans le cadre de ce travail, nous avons choisi d’utiliser les contraintes de bornes car cette
méthode permet de continuer à utiliser le même optimiseur tout en fournissant un résultat
fiable. Les contraintes de borne sont fournies pour chaque variable à l’optimiseur et précisent
quelles sont les limites entre lesquelles l’optimiseur peut modifier chacune des variables. Afin
de satisfaire les conditions (4.1) les contraintes de borne sur les variables i du groupe C sont
calculées comme suit,

µ1 − µ1−µ2

2 6 µ1 6 1
...

µi − µi−µi+1

2 6 µi 6 µi + µi−1−µi

2 si 2 6 i 6 n− 1
...

µmin 6 µn 6 µn + µn−1−µn

2

La variation maximale d’une variable est donc fonction de l’écart entre celle-ci et la variable
voisine. Cet écart est divisé par deux car la variable voisine pouvant également être modifiée,
il faut éviter que ces variables se croisent. Par ailleurs, ces contraintes de borne doivent être
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mises à jour après chaque itération de manière à prendre en compte les modifications opérées
par l’optimiseur.

4.4.2 Poutre bi-encastrée

Cette application est similaire à la première présentée au début de ce chapitre. Cependant,
afin de mettre en évidence certains résultats intéressants, l’électrode imposée ainsi que le
domaine d’optimisation sont plus longs comme le montre la figure 4.11. Par ailleurs, des
fixations supplémentaires sont ajoutées au domaine d’optimisation de chaque côté de celui-ci.
Le matériau utilisé est cette fois un quartz isotrope avec un module de Young E = 77 Gpa.
Le volume de matière disponible est fixé à 75 % du volume du domaine de conception. Le
demi-domaine mécanique est divisé par un maillage de 55 par 11 éléments finis.
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Fig. 4.11 – Dimensions, conditions aux limites et distribution initiale pour la poutre bi-
encastrée avec contrainte de démoulage

Une loi de Halpin-Tsai de paramètre ξ = 0, 27 est tout d’abord utilisée. Le résultat
obtenu avec ce paramètre est présenté figure 4.12. Si ce résultat vérifie bien la contrainte de
démoulage (4.1), la topologie est loin d’être satisfaisante au vu des grandes zones de densités
intermédiaires qu’elle présente.
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Fig. 4.12 – Résultat pour ξ = 0, 27

Le résultat précédent indique clairement que la pénalisation des densités intermédiaires
est insuffisante. Afin d’obtenir une solution acceptable le paramètre d’Halpin-Tsai a dû être
très fortement réduit. En effet, après plusieurs réductions successives, il s’est avéré qu’il était
nécessaire de prendre ξ égal à 0,005 pour obtenir une structure clairement définie. La solution
obtenue est représentée à la figure 4.13(a). La topologie obtenue est relativement simpliste
puisque la structure est essentiellement constituée de deux renforts trapézöıdaux. Cependant,
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cette structure ne présente pas de cavités fermées et sa fabrication est donc plus facilement
envisageable.
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Fig. 4.13 – Résultat pour ξ = 0, 005 : (a) Structure et (b) Evolution de la tension de pull-in

La tension passe de 89,5 V initialement à 343,2 V. Cette augmentation conséquente de
la tension de pull-in (284%) provient de la forte pénalisation des densités intermédiaires
provoquant une tension de pull-in initiale relativement faible. Néanmoins, l’évolution de la
tension de pull-in tracée figure 4.13(b) montre un départ très lent du processus d’optimisation.
Cette stagnation initiale de la tension de pull-in provient de la distribution initiale de pseudo-
densités. Cette distribution étant uniforme, il s’en suit qu’une grande partie des variables de
conception sont bloquées par la contrainte de démoulage (4.1) puisque en général µi = µi−1 =
µi+1. Par conséquent, à la première itération, les seules variables pouvant être modifiées sont
celles de la première et de la dernière ligne du domaine d’optimisation. La modification de
variables sur ces deux lignes permet ensuite à la seconde itération de débloquer deux lignes
supplémentaires et ainsi de suite. De ce fait, il faut donc attendre quelques itérations avant
que l’entièreté du domaine d’optimisation soit modifiable.

Distribution initiale en dégradé

L’implémentation utilisée de la contrainte de démoulage avec une distribution initiale uni-
forme ralentit donc le processus d’optimisation. Dès lors, il pourrait être utile de modifier la
distribution initiale de manière à libérer toutes les variables à partir de la première itération.
A cette fin, la distribution qui semble a priori la plus indiquée est une distribution en dégradé
vertical dont un exemple est présenté figure 4.14. Cette distribution est construite de sorte
que chaque ligne possède une densité différente en progression arithmétique. Le pas de la pro-
gression est calculé de manière à être maximal compte tenu de la densité minimale autorisée,
du nombre de lignes et de la quantité de matière disponible.
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Fig. 4.14 – Distribution initiale en dégradé (demi domaine)

De manière à évaluer l’influence de cette distribution initiale sur le résultat obtenu ainsi
que sur l’évolution de la tension de pull-in, l’exemple précédent est relancé avec les mêmes
paramètres en partant d’une distribution en dégradé (Fig. 4.14). Il est alors surprenant de
constater que le résultat d’optimisation présenté figure 4.15(a) est très différent du résultat
obtenu précédemment. Il semble donc que le problème d’optimisation considéré possède plu-
sieurs optimums locaux puisque la solution obtenue dépend du point de départ. Cependant,
malgré la différence de topologie existant entre les deux structures, la tension de pull-in obte-
nue est fort similaire dans les deux cas. En effet, la tension obtenue est cette fois de 344,8 V
ce qui est très proche des 343,2 V obtenus précédemment. Mais la tension de pull-in initiale
étant cette fois légèrement plus élevée (99,7 V), l’augmentation relative est de 246%.
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Fig. 4.15 – Résultat d’optimisation pour ξ = 0, 005 et une distribution initiale en dégradé :
(a) Structure et (b) Evolution de la tension de pull-in

La topologie résultante rappelle fortement le résultat obtenu par Abdalla et al. [1] pour une
micropoutre bi-encastrée présenté au second chapitre. Cette ressemblance est assez logique
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puisque la fonction objectif est identique pour les deux approches. Néanmoins, la modélisation
ainsi que la méthode d’optimisation utilisées sont très différentes ce qui peut expliquer que
les résultats ne sont pas toujours semblables.

Par ailleurs, l’augmentation initiale de la tension de pull-in est maintenant plus rapide
comme le montre la figure 4.15(b). La modification de la distribution de densités de départ a
donc bien eu l’effet désiré. De plus le nombre d’itérations nécessaire passe de 62 à 51 ce qui
représente un gain significatif en temps de calcul.

Distribution initiale sous forme de poutre

Le résultat de l’optimisation étant dépendant de la configuration initiale, nous avons voulu
tester une distribution analogue à la configuration de départ utilisée par la référence [1], c’est-
à-dire une poutre d’épaisseur uniforme. Les inconnues ont donc été initialisées de telle sorte
que les m premières lignes en partant du bas soit solides, la m + 1ième ligne possède une
densité µreste et les dernières lignes de m + 2 à n soient vides (µ = µmin). A nouveau, m
et µreste sont calculés en fonction du nombre de lignes, de la quantité de matière disponible
et de µmin. La distribution obtenue pour l’application étudiée est présentée figure 4.16. Pour
le problème qui nous occupe, µreste est très proche de 1 et par conséquent il n’existe pas de
différence visible entre les m premières et la m + 1ième ligne.
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Fig. 4.16 – Distribution initiale similaire à une poutre uniforme (demi domaine)

Le résultat obtenu est proposé à la figure 4.17(a). Celui-ci ressemble également fortement
aux résultats obtenus par Abdalla et al. [1]. Cette ressemblance conforte notre procédure
d’optimisation topologique puisqu’à partir d’un même point de départ elle fournit des résultats
similaires à ceux donnés par la procédure de dimensionnement d’Abdalla et al.

Par ailleurs l’évolution de la tension de pull-in au début du processus itératif est très
rapide comme le confirme la figure 4.17(b). Cette forte augmentation initiale est plutôt in-
attendue étant donné qu’une grande partie des variables sont bloquées par la contrainte de
démoulage. Cependant, la figure indique que la configuration initiale possède une tension de
pull-in égale à 278,4 V et donc bien plus élevée que les deux configurations précédentes. La
tension de pull-in finale est par contre pratiquement égale aux précédentes et vaut 344,4 V.
Par conséquent, l’augmentation relative n’est que de 20%. La poutre d’épaisseur constante
est donc probablement beaucoup plus proche de l’optimum ce qui explique l’augmentation
rapide de la fonction objectif ainsi que le faible nombre d’itérations nécessaires pour arriver
à la convergence.
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Fig. 4.17 – Résultat obtenu pour une configuration initiale en poutre uniforme : (a) Structure
et (b) Evolution de la tension de pull-in

Modification du volume disponible

Nous avons constaté que l’application considérée ci-dessus possédait au moins deux op-
timums locaux. Ces optimums locaux peuvent donner lieu à des structures fort différentes.
Par contre, la variation de tension de pull-in entre les deux résultats n’est pas réellement
significative. Toutefois, il s’avère que cet écart n’est pas toujours négligeable. En effet, si sur
base de l’application précédente, la quantité de matière disponible est modifiée, la tension de
pull-in optimale peut fortement changer en fonction de la distribution de densité initiale. Ce
phénomène est illustré à la figure 4.18. Chaque courbe de cette figure donne la tension de
pull-in obtenue en fonction de la fraction de volume1 pour une des trois situations initiales
considérées ci-dessus.

Premièrement, nous pouvons constater que les distributions en dégradé et en poutre four-
nissent toujours des tension de pull-in similaires. De même, les structures obtenues sont
également semblables et ressemblent toutes deux au résultat obtenu par Abdalla et al. quel
que soit la fraction de volume.

Par contre, la distribution uniforme donne lieu à des résultats différents pour une fraction
de volume inférieure à 0,84 avec une différence de tension de pull-in pouvant atteindre 11%.
En dessous d’une fraction volumique de 0,84, la topologie est la même que celle obtenue
précédemment pour cette distribution et une limite en volume de 75 %. Néanmoins, si la
fraction volumique disponible est supérieure à 0.84, les résultats du processus d’optimisation
sont très proches de ceux obtenus à partir des deux autres points initiaux tant au point de
vue de la topologie que de la tension de pull-in. Nous observons donc un basculement de la

1La fraction de volume est définie comme étant le rapport entre le volume de matière disponible et le volume
du domaine de conception
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Fig. 4.18 – Evolution de la tension de pull-in en fonction de la fraction de volume

solution vers le second optimum à partir de cette valeur de la fraction volumique.
D’autre part, la topologie la plus efficace varie également en fonction de la fraction de

volume disponible. En dessous de 75%, c’est la distribution initiale uniforme qui donne au
final la meilleure tension de pull-in. La meilleure topologie est donc celle faisant appel à
deux renforts trapézöıdaux. A l’inverse, pour une quantité de matière disponible supérieure
à trois quarts du volume du domaine de conception, une solution semblable à celle obtenue
par Abdalla et al. avec des poutre est plus performante.

4.5 Conclusion

La procédure d’optimisation topologique élaborée au cours de ce travail a été mise en
pratique dans ce dernier chapitre à l’aide de différentes applications. Pour certains de ces
exemples, un ajustement initial des paramètres s’est avéré indispensable afin d’obtenir un
résultat valable. Cette phase de réglage peut nécessiter quelques itérations. Cependant, la
procédure a finalement permit maximiser la tension de pull-in pour chaque application don-
nant lieu à un gain relatif sur la tension de pull-in pouvant atteindre plus de 200%.

Par ailleurs, la robustesse de la méthode d’optimisation a également été évaluée. Nous
avons ainsi pu vérifier que la structure optimale était bien indépendante du maillage. Toute-
fois, le comportement des modes propres d’ordre supérieur de la matrice de raideur tangente
pourrait éventuellement poser problème dans certaines applications en provoquant des oscil-
lations de l’optimiseur si une des valeurs propres d’ordre supérieur s’inverse avec la première.
Cet aspect mérite donc une étude plus poussée.

Néanmoins, les structures créées par l’optimiseur sont trop complexes pour les procédés
classiques de fabrication utilisés à l’échelle microscopique. Dès lors, une contrainte de fabri-
cation inspirée du problème de démoulage a été ajoutée au problème d’optimisation. Grâce
à l’introduction de cette contrainte, les résultats obtenus sont plus réalistes. Cependant, la
modification du point de départ sous cette contrainte de démoulage a révélé la présence d’op-
timums locaux. L’existence d’optimums locaux est d’autant plus gênante que la tension de
pull-in peut varier fortement d’un maximum à l’autre.
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Conclusion

Ce travail a débuté par une revue bibliographique portant sur l’effet de pull-in présent dans
les microsystèmes électromécaniques ainsi que sur la simulation numérique de ce phénomène.
Les difficultés posées par l’obtention des conditions de pull-in proviennent du couplage fort
existant entre les phénomènes électrostatiques et mécaniques. Cependant, il est possible sur
base d’une modélisation éléments finis monolithique d’utiliser une méthode de continuation
pour atteindre avec précision le point de pull-in. Dans ce cadre, afin d’obtenir la recherche du
point de pull-in la plus performante possible, la fiabilité et l’efficacité de deux méthodes de
continuation, Riks-Crisfield et le normal flow, ont été comparées sur base de deux modèles
éléments finis. Il est ressorti de cette comparaison que la méthode de Riks-Crisfield est
à la fois la plus rapide et la plus robuste des deux méthodes dans l’état actuel de leurs
implémentations respectives. Par conséquent, c’est l’algorithme de Riks-Crisfield qui a été
incorporé à la procédure d’optimisation.

Ce travail propose une étude préliminaire en vue de l’application de l’optimisation topolo-
gique aux systèmes électromécaniques couplés. Dans le contexte de cette première approche,
des hypothèses provisoires ont été posées afin de dépouiller le problème d’optimisation de cer-
taines complexités accessoires. Une expression semi-analytique des sensibilités a ensuite été
obtenue et validée par une comparaison avec une analyse de sensibilité par différences finies.
Cette expression permet de profiter de l’efficacité des optimiseurs basés sur la programma-
tion mathématique tel que ConLin. Néanmoins, il est apparu que la procédure d’optimisation
proposée peut être incompatible avec la loi d’interpolation SIMP classiquement utilisée en
optimisation topologique. En effet, le faible rapport entre la raideur et la masse donné par
la loi SIMP pour les densités proches de zéro provoque l’apparition de modes locaux à faible
valeur propre empêchant la recherche du point de pull-in d’aboutir. Dès lors, la loi SIMP a
été remplacée par une loi d’Halpin-Tsai donnant lieu à un rapport raideur sur masse plus
élevé. Cette nouvelle loi évite l’apparition de modes locaux à trop basse fréquence et permet
donc l’obtention du point de pull-in de manière habituelle.

La méthode d’optimisation élaborée a ensuite été mise en pratique. Les résultats obte-
nus sont de bonne qualité. En effet, pour chacun des cas test, il a été possible d’obtenir une
distribution de matière pratiquement exempte de densités intermédiaires. De plus, la stabi-
lité de la solution en fonction de la finesse du maillage a été vérifiée avec succès pour l’une
des applications. Par ailleurs, afin de réduire la difficulté de fabrication des structures ob-
tenues, une contrainte de fabrication a été incorporée au problème d’optimisation. Grâce à
cette contrainte de dépôt en couche, la production des structures obtenues est plus facilement
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envisageable. Cependant, la présence de deux optimums locaux a été observée lorsque cette
contrainte est ajoutée au problème d’optimisation. Les perturbations provoquées par ces op-
timums locaux peuvent être relativement importantes car la variation de tension de pull-in
peut atteindre 10 %. Néanmoins, le dernier chapitre montre l’efficacité de la procédure d’op-
timisation développée. De plus, nous avons pu constater qu’en l’état de l’avancement actuel
il n’existe pas d’obstacle majeur à l’application de l’optimisation topologique aux problèmes
électromécaniques.

Perspectives

Approfondissement de l’approche actuelle

Valeurs propres multiples

Un premier point intéressant à approfondir est l’évolution des valeurs propres d’ordre
supérieur de la matrice de raideur tangente. L’analyse de sensibilité se basant sur le premier
mode propre, un croisement de valeurs propres risque de déstabiliser processus d’optimisation.
Dans ce cas, il faudrait envisager d’utiliser un procédure d’optimisation de type ”min-max”
de manière à solutionner les problèmes provoqués par ce croisement de valeurs propres.

Contraintes de tension

L’ajout d’une borne maximale sur les contraintes mécaniques est également une exten-
sion possible de l’approche actuelle. Cet aspect, qui n’a pas été envisagé au cours de ce
travail, pourrait améliorer le réalisme du problème de conception. Si ce type de contrainte
n’est pas implémentée actuellement pour l’optimisation topologique dans Oofelie, sa mise en
œuvre en optimisation topologique est néanmoins bien développée dans la littérature comme
le montre la figure 4.19 provenant de la référence [11]. L’ajout d’une contrainte sur les tensions
mécaniques permettrait d’éviter l’apparition de membres structuraux trop fins qui ne seraient
pas assez résistants pour supporter la charge existant lors de l’utilisation.

(a) Problème d’optimisation

(b) Contrainte de tension (c) Contrainte sur la compliance

Fig. 4.19 – Problème de minimisation du volume de matière pour la poutre MBB [11]

Contrainte de fabrication

L’implémentation effectuée ici de la contrainte de fabrication permet de conserver l’opti-
miseur utilisé précédemment. Cependant, elle est loin d’être optimale car un traitement de
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ces contraintes intégré à l’optimiseur existe depuis peu dans une nouvelle version de ConLin.
Cette implémentation interne présente l’avantage d’être beaucoup moins contraignante que
celle utilisée dans ce travail. Il serait donc intéressant de vérifier qu’avec le nouvel optimiseur,
le processus d’optimisation aboutit toujours à des solutions différentes en fonction du point
de départ.

Algorithme de résolution des problèmes non linéaires

Enfin, l’augmentation de la fiabilité de la méthode du normal flow est également un sujet
intéressant. A cette fin, il ressort de ce travail que l’utilisation d’une méthode d’extraction du
noyau plus robuste et plus efficace pourrait déjà apporter une amélioration. L’obtention d’un
algorithme du normal flow pleinement fonctionnel pourrait permettre de pallier aux difficultés
occasionnellement rencontrées par la méthode de Riks-Crisfield.

Modification de l’approche

La perspective la plus importante est bien sûr la suppression de l’hypothèse séparant le
domaine d’optimisation du domaine électrique. Dans ces conditions, le domaine d’optimi-
sation pourra couvrir tout le domaine électrique et mécanique. Dès lors, le comportement
électrostatique d’un élément sera également fonction de sa pseudo-densité. Ceci nécessitera
l’interpolation des propriétés électriques de la matière en fonction des pseudo-densités. Grâce
à cette amélioration, l’optimiseur sera en mesure de modifier le point d’application des forces
électriques. Le processus d’optimisation bénéficiera alors d’une liberté et d’une généralité ac-
crues ce qui se solde habituellement par une augmentation des performances optimales. Des
problèmes aussi généraux que ceux traités par Raulli [26] pourront alors être considérés. Par
exemple, la figure 4.20 reprend le problème d’optimisation d’un inverseur de force traité par
Raulli [26]. La figure de droite montre clairement que l’électrode imposée ne couvre plus
qu’une partie de la largeur du domaine permettant au champ électrique d’entrer dans le
domaine d’optimisation.

(a) Problème d’optimisa-
tion

(b) Structure optimale

Fig. 4.20 – Inverseur de force électromécanique [26]
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Optimisation d’une électrode plane

Dans ce travail, le problème de conception est toujours placé dans le plan perpendiculaire
aux électrodes. Cependant, avec l’extension du domaine électrique au domaine d’optimisation,
il sera possible d’optimiser la géométrie d’une électrode plane. Une application semblable
dont l’interprétation est rappelée figure 4.21, a été présentée au second chapitre au cours
de la description des travaux de Raulli. La structure obtenue étant nécessairement plane, sa
fabrication à l’aide de dépôt de couches est en principe très aisée.

Fig. 4.21 – Optimisation d’une électrode plane [26]

Contrainte de fabrication

Cependant, il ne faut pas oublier que l’électrode mobile doit être libérée du substrat durant
la fabrication. La libération est effectuée par attaque chimique du matériau sacrificiel placé
entre l’électrode mobile et le substrat. Néanmoins, la distance de pénétration de l’acide sous
l’électrode mobile est limitée. D’un point de vue géométrique, cela signifie que tout point de
l’électrode doit être suffisamment proche d’un des bords de celle-ci pour pouvoir être libéré.
Si ce n’est pas le cas, les concepteurs de microsystèmes percent volontairement l’électrode
supérieure afin de permettre à l’acide d’éliminer l’entièreté du matériau sacrificiel (Fig. 4.22).
Cette contrainte de fabrication pourra donc être inclue dans le processus d’optimisation afin
de rapprocher le résultat d’une structure réaliste.

Fig. 4.22 – Exemple de structure perforée afin de permettre sa libération (source : IEF)
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