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Introduction

La miniaturisation est une des clés de I’évolution technologique actuelle. Cette réduction
d’échelle ouvre de nouveaux horizons ainsi qu’une diminution des colits et une augmenta-
tion de la fiabilité. Depuis une dizaine d’années, I'industrie est ainsi capable de produire des
dispositifs de mesure et des actionneurs utilisant une structure mécanique dont les dimen-
sions caractéristiques sont largement inférieures au millimetre. Les défis posés par de tels
systemes ne se situent pas uniquement au niveau de leur fabrication car le passage a ’échelle
micrométrique confronte la phase de conception a des comportements inhabituels et parfois
inattendus. Ainsi, les phénomeénes physiques qui sont soit négligés soit étudiés séparément
pour un systeme de taille macroscopique ne peuvent plus 1’étre a 1’échelle microscopique.
Par exemple, une interaction forte entre les phénomenes électrostatiques et mécaniques est
fréquemment rencontrée.

Ce travail porte sur ’étude du phénomeéne de pull-in apparaissant suite au couplage
électromécanique introduit dans certains microsystéemes et pouvant éventuellement mener
a leur destruction. Le pull-in se caractérise par un comportement instable du dispositif a
partir d’une tension électrique critique appelée tension de pull-in. Ce phénomene ainsi que les
méthodes permettant sa modélisation seront décrits au cours du premier chapitre.

Dans certains cas, le phénomene de pull-in est indésirable et il peut donc étre intéressant
de maximiser la tension de pull-in de maniere a retarder son apparition. L’objectif de ce travail
est d’utiliser 'optimisation topologique a cette fin. La présentation des principes généraux
de l'optimisation topologique fait I'objet de la premiere partie du second chapitre. Outre
I'intérét propre de la maximisation de la tension de pull-in, ’application de 'optimisation
topologique & un probléme multiphysique représente le second intérét de ce travail. En effet,
les travaux portant sur I’optimisation topologique dans le contexte multiphysique sont encore
peu nombreux. Mais, ils sont néanmoins prometteurs quant aux possibilités offertes par cet
outil de conception systématique et rationnel. La seconde partie du chapitre 2 propose une
revue détaillée des principaux travaux existants dans ce domaine.

Ce travail constitue une étude préliminaire destinée a estimer I’applicabilité de I'optimi-
sation topologique aux problemes électromécaniques fortement couplés. Afin de procéder par
étapes, nous allons dans le cadre de ce travail réduire la difficulté du probleme d’optimisation
a l'aide d’hypotheses adéquates. Ces hypotheéses ainsi que le probleme d’optimisation résultant
sont présentés au début du chapitre 3. Ensuite, ce chapitre est dédié a la présentation de la
procédure d’optimisation et a la justification des choix effectués au cours de sa construction.
L’algorithme d’optimisation est développé dans le logiciel Oofelie ce qui permet de profiter
d’un ensemble d’outils d’analyse multiphysique par éléments finis [28] et de calcul matriciel
existants ainsi que d’une interface avec 'optimiseur ConLin V3 [17].
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L’illustration des capacités de 'outil développé est finalement proposée a ’avant dernier
chapitre. Les différents cas tests présentés au cours de ce chapitre montrent 'efficacité et la
fiabilité de l'algorithme d’optimisation. Toutefois, les solutions obtenues proposent des struc-
tures difficilement réalisables a 1’aide des procédés de fabrication classiquement utilisés pour
les microsystemes. Des lors, le chapitre 4 propose également ’ajout au probleme d’optimi-
sation d’une contrainte de fabrication. Les principes ainsi que la mise en pratique de cette
contrainte font I’objet de la seconde partie de ce chapitre.

Le mémoire se termine par une synthese des apports des travaux exposés avant de conclure
par quelques réflexions sur les perspectives de développement.



Chapitre 1

Modélisation électromécanique du
phénomene de pull-in

1.1 Introduction

Ce chapitre est consacré a la présentation du phénomene de pull-in apparaissant dans
les microsystemes électromécaniques. Ce phénomene résulte du couplage entre les forces
électrostatiques d’une part et mécaniques de l'autre. Au dela de certaines valeurs du
déplacement mécanique, il en résulte un comportement potentiellement instable du dispo-
sitif pouvant mener a son endommagement ou a sa destruction. Des lors, le pull-in est une
caractéristique importante du comportement de ces microsystémes et de nombreux efforts ont
déja été consacrés a sa simulation. Suite au caractere multiphysique du phénomene d’instabi-
lité de pull-in, les outils de simulation doivent prendre en compte le couplage existant entre
les effets électriques et mécaniques. De plus, le caractere fortement non-linéaire du probleme
étudié impose I'utilisation de méthodes de continuation numérique pour le calcul précis des
conditions de pull-in. Dans le cadre de ce travail, une modélisation par éléments finis forte-
ment couplée a été utilisée conjointement avec un algorithme de continuation pour le calcul
des conditions de pull-in. La seconde partie du chapitre sera consacrée a la description de la
formulation éléments finis ainsi que de deux méthodes de continuation. Mais avant cela, la
premiere partie nous permettra de présenter le phénomene de pull-in.

1.2 Phénomene de ©pull-in dans les microsystemes
électromécaniques

Les microsystemes électromécaniques ont pour objectif principal d’intégrer aux circuits
électroniques des parties mécaniques pouvant servir par exemple de capteur ou directement
d’actionneur. Le fonctionnement de ces parties mécaniques nécessite par nature la produc-
tion de forces. Cependant du fait du changement d’échelle, les forces prédominantes dans
les microsystemes ne sont pas les mémes que celles existant & 1’échelle macroscopique. Dans
le domaine des microsystemes, des forces d’origine thermique, magnétique ou électrique sont
donc fréquemment dominantes. Par conséquent, les microsystemes mécaniques présentent tres
souvent un couplage fort entre plusieurs phénomenes physiques.

Dans le cadre de ce travail, les dispositifs utilisant la force électrostatique sont étudiés.
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Ceux-ci fonctionnent suivant un principe similaire au condensateur. Deux électrodes sont
soumises a une différence de potentiel électrique engendrant une force électrostatique qui
tend a rapprocher les électrodes. La déformation obtenue sous cette force peut ensuite étre
utilisée de différentes manieres comme cela est montré dans la suite.

Cependant, le caractére non linéaire de la force électrostatique par rapport au déplacement
peut provoquer l’instabilité du dispositif. Ce phénomene porte le nom d’instabilité de pull-
in. Le pull-in est intéressant lorsqu’on cherche a fabriquer un systéme bistable par exemple
mais il peut également étre nuisible dans d’autres applications puisqu’il peut conduire a la
destruction du microsysteme. Cet effet sera étudié en détails ci-dessous.

1.2.1 Microsystémes électromécaniques

Cette section présente quelques microsystemes ol la force électrostatique est mise en
ceuvre. Les microsystémes électromécaniques les plus répandus sont les switchs RF (radio
fréquence) [36] utilisés principalement dans le domaine des télécommunications. Deux concep-
tions différentes sont fréquemment rencontrées en fonction de I'utilisation : les switchs série
(Fig. 1.1) et les switchs par effet de shunt (Fig. 1.2). Les commutateurs série fonctionnent
simplement comme un interrupteur classique mis a part le fait qu’une force électrostatique
est créée entre la poutre et la grille (Fig. 1.1) afin de fléchir la poutre et d’établir un contact
ohmique entre la poutre et le drain. Ces dispositifs présentent I’avantage de fonctionner méme
si le signal est a basse fréquence.

F1a. 1.1 — Micrographie d’un switch série [36]

D’autre part, les switchs par effet de shunt se basent sur un couplage capacitif entre une
membrane reliée a la masse et la piste conductrice située en dessous. Lorsque la membrane
est en position haute, la capacité entre la piste et cette membrane est faible et n’a donc pas
d’effet significatif. Par contre lorsque la membrane descend au contact de l'isolant suite a
I’application d’une différence de potentiel, la capacité augmente. Pour autant qu’il possede

Ground Memb,
mbrane
Metallic Membrane

Thick Metal
Lower Electrode

J Dielectix
Signal
Path

_ oo ‘

F1a. 1.2 — Schéma et micrographie d’un switch par effet de shunt [36]
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une fréquence suffisante, le signal est transmis & la masse & travers cette capacité.

Les deux applications précédentes sont relativement simples du point de vue de la structure
mécanique. Afin d’utiliser la force électrostatique dans des applications mécaniquement plus
complexes, les peignes électrocapacitifs interdigités sont souvent utilisés (Fig. 1.3). Du fait de
leur géométrie, ils fournissent une force pratiquement linéaire en fonction du déplacement. Ce
qui est tres intéressant car la force électrostatique varie normalement en fonction de l'inverse
du carré de la distance entre électrodes. Ces peignes peuvent servir a créer une capacité
variable utilisée dans les télécommunication également. Le microsysteme est alors composé
soit de deux paires de peignes, I'une servant d’actionneur et I'autre de capacité soit d’une
seule paire servant a la fois d’actionneur et de capacité. Par ailleurs, les peignes capacitifs
sont également inclus dans les résonateurs mécaniques en tant que moyen d’excitation.

Fia. 1.3 — Micrographie dun actionneur & peignes capacitifs (source : Sandia,
http ://mems.sandia.gov/scripts/images.asp)

Suite a la non linéarité de la force électrique, les microsystemes présentés ci-dessus peuvent
subir volontairement ou non 'effet de pull-in. La description et I’explication de ce phénomene
d’instabilité est effectuée dans la section suivante.

1.2.2 Phénomene de pull-in

Afin de modéliser l'effet qui nous intéresse, prenons l’exemple simple d’une capacité
composée de deux électrodes planes séparées par le vide représenté a la figure 1.4. La premiere
électrode est fixe tandis que la seconde est suspendue par 'intermédiaire d’un ressort. Lors-
qu'une tension V est appliquée entre les deux armatures du condensateur, il en résulte une
force électrostatique f. donnée, en négligeant les effets de bords, par 'expression

f N €0 AV2
© 2 (dy— =)

avec A la surface d’'une armature, dy la distance au repos entre les armatures et gg la permit-
tivité du vide. Suite a ’existence de cette force électrostatique, 1’électrode mobile se déplace
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A
=
Y
X
FiG. 1.4 — Exemple simple d’un actionneur électromécanique

et se rapproche de I’électrode fixe jusqu’a ce qu’il y ait équilibre entre la force électrique et
la force de rappel du ressort donnée par

fr=—kx

ou k désigne la raideur du ressort. En égalant I'expression de ces deux forces, il est possible
d’obtenir I’équation d’équilibre du systeéme ainsi que ’équation reliant la tension appliquée
au déplacement de I’électrode mobile.

_[2kx (do — z)?
V= ”60—_/4 (1.1)

Cette équation permet d’obtenir la courbe d’équilibre normalisée tracée a la figure 1.5. Cette
figure montre que la courbe d’équilibre possede un maximum en tension. Le point maximum

Stable
S~ — - —Instable

o .

N *  Pull-in
N
N
N
Y
N
N
AN
AN
N
\
AN
A
\
\
AN

\

\
\

. A
\
0 . . . .
0 0.2 0.4 0.6 0.8 1
x/d

Fia. 1.5 — Courbe d’équilibre du systeme simple

est appelé point de pull-in et correspond a la tension de pull-in Vj;. Si une tension supérieure
a la tension de pull-in est appliquée, la force de rappel du ressort n’est plus en mesure de
compenser la force électrostatique qui augmente proportionnellement a I'inverse du carré de la
distance entre les électrodes. Il n’existe alors plus de position d’équilibre et I’électrode mobile
descend au contact de 1’électrode fixe. La courbe d’équilibre est donc divisée par le point de
pull-in en deux parties 'une stable et ’autre instable.

Cette inversion de stabilité est vérifiable en calculant la raideur effective du systeme.
La raideur effective aux environs d’une position d’équilibre z. est calculée en dérivant la
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résultante des forces s’appliquant sur ’électrode mobile, ce qui donne,

df 80AV82
T=T, ( 0 — xe)

et remplagant V. par son expression en fonction de z. (équation (1.1)),

2kx,

hopp =k — —te
e/ do —

La force électrostatique revet a travers le second terme de cette expression une importance

significative. En effet, & mesure que les électrodes se rapprochent, ce terme va réduire la

. . N . ey s , . . . . k
raideur effective et mener a l'instabilité. L’évolution de la raideur adimensionnelle e,f L est

tracée a la figure 1.6. Cette figure montre que la raideur linéarisée s’annule en z, = %0 c’est-

a~dire au point de pull-in et devient négative pour z. > %0. Par conséquent, a partir du point
de pull-in, le systéme est instable.

—k Kk
o8l o ]
% Pull-in

0.6
0.4r
0.2r

-0.2f

-0.4F

-0.8f

I
I
|
I
I

-0.61 :
I
I
I

xe/d0

Fi1G. 1.6 — Evolution de la raideur adimensionnelle avec le déplacement

Le phénomene de pull-in limite donc la plage de tension utilisable pour un tel micro-
systeme. Ce phénomene est parfois recherché dans certains dispositifs comme les switchs
capacitifs mais peut également étre dommageable dans d’autres cas. En effet dans un mi-
crosysteme, lorsque les deux électrodes entrent en contact, il n’est pas garanti qu’elles se
sépareront une fois la tension annulée, elles peuvent donc rester indéfiniment collées. Dans ce
cas, le microsysteme est inutilisable.

1.3 Modélisation éléments finis fortement couplée

La méthode des éléments finis va étre utilisée dans ce travail en vue de simuler le com-
portement et de servir de base a l'optimisation de la topologie de structures a géométrie
complexe. Cependant, différentes formulations éléments finis sont disponibles et, il convient
de choisir la plus adéquate au probleme posé. Dans le domaine multiphysique, deux grandes
classes de méthodes s’opposent, les méthodes dites étagées et les formulations monolithiques.

Les méthodes étagées sont a priori les plus faciles & mettre en ceuvre. En effet, ces méthodes
utilisent un calcul séparé et séquentiel de chacun des champs physiques du domaine d’analyse.
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De cette maniere, il est possible d’utiliser des codes de calcul séparés pour chacun des domaines
physiques et ainsi de profiter de logiciels existants. Plusieurs itérations sont ensuite effectuées
de maniere & converger vers un équilibre entre les différents domaines physiques.
Cependant, la convergence de la méthode étagée vers 1’équilibre devient de plus en plus
difficile au fur et a mesure que l'interaction entre les champs physiques s’accroit. Ainsi, I'uti-
lisation d’une formulation fortement couplée est parfois nécessaire. Au contraire du couplage
faible, le couplage fort procede a une résolution simultanée de I’ensemble des problémes phy-
siques. De ce fait les formulations fortement couplées sont également appelées formulations
monolithiques. Il n’existe alors plus qu’un seul probleme & analyser méme si bien str suite
aux non-linéarités résultant du couplage il est nécessaire d’itérer afin d’obtenir une solution.

1.3.1 Approche variationnelle

Le cas de la modélisation du couplage électromécanique dans un microsysteme est discuté
par Rochus et Rixen a la référence [28]. Cet article montre tout d’abord qu’il est préférable,
voire, nécessaire d’utiliser une formulation éléments finis fortement couplée dans ce cadre.
L’article propose également une formulation électromécanique fortement couplée qui sera
utilisée dans ce travail. Une approche variationnelle est utilisée en partant de la définition de
la densité d’énergie de Gibbs G d’un systeme électromécanique,

1 1
G=-8"T - _D'E (1.2)

2 2
Le premier terme de cette densité d’énergie correspond a la partie mécanique du probléeme et
contient le produit du tenseur de déformation S avec le tenseur de contrainte T. Le second
terme reprend la contribution électrique grace au produit du déplacement électrique D avec

le champ électrique E. Les lois constitutives reliant ces grandeurs sont les suivantes,

T =HS

D=cE
L’énergie interne du systéme est obtenue en intégrant la densité d’énergie de Gibbs (1.2) sur
I’entiereté du domaine électromécanique 2,

1 1 1
Wmt:/STT—DTEdQ:/STTdQ—/ DTE d0
2 Ja 2 Ja Q(u)

W We

Notons ici la différence entre le domaine d’intégration de 1’énergie mécanique W,, et ce-
lui de I’énergie électrique W,. En effet, I’énergie mécanique est intégrée sur le domaine de
référence Q) (formulation lagrangienne) tandis que I’énergie électrique va dépendre fortement
des déplacements mécaniques u et doit donc étre intégrée sur le domaine déformé Q2 (u). Ces
différents domaines d’intégration sont schématisés a la figure 1.7 pour un domaine d’analyse
contenant deux matériaux différents.

Les inconnues du probleme éléments finis sont d’une part les déplacements aux noeuds pour
la partie mécanique et le potentiel électrique en chacun des noeuds pour la partie électrique.
Ces inconnues sont reliées aux déformations et au champ électrique par les relations suivantes,

S, — L (0w _ Oy
v 2 \ Oz, ox;

E=-V¢
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\§\\;\\

u

(a) Domaine mécanique (b) Déformations mécaniques (c) Domaine électrique

F1G. 1.7 — Description des domaines d’intégration et des conditions aux limites

Les conditions aux limites du probleme éléments finis sont par conséquent pour chacun
des champs (Fig. 1.7),

u=u sur [, b=¢ sur L'y
t=t sur I} d=d sur Iy

ou t désigne les forces de surface, d les charges électriques surfaciques tandis que I'y, I'y, I'y
et I'y sont des portions du contour I' du domaine électromécanique 2. Ces quatres ensembles
vérifient les relations,

r,ur;, =" F¢UFd:F
r,NnTy=10 F¢ﬁFd:(Z)

L’énergie externe s’exprime alors,

Wext:/qudKH—/ uTtdF—/qbde—/ éd dT
w Iy Q Tq

ou f désigne les forces de volume imposées et 7 la densité de charge imposée sur le domaine
Q). Notons que dans la formulation choisie, les charges électriques aux noceuds jouent le méme
role dans le domaine électrostatique que les forces aux nceuds dans le domaine mécanique.

Le principe des travaux virtuels est ensuite appliqué en perturbant les variables u et ¢ a
I’aides des déplacements virtuels admissibles du et d¢ et en égalant les variations de 1’énergie
interne 0W;,; et de I’énergie externe 6 W,,; résultantes. Une des principales particularités de
ce calcul se situe au niveau du calcul de la variation de I’énergie interne et plus précisément de
I’énergie électrique We. En effet, W, dépend du vecteur u & travers son domaine d’intégration
et sera donc influencée par le déplacement virtuel de celui-ci. Il faut donc passer par un
changement de variables de maniere a calculer ’énergie électrique avec et sans déplacement
virtuel du sur un méme domaine d’intégration de référence afin de pouvoir les comparer, les
détails du calcul sont disponibles & la référence [28].

1.3.2 Matrice de raideur tangente

L’étude variationnelle du probleme fortement couplé méne & une équation de comporte-
ment linéarisée aux environs d’une position d’équilibre. Cette expression fait apparaitre la
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matrice de raideur tangente K, un incrément de déplacements généralisés Aq & partir de
la position d’équilibre, et la variation des forces généralisées correspondante Ag. Rappelons
que les déplacements généralisés sont composés des déplacements mécaniques u et des poten-
tiels électriques aux nceuds ¢, par ailleurs, les forces généralisées sont constituées des forces
mécaniques f,, et des charges électriques qe.

Pt — Tt G (Au>:<Kuu Kw)(Au):(Afm)
_gu‘g/qeﬁ _0°We A¢ qu K¢¢ A(b Aqe

P> _——
Kr Aq Ag

Comme cela est suggéré dans I’équation précédente, la matrice de raideur tangente peut
étre découpée en plusieurs blocs. Considérons tout d’abord le bloc K, ; il s’agit de la partie de
la matrice reliant les déplacements mécaniques aux forces mécaniques. Hormis la contribution
classique de I’énergie mécanique (matrice de raideur habituelle), K,, possede également une
contribution du domaine électrique provenant de la dépendance de I’énergie électrique vis-a-
vis de déplacements mécaniques. L’influence de I’énergie électrique sur la raideur mécanique
est & mettre en relation avec les observations effectuées sur le systeme a un degré de liberté
étudié ci-dessus. En effet, nous avions alors constaté que la raideur linéarisée diminuait lorsque
les électrodes se rapprochaient suite a l’effet des forces électrostatiques.

Deuxiemement, les termes non diagonaux de la matrice tangente introduisent un couplage
entre les inconnues mécaniques et électriques. Ces termes proviennent également de I'influence
des déplacements mécaniques sur ’énergie électrique. Il parait en effet logique qu’une variation
de déplacement résulte en une variation des charges électriques et qu’inversement une variation
des potentiels électriques aux nceuds génere une variation des forces électrostatiques.

Enfin, K44 correspond simplement a la matrice de raideur d’un probléme électrostatique
pur. Ceci découle du fait que I’énergie mécanique ne dépend pas directement du poten-
tiel électrique car si les déplacements mécaniques sont fixés, une modification des variables
électriques n’a pas d’influence sur I’énergie mécanique. Par conséquent, la seule contribution
a ce bloc provient de ’énergie électrique.

1.3.3 Résumé

L’approche éléments finis fortement couplée permet donc d’obtenir la matrice de raideur
tangente du probleme électromécanique. Le caractere fortement couplé de la formulation ainsi
que la connaissance de la matrice de raideur tangente correspondante sont deux excellents
atouts qui vont permettre I'utilisation d’outils de résolution tres efficaces tel que les méthodes
de continuation numériques. Cette association permettra un calcul précis des conditions de
pull-in de la structure étudiée.

1.4 Calcul de la courbe d’équilibre

Comme nous allons le constater dans la suite de ce travail, le calcul des sensibilités de
la tension de pull-in par rapport aux variables de conception de l'optimisation topologique
nécessite la connaissance des conditions de pull-in. Le comportement d’un microsysteme
électromécanique étant fortement non linéaire, il est nécessaire d’utiliser un algorithme de
calcul adéquat afin d’obtenir les conditions de pull-in. Habituellement, les problémes non-
linéaires sont résolus a l’aide de 'algorithme de Newton-Raphson mais comme le montre la
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section suivante, cet algorithme n’est pas capable d’atteindre le point de pull-in avec suffi-
samment de précision et de fiabilité. Par conséquent, d’autres méthodes numériques telles
que l'algorithme de Riks-Crisfield [27, 35] ou 'algorithme du normal flow [1, 25] doivent étre
utilisées pour calculer les conditions de pull-in.

1.4.1 Algorithme de Newton-Raphson

Considérons par exemple, un modele éléments finis non-linéaire décrit par 1’équation

d’équilibre,

K(a) a= X (q)
ol K désigne la matrice de raideur, q le vecteur des déplacements généralisés et f le vecteur
des forces généralisées. Notons que les forces généralisées ainsi que la matrice de raideur
dépendent tout deux des déplacements généralisés ce qui confere au systéme son caractere
non-linéaire. De plus, une variable de charge A est ajoutée de maniere a pouvoir appliquer
progressivement les forces généralisées d’itération en itération.

Pour résoudre ce type de systeme d’équation, il est possible d’utiliser la méthode itérative
de Newton-Raphson. Cette méthode comme la plupart des méthodes de calcul itératives se
compose d’une premiere phase de prédiction suivie d’une seconde phase de correction. En
pratique, la méthode de Newton-Raphson cherche a annuler le vecteur de résidu r égal a la
différence entre les forces internes et les forces externes. Si la matrice de raideur n’est pas
fonction du déplacement, ’expression du résidu est simplement,

r(q,\) =Kq— M

La recherche d’un résidu nul est effectuée en faisant varier le vecteur q pour A fixé. Pour ce
faire, 'expression du résidu est tout d’abord linéarisée aux environs d’une position connue
(qo, Ao). La phase de prédiction est en principe effectuée a partir d’'un point d’équilibre, ce
qui signifie que r (qp, A\g) = 0. Le développement en série de Taylor au premier ordre vaut
alors,

r Or
r(qo+Aq,)\o+A)\):r(q0,)\o)+a—)\ A)\—i-a— Aq=0
— (q0,20) Al (q0,20)
soit,

KTOAqO = A)\(]f (13)
ou la matrice Kpq est appelée matrice de raideur tangente au point (go, \g) et est définie par,
or

Ko = 7a
9l (q0,20)

L’équation (1.3) permet ainsi de calculer une premiére estimation de la variation de q due a
I’augmentation de charge A\ en utilisant une approximation linéaire de la courbe d’équilibre
comme cela est montré sur la figure 1.8. Suite a ’approximation linéaire effectuée, le point
(q1, A1) n’est pas sur la courbe d’équilibre, il en résulte que les forces internes fj,4; corres-
pondant aux déplacements q; ne seront pas égales aux forces externes A;f en ce point. Par
conséquent, I'équilibre n’est pas satisfait et le vecteur de résidu est non nul. Le processus
itératif doit donc se poursuivre avec la résolution d’un nouveau systeme d’équations

KriAqy = -1
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avec,

)
K“:a*r
al(

Cette premiere correction donne comme résultat le vecteur qo. Celui-ci n’étant pas encore
suffisamment proche de la courbe d’équilibre, le processus itératif doit étre poursuivit, jus-
qu’a ce que la norme du vecteur résidu soit inférieure a la tolérance choisie. Une nouvelle
modification de la variable de charge peut alors avoir lieu.

et ry=fipn —Mf
q1,A1)

A

M
1 2
MAI— ;
rl H
Y/ KTI
AN
0
K
0
\f  J T0
0
Aq, | Aq,
-« >«> -
q 9 4q q

Fi1G. 1.8 — Schéma d’itération de Newton-Raphson

L’inconvénient de la méthode de Newton-Raphson est que le processus de correction s’ef-
fectue a charge constante comme il est possible de le constater sur la figure 1.8, sous ’hy-
pothese que les forces généralisées ne dépendent pas des déplacements. Par conséquent, si
dans l'exemple dessiné un incrément de charge trop important est choisi et que la charge
résultante \if est supérieure au maximum de la courbe, ’algorithme est incapable d’obtenir
un nouveau point d’équilibre et diverge.

C’est pourquoi, la méthode de Newton-Raphson n’est pas adaptée au calcul des conditions
de pull-in. En effet, le point de pull-in se trouvant au maximum d’une courbe, il est tres difficile
en pratique d’atteindre ce point avec un tel algorithme comme cela est expliqué aux références
[27] et [28]. En effet, la procédure de recherche du point de pull-in est alors basée sur une
stratégie d’essais et erreurs. En réalité, c’est le voltage maximal pour lequel le processus itératif
parvient a converger qui est déterminé mais sans garantie réelle que celui-ci corresponde a la
tension de pull-in.

1.4.2 Algorithme de Riks-Crisfield

La section précédente a montré que la méthode de Newton-Raphson était mal adaptée
au probleme considéré ici. L’inconvénient de cette méthode est qu’elle effectue une recherche
de la position d’équilibre a charge constante. Dés lors, [27] suggere d’utiliser la méthode de
Riks-Crisfield également appelée méthode de Riks-Wemper [35]. Cette méthode considere a
la fois le vecteur des déplacements généralisés et la variable de charge en tant qu’inconnues
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au cours du processus itératif ce qui permet une plus grande liberté de mouvement et facilite
I’obtention d’une solution. La nouvelle inconnue ajoutée au probleme nécessite I'introduction
d’une nouvelle contrainte, ce qui a donné naissance a plusieurs variantes de la méthode de
Riks-Crisfield. La version utilisée et décrite dans ce travail est I'algorithme de Riks-Crisfield
qui évolue sur une hyperspheére. Ceci signifie que les itérés successifs sont contraints a rester sur
une hypersphere de rayon fixé et centrée sur le dernier point convergé sur la courbe d’équilibre.
La méthode de Riks-Crisfield est en fait une amélioration de ’algorithme de Newton puisque
chaque itération comporte un calcul similaire & Newton-Raphson et une correction de maniere
a replacer le nouveau point sur la sphere. La figure 1.9 illustre le principe de fonctionnement
de la méthode.

At A

% 9 9, Lvr a

Fi1G. 1.9 — Schéma de principe de la méthode de Riks-Crisfield

Partant d’'une position d’équilibre au point 0, la premiere itération est identique a celle
utilisée par la méthode de Newton-Raphson. Un incrément de charge A\g est appliqué et une
estimation de I’évolution du vecteur des déplacements généralisés est calculée par,

K7oAqo = AXof

Cette premiere itération détermine la position du point 1 et va permettre de déterminer le
rayon AS de la sphere. Celui-ci est calculé comme étant la norme du vecteur tangent reliant

le point 0 au point 1,
o [21]

Ao

L’itéré suivant peut alors étre évalué. Ce calcul s’effectue en deux étapes. Tout d’abord, la
méthode de Newton-Raphson est utilisée pour calculer un nouvel incrément Aqqygr donné
par I’équation habituelle

KriAqinr = —11
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Cet incrément nous ameéne au point 2y g. Ensuite, une correction est appliquée de maniére a
ramener ce point & l'intersection entre la sphere et la tangente a la courbe d’équilibre en qq
comme montré sur la figure 1.9. En d’autre mots, puisque le point 2y g se trouve déja sur la
tangente en qi, il faut obtenir deux corrections Aqic et Ali¢ tels que premiérement,

KriAqic = A)licf

de maniere a suivre la tangente a la courbe. Et deuxiemement, il faut également se trouver
sur le cercle ce qui signifie si le vecteur dg relie le point initial (qg, Aof) au nouvel itéré,

dy-dy = AS? (1.4)
Compte tenu des corrections, les incréments finaux seront exprimés par,

Aqi = Aqing — Aqic
AN = Ao

Si bien que ds peut étre écrit comme suit,

d, — Aqo + Aqy
2 AXg — A

Dans ce cas, la contrainte de positionnement sur la sphere (1.4) devient,
(AXo — AN)? + AgE Aqo + 2AqE Aqy + AqF Aq; = AS? (1.5)

Or AS est défini par,
AS? = Aqh Aqo + AN}
Et en substituant cette derniere équation dans (1.5) le systeme d’équation a résoudre,
AN — 2A0 AN + 2Aq8 Aqy + AqTAqy =0
KrAqic = A\t

En partant de la seconde équation et de manieére & exprimer simplement Aqi¢ en fonction de
A, définissons qq; tel que,

air =K;f & qic=ANais
& Adqr = Aqivg — Aliqir

Des lors, en explicitant Aq; dans la premieére équation, cela donne 1’équation du second degré
en A)\; suivante,

(14 Aaf;Aqir) AN] =2 (Ao + Ag) Adir + AdjypAdir) Al
+ (2Aq{ Aqing + AqiyrAding) =0

Cette équation du second degré possede deux solutions A)\f et AN} . Ces deux valeurs donnent
lieu a deux vecteurs d;r et d, . Le choix entre ces deux vecteurs est effectué en considérant
le cosinus de ’angle formé par chacun d’eux avec dj. Il est ainsi possible de s’assurer que le
processus itératif va continuer a progresser sur la courbe dans méme direction. Les itérations
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suivantes sont effectuées en suivant le méme principe jusqu’a convergence du processus a 1'in-
tersection entre la sphere et la courbe (marqué par un cercle vide sur la figure 1.9). L’équation
générale a résoudre a l'itération k est,

(1 + AquAqM) A)\i — 2 (A)\Tot + AqgotACIkI + AquRAqM) A)\k
+ (2Aq%otAquR + AquRAClkNR) =0

avec,
Aqroy = Aqo + Aqr + ...+ Agg—1
Aot = Adg — AMN + ...+ A

1.4.3 Algorithme du normal flow

Cette algorithme fait partie des méthodes d’homotopie [2]. Les méthodes d’homotopie ou
de continuation sont utilisées pour résoudre un systeme de N équations non linéaires a N
variable exprimé par
F(x)=0

Le principe général de ces méthodes est de créer une fonction continue H (x, A) : RY xR — RY
respectant les conditions,

H (x,0) = F (x)

H(x,1) =G (x)

oit G (x) : RY — RV est une fonction continue dont les zéros sont connus. A partir d’un
point connu (xj,1) solution du I’équation H = 0, I'objectif est alors de suivre une courbe
respectant H = 0 pour obtenir un point (X,0). Le point X est donc solution de F (X) = 0.
L’idée est donc d’utiliser cette méthode de continuation afin de suivre la courbe d’équilibre
du systéeme mécanique r (x, A) = 0 en partant du point (0, 0).

Par conséquent, la méthode du normal flow considere également les déplacements
généralisés et une variable de charge comme inconnues. L’algorithme du normal flow [1, 25]
differe de la méthode précédente par la procédure de correction utilisée. La correction est
cette fois essentiellement basée sur le Davidenko flow défini par I’ensemble des solutions de
I’équation d’équilibre perturbée suivante

r(q,/\):é

ou le vecteur 8 est quelconque. Le Davidenko flow est représenté & la figure 1.10. Sur cette
figure la courbe d’équilibre & calculer est tracée en trait continu tandis que les solutions
perturbées sont tracées en trait discontinu. Le principe de la méthode du normal flow est
de corriger la prédiction tangentielle en suivant une trajectoire normale au Davidenko flow
comme cela est également montré sur le schéma.

La phase de prédiction est donc équivalente a celle de Newton-Raphson c’est-a-dire un
déplacement tangentiel a la courbe d’équilibre. La phase itérative de correction est ensuite
effectuée a partir de I’équation d’équilibre linéarisée,

KrAq— AM = —r
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Tangent solution from A

Normal flow iterates

Load parameter, A
N\

Normal flow

Displacement, d

F1a. 1.10 — Schéma de la méthode du normal flow [25]

qui peut étre exprimée sous la forme matricielle,

[ Kr —f].[ﬁﬂz—r

Dc

Dr

Ayant ajouté 'inconnue A au probléme, ce systeme possede n équations et n + 1 inconnues.
De maniere a pouvoir le résoudre, il faut donc lui rajouter une équation de contrainte. Cette
condition supplémentaire permet d’imposer la normalité du vecteur ¢ par rapport au Davi-
denko flow. Pour ce faire, la direction tangente au Davidenko flow u est extraite en calculant
le noyau de la matrice Dr.

[KT —f]-uzO = u—[;g]
ds
avec v le mode propre de la matrice de raideur tangente K7 et s 'abscisse curviligne sur la

courbe d’équilibre. La normalité de ¢ par rapport au Davidenko flow est simplement imposée
en ajoutant I’équation u - ¢ = 0. Le systéeme d’équation devient donc,

T dA : =
Grace a ce systeme d’équation, I'incrément c obtenu est perpendiculaire au Davidenko flow.
Cette étape de correction est répétée jusqu’a obtenir un vecteur de résidu r suffisamment
faible.
Notons finalement qu’au point maximum de la courbe (Fig. 1.10), % est nul puisque la
courbe atteint un maximum en termes de A. Par conséquent, en ce point, le vecteur v est égal
au premier mode propre de la matrice de raideur tangente K.
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1.5 Conclusion

Du fait de leurs petites dimensions, les microsystemes sont souvent soumis a des
phénomenes non linéaires couplés inexistants a 1’échelle macroscopique. C’est le cas par
exemple de leffet de pull-in présenté dans ce chapitre. Suite a l'instabilité introduite par
le couplage électromécanique, la modélisation du pull-in n’est pas aisée. C’est pourquoi, une
formulation éléments finis fortement couplée ainsi que deux méthodes d’homotopie ont été
présentées afin de suivre les non linéarités de la courbe tension-déplacement. Ces outils vont
permettre dans la suite de ce travail d’obtenir avec précision les conditions de pull-in.



Chapitre 2

Optimisation topologique

2.1 Introduction

L’amélioration des performances a toujours eu une importance fondamentale dépassant
le cadre de l'activité humaine. L’évolution naturelle a en effet mené au cours du temps a
une efficacité croissante des étres vivants. De son c6té, ’'Homme a également toujours été en
quéte d’une solution répondant au mieux aux problemes posés pour un colut minimum, c’est
ainsi qu’au cours de I’histoire il développa des outils d’optimisation de plus en plus efficaces.
Si a leurs débuts, les techniques d’optimisation étaient plutét simplistes et empiriques, les
fondements mathématiques sur lesquels sont basées les méthodes modernes leurs conferent
une grande rigueur ainsi qu’un vaste champ d’application. De plus grace a 'augmentation
fulgurante de la capacité de calcul due a la naissance et a I’évolution rapide de I'informatique
nous sommes maintenant en possession d’outils d’optimisation tres efficaces et largement
éprouvés. Ainsi, a ’heure actuelle, 'utilisation de ces méthodes s’est généralisée a de nom-
breux secteurs si bien qu’elles sont devenues omniprésentes. Citons par exemple I'ingénierie,
le secteur des transports ou le domaine de la finance. Dans toutes ces applications, ’optimi-
sation est dorénavant utilisée de maniere extensive en tant qu’instrument d’aide & la décision
et a la conception.

Comme déja mentionné, le métier de I'ingénieur n’est bien évidemment pas en reste. L’op-
timisation est plus particulierement utilisée dans des secteurs de pointe tels que ’aéronautique
ou le spatial, 1a ou il est important de maitriser les cotits et le poids. Ces quinze dernieres
années ont vu l'apparition et 'arrivée a maturité d’une nouvelle méthode d’optimisation
bien plus générale que les précédentes, ’optimisation topologique. Appliquée dans un premier
temps a la conception de structures mécaniques, ’application de 'optimisation topologique
tend maintenant a se généraliser & de nombreux domaines. La description détaillée de ’optimi-
sation topologique fait ’objet de la suite de ce chapitre. Cependant, I’optimisation topologique
étant originellement destinée a la mécanique, nous allons tout d’abord présenter les méthodes
classiques d’optimisation en mécanique afin de mettre en évidence ’apport de ’optimisation
topologique dans ce domaine.

2.2 Meéthodes d’optimisation en mécanique

L’optimisation a pour but premier d’affranchir le processus de conception de ses aspects
fastidieux et de la part d’arbitraire induite par les choix intuitifs ou empiriques du concepteur.

21
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En mécanique, elle permet ainsi de guider les choix de 'ingénieur et de 'orienter vers une
structure plus résistante ou plus raide par exemple. D’une maniere générale, I’optimisation
sera d’autant plus efficace si elle nécessite peu de choix préalables, méme si ceci se payera
généralement par un volume de calcul accru. De ce fait, au fil du temps, les méthodes d’op-
timisation ont évolué et gagné en généralité en parallele avec ’accroissement de la puissance
des outils de calcul.

Les débuts de I'optimisation structurale étaient essentiellement basés sur les criteres d’op-
timalité. Cette méthode suppose que les conditions que doivent satisfaire les variables de
conception pour assurer 'optimalité sont connues a priori. Un systeme d’équation dont les
variables de conception sont les inconnues peut alors étre obtenu et résolu. Les criteres d’op-
timalité sont utilisés et développés depuis les années soixante et le sont encore de nos jours.
Le plus réputé d’entre eux étant le Fully Stressed Design. Cependant, ils ne sont adaptés que
pour un nombre limité de problemes d’optimisation comme par exemple 'optimisation de
treillis ou de structures minces. De plus ils ne fournissent pas toujours la solution exacte du
probleme d’optimisation.

La difficulté de 'optimisation structurale provient du caractére non linéaire et implicite
des problémes qui en résultent. Par conséquent, au début des années soixante, Schmit [29]
proposa d’utiliser la combinaison d’une analyse de sensibilité et d’un algorithme de program-
mation mathématique afin de résoudre de maniere itérative les problemes d’optimisation
structurale. A chaque étape du processus itératif, les dérivées des réponses appelées sensibi-
lités sont calculées sur base de ’analyse précédente, un probleme approché mais explicite est
alors construit a partir de ces sensibilités et ensuite résolu par programmation mathématique.
La nouvelle structure obtenue est alors réanalysée et le processus se poursuit jusqu'a I'opti-
mum. Cette méthode présente ’avantage de fournir une grande vitesse de convergence vers
Ioptimum. De plus, les algorithmes d’optimisation ainsi obtenus sont beaucoup plus flexibles
et généraux que ceux utilisant les criteres d’optimalité puisque la seule partie spécifique au
probleme d’optimisation est dorénavant I’analyse de sensibilité. Les algorithmes de program-
mation mathématique appliqués aux structures les plus célebres sont ConLin [17], MMA [33]
ou le SQP [30].

2.2.1 Dimensionnement automatique

Le dimensionnement automatique des structures est une des premieres méthodes modernes
d’optimisation en mécanique en ce sens qu’elle fut un des premiers domaines d’application
des criteres d’optimalité. Et qu’il suivi 'avenement de l'informatique et de la méthode des
éléments finis.

Le dimensionnement automatique s’applique a des cas simples d’optimisation ou la forme
et la connectivité de la structure sont déja déterminées a priori. Les variables de conception
sont généralement les dimensions transversales des éléments structuraux comme par exemple
des épaisseurs de plaques ou des sections de barres. Si le processus d’optimisation nécessite
plusieurs itérations avant de parvenir a 'optimum, le maillage élément fini utilisé pour la
simulation peut étre conservé d’une itération & I'autre puisqu’il n’y a pas de modification de la
géométrie en dimensionnement. Un grand nombre de travaux on été consacrés a ’application
des criteres d’optimalité dans le cadre du dimensionnement automatique. Le plus connu des
criteres d’optimalité est le Fully Stressed Design (FSD) ou l'optimiseur cherche a atteindre la
contrainte maximale dans chaque élément structural. Pour un treillis de barres de sections a;
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une expression simple de ce critere est,

«_ Oi
a; = —
ce qui donne la nouvelle section a; de la barre ¢ avec ; la contrainte actuelle dans cette barre
et & la contrainte maximale acceptable. Ce critére permet d’obtenir une solution exacte en une
itération pour un treillis isostatique. En revanche, un treillis hyperstatique nécessitera plu-
sieurs itérations et donnera lieu a une solution approchée de I'optimum. D’autres criteres
d’optimalité plus efficaces et plus complexes permettant de prendre en compte plusieurs
contraintes de déplacement par exemple ont été développés dans la suite par entre autres
Berke [7] , Taig [34] et Fleury [15].

Dans un méme temps, le dimensionnement automatique a également profité des progres
de la programmation mathématique dans le domaine de 'optimisation. Ainsi la combinaison
de la programmation mathématique avec les méthodes duales donna lieu a une équivalence

avec les criteres d’optimalité pour le dimensionnement automatique des structures [16].

2.2.2 Optimisation de forme

Alors que le dimensionnement automatique ne s’intéresse qu’aux dimensions transversales
des composants de la structure, ’optimisation de forme a un but plus ambitieux. En effet,
Iobjectif est maintenant d’optimiser la forme des frontieres intérieures ou extérieures d’une
structure sans pour autant modifier sa topologie, c’est-a-dire sans ajouter ou supprimer de
trous et sans changer le nombre d’éléments structuraux. Les variables de conception peuvent
alors étre simplement les dimensions géométriques de la piece (épaisseur, rayon ...), ou de
maniere plus générale les points de controle d’une B-spline ou d’'une NURBS par exemple.
Le développement de cette méthode basée sur la programmation mathématique et le calcul
de sensibilités remonte aux années septante, avec Zienkiewicz et Campbell [38] elle a ensuite
subit une évolution rapide et continue pour finalement devenir un outil industriel.

RS
R1 R3

N e—————

F1G. 2.1 — Optimisation de forme d’une bielle avec contréle d’erreur [13]

La premiere difficulté de cette méthode se situe au niveau de I’évaluation des sensibi-
lités. En effet, lorsque les frontieres du domaine mécanique se déplacent suite & la modifica-
tion d’une variable de conception, il faut également connaitre le mouvement correspondant
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des points intérieurs pour calculer les réponses mécaniques ainsi que leurs sensibilités. Par
conséquent, les sensibilités doivent généralement étre calculées par un procédé semi-analytique
[12]. Deuxiéemement, le maillage éléments finis doit étre adapté au cours du processus d’op-
timisation suite au mouvement des bords de la piece. Dans un premier temps, le maillage
était simplement déformé pour suivre le mouvement du contour avec le risque d’obtenir
apres quelques itérations des éléments tres mal conditionnés. Ensuite, grace a ’apparition
de mailleurs automatiques de fiabilité croissante, des méthodes de remaillage et de controle
d’erreur ont été ajoutées au processus d’analyse permettant un controle efficace de la qualité
du maillage et de la précision des résultats au cours du processus d’optimisation [13].

2.3 Optimisation topologique

Les deux méthodes d’optimisation structurale décrites précédemment souffrent d’une li-
mitation commune qui est la conservation de la topologie de la structure optimisée. En effet,
le dimensionnement automatique et 'optimisation de forme n’appliquent & une structure que
des transformations homéomorphes et ne sont pas en mesure de modifier la topologie de
la structure c’est-a-dire la connectivité du domaine ou encore les relations de voisinage au
sein de celui-ci. Suite a cette restriction, le résultat du processus d’optimisation n’est au fi-
nal qu'une amélioration de la structure de départ sans modification fondamentale de cette
derniere. Dans ce cadre, les choix initiaux effectués par le concepteur influencent lourdement
le résultat du processus d’optimisation. Pourtant, la topologie d’une structure est un facteur
des plus déterminants de la performance finale. Idéalement, le processus d’optimisation de-
vrait pouvoir choisir de lui méme en toute liberté la connectivité de la structure ainsi que
les éléments structuraux dont elle est composée. L’optimisation topologique a été développée
au cours des vingt derniéres années et les références [14, 6] proposent une large revue des
nombreux travaux qui lui ont été consacrés.

F1G. 2.2 — Minimisation de la compliance par optimisation topologique

2.3.1 Formulation du probleme général d’optimisation topologique

Une des pistes pour obtenir une méthode d’optimisation topologique est de supprimer
tout paramétrage de la surface ou du contour de cette structure. Le probleme d’optimisation
topologique peut alors étre formulé comme étant la recherche de la distribution optimale de
matiere dans un volume de conception fixé. La distribution de matiere est représentée par une
fonction de pseudo-densité définie sur le domaine de conception. Cette fonction détermine la
présence ou non de matiere en un endroit du domaine, elle est égale a 0 lorsque cet endroit
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est vide et a 1 lorsqu’il est solide. En pratique pour des raison numériques, ’optimisation
topologique se base sur un maillage éléments finis du domaine de conception et la distribu-
tion de pseudo-densité est approchée par une approximation dans laquelle une variable de
densité est affectée a chaque élément. Dans ce cadre, le probleme d’optimisation s’exprime
mathématiquement comme suit,

min f ()
[7s

Cj(/.,l,)géj Vi=1,....m
avec )
Wi € {pmin, 1} Vi=1,....n

ou f est la fonction objectif a maximiser dans le cas présent, les c; sont les contraintes a
satisfaire et le vecteur p reprend I’ensemble des pseudo-densités discrétisées. Notons qu’en
pratique, de maniere a éviter toute singularité de la matrice de raideur, la pseudo-densité ne
prend jamais une valeur nulle mais une valeur tres petite notée fimin-

Malheureusement, le probleme en variables entieres 0-1 est mathématiquement mal condi-
tionné et 'existence de la solution n’est pas garantie. Par exemple, la solution obtenue est
alors dépendante du maillage. En effet, ’algorithme tend généralement a créer la microstruc-
ture la plus fine possible en fonction de la taille des éléments du maillage. Une modification
de la taille des éléments se traduit alors nécessairement par une modification de la structure
et de sa topologie. Par ailleurs, d’'une maniere générale, les problemes d’optimisation en va-
riables discretes sont méme a ’heure actuelle encore fort difficiles a résoudre. De ce fait, le
nombre relativement important de variables requises en topologie a été treés pénalisant pour
cette approche.

Par contre, il est possible d’obtenir un probleme d’optimisation correctement conditionné
en relaxant le probleme discret c’est-a-dire en élargissant 1’espace de conception aux densités
non entieres comprises entre 0 et 1. Ces densités intermédiaires peuvent alors étre interprétées
comme représentant un matériau possédant une microstructure poreuse. Ce principe basé sur
la méthode de I'homogénéisation fut proposé par Bendsge et Kikuchi dans la référence [5]. Le
probléeme général peut alors étre formulé comme suit,

min f (x)
X
: <% Vi=1,...,
e [ )X <7 W= 1m
x; € [xi,min,xiymax] Vi = 1, .. .,k‘

ou le vecteur x désigne les variables de conception c’est-a-dire I’ensemble des parametres de la
microstructure sur chaque élément fini. Ces parametres varient contintiment entre les bornes
Timin €t T max dépendantes de leur nature. Par conséquent, les pseudo-densités p peuvent
également varier continiiment puisqu’elles sont calculées sur base des variables microstructu-
rales x.

Une seconde solution est d’utiliser une contrainte sur le périmetre ou une méthode de
filtrage des sensibilités empéchant la formation d’une microstructure. Ces méthodes alter-
natives combinées avec la relaxation du probleme discret permettent d’obtenir un probleme
correctement posé et résultant en une structure plus réaliste. Beckers [3] a également montré
qu’avec de telles contraintes, le probleme discret était soluble a ’aide d’une méthode duale.
La description générale de ces deux solutions fait 'objet de la section suivante.
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2.3.2 Régularisation du probleme par une approche microstructurale

L’approche microstructurale consiste donc a relaxer le probleme discret d’optimisation
topologique en autorisant les variables de conception a prendre une valeur comprise entre 0
et 1. Les densités non entieres représentent alors un matériau composite fait de vide et de
solide dont la proportion varie en fonction de la pseudo-densité. Cette approche fut initia-
lement développée a I’aide d’un matériau microperforé par Bendsge et Kikuchi en 1988 [5]
et en utilisant une microstructure feuilletée 2D par Bendsge en 1989 [4]. Ces deux types de
matériaux étant par nature orthotropes I’angle d’orientation du matériau sur chaque élément
est également ajouté aux variables de conception.

Matériaux microperforés

Le premier matériau considéré par Bendge et Kikuchi [5] est obtenu a partir d’un matériau
isotrope dans lequel des microperforations rectangulaires sont creusées périodiquement comme
montré a la figure 2.3. Les cavités étant rectangulaires, deux parametres «y et «g sont
nécessaires afin de définir leurs dimensions. De plus, comme déja mentionné, a ces deux
parametres s’ajoute 'orientation 6 de la microstructure. Grace a ces microperforations de
taille variable, il est possible de représenter toutes les densités intermédiaires, la densité du
composite étant alors donnée par la relation

u:1—061042

Il est donc possible d’obtenir un matériau purement solide avec oy = ao = 0 et vide lorsque
a1 = ag = 1. Ces deux parametres sont avec I’angle 8 les variables de conception du probleme
d’optimisation.

Fi1G. 2.3 — Schéma de la microstructure du matériau microperforé

De maniere a pouvoir étudier et optimiser le comportement d’une structure mécanique
composée de matériaux composites microperforés, il faut pouvoir calculer le comportement
équivalent d’un échantillon macroscopique quelconque. Cette étape fait appel & la méthode
de 'homogénéisation qui permet de calculer un tenseur de Hooke équivalent en fonction de la
microstructure du composite définie ici par les trois parametres aq, asg et 6. Ceci est effectué
en faisant tendre la longueur caractéristique de la microstructure (I sur la figure) vers 0 pour
un volume de composite donné. L’échantillon de composite est alors percé d’une infinité de
cavités microscopiques.
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Matériaux feuilletés

Une seconde classe de matériaux utilisés en optimisation topologique sont les matériaux
feuilletés (référence [4]). En toute généralité, ces matériaux composites sont constitués de deux
matériaux de raideurs différentes. En optimisation topologique, le matériau le moins raide
est généralement du vide ou tandis que le plus raide est un matériau classique au choix. Le
matériau feuilleté le plus simple est constitué d’une superposition alternée de couches des deux
matériaux, il est appelé d’ordre un. Le premier parametre de ce composite est simplement
la proportion « du matériau le plus raide dans un volume donné de composite. De plus,
ce matériau étant évidemment orthotrope, 'angle d’empilement des couches successives est
également un parametre. Une microstructure d’ordre un est schématisée a la figure 2.4(a). En
optimisation topologique le second matériau étant du vide, la pseudo-densité est simplement
égale au parametre a.

Le matériau d’ordre deux est quant a lui constitué de feuilles successives du matériau
le plus raide en proportion volumique ao et d’un stratifié d’ordre un. Le stratifié d’ordre
un de parametre «y est considéré comme étant homogene a I’échelle du composite d’ordre
deux dont il fait partie. Ce qui signifie que 1’épaisseur des couches successives est nettement
plus faible pour le stratifié d’ordre un. En définitive, le composite d’ordre deux est en réalité
constitué d’un matériau raide et d’'un second matériau moins raide. Par ailleurs, le matériau
d’ordre deux n’a pas nécessairement la méme orientation que le matériau d’ordre un dont il
est constitué. Il existe donc deux angles d’orientation f pour le composite d’ordre deux et 6
pour le composite d’ordre 1. Ceci donne lieu & la représentation donnée a la figure 2.4(b). La
pseudo-densité peut quant a elle étre aisément calculée par,

p=ar+ (1—a1)a

(a) Ordre 1 (b) Ordre 2

F1G6. 2.4 — Schéma des matériaux feuilleté d’ordre un et deux

En suivant le méme procédé, il est possible de créer un matériau feuilleté d’ordre n. De
méme, il est possible d’étendre ce schéma & un matériau tridimensionnel. Les propriétés
mécaniques des matériaux feuilletés peuvent également étre évaluées en moyenne par la
méthode d’homogénéisation. Pour 'optimisation de la compliance, dans le cas bidimension-
nel, il est possible de montrer qu’il est inutile d’utiliser un matériau d’ordre supérieur a trois
car ces matériaux suffisent pour couvrir ’ensemble des tenseurs de raideur résultants d’un
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matériau d’ordre n > 3. De plus, sous un seul cas de charge, I'utilisation d’un matériau d’ordre
deux avec orientations orthogonales est optimale. Si plusieurs sollicitations sont appliquées il
faut alors passer a l’ordre trois.

Notons finalement que les matériaux feuilletés fournissent une relaxation totale du
probleme d’optimisation topologique uniquement pour 'optimisation de la compliance ou
de fréquences propres. Dans un cas plus général, ils ne fournissent qu’une relaxation partielle.
Cependant, les matériaux feuilletés présentent une grande facilité d’utilisation. En effet, leurs
propriétés homogénéisées peuvent étre obtenues analytiquement alors que dans le cas général,
comme pour les matériaux microperforés, il faut recourir & un calcul numérique couteux.

2.3.3 Meéthodes alternatives de régularisation

L’utilisation de composites homogénéisés pour la relaxation du probleme d’optimisation
présente deux inconvénients principalement d’ordre pratique. Premierement, I’approche mi-
crostructurale possede le désavantage de fournir un résultat faisant souvent largement appel
aux densités intermédiaires. Par conséquent, la structure optimale utilise des matériaux mi-
croperforés difficiles a mettre en ceuvre en pratique. Par ailleurs, le cott de calcul parfois élevé
requis par la procédure d’homogénéisation mena & la recherche de lois analytiques et expli-
cites reliant la pseudo-densité au tenseur de Hooke du matériau. La fonction d’interpolation
la plus célebre ainsi obtenue est la loi SIMP (Solid Isotropic Microstructure with Penalty)
proposée par Bendsge [4]. Cette loi utilise une fonction de type puissance de la pseudo densité
pour relier le module de Young réel Fy du matériau de conception au module de Young E du
pseudo-matériau. Plus précisément, elle est exprimée par,

E:/LPE()

P = HpPo
O0<p<l et p>1

Cette loi permet de relaxer le caractere discret de 'optimisation topologique en fournissant
une interpolation du comportement mécanique pour les pseudo-densités non entieres. De plus,
suite a l'utilisation d’un exposant p supérieur a un, la raideur donnée par une pseudo-densité
comprise entre 0 et 1 est faible vis-a-vis du colit en termes de volume de matiere évalué sur
base de p. De ce fait, la loi SIMP pénalise I'utilisation des pseudo-densités intermédiaires et
favorise par conséquent les valeurs entieres 0 et 1. L’élimination des densités intermédiaires
est extrémement intéressante en pratique puisqu’elle donne lieu & une structure beaucoup
plus réaliste et facile a interpréter en vue de sa fabrication. Cette tendance déja observée
avec certains composites microstructuraux associée a la simplicité du modele, fut a ’origine
du succes de la loi SIMP en optimisation topologique. D’une maniere générale, une valeur de
I’exposant égale a 3 ou 4 est recommandée.

Malheureusement suite a son caractere artificiel, 'interpolation SIMP ne garantit pas
la relaxation totale du probleme et de ce fait, le résultat obtenu peut étre dépendant du
maillage éléments finis utilisé. L’influence du maillage sur la solution s’exprime généralement
par 'apparition de nouveaux membres structuraux de plus en plus fins lorsque le maillage
est lui méme raffiné. Le processus d’optimisation tend en réalité a recréer une microstructure
optimale de lui-méme mais la taille des éléments agit comme une contrainte et 1’en empéche.

De plus, un probleme numérique déja présent avec 'approche microstructurale apparait
a nouveau ici. Cette erreur numérique se manifeste par I'apparition de structure de type
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damier dans la solution d’optimisation topologique. Cet effet indésirable est illustré a la
figure 2.5 ou plusieurs zones sont recouvertes d’une alternance de cases blanches et noires. 11
est évident qu’en pratique, une telle structure est loin d’étre réaliste et optimale du fait des
concentrations de contraintes qu’elle pourrait engendrer. Diaz et Sigmund [8] on suggéré que
I’apparition de cette structure était due a une surestimation de sa raideur par la méthode
des éléments finis, principalement lors de 'utilisation d’éléments du premier degré. De méme
ils ont également montré qu’il était possible de supprimer le phénomene dans de nombreux
cas par l'utilisation d’éléments de degré deux. Cependant, comme nous allons le voir dans la
suite, les outils permettant d’éliminer la dépendance de la solution en fonction de la taille du
maillage permettent dans un méme temps d’éviter 'apparition de damier dans la solution.
C’est pourquoi, afin de réduire le cout de 'analyse nous utiliserons malgré tout des éléments
finis d’ordre un.

Density

0.600 0.800 1.00
L

0.000

Fia. 2.5 — Exemple de structure de damier

Plusieurs méthodes ont donc été proposées au cours de ces dernieres années afin d’obtenir
un probleme d’optimisation bien conditionné et exempt d’instabilités numériques. Les deux
méthodes les plus réputées vont étre présentées dans cette section. La premiere méthode
est basée sur la limitation du périmetre de la structure mécanique et la seconde utilise une
méthode de filtrage issue des techniques de traitement d’image pour lisser les sensibilités du
probleme d’optimisation.

Méthode du périmetre

L’apparition de membres structuraux plus fins et plus nombreux dans la structure optimale
suite a un raffinement du maillage éléments finis se traduit par une augmentation du périmetre
de cette structure. De méme l'introduction d’une structure en damier provoque également
un accroissement du périmetre. Par conséquent, il parait judicieux de chercher a limiter le
périmetre de la structure afin d’éviter ces deux problemes. De maniere & évaluer le périmetre
d’une structure mécanique possédant éventuellement des densités non entieres, Haber et ses
coauteurs [18] proposérent d’utiliser une fonction inspirée de la fonction de variation totale
de la densité définie par,

2
P(M)Z/Q\F_\/VMTVMJr(i> _idQ—l—/F' ()* + €2 — £ dly

K3

Le premier membre de cette fonction correspond & I'intégrale du gradient de la pseudo-densité
sur les régions ou elle varie continument. En effet, {2 désigne le domaine de conception et
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I'; les courbes sur lesquelles la pseudo-densité est discontinue. Cependant, en optimisation
topologique classique, la densité est généralement constante sur les éléments. Par conséquent,
ce premier terme est généralement nul. Grace a 'opérateur (.), le second membre sert & intégrer
le saut de pseudo-densité sur les discontinuités c’est-a-dire sur les frontieres des éléments. La
fonction P (w) differe de la variation totale par I'introduction du parametre de lissage £. Cette
variable est ajoutée afin de rendre la fonction P (u) différentiable, car la fonction de variation
totale est non différentiable puisqu’elle contient des valeurs absolues. Le parametre & est donc
fixé a une faible valeur positive. Enfin, le parametre h est une longueur caractéristique du
maillage élément finis.

En tenant compte de ’annulation du premier membre et du caractere spatial discret de
Ioptimisation topologique, I'expression de la fonction périmetre peut se réduire a une somme
sur les k interfaces entre les éléments, c’est-a-dire,

P(u)=zk:lk< <u>i+§2—£>

avec (u); la variation de pseudo-densité a travers l'interface k de longueur [;. Notons que
sous I’hypothese d’une distribution entierement discrete de pseudo-densités, la valeur de P
est égale a celle du périmetre de la structure puisqu’alors, (u), vaut 1 sur le contour de la
structure (si £ = 0).

Pratiquement, une contrainte supplémentaire est ajoutée au probléeme d’optimisation to-
pologique afin de limiter la valeur de la fonction périmetre & une borne supérieure P. Les
figures 2.6 tirées de la référence [9], montrent la capacité de la contrainte de périmetre a sup-
primer les structures en damiers mais aussi a rendre la topologie insensible a un changement
de maillage tout comme cela a également été fait par Haber [18]. Cependant cette méthode
pose quelques problemes au niveau de son utilisation. Premierement, le caractere global de
la contrainte introduite peut autoriser dans certains cas la formation de tres fins éléments
structuraux. Deuxiemement, le choix de la borne supérieure sur le périmetre est relativement
difficile a priori et nécessite parfois quelques itérations. Finalement, I'introduction de cette
contrainte peut déstabiliser la convergence du processus d’optimisation [10].

(a) Cas de référence (b) Avec contrainte de périmetre (c) Avec contrainte de périmetre,
maillage raffiné

F1a. 2.6 — Application de la méthode du périmetre [9]

Filtrage

Cette seconde méthode de régularisation est inspirée des techniques de traitement
d’images. Le filtrage des sensibilités proposé par Sigmund [31] a pour but de lisser ou de
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rendre plus floue la distribution des sensibilités sur le domaine de conception. Ce lissage est
effectué en modifiant la sensibilité correspondant a chacun des IV éléments en tenant compte
de la sensibilité associée a ses voisins, selon ’expression suivante.

= — avec Hj; = max (0, 7'pmqe — dist (k, 7))

Il s’agit donc essentiellement d’une moyenne pondérée des sensibilités sur le voisinage de
chaque élément, le coefficient de pondération diminuant avec la distance. La distance 7,4,
est choisie par I'utilisateur, elle permet de définir le voisinage a prendre en compte lors du
filtrage pour chaque élément. Afin de prévenir I'apparition de damier dans la solution, la
bonne pratique suggere de donner a 7,4, une valeur au moins égale a 1.5 fois la dimension
des éléments. De cette maniere, pour un maillage quadrangulaire régulier, les 8 voisins directs
de chaque élément sont pris en compte lors du lissage des sensibilités. Ceci empéche de trop
fortes différences de sensibilité entre éléments voisins et par conséquent évite la création de
damier.

La technique de filtrage donne également de bons résultats en terme de stabilité de la
topologie obtenue vis-a-vis du maillage éléments finis. En conservant une distance absolue de
filtrage constante lors d’un raffinement du maillage, le lissage des sensibilités empéche ’ajout
de nouveaux éléments structuraux plus fins. Par ailleurs, ce filtre peut également permettre
de prendre en compte une contrainte de fabrication portant sur la dimension minimale des
membres structuraux.

Par rapport a la méthode du périmetre, la méthode de filtrage présente le grand avantage
d’agir localement et donc d’empécher toute apparition d’une piece trop fine dans la structure.
De plus, le choix du parametre 1, est tres facile a priori et ne nécessite généralement
pas de procédure d’essais et erreurs. Malheureusement, cette méthode ne possede pas de
base théorique elle est donc classée dans les méthodes heuristiques. En effet, le lissage des
sensibilités modifie le probleme d’optimisation résolu. Néanmoins, cette méthode a déja été
appliquée dans de nombreux cas de figure et a toujours fourni de bonnes performances, la
structure finale étant sans damier et indépendante du maillage. Finalement, suite au lissage
des sensibilités, les résultats d’optimisation topologique possedent généralement une frontiere
floue entre la structure et le vide. La distribution de densité obtenue n’est donc pas strictement
entiere, mais ce léger inconvénient peut également retarder la tendance du modele SIMP & se
bloquer dans une conception entierement 0-1 [6].

2.4 Optimisation topologique de valeurs propres

Un des problemes aux valeurs propres couramment résolu en mécanique est I’extraction
des fréquences propres d’une structure. De fait, 'environnement d’utilisation possédant tou-
jours des sources d’excitation oscillatoires, il faut éviter qu’au cours de son utilisation la
piece soit victime de phénomenes dynamiques invalidants ou destructeurs. Par conséquent,
les fréquences de résonance d’une structure mécanique sont parfois une des premieres
préoccupations lors de I’étape de conception. L’intervention des méthodes d’optimisation dans
ce domaine est donc naturelle. Le plus souvent, 'optimisation a pour but de repousser les
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fréquences propres au dela d’'une fréquence fixée ou bien d’exclure la présence de fréquences
a l'intérieur d’'une bande dangereuse.

D’une manieére générale en mécanique, 'extraction des fréquences propres v est effectuée
en résolvant le probleme aux valeurs propres suivant,

(K—AM)x =0 avec V:Q
2w

Les matrices K et M désignent respectivement la matrice de raideur et la matrice de masse
du modele éléments finis associé. Outre le probleme dynamique, cette équation aux valeurs
propres est également utilisée en stabilité linéaire pour le probleme du flambement, le probleme
aux valeurs propre est alors exprimé par (K — AK,) x = 0. Sans perte de généralité, ’équation
aux valeurs propres permet d’obtenir ’expression de la sensibilité d’une valeur propre unique
Ak vis-a-vis de la pseudo-densité juy suivante [9],

o 1 T<8K \ M

T
— — — A= | X avec my = x; Mx
Ok 3/%) g

e my "
A partir de cette expression des sensibilités, il est possible d’obtenir un algorithme d’op-
timisation topologique des valeurs propres. Cependant, a la différence des autres méthodes
d’optimisation, ’optimisation topologique rencontre une difficulté particuliere au cours du
processus d’optimisation en particulier lorsque la loi SIMP est utilisée. En effet, comme cela
est montré par N. Pedersen [23], la réduction de la pseudo-densité sur de larges plages du
domaine de conception entraine une forte diminution de la raideur sur ces zones. Or, I'in-
terpolation SIMP donne un rapport tres faible entre la raideur et la masse pour les faibles
pseudo-densités. L’exposant p étant généralement égal a 3, et la densité réelle étant simple-
ment proportionnelle & i, cela donne un rapport raideur sur masse en u? qui s’approche donc
trés rapidement de zéro lorsque p est faible. Ceci a pour conséquence de créer des zones tres
souples mais relativement massives qui peuvent donc vibrer & basse fréquence.

Modulus of elasticity
E = 1.8:10" N/m?

Poisson’s ratio
v = 0.06

L
Mass density
p = 2300 kg/m>

- L, = 1m —o
Thickness T = 0.01m

F1a. 2.7 — Schéma de la poutre et du domaine d’optimisation [23]

Un exemple de mode local est proposé a la référence [23]. La figure 2.7 représente la
poutre rectangulaire placée dans un domaine d’optimisation topologique. La poutre est donc
entourée d’éléments vides auxquels une pseudo-densité de 0.001 est affectée. Comme il est
possible de le constater sur la figure 2.8, le premier mode propre de la poutre placée dans
le domaine d’optimisation (figure 2.8(a)) est tres éloigné du mode propre réel de la poutre
(figure 2.8(b)) du point de vue fréquentiel et géométrique. Le role joué par les régions de faible



Optimisation topologique 33

densité entourant la poutre est clairement visible sur la figure 2.8(a). En effet, ’essentiel des
déformations relatives au premier mode propre se produisent dans ces régions ce qui explique
la faible fréquence de résonance correspondante.

0, = 1423 Hz

(a) Mode propre de 'optimisation topolo- (b) Mode propre réel
gique

F1G. 2.8 — Modes propres de la poutre [23]

Différentes possibilités sont envisageables pour contourner ce probleme. La solution la plus
simple a priori est de d’augmenter la pseudo-densité minimale fi,,;, 'inconvénient étant que
les éléments ”vides” conservent alors une raideur beaucoup plus élevée. Le probleme d’op-
timisation se transforme alors plutot en un probleme de renforcement. Une autre possibilité
est de retirer les éléments vides du domaine de calcul au cours du processus d’optimisation.
Cependant cette méthode est un peu trop contraignante puisqu’elle empéche 'optimiseur de
revenir en arriere et de remplir les trous qu’il avait précédemment créés. Une seconde solution
plus complexe utilise une méthode de suivit du mode structural a l'aide du coefficient de
corrélation modal (MAC) [20]. Il est ainsi possible de retrouver parmi les modes propres le
mode structural d’intérét a chaque itération, en sélectionnant le mode possédant le coefficient
de corrélation le plus élevé avec le mode structural de l'itération précédente.

N. Pedersen envisage une approche différente. D’une part certains degrés de liberté sont
ignorés lors du calcul des modes propres. Ces degrés de libertés sont ceux des noeuds entourés
d’éléments possédant une faible densité. D’autre part, il utilise une modification de la loi
SIMP de maniere & empécher une diminution excessive du rapport raideur sur masse. Pour
ce faire, la loi SIMP est remplacée par une loi linéaire pour les faibles densités. Ce qui donne
une loi de la forme,

3 3
" S1 0.1 < 12 < 1
E = E ve

Il en résulte un rapport constant entre la raideur et la masse pour les faibles densités.
Cette loi présente l'inconvénient de ne pas étre différentiable au point © = 0.1 ce qui peut
éventuellement perturber le processus d’optimisation. Toutefois, grace a la combinaison de
ces deux modifications, le calcul des modes propres peut étre mené a bien.

D’autres précautions doivent également étre prises lors de I'optimisation de modes propres.
Par exemple, lorsqu’un seul des modes propres est optimisé, il faut malgré tout surveiller
I’évolution des modes voisins de maniere a prévenir un croisement des fréquences propres.
D’autre part, ’approche décrite ci-dessus doit étre modifiée en présence de valeurs propres
multiples, car le probleme est alors non différentiable
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2.5 Optimisation de microsystemes électromécaniques

Les méthodes d’optimisation ont bien entendu déja été appliquées au domaine des mi-
crosystemes. Ce travail portant sur les microsystemes électromécaniques, cette section est
plus particulierement consacrée aux travaux appliquant ’optimisation structurale & ces mi-
crosystemes.

2.5.1 Optimisation de la tension de pull-in

L’optimisation de la tension de pull-in de micropoutre a déja été effectuée par Abdalla et
ses coauteurs [1]. Cet article propose d’utiliser une méthode de dimensionnement de maniere
a maximiser la tension de pull-in d’une micropoutre en modifiant ’évolution de son épaisseur
ou de sa largeur. Différentes conditions d’appuis sont considérées. Le schéma général du
microsysteme étudié est repris a la figure 2.9.

Beam( Top Electrode)

h(x)

Bottom Electrode

| L |
| g

F1G. 2.9 — Schéma de la micropoutre optimisée dans [1]

Modélisation électromécanique

Le microsysteme électromécanique est modélisé a ’aide d’éléments finis de poutre. Cha-
cun des éléments de poutre possede une épaisseur et une largeur supposées constantes sur
I’élément. La force électrostatique est calculée sur base de ’équation reliant la tension ap-
pliquée entre deux électrodes et la force résultante sans prendre en compte les effets de bords.
Ce qui donne a ’abscisse x de la poutre une force,

1 egb(2) V2

PO = S w @)

La largeur b (x) de la poutre est bien entendu reprise dans cette expression car elle influence
la surface de celle-ci. De méme, la déformation de la poutre w (x) apparait également dans
cette expression suite a la modification de la distance séparant les électrodes qu’elle implique.
Par contre, I’épaisseur h qui est aussi éventuellement variable le long de la micropoutre n’est
pas reprise dans le calcul de p. La distance entre les électrodes au repos est donc supposée
constante quelque soit la distribution d’épaisseur de la poutre. Les conditions de pull-in sont
calculées sur base du modele éléments finis a ’aide de I’algorithme du normal flow [25].

Probléeme d’optimisation

Le role du processus d’optimisation sera donc de déterminer les épaisseurs ou largeurs op-
timales de chaque élément de maniere a obtenir une tension de pull-in maximale. Le probleme
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d’optimisation considéré est formulé comme suit,

max Agp
y(z)
1
dr =1
avec foy v
y—y(z) <0

La fonction objectif A.. correspond a la charge critique de pull-in adimensionnelle et est
proportionelle au carré de la tension de pull-in. Les variables de conception y (x) corres-

. .. . . h(x) . . . b(z)
pondent soit aux épaisseurs adimensionnelles Ty Soit aux largeurs adimensionnelles T
Deux contraintes sont imposées. Premierement, une contrainte sur le volume de matiere dis-
ponible fixant ce volume au volume initial. Et deuxiémement, une borne inférieure sur les
variables de conception permettant de prendre en compte une contrainte de fabrication sur
la plus petite dimension usinable. L’optimisation est menée sur base d’un critere d’optimalité

issu de ’expression du lagrangien du probleme d’optimisation.

Applications

Partant d’une distribution initiale uniforme y = 1, les principaux résultats obtenus sont
présentés aux figures 2.10 en ce qui concerne 'optimisation sur I’épaisseur et 2.11 pour ’op-
timisation de la largeur. Sur ces figures, la configuration initiale, qui correspond également a
la borne sur le volume, est tracée en trait discontinu.

(a) S8

(d) CS

(c) CF
F1G. 2.10 — Distributions optimales d’épaisseur pour différentes conditions d’appuis [1]

Les exemples proposés d’optimisation de I’épaisseur sont calculés avec une borne inférieure
sur ’épaisseur h = 0.2. Le tableau 2.1 compare les A\, optimisés aux A, initiaux. Remarquons
que pour les quatre configurations, le gain dépasse pratiquement systématiquement 50%.
L’analyse des distributions obtenues figure 2.10 montre une tendance logique de 'optimiseur
a placer la matiere afin de maximiser la raideur de ’ensemble.

SS CC CF CS
Tnitiale 11492 58413 0,1401 2,7880
Finale 1,700 10,0136 0,3391 4,4405
Augmentation (%) | 47,93 71,32 142,06 59,27

TaB. 2.1 — Evolution de A, suite a 'optimisation de 1’épaisseur

L’optimisation de la largeur offre a 'optimiseur un degré de liberté supplémentaire puis-
qu’il peut également modifier la distribution des forces électrostatiques sur la structure. En
effet, en modifiant, la largeur d’un élément il modifie également sa surface et par conséquent
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la force électrostatique qui s’y applique. Des lors, comme le montrent les figures 2.11, ’op-
timiseur tend a rapprocher la matiére des encastrements de maniere a minimiser le bras de
levier de la force électrostatique tout en continuant a chercher une raideur maximale. Grace
a la possibilité de déplacer le point d’application des forces électrostatiques, 'augmentation
de A\, obtenue est plus élevée que précédemment et peut atteindre plus de 400% dans le cas
encastré libre.

F1G. 2.11 — Distributions optimales de largeur pour différentes conditions d’appuis [1]

2.5.2 Optimisation topologique d’actionneurs électrothermiques

Tout comme les forces électrostatiques, les forces électrothermiques sont fréquemment
utilisées dans les microsystemes. Les actionneurs électrothermiques fonctionnent sur base de
leffet Joule généré par un courant électrique traversant une partie du dispositif. Il en résulte
une augmentation de la température de la portion du systéme soumise au passage du courant
et par conséquent une dilatation de celle-ci. L’application de 'optimisation topologique a la
conception de tels actionneurs a été considérée par Sigmund [32], Yin [37] et Mankame [21].

Le probleme d’optimisation est bien entendu multiphysique puisque trois phénomenes
interviennent simultanément & savoir, la conduction électrique, le transfert de chaleur et la
déformation mécanique. Cependant, le couplage entre ces différents phénomenes est purement
séquentiel et unidirectionnel car il suit toujours 'ordre suivant,

Effet Joule ‘ Dilatation
_— _—

’Transfert de chaleur Probleme mécanique

Conduction électrique ‘

Des lors, la simulation numérique du dispositif peut étre effectuée suivant un schéma étagé
sans nécessiter d’itération en résolvant chacun des problemes physiques dans ’ordre logique.

Sigmund [32] et Yin [37] traitent le probleme de la maximisation du déplacement d’un
point du domaine pour un milieu continu. L’interpolation des propriétés du matériau entre
le vide et le solide est effectuée pour chaque domaine physique sur base d’une loi de type
puissance. La conception de microsystéemes bi-matériaux est également envisagée par les deux
références. La présence de deux matériaux permet de profiter de deux coefficients de dilatation
différents ce qui augmente les possibilités de design et les performances du microsysteme. De
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plus, Sigmund montre que la procédure d’optimisation peut étre utilisée avec plusieurs cas de
charge. Ces cas de charge peuvent différer par la position des électrodes et par la direction
du déplacement résultant. Un exemple est présenté figure 2.12. Le premier cas de charge
correspond a un déplacement horizontal pour une tension appliquée a I’électrode Vi tandis
que le second impose un déplacement vertical si I’électrode V5 est sollicitée. Yin propose quant
a lui une modélisation plus élaborée de la perte de chaleur par convection et montre I'influence
de cette modélisation sur 'optimum obtenu.

g—f

F1G. 2.12 — Schéma du probléme d’optimisation en milieu continu et déformées de la structure
optimale pour chacun des cas de charge [32]

©

Le probleme de I'optimisation d’un treillis de barres est considéré par Mankame [21]. Hor-
mis 'avantage que la structure optimale est généralement plus claire qu’avec l'optimisation
d’un milieu continu, l'intérét de 'utilisation d’éléments de barre est qu’ils permettent une
modélisation plus simple des phénomenes électriques et des transferts de chaleur. Toutefois,
le probleme d’optimisation obtenu est soumis a des contraintes géométriques supplémentaires
puisque 'emplacement des membres structuraux est fixé a priori. La figure 2.13 reprend une
des applications présentées a la référence [21]. Le schéma de gauche présente les fixations
disponibles, I’emplacement des deux électrodes ainsi que le nceud dont le déplacement doit
étre maximisé. La structure déformée obtenue est dessinée a droite, sur cette figure les traits
discontinus représentent les éléments de barre ayant atteint leur borne inférieure et ne parti-
cipant donc pas a la structure.

Buili-in mechanical support
N~ Design domain 18

Specified voltage
boundary condition
***** Support node

ge connection

Non-design
domain

Output node

Specified temperature

Workpiece
boundary condition S

Fia. 2.13 — Schéma d’un probléeme d’optimisation de treilli et déformée du treilli résultant
[21]



Optimisation topologique 38

2.5.3 Optimisation topologique d’actionneurs électrostatiques

Les travaux d’Abdalla et al. [1] présentés précédemment considérent I’application d’une
technique d’optimisation de dimensionnement dans le cadre d’un couplage entre les effets
électrostatiques et les phénomenes mécaniques. Cependant, Raulli et Maute [26] ont montré
qu’il est également possible d’adapter 'optimisation topologique & ce type de problemes mul-
tiphysiques. Cette approche, décrite ci-dessous, permet d’obtenir un probleme d’optimisation
tres général ou le processus d’optimisation peut jouer sur la conception des deux domaines
physiques a la fois.

La modélisation électromécanique utilisée par Raulli est basée sur une méthode étagée.
Ceci signifie que les deux problemes physiques sont résolus séparément, 1’équilibre entre le
domaine mécanique et le domaine électrique n’étant rétabli qu’a I'aide d’un processus itératif.

Modification de la loi SIMP

En dehors d’un algorithme d’optimisation topologique, un probleme électromécanique
peut étre résolu de maniere étagée en maillant séparément la structure mécanique et le vide
qui ’entoure. Le probléeme mécanique est alors simplement résolu a partir du maillage de la
structure tandis que les équations de 1’électrostatique sont solutionnées uniquement sur le
maillage du vide.

Cependant, lorsqu’une procédure d’optimisation topologique est ajoutée, il n’est plus pos-
sible de mailler a priori et individuellement les deux domaines. En effet, a chaque itération, la
topologie des domaines physiques est modifiée. De plus, suite a la présence de pseudo-densités
non entieres représentant un mélange de vide et de matiere, il est difficile de séparer clairement
les deux domaines physiques.

De manieére a contourner ces deux obstacles, Raulli [26] propose d’étendre le maillage
électrostatique a I'entiereté du domaine de conception. La figure 2.14 représente cette super-
position de maillages, ou Ey représente le domaine purement électrostatique dans lequel le
processus d’optimisation ne place pas d’éléments mécaniques et Fj le maillage électrostatique
recouvrant le domaine d’optimisation.

Structure
overlapped
with Eg

/{{ _‘JE“ 0

Electrode

F1G. 2.14 — Représentation schématique des domaines de calcul [26]

Il faut alors tenir compte de la présence de deux matériaux différents (vide et solide)
sur le domaine électrostatique. Par analogie avec l'optimisation topologique mécanique, la
transition entre ces deux matériaux est effectuée en modifiant la permittivité du matériau
de chaque élément sur base de sa pseudo-densité. La structure étant considérée parfaitement
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conductrice, la permittivité €4, v est trés grande (théoriquement infinie) par rapport a celle
du vide fixée & g9 = 8.85107!2. Les lois du comportement matériel deviennent donc,

{ E = MpE Esotide

€ = Emaz (1L — fimin)™ + €0  avec Emay = —Hh—
La permittivité de la structure g4, étant calculée pour que son rapport avec £g soit équivalent
au rapport entre Fgoige €t Eyige ¢’est-a-dire u;ff .

De plus, de nouvelles variables de conception sont également ajoutées sur le domaine pu-
rement électrique (Ep) afin d’optimiser la topologie de ’électrode inférieure. Ces variables
de conception permettent de simuler l'introduction d’une couche d’isolant sur ’électrode
inférieure en modifiant la permittivité des éléments du domaine Ejy. L’isolant, permet de
masquer ’électrode inférieure de maniere a annuler 'effet des parties recouvertes. L’interpo-

lation de la permittivité est simplement donnée par
€ = [i ¥ €0 aveC fmine < M <1

En outre, un troisieme maillage coincidant avec le maillage électrique est adjoint au
modele. La résolution d’un probleme mécanique fictif sur ce dernier maillage est utilisée afin
d’adapter le maillage électrostatique aux déplacements de la structure mécanique.

Les deux difficultés principales sont ensuite d’appliquer d’une part le voltage imposé au do-
maine de calcul électrique et d’autre part, les forces électrostatiques a la structure mécanique.
Ces deux conditions aux limites doivent normalement étre imposées a la frontiere entre la
structure et le vide. Cependant, suite a l’existence de densités intermédiaires, cette frontiere
est généralement mal définie. De ce fait, il n’est pas possible d’appliquer les conditions aux
limites suivant un schéma ”on/off” ce qui de surcroit déstabiliserait ’optimisation. Les solu-
tions proposées par Raulli permettent d’imposer les conditions aux limites en tenant compte
de la présence de densités intermédiaires. Ces solutions sont parfois artificielles et compliquent
Iinterprétation physique de la modélisation. Néanmoins, ’application présentée a la fin de
cette section montre l'efficacité et I'intérét de la méthode développée.

Voltage imposé

La condition aux limites de voltage aux nceuds doit donc étre appliquée de maniere pro-
gressive. Pour ce faire, chaque noeud est relié a un élément ou plus précisément a la pseudo-
densité de cet élément. En fonction de cette pseudo-densité, une modification du probleme
électrostatique est utilisée de maniere a imposer artificiellement la condition de voltage au
nceud. Le probleme électrostatique original s’écrit,

K¢ =q

avec ¢ le vecteur des potentiels aux noeuds, g le vecteur des charges électriques et K la matrice
de permittivité du probleme électrostatique, les modifications suivantes sont appliquées,

K =:1U”01<avgf%ii;;§z?ﬁz‘+’I<jj
min

min
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Dans ces équations, K,y désigne la moyenne des éléments de la matrice et ¢g; le potentiel
imposé au noeud j. De cette maniere, pour une valeur du parametre de pondération wv°
suffisamment grande pour que les termes initiaux de la matrice K soient négligeables par

rapport a K;; et q; négligeable vis-a-vis de g, la jieme gouation du systeme devient,
i — Hmi i — Hmi
vaKavglJ_im'znd)j _ wUOKaUg%(bOj
MHmin Hmin

& ¢ = doj

de sorte que ¢; est progressivement imposé a ¢q; lorsque p; tend vers 1. Cet artifice permet
donc d’imposer la condition aux limites de voltage de maniere progressive en fonction de la
densité de 1’élément.

Calcul des forces électrostatiques

Raulli [26] utilise des éléments d’interface afin de calculer les forces électrostatiques. Ces
éléments sont normalement placés uniquement sur la frontiere séparant le vide et le solide.
Cependant, cette frontiere étant mobile et floue, Raulli propose de procéder de la méme
fagon que pour le calcul électrostatique. Le maillage d’éléments d’interface est donc étendu a
I’ensemble du domaine d’optimisation comme cela est montré a la figure 2.15. La permittivité
des éléments d’interface est ensuite modifiée selon un schéma SIMP de manieére a prendre en
compte les variations de densité, ce qui donne

Ei- =g (:U’j B ,U/mz'n)éi
J (1 - ,umin)pl
Cette interpolation a pour conséquence de permettre un calcul normal des forces sur les
éléments solides et de I'annuler sur les éléments vides.

(2.1)

Overlapped interface elements in Eg for free interface

4

Electrostatic Interface Elements

NN

Electrostatic domain

Electrode

F1G. 2.15 — Position des éléments d’interface pour le calcul des forces [26]

Toutefois, cette modification n’est pas suffisante car le calcul des forces par les éléments
d’interface nécessite la connaissance du champ électrique en leurs nceuds. Ces valeurs du
champ électrique sont calculées par interpolation a partir du champ électrique connu sur les
éléments du maillage électrostatique. Cependant, il faut éviter d’inclure un élément solide
dans l'interpolation du champ électrique aux nceuds, le champ électrique de chaque élément
est donc multiplié par le facteur de pondération suivant,

wé = w0
1 — fmin

J
de maniere a ne pas considérer les éléments solides dans I'interpolation.
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Application

Une application de cette méthode présentée a la référence [26], est la conception d'un
inverseur de force tridimensionnel. Le schéma du probleme d’optimisation est repris a la
figure 2.16. L’objectif que doit atteindre la structure est de convertir la force électrostatique
agissant vers le bas en un mouvement vers le haut du point t représenté sur la figure.

y X e
z

Structure

Cantilever Support

t

I Constant

Force

LIT T T TN TTT

Layer of Electrostatic Elements
Electrode with Variable Permittivity

F1G. 2.16 — Schéma du probleme d’optimisation de I'inverseur [26]

La distribution matérielle obtenue ainsi qu’une interprétation schématique de la structure
sont présentées sur la figure 2.17. Comme il est possible de le constater sur le schéma, la
portion de la structure prenant appui au centre du support sert de pivot et ne se déplace pas.
Par contre la partie accrochée a 'extrémité du support et située au dessus de 1’électrode va
permettre de générer une force électrostatique la tirant vers le bas. Ensuite par effet de levier
grace a 'appui fourni par le pivot, le point t se déplace logiquement vers le haut.

Structural
Design ————>
Domain

Final
Structure

Electrostatic
Forces

Cantilever
Support

Electrostatic
Design
Domain

Final ‘
Electrode

F1G. 2.17 — Résultat d’optimisation de l'inverseur de force [26]

Cet exemple a montré que la méthode développée par Raulli fait preuve d’une grande
efficacité pour la conception de systemes électromécaniques. Les résultats obtenus sont en effet
assez originaux et prometteurs. De plus, ils bénéficient d’une flexibilité importante permettant
de modifier chacun des domaines physiques. Cependant, il semble que certains points de la
méthode pourraient étre améliorés comme par exemple 'application du voltage imposé. En
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effet, le voltage est imposé de maniere tres artificielle. Par ailleurs, il pourrait étre intéressant
de remplacer la méthode étagée par une formulation monolithique afin d’obtenir un probleme
mieux unifié.

2.6 Conclusion

L’optimisation topologique présente de nombreux avantages par rapport a ’optimisation
de forme et au dimensionnement. En effet, grace a un espace de conception beaucoup plus
large, cette technique gagne en efficacité. Cependant, différentes méthodes de régularisation
doivent étre utilisées. Depuis une dizaine d’années, 'optimisation topologique est arrivée a
maturité et commence depuis peu a étre industrialisée. Par ailleurs, son champ d’application
continue de croitre avec des applications de plus en plus ambitieuses comme le montre le
dernier article présenté sur I'optimisation topologique de microsystemes électromécaniques.
Cette méthode conserve donc un grand potentiel d’application et de recherche.



Chapitre 3

Procédure d’optimisation de la
tension de pull-in

3.1 Introduction

Ce chapitre étudie l'application de 'optimisation topologique au probléme de maximi-
sation de la tension de pull-in. Cette fonction objectif a tout d’abord été choisie au vu des
inconvénients présentés par le phénomene de pull-in car il limite I’étendue des tensions utili-
sables sur un microsystéeme et peu mener a sa destruction. Par ailleurs, suite au caractere
multiphysique et non linéaire du pull-in, I'application de 'optimisation topologique a ce
probleme est un bon test en vue d’une utilisation plus générale de cette méthode dans le
domaine multiphysique.

Le présent travail étant une premiére étude, quelques hypotheses simplificatrices ont été
considérées. La premiere partie de ce chapitre sera donc consacrée a la description du probleme
d’optimisation choisi ainsi qu’aux hypotheses formulées. Dans le cadre des hypotheses posées,
nous montrerons qu'’il est possible d’obtenir une expression semi-analytique des dérivées de la
fonction objectif vis-a-vis des variables de conception. Afin de vérifier la validité de I’expression
semi-analytique, les valeurs des sensibilités calculées selon cette expression seront ensuite
confrontées a une analyse de sensibilité par différences finies.

Le calcul semi-analytique des sensibilités nécessitant la connaissance des conditions de
pull-in, la seconde partie de ce chapitre étudiera la recherche précise du point de pull-in. Cette
recherche pouvant étre basée soit sur I'algorithme de Riks Crisfield soit sur celui du normal
flow présentées au chapitre 1, nous décrirons tout d’abord son implémentation pour chacune
des méthodes. Ensuite, I'efficacité et la fiabilité des deux méthodes seront comparées a ’aide
de deux applications. Cette comparaison permettra de vérifier la bonne implémentation de
celles-ci et au final de choisir la méthode la plus performante pour le processus d’optimisation.

Enfin, nous verrons que la loi d’interpolation SIMP peut étre insatisfaisante dans le cas
du probleme d’optimisation qui nous occupe. La derniére section de ce chapitre présentera
donc la solution utilisée de maniere a obtenir un algorithme d’optimisation fonctionnel.

3.2 Description du probleme d’optimisation

Le chapitre introductif sur 'optimisation topologique a montré que cette méthode est
appliquée avec succes depuis plusieurs années dans le domaine des structures mécaniques. Si

43



Procédure d’optimisation de la tension de pull-in 44

I’application de I'optimisation topologique pour les problémes ne faisant intervenir qu’un seul
champ physique est généralement bien malitrisée, sa mise en ceuvre dans le domaine multi-
physique est moins courante et reste parfois délicate comme cela est présenté par 'article de
Raulli [26]. Cet article considérant ’optimisation topologique d’un domaine électromécanique
a montré que I'interaction entre les différents champs physiques est alors difficile & gérer car
I'interface entre les deux domaines n’est pas définie a priori. De plus, la présence de nouveaux
phénomenes physiques requiert I'interpolation de propriétés matérielles supplémentaires.

Tout comme les travaux de Raulli, le présent travail porte sur 'optimisation topologique
d’un domaine électromécanique. Cependant, dans le cadre de cette étude préliminaire, afin
de séparer les difficultés de ce probleme complexe, nous avons voulu empécher le processus
d’optimisation de modifier I'interface entre les deux domaines physiques. C’est pourquoi, nous
supposons que le domaine d’optimisation est séparé du domaine électrique par une électrode
parfaitement conductrice non modifiable par le processus d’optimisation. Le probléeme général
d’optimisation ainsi obtenu est schématisé a la figure 3.1. L’électrode imposée correspond &
I’électrode mobile, et isole le domaine d’optimisation du champ électrique. Le domaine d’op-
timisation est donc purement mécanique et il n’est pas nécessaire d’interpoler les propriétés
électriques de la matiere. De plus, ’électrode imposée coincide avec I'interface entre le domaine
mécanique et le domaine électrique. Cette interface est clairement définie et non modifiée
par le processus d’optimisation. Des lors, les nceuds sur lesquels sont appliquées les forces
électrostatiques ainsi que le domaine de calcul électrique ne seront pas modifiés au cours de
I'optimisation. Dans ces conditions, le probleme d’optimisation considéré est équivalent a la
conception d’une suspension mécanique optimale pour 1’électrode mobile. Cependant, cette
hypothese n’affecte pas le caractére multiphysique du domaine de calcul puisqu’un couplage
fort entre les deux domaines physiques est toujours présent.

Domaine
@'optimisation .

Electrode
mobile

Domaine
¢électrique

Electrode fixe

Fi1G. 3.1 — Schéma de principe du probleme d’optimisation

Partant d’une structure répondant aux hypotheses décrites ci-dessus, 'objectif est donc
de distribuer la matiere dans le domaine de conception mécanique de telle sorte que la tension
de pull-in V},; soit maximale. Cependant afin d’éviter une solution triviale, il est nécessaire
d’ajouter une contrainte limitant la quantité de matiere disponible. Une borne supérieure o
est par conséquent imposée sur le volume de la structure. Le probleme peut alors étre formulé
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mathématiquement comme suit,

max Vi (1)
©
avec {ZZ Hivi S0

Pomin < i < 1 W

avec p; la valeur de la pseudo-densité attachée a 1’élément ¢ et v; son volume.

3.3 Calcul des sensibilités

La connaissance des dérivées de la fonction objectif par rapport aux variables de conception
est fondamentale pour un processus d’optimisation basé sur la programmation mathématique.
Le probleme d’optimisation ainsi que les hypotheses sur lesquelles il repose étant posé, il est
maintenant possible d’obtenir une expression générale de ces sensibilités en appliquant une
démarche similaire a celle proposée dans la référence [1].

Lors du calcul des sensibilités il faut garder a I’esprit que la modification d’une variable
de conception ne va pas seulement modifier la tension de pull-in mais aussi les déplacements
de la structure au point de pull-in comme le montre la figure 3.2. Par conséquent, il faut
donc tenir compte de la dérivée des déplacements généralisés au point de pull-in vis-a-vis des
densités.

vV Pull-in

(Aq,A{}S“\\,

FiG. 3.2 — Influence de la perturbation d’une variable de conception sur la courbe d’équilibre

Le systeme considéré peut étre modélisé par I’équation d’équilibre suivante,
Kq-f(V,q)=0 (3.1)

avec K la matrice de raideur linéaire du systeme, q le vecteur des déplacements généralisés et
f le vecteur des forces généralisées reprenant ici I’ensemble des effets non-linéaires. Ce vecteur
des forces généralisées dépend donc de la tension appliquée et des déplacements généralisés.
En dérivant cette équation d’équilibre par rapport a la densité u;, nous obtenons
0K 0 of (V,

Lkl (V.q)

o ! i O =0

Et en explicitant la dérivée des forces généralisées par rapport aux variables de conception, il
vient

UK L yda OF ofoa ooV,
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Or, suite a ’hypothése de séparation entre le domaine d’optimisation et le domaine électrique,
f ne dépend pas directement des densités p; et cette dérivée partielle est donc nulle. L’équation
précédente peut donc étre mise sous la forme

OF OV _OK (L Of) dq
oV op; O | o) O

Kr

(3.2)

La matrice K7 est la matrice de raideur tangente du systeme couplé puisqu’elle est égale a la
dérivée de I’équation d’équilibre (3.1) du systeéme par rapport aux déplacements généralisés
q. Au point de pull-in, cette matrice est singuliére suite a I'instabilité qui caractérise ce point.
Des lors, le premier mode propre r de la matrice de raideur tangente fait également partie de
son noyau. Par conséquent, 1’égalité suivante est vérifiée au point de pull-in,

KTI‘IO

De plus, en considérant que le vecteur r est normalisé de sorte que

rTg —

o = 1 (3.3)

Et en multipliant 1’équation (3.2) au point de pull-in & gauche par r’, cela nous donne
I’expression de la dérivée de la tension de pull-in par rapport a la variable de conception p;.

Opi opi

q

Cette expression analytique permet un calcul rapide des sensibilités de la fonction objectif.
Cependant, il ne faut pas oublier que ce calcul nécessite la connaissance de la dérivée partielle
du vecteur des forces généralisées par rapport a V pour normaliser le vecteur propre de la
matrice de raideur tangente du systéme (équation (3.3)). Cette dérivée partielle peut étre
calculée par différences finies sans grande perte d’efficacité ou de précision. La nécessité d’uti-
liser des différences finies pour calculer la valeur des sensibilités fait de ’expression obtenue
une expression semi-analytique.

3.4 Vérification par différences finies

La validité de I’expression semi-analytique des sensibilités peut-étre vérifiée a I'aide d’un
calcul des sensibilités par différences finies. Pour ce faire, les dérivées de la fonction objectif
sont évaluées numériquement par différences centrées a partir une topologie de référence. La
tension de pull-in est donc calculée a deux reprises pour chaque variable de conception avec a
chaque fois une perturbation de la variable par rapport a la topologie de référence. La valeur
de la perturbation est fixée par expérience & +107% cette valeur étant suffisamment grande
pour donner une variation significative de la tension de pull-in sans pour autant fausser le
calcul par différences finies.

La figure 3.3(a) représente les conditions aux limites du probleme de référence. A gauche,
seule 1’électrode imposée est fixée tandis que des conditions aux limites de symétrie sont
imposées a droite. Le domaine de conception est constitué d’un maillage quadrangulaire de 13
fois 14 éléments ce qui donne donc 182 variables de conception. De plus, de maniere a se placer
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50]J.II'1 OOfelie Graph
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(a) Conditions aux limites (b) Distribution de densités

Fic. 3.3 — Configuration de référence

dans une configuration la plus générale possible, une distribution de pseudo-densités aléatoire
présentée sur la figure 3.3(b) est imposée. L’interpolation du comportement mécanique du
matériau est effectuée par une loi SIMP de parametre 3.

Les sensibilités obtenues par différences finies et par ’approche semi-analytique sont super-
posées a la figure 3.4(a). De plus, la figure 3.4(b) présente I’écart en pourcents entre les deux
approches. Ces deux figures montrent clairement la validité de ’approche semi-analytique.
En effet, les deux courbes sont parfaitement superposées et ’écart entre les sensibilités est
toujours largement inférieur au pourcent. Ces différences résultent probablement d’erreurs
d’arrondi et d’imprécisions numériques lors du calcul des conditions de pull-in et des sen-
sibilités par voie semi-analytique ou par différences finies. Cependant, au vu de la bonne

corrélation entre les sensibilités, nous pouvons conclure que I’expression semi-analytique des
sensibilités est correcte.

10

0.3

— Semi-analytique
- - - Différences finies 0.2t

10

Sensibilité
[
o
)
Ecart relatif (%)

10 °F

10°

0 50 100 150 200 0 50 100 150 200
Variable Variable
(a) Sensibilités obtenues pour chacune des ap- (b) Différence relative

proches
Fia. 3.4 — Comparaison des résultats du calcul de sensibilité

Notons finalement que le temps de calcul requis par I’évaluation des différences finies est
considérable en comparaison du temps pris par une analyse de sensibilité semi-analytique. De
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fait, malgré le faible nombre de variables du cas de référence choisi, il faut environ 40 minutes
pour calculer I'ensemble des sensibilités par différences finies alors que la voie analytique
nécessite quelques dizaines de secondes. Par conséquent, il est tres avantageux de disposer
d’une expression au moins semi-analytique des sensibilités.

3.5 Implémentation de la recherche des conditions de pull-in

L’algorithme de Riks Crisfield et ’algorithme du normal flow ont été présentés au premier
chapitre de ce travail. Ces deux algorithmes peuvent étre utilisés afin de calculer la courbe
d’équilibre d’un systeéme électromécanique. Sur base de ces méthodes de calcul il faut mainte-
nant établir une stratégie permettant de localiser précisément le point de pull-in sur la courbe
d’équilibre. Grace a la connaissance des conditions de pull-in I'analyse de sensibilité pourra
ensuite étre effectuée.

3.5.1 Algorithme de Riks-Crisfield

L’algorithme de Riks-Crisfield étant déja implémenté dans Oofelie [27], nous n’allons pas
entrer ici dans les détails de cette implémentation mais allons directement nous concentrer sur
la recherche du point de pull-in. L’étude du systeme électromécanique a un degré de liberté du
chapitre 1 a montré que la raideur effective du systeme diminuait a l’approche du pull-in pour
s’annuler en ce point. Or, la raideur effective calculée pour le systéme a un degré de liberté
correspond en fait & sa raideur tangente. Par ailleurs, I’annulation de la raideur tangente pour
le systeme a un degré de liberté se traduit dans les systémes a plusieurs degrés de liberté par
la singularité de la matrice de raideur tangente au point de pull-in.

Cette propriété pourrait donc permettre de détecter le passage par le point de pull-in.
Cependant, au vu du colit de calcul élevé du déterminant d’une matrice, il est équivalent et
plus efficace de résoudre le probleme aux valeurs propres Krx = Ax. Toutefois, suite a la
présence de degrés de liberté électriques, certaines valeurs propres de la matrice de raideur
tangente sont négatives et de faible module ce qui complique la recherche de la valeur propre
s’annulant au pull-in. Par contre, pour le probleme aux valeurs propres dynamique linéarisé
exprimé par,

(Kr —AM)x =0

M étant la matrice de masse, toutes les valeurs propres sont positives tant que le systeme est
stable, c’est-a-dire avant de passer le point de pull-in. A partir du point de pull-in, le systeme
devient instable et la premiere valeur propre dynamique du systeme devient négative comme
illustré figure 3.5. Cette méthode présente 'avantage de ne nécessiter que 'extraction de la
premiere valeur propre, ce calcul pouvant étre effectué simplement par un algorithme de la
puissance.

La recherche du point d’annulation sur la courbe d’équilibre de la premiere valeur propre
permettra par conséquent de localiser le point de pull-in. A cette fin, la méthode de la requla
falsi a été couplée avec I'algorithme de Riks-Crisfield. Pour rappel, la regula falsi est une
méthode itérative de recherche de zéro d’une fonction basée sur un intervalle d’incertitude
incluant le zéro recherché. Son principe est illustré a la figure 3.6. L’intervalle d’incertitude
est délimité par deux points, ag et oy, pour lesquels la fonction prend des valeurs de signes
différents. Afin d’obtenir un nouveau point as plus proche du zéro, une approximation linéaire
de la fonction est effectuée sur base de ag et a1 et de la valeur de f en ces points. Le point
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FiGc. 3.5 — Evolution de la premiere valeur propre en fonction du déplacement sur la courbe
d’équilibre

o est ensuite défini comme étant le zéro de 'approximation linéaire, ce qui donne,

a] —
Flan) — 7 (an)? @) (34

En fonction du signe de f (a2), le nouveau point va remplacer oy ou o1 de maniere a conserver
un intervalle d’incertitude incluant le zéro.

Qg = Qo +

fla)4

FiG. 3.6 — Principe de la regula falsi

Cependant, ’algorithme de Riks-Crisfield ne peut pas fournir directement deux points
donnant lieu a des valeurs propres de signes opposés. Par conséquent, la regula falsi est
inactive lors de la premiere phase de recherche du pull-in qui consiste a suivre la courbe
d’équilibre en partant du point de repos. Pendant cette premiere phase, la premiere valeur
propre est calculée pour chaque point convergé, elle est en principe positive au début. La
seconde phase débute des qu'une valeur propre négative est trouvée. A partir de ce moment,
la regula falsi est activée.

La méthode de regula falsi a du étre légerement adaptée pour étre couplée a ’algorithme
de Riks-Crisfield. Tout d’abord, la regula falsi doit étre basée sur le rayon de ’hypersphere de
la méthode de Riks-Crisfield puisque c’est la seule variable influencant le pas de progression
sur la courbe d’équilibre. Cette variable n’est pas idéale car la regula falsi va supposer que
le nouveau point ag se trouvera sur la droite reliant ag a «;. Cependant, ce n’est pas le
cas comme le montre la figure 3.7 puisque Riks-Crisfield va ramener ce point sur la courbe
d’équilibre. Il n’existe donc pas de correspondance réelle entre le point estimé par la regula
falsi et le point obtenu sur la courbe. Il s’en suit une légere erreur qui heureusement doit
progressivement diminuer a mesure que l'intervalle d’incertitude se réduit, puisque la courbe
d’équilibre sera alors fort proche d’une droite sur cet intervalle.
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FiGc. 3.7 — Non correspondance entre le rayon de 'hypersphere et de ’abscisse curviligne

Par ailleurs, il est préférable de conserver le sens de progression initial sur la courbe
d’équilibre suite a la structure interne de l’algorithme de Riks-Crisfield. La procédure est
donc la suivante, dés qu'un point donnant une valeur propre négative est trouvé, I’ensemble
des données correspondant au dernier point a valeur propre positive rencontré sont conservées
de sorte que ce point va servir de point de départ a l'itération suivante. Riks-Crisfield est donc
relancé a partir du dernier point & valeur propre positive avec un rayon d’hypersphere réduit
selon ’équation (3.4) ol a est posé a 0 et a; a l'ancien rayon. Le nouveau rayon permet
apres convergence d’obtenir un nouveau point. Si ce dernier correspond a une valeur propre
positive, le point est alors pris comme nouveau point de départ pour les itérations futures.
Par contre si la valeur propre est négative, le rayon est simplement a nouveau réduit.

3.5.2 Algorithme du normal flow

La méthode du normal flow a été utilisée avec succes par Abdalla et al. [1], afin de localiser
le point de pull-in d’une poutre soumise & des forces électrostatiques. De ce fait, il nous a
semblé intéressant d’essayer d’appliquer cet algorithme décrit par la littérature comme plus
efficace que Riks-Crisfield [1, 25]. Cette méthode, présentée au premier chapitre, se résume
simplement a la résolution du systéme suivant,

Ky —f Aq | | —r

vT % AN | | O
Le calcul des conditions de pull-in est en fait effectué de maniere étagée par Abdalla
et al. [1] car les forces électrostatiques sont calculées séparément sur base d’une formule
analytique en fonction du voltage appliqué et de la déformée. La variable de charge A choisie

est logiquement proportionnelle & la tension au carré puisqu’il s’agit de forces électrostatiques.

Ceci permet de définir f comme suit,
f

f=—

A
ou f désigne le vecteur des forces électrostatiques. De cette maniére, il existe un bon accord
entre la prédiction AAf de I’évolution des forces suite & un A\ et les forces résultant du calcul

basé sur 'augmentation de tension correspondant au A\.
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Ce travail utilise une approche plus générale ou les forces électrostatiques sont obtenues
par résolution d’un probleme éléments finis fortement couplé. Par conséquent, il est préférable
d’adapter ’algorithme du normal flow afin de résoudre le probléme de maniére monolithique
en vue d’améliorer la stabilité et la vitesse de convergence. Dans une formulation monolithique,
le vecteur des forces généralisées inclut les forces électrostatiques sur la structure mécanique
ainsi que les charges électriques aux noeuds correspondant au probleme électrostatique. Si
les forces électriques sont également en premiere approximation proportionnelles a la tension
imposée au carré, les charges électriques sont elles plutét directement proportionnelles a cette
tension. Par conséquent, il est difficile de trouver une expression de la variable de charge A
telle que les forces généralisées lui soient simplement proportionnelles.

Cependant, griace a la connaissance de la matrice de raideur tangente du probleme
électromécanique couplé, il est possible de connaitre la dérivée des forces généralisées d’origine
électrique en fonction du voltage imposé. En repartant du développement en série de Taylor
au premier ordre du résidu r,

or or or Odqy,

or
A AV) ~ ZZAQqF AV = ZA
r(q+Aq,V+AV) I'(q,V)Jr(901 a+ z5AV r(q,V)Jr(901 q+aqvf 5y

AV

ou qy, désigne le vecteur des degrés de liberté de potentiel électrique imposés tandis que
q représente toujours le vecteur des déplacements généralisés libres. L’équation de base du
normal flow peut ensuite étre écrite comme suit,

8r 8qu
AV = —
day, OV Vi=-r

KTAq +

Le facteur multiplicatif de AV correspond au signe pres a la dérivée des forces généralisées
d’origine électrostatique f vis-a-vis de la tension appliquée V. Cette dérivée se décompose
en deux facteurs. Le premier facteur Or/ dqy; est en fait la portion de la matrice de raideur
tangente globale reliant les degrés de liberté libres aux degrés de potentiel électrique fixés, elle
est notée K (@,Vy): Le second facteur dqy, JOV = Vit est la dérivée des potentiels imposés
par rapport a la variable de potentiel imposé. Les composantes du vecteur de potentiel imposé
étant soit égales a V soit a 0, les composantes de V ;s prennent respectivement la valeur 1
ou 0. La dérivée des forces généralisées peut donc étre exprimée sous une forme rappelant le
calcul des forces engendrées par des déplacements imposés,

of
W — —KT (q,Vf) . Vfunzt (35)

A partir de cette expression, il est possible d’obtenir la dérivée des forces généralisées par
rapport a une variable de charge quelconque dont I’expression en fonction du potentiel imposé
est connue et dérivable. Le systeme d’équations linéaires du normal flow peut alors s’écrire,

Kr —% _ Aq | | —-r
[VT % AN | 0 (3.6)
—_— ——

Dr Dc

Le choix de la variable de charge étant libre, elle a simplement été prise proportionnelle a
la tension appliquée. Ce qui donne,
A=NV
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Le facteur de proportionnalité N permet de normaliser la dérivée des forces de maniere a
obtenir une matrice Dr homogene. La dérivée des forces généralisées par rapport a A est
donnée par,

of 1 of
oN  NOV
L’importance de cette normalisation va étre expliquée dans ce qui suit.

Influence de la normalisation

Le noyau peut étre séparé en deux parties, d’'une part le vecteur v correspondant aux
degrés de liberté mécaniques et d’autre part %, le dernier élément du noyau, se rapportant
a la variable de charge. ’équilibre entre les valeurs de ces deux parties dépend directement
du facteur de normalisation N. En effet, NV définit 'importance relative entre les termes de
raideur et de force de la matrice Dr qui se répercute logiquement sur les termes du noyau.

Sur base du noyau, une équation supplémentaire est ajoutée au systeme d’équations afin
qu’il soit déterminé (équation (3.6)). Cette équation impose que I'incrément sur les inconnues
Dc soit orthogonal au noyau. Par conséquent, si dans ce noyau, les éléments de v sont faibles
par rapport a %, il 8’en suivra un incrément Dc portant essentiellement sur les déplacements
mécaniques et ne modifiant que tres peu la variable de charge et donc le voltage appliqué.

Cet effet est illustré a la figure 3.8. Les deux courbes correspondent a deux valeurs de N
différentes. IV étant plus faible pour la figure de gauche, il en résulte un A,,—i, également
plus faible. D’un point de vue géométrique, le noyau représente la tangente au Davidenko flow.
Par ailleurs, le Davidenko flow est lui méme pratiquement parallele a la courbe d’équilibre.
La contrainte supplémentaire sur la correction signifie qu’elle doit étre perpendiculaire au
Davidenko flow. Des lors, la courbe de gauche étant tres horizontale, les corrections seront
pratiquement verticales et n’auront presqu’aucune influence sur les déplacements généralisés.
A Tinverse, la figure de droite montre qu'un facteur de normalisation plus élevé donne lieu a
une correction plus horizontale.

A A A

pull-in

pull-in

q

Sy

FiG. 3.8 — Influence du facteur de normalisation sur la correction du normal flow : a gauche
N faible, & droite N élevé

En réduisant suffisamment IV, il est possible de rendre la correction totalement horizon-
tale ce qui peut étre problématique pour la résolution du probléme. En effet, dans ce cas,
la variable de charge n’est absolument plus modifiée par le processus de correction. Cette
situation similaire a celle rencontrée avec 1’algorithme de Newton-Raphson est a éviter car
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lorsque la prédiction donne une valeur de A supérieure a celle du point de pull-in, I’algorithme
est incapable de réduire la variable de charge et de converger.

Implémentation

La figure 3.9 décrit 'organisation de la routine implémentée. La phase de prédiction est
simplement composée d’une progression similaire a Newton-Raphson. Elle est basée sur la
matrice de raideur tangente du systeme et sur la dérivée des forces généralisées par rapport au
voltage imposé (3.5). De plus, une routine de déplacement de maillage est ajoutée de maniere
a conditionner au mieux le maillage électrostatique avant la correction. Ce déplacement de
maillage est effectué sur base d’un probleme mécanique fictif [28] et est suivi d’un calcul
électrostatique.

Calcul dupas =

k4
Prévision { ’ Prévision tangente et déplacement du maillage ‘

Y
| Assemblage et mise a échelle de Df |«———

Y
Décomposition en valeurs singuliéres
et extraction du noyau

A 4

) Assemblage et mise & échelle
Boucle de correction du probléme du normal flow

v
’ Résolution du normal flow ‘

Qui

’ Déplacement du maillage ‘

Fi1G. 3.9 — Implémentation du normal flow

La boucle de correction est ensuite effectuée. Comme cela est montré sur le schéma, le
corps de cette boucle est décomposé en plusieurs étapes. Tout d’abord, la partie supérieure
de la matrice Dr est assemblée a partir de la matrice de raideur tangente K7 et de la dérivée
du vecteur de forces généralisées.

Drsup = [ Kr *% ]

Aprés mise a échelle de Drg,,, le noyau de la matrice est obtenu sur base d'une
décomposition en valeurs singulieres. Cette procédure d’extraction du noyau a été choisie
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car d’une part elle est utilisée par Matlab et d’autre part, la décomposition en valeurs sin-
gulieres était déja implémentée dans Oofelie. La matrice Dry,, étant rectangulaire, il existe
nécessairement une valeur singuliere tres proche de zéro, le vecteur correspondant a cette
valeur singuliere est le noyau recherché.

Deés que le noyau est connu, le systeme d’équation du normal flow est assemblé, mis a
échelle et résolu avec un membre de droite égal aux forces internes. La boucle de correction
continue ensuite tant que le critere d’arrét n’est pas satisfait. Ce critere d’arrét est basé sur
la norme des forces internes et permet d’arréter la boucle lorsque cette norme est suffisam-
ment faible. Finalement, la boucle de correction est éventuellement suivie d’une procédure
d’uniformisation du maillage électrique avant de passer a une nouvelle prévision.

Recherche du point de pull-in

Le calcul du pas est effectué sur base d’une regula falsi de maniére similaire a celle utilisée
avec l'algorithme de Riks-Crisfield. Cependant, le normal flow calcule pendant la phase de
correction la valeur de % c’est-a-dire la dérivée de la variable de charge par rapport a ’abscisse
curviligne de la courbe d’équilibre. Le pull-in se produisant pour une valeur maximale de la
variable de charge, cette dérivée est par conséquent nulle au pull-in. C’est pourquoi comme
suggéré a la référence [1], la procédure de regula falsi cherchera & annuler la fonction %.

Pour le normal flow, lorsque la regula falsi est active, le pas de progression correspond
au déplacement du nceud de référence au cours de la prédiction. Le noeud de référence est
simplement un nceud de électrode imposée choisi au début du processus d’optimisation (le
nceud central pour une poutre bi-encastrée par exemple). Ce choix du pas de progression est
a priori meilleur que la norme de la prédiction utilisée dans Riks-Crisfield. Mais, au vu de la
procédure de correction, la position du noeud de référence n’est pas nécessairement constante
au cours de celle-ci. Par conséquent, le point estimé par la regula falsi ne correspondra pas
en général au point obtenu a l'itération suivante. Tout comme pour l’algorithme de Riks-
Crisfield, la recherche du pull-in sera donc entachée d’une erreur. La procédure de regula falsi
est arrétée lorsque la taille relative de l'intervalle de confiance descend en dessous d’un seuil

prédéterminé.

3.5.3 Application des méthodes
Systéme a un degré de liberté

Les deux méthodes présentées ci-dessus vont étre mises en application et comparées sur
base d’un cas test simple. Le modele éléments finis de référence est représenté a la figure
3.10. 1l s’agit d’un systeme a un degré de liberté composé d’un élément ressort de raideur
k=4-10" N/m et d'un élément électromécanique d’air (en trait discontinu) de permittivité
e =8,84-10712 F/m et de raideur tres faible (1072 N/m). Le potentiel électrique est imposé
aux deux nceuds de I’élément électromécanique ; seul le noeud situé entre les deux éléments
reste donc libre de se déplacer. Une expression analytique de I’équation d’équilibre est obtenue
simplement a partir de ’étude du systéeme a un degré de liberté effectuée au chapitre 1. La
surface étant unitaire, I’équation d’équilibre est donnée par,

V= —2-4-1012 (1076 4 x)
- 8,84 1012
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La tension de pull-in théorique est quant a elle égale a 115,7762 V pour un déplacement de
—1/3-1075. Au vu de la valeur de cette tension de pull-in, le facteur de normalisation de la
méthode du normal flow va étre fixé & 5- 107" de maniere & obtenir une variable de charge \
qui soit du méme ordre de grandeur que les déplacements du noeud libre.

X 0,5um
V=V —]

>

imp /

lpym

wV=0 —%

FiGc. 3.10 — Schéma du cas test a un degré de liberté

Les deux algorithmes sont d’abord utilisés de maniére a obtenir la courbe d’équilibre du
systeme, la regula falsi étant désactivée. La figure 3.11 représente ’ensemble des points suivis
par chacun des algorithmes superposés a la courbe d’équilibre analytique. La structure en
dents de scie résulte de ’alternance entre les phases de prédiction et de correction. Ces figures
permettent tout d’abord de vérifier que malgré le pas relativement grand, les deux méthodes
convergent trés vite vers la courbe d’équilibre apres chaque prédiction et fournissent des
résultats fort semblables. De plus, en ce qui concerne le normal flow, il est clairement visible
que les corrections sont effectuées en suivant une perpendiculaire a la courbe d’équilibre.
C’est afin de mettre en évidence cette perpendicularité que 'ordonnée du graphe est A pour
le normal flow.

x10~
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of 0 1/
-1 -0.8 -0.6 -0.4 -0.2 0 -1 -0.8 -0.6 -0.4 -0.2
Déplacement %10 Déplacement X107
(a) Normal Flow (b) Riks Crisfield

FiG. 3.11 — Courbes d’équilibres obtenues avec chacune des méthodes

En ce qui concerne la recherche du point de pull-in, les deux méthodes fournissent des
résultats trés similaires. En effet, la tension de pull-in calculée est de 115,78 V dans les deux
cas, avec un déplacement de 3,3335-10~7 pour Riks-Crisfield et 3,3336 - 10~7 pour le normal
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flow. Ces deux derniéres valeurs sont acceptables étant donné que la limite d’arrét est placée
A4 un intervalle de confiance relatif de 10~%. Par contre, le temps de calcul differe fortement
entre les deux méthodes il passe en effet de moins d’une seconde pour Riks-Crisfield a environs
trois secondes pour le normal flow.

Cet exemple permet également d’illustrer le comportement de la méthode du normal flow
en fonction du facteur de normalisation. Les figures 3.12 reprennent le parcours itératif de
l’algorithme pour différentes valeurs de N. La situation de référence (figure 3.12(a)) corres-
pond au facteur de normalisation choisi plus haut. Cette figure montre qu'un choix adéquat
du facteur de normalisation permet d’obtenir une correction pratiquement perpendiculaire
également dans le plan (q, V).
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(a) Situation de référence (b) Facteur de normalisation faible (c) Facteur de normalisation élevé

Fi1G. 3.12 — Influence du facteur de normalisation sur l'algorithme du normal flow

Cependant, ce n’est plus le cas si ce parametre est réduit d’un facteur 1000 (figure 3.12(b)).
Dans ce cas, la correction est pratiquement verticale ce qui ne pose pas de probleme important
ici. Néanmoins, cette situation doit étre impérativement évitée au point de départ étant donné
que la tangente est également verticale en ce point. Par conséquent, une correction verticale
ramenerait le systeme au point de départ et I'algorithme serait incapable de progresser sur la
courbe.

Logiquement, ’algorithme se comporte de maniere opposée lorsque le facteur de norma-
lisation est augmenté d’'un facteur 1000 comme le montre la figure 3.12(c). Dans ce cas la
correction porte uniquement sur les déplacements et plus sur la variable de charge. La cor-
rection étant horizontale, le probleme rencontré avec la méthode de Newton-Raphson se pose
également. En effet, des que le voltage prédit est supérieur a la tension de pull-in, I’algorithme
n’est plus capable de trouver une position d’équilibre puisqu’il lui est impossible de réduire
la tension.

Systéme électromécanique couplé

L’exemple précédent a permis de vérifier et de comparer le comportement des deux
méthodes sur un modele tres simple. Cependant, cet exemple est assez peu représentatif des
systemes qu’il faudra analyser au cours du processus d’optimisation topologique. En effet, les
modeles considérés par 'optimisation topologique comportent un nombre de degré de liberté
beaucoup plus important. De plus, ces degrés de liberté ne sont pas uniquement mécaniques
mais peuvent également étre électriques.

C’est pourquoi, les deux méthodes vont maintenant étre appliquées a I'analyse du com-
portement d’une micropoutre électrostatique bi-encastrée schématisée a la figure 3.13(a).
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Le modele de la micropoutre construit a ’aide d’éléments quadrangulaires est quant a lui
représenté a la figure 3.13(b). Les deux rangées inférieures d’éléments finis correspondent a
la couche d’air de permittivité ¢ = 8,84 - 1072 F/m avec un module de Young tres faible
(théoriquement nul) tandis que la derniére rangée correspond au maillage de la poutre en
quartz d’'un module de Young F = 86,79 GPa et un coefficient de Poisson v = 0,17. La
poutre est maillée a ’aide de 20 éléments non-conformes linéaires.
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Fi1c. 3.13 — Micropoutre électromécanique

Ne disposant pas d’expression analytique de la courbe d’équilibre pour ce microsysteme,
nous allons comparer directement les résultats de la méthode du normal flow avec une courbe
d’équilibre de référence calculée a l'aide de Riks-Crisfield. La figure 3.14(a) montre le par-
cours suivit par le normal flow pour un pas de progression relativement grand tandis que la
figure 3.14(b) montre la courbe d’équilibre établie pour un pas plus fin. L’abscisse de ces deux
figures correspond au déplacement du nceud central de la poutre et I’ordonnée a la tension
appliquée. Cette fois, sur la figure 3.14(a), la correction ne parait pas perpendiculaire & la
courbe d’équilibre contrairement a ce qui était montré précédemment. Cette différence pro-
vient du nombre plus important de degrés de liberté du modele. En effet, la correction est
orthogonale au Davidenko flow dans ’espace a n dimensions engendré par les n degrés de li-
berté mais ne I’est plus nécessairement apres projection dans un plan. Hormis cette différence,
les résultats fournis par le normal flow sont toujours en excellent accord avec ceux fournis par
Riks-Crisfield comme en attestent les deux figures.
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FiG. 3.14 — Courbe d’équilibre de la micropoutre
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Cependant, la méthode de décomposition en valeurs singulieres rencontre parfois quelques
difficultés de convergence qui ont pour conséquence un calcul inexact du noyau. Ces erreurs
sont illustrées a la figure 3.15(a) ot la direction du noyau est représentée pour chaque itération,
I’état du systeme étant représenté par la croix centrale de chaque segment. En principe,
ces segments doivent étre tangents au Davidenko flow et donc pratiquement paralleles a la
courbe d’équilibre au vu de la faible distance qui les sépare. Malheureusement, certains de
ces segments ne sont pas du tout tangents a la courbe. Le phénomene se limite a la partie
instable de la courbe mais peut également se produire sur la partie stable comme le montre
la figure 3.15(b) pour laquelle I’épaisseur de la poutre a été réduite & 0.1 pm. Or un calcul
précis du noyau est tres important puisque celui-ci conditionne non seulement la direction de
recherche vers une position d’équilibre mais également la recherche du point de pull-in.
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Fia. 3.15 — Direction du noyau au cours des itérations

Considérons maintenant la recherche du point de pull-in de la micropoutre. Une estimation
de la tension de pull-in de cette structure peut-étre obtenue & 1’aide des expressions approchées
fournies par la référence [22]. L’analyse proposée par cet article défini une raideur effective
K ¢y et une surface effective A.ry qui sont injectées dans I’équation donnant la tension de
pull-in d’un systeme a un degré de liberté. Soit,

8Kessdy
Vi =
2760Aeff

dp étant égal a la distance entre les électrodes au repos. Dans le cas qui nous occupe, puisqu’il
n’existe pas de précontrainte, la raideur effective est calculée en fonction de I’épaisseur h, de
la largeur b et de la longueur [ par,

32Ebh?
T B =02

La surface effective est quant & elle obtenue comme suit,

Acpp=+/1— b (1 +o,65(1bf8)d°> l
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ou [ est pris égal a 0,4 pour les poutres fixées-fixées. De plus, étant donné que la largeur est
unitaire pour les éléments 2D utilisés, le rapport dy/b est négligeable et le facteur relatif aux
effets de bords peut étre négligé. Ce qui donne

Aoss ~ \/1— fbl

Au final, ces expressions donnent une tension de pull-in approchée égale a 204,346 V ce qui
est en accord avec les courbes d’équilibre obtenues précédemment.

La méthode de Riks-Crisfield donne une tension de pull-in égale a 195,855 V pour un
déplacement du nceud central de la poutre de —3,954 - 1077 m. Pour la méthode du normal
flow, le pull-in se produit pour un déplacement de —3,956-10~7 m et un voltage égal a
195,855 V. Les deux algorithmes donnent donc des résultats concordants, de plus, la tension
de pull-in obtenue est proche de I'estimation analytique. Néanmoins la méthode du normal
flow s’avere beaucoup moins robuste et toujours plus lente que 'algorithme de Riks Crisfield.
Comme nous pouvions nous y attendre, les problemes de convergence de la décomposition en
valeurs singulieres provoquent fréquemment 1’échec de la recherche du pull-in par le normal
flow.

3.5.4 Conclusion

Pour chacune des applications présentées, les deux méthodes de calcul ont montré qu’elles
étaient en mesure de fournir les conditions de pull-in. Cependant, suite aux instabilités de
la décomposition en valeurs singulieres, la méthode du normal flow parait moins fiable que
I’algorithme de Riks-Crisfield. De plus, Riks-Crisfield permet d’obtenir un résultat plus rapi-
dement que le normal flow. Malgré son bon fonctionnement général, la méthode du normal
flow nécessite donc encore quelques perfectionnements comme par exemple 'amélioration de
la procédure d’extraction du noyau pour atteindre le niveau de la méthode de Riks-Crisfield.

Au vu de I'analyse effectuée au cours de cette section, la méthode de Riks-Crisfield nous
semble étre la plus adaptée au processus d’optimisation. Par conséquent, c’est cette méthode
qui sera utilisée dans la suite de ce travail afin de permettre le calcul des sensibilités.

3.6 Traitement des modes locaux

L’utilisation de la méthode de Riks-Crisfield nécessite le calcul de la premiere valeur propre
du systeme pour localiser le point de pull-in. L’algorithme de la puissance a été choisi pour
effectuer cette tache. Cependant, il s’est avéré qu’apres quelques itérations de 'optimiseur,
la premiere fréquence propre devient indépendante du potentiel électrique imposé et reste
constante tout au long du parcours de la courbe d’équilibre. L’algorithme est alors incapable
de s’arréter au point de pull-in et la recherche échoue. La cause de cet échec s’explique par
I’apparition d’un mode local possédant une faible fréquence propre comme cela est illustré a
la figure 3.16. En effet ’algorithme de la puissance fournit la fréquence propre de plus faible
module avec son signe. Par conséquent, si le pas de progression n’est pas suffisamment faible
et que la fréquence du mode local est suffisamment petite, la fréquence du mode local est
calculée a chaque itération et aucune valeur propre négative n’est jamais obtenue.

Afin d’illustrer ce phénomeéne prenons I'exemple représenté & la figure 3.17. Ce probleme
d’optimisation considere une électrode imposée bi-encastrée et un domaine d’optimisation
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F1c. 3.16 — Evolution de la valeur absolue des valeurs propres

aux frontieres totalement libres. Le matériau mécanique est du quartz isotrope avec un mo-
dule de Young E = 86790 MPa et un coeflicient de Poisson v = 0,17. L’interpolation du
comportement du matériau est effectuée par une loi SIMP ; E = pPFEy de parametre p = 3.
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Fia. 3.17 — Conditions aux limites et configuration du probleme d’optimisation

Les premieres recherches du point de pull-in se produisent normalement. Comme le montre
la courbe 3.18(a) correspondant a la premiere itération, le carré de la pulsation propre s’annule
au point de pull-in situé approximativement au tiers de la distance initiale entre les électrodes.
Par contre, dés la cinquieme itération, la situation change comme le montre la figure 3.18(b)
ou le carré de la pulsation est pratiquement constant quelque soit le déplacement.
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FiG. 3.18 — Différentes évolution du carré de la fréquence propre en fonction du déplacement

Comme cela a déja été mentionné plus haut, le phénomene s’explique simplement en met-
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tant en relation le premier mode propre et la distribution des densités tout deux représentés
a la figure 3.19. Cette figure rappelle fortement les modes locaux rencontrés par N. Pedersen
[23] présentés au chapitre précédent. En effet, la majeure partie des déformations du mode
propre a lieu dans une plage de faible densité. Ce mode apparaissant dans une zone non
structurale est donc tout a fait fictif.

OOfelie Graph
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Fi1c. 3.19 — Premier mode propre

3.6.1 Loi d’Halpin-Tsai

Ce probleme pourrait étre résolu en remplagant 1’algorithme de la puissance par une autre
méthode d’extraction des fréquences propres comme ’algorithme de Lanczos. Cependant d’un
point de vue physique, il nous a paru plus propre et plus simple d’éviter I’apparition de modes
locaux & trop faible fréquence propre en adoptant une solution similaire & celle proposée par
N. Pedersen [23]. Ici ce probléme résultant principalement d’une modélisation inappropriée
de la raideur et de la masse par la loi SIMP pour les densités proches de zéro, cette loi a été
remplacée par la loi d’Halpin-Tsai,

&
(14+8) —p

Cette expression est dérivée les équations générales de Halpin et Tsai [19] permettant
de prédire les caractéristiques mécaniques d’un matériau composite a fibres unidirection-
nelles. Les équations de Halpin et Tsai sont basées sur les nombreuses études théoriques et
expérimentales du comportement mécanique de ces matériaux composites ainsi que sur la
méthode d’homogénéisation. Dans le plan perpendiculaire aux fibres, Halpin et Tsai pro-
posent la loi suivante pour obtenir le module de Young, le coefficient de Poisson ou le module
de cisaillement,

f(p) = (3.7)

1+f77Vf Mf/Mm—l
M = M,,————= avec =_J " -
"1V 1 My /Mt E

ou M, est la grandeur d’intérét de la matrice (module de Young, module de cisaillement ...),
M celle des fibres et M celle du composite contenant une fraction volumique Vy de fibres. Le
parametre £ est quant a lui représentatif du renforcement ou de ’affaiblissement de la matrice
par les fibres.
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Dans le cadre de 'optimisation topologique les fibres sont remplacées par du vide, un
matériau microperforé est donc obtenu. En posant donc My a zéro cela donne n = —1/¢ et
mene bien a I'équation (3.7) si p = 1 — Vy. Le parametre £ permet d’introduire différentes
lois de mélange [9],

=0« f(n)=0 Equivalent a une mise en série des composants
of=00¢& f(u)=u Equivalent & une mise en parallele des composants

of{=1<% f(u)=p/(2—p) Le résultat correspond a la raideur diagonale d’un
matériau de rang deux pseudo-isotrope

ol = 2(1i1,2) Le résultat correspond a ’estimation analytique de la
raideur d’un assemblage de cylindre composites

La figure 3.20 montre 'influence du parametre £ sur le profil de la loi. Comme nous pouvons
le constater, le parametre £ permet de modifier la pénalisation des densités intermédiaires. Ce
parametre joue donc un role analogue a I'exposant p de la loi SIMP méme si la pénalisation
évolue en sens inverse par rapport au parametre.
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FiG. 3.20 — Evolution de la loi d’Halpin-Tsai en fonction de &

L’avantage de la mnouvelle loi sur la loi SIMP est illustré aux deux figures 3.21.
Premierement, il est clairement visible sur la figure de gauche que la loi d’Halpin-Tsai per-
met de conserver une raideur bien plus importante pour les densités approchant de zéro
par rapport a la loi SIMP. Nous observons en effet, une décroissance pratiquement linéaire
d’Halpin-Tsai pour les faibles densités. Sur cette figure le parametre & a été posé a 0,27 cette
valeur a été choisie de manieére a minimiser le carré de la différence entre la loi d’Halpin-Tsai
et une loi SIMP d’exposant 3. Par ailleurs, le gain de raideur pour les faibles densités est
également confirmé par la figure de droite ou le rapport raideur sur masse est tracé pour
différentes valeurs du parametre. Avec la loi d’Halpin-Tsai, ce rapport est toujours non nul
ce qui n’est pas le cas pour la loi SIMP puisqu’il vaut uP=!.

Cette loi semble donc intéressante car elle se rapproche de la solution utilisée par N. Peder-
sen a savoir imposer un rapport constant entre masse et raideur pour les faibles densités. Par
contre, elle possede 'avantage de ne pas présenter de point anguleux et d’étre par conséquent
différentiable quelque soit la valeur de la pseudo-densité. Cependant, étant donné qu’elle
fourni une raideur plus importante pour les faibles densités, il faut également veiller a réduire
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(a) Comparaison avec la loi SIMP (b) Rapport raideur sur masse avec Halpin Tsai

Fi1G. 3.21 — Avantages de la loi d’Halpin Tsai

la borne inférieure pip,;, sur les pseudo-densités. La raideur des éléments vides doit en effet
toujours étre suffisamment faible par rapport a celle des éléments solides. La borne inférieure
est donc fixée & 107 ce qui donne pour & = 0,27 une raideur relative de 2 - 1077

En utilisant la loi d’Halpin-Tsai avec £ = 0,27, le cas test d’optimisation topologique
peut-étre relancé et mené a bien. Le résultat obtenu est présenté a la figure 3.22. Malgré les
larges régions couvertes par des éléments vides présentées par la structure, aucun mode local
n’a cette fois perturbé le processus d’optimisation. Ceci prouve l'efficacité de la loi d’Halpin-
Tsai pour résoudre le probleme rencontré. De plus, la structure obtenue possede tres peu
d’éléments a densités intermédiaires ce qui montre que la loi d’Halpin-Tsai offre de bonnes
propriétés de convergence.
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FiG. 3.22 — Résultat d’optimisation obtenu avec Halpin-Tsai

3.7 Conclusion

Ce chapitre a tout d’abord permis de décrire le probleme général d’optimisation ainsi que
ses hypotheses. Les hypotheses posées dans le cadre de cette étude préliminaire simplifient
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fortement le probleme d’optimisation en permettant de considérer une interface non modifiable
entre les deux domaines physiques. Néanmoins, le probleme d’optimisation résultant conserve
un caractere multiphysique et sa mise en ceuvre constitue donc une étape importante en vue de
I’application de I'optimisation topologique & un probleme plus général. Sur base du probleme
d’optimisation décrit, nous avons ensuite pu obtenir et valider une expression semi-analytique
des sensibilités.

Le calcul semi-analytique des sensibilités nécessitant la connaissance des conditions de
pull-in, deux méthodes basées sur les méthodes de continuation de Riks-Crisfield et du normal
flow ont été développées et comparées. A I'issue de la comparaison, nous avons constaté que
I’algorithme de Riks-Crisfield est, dans I’état actuel, plus fiable que la méthode du normal flow.
Riks-Crisfield a donc été choisi afin de remplir la tache d’analyse du processus d’optimisation.

Finalement, la derniére section a montré que l'interpolation SIMP est inadéquate lorsque
la détection du point de pull-in est basée sur la premiere fréquence propre du systéeme. En
effet, I’apparition de modes locaux empéche la recherche d’étre menée a bien Cependant, la
loi SIMP peut étre remplacée avec succes par une loi d’Halpin-Tsai qui grace a un rapport
raideur-masse plus élevé pour les faibles pseudo-densités évite I’apparition de modes locaux.
La recherche du point de pull-in peut alors se terminer correctement.



Chapitre 4

Applications

4.1 Introduction

Sur base des deux premiers chapitres décrivant les méthodes utilisées, le chapitre précédent
a permis d’élaborer une procédure d’optimisation topologique de la tension de pull-in. La
méthode d’optimisation étant maintenant décrite, nous allons proposer quelques applications
permettant d’illustrer cette méthode. Ces applications nous permettrons tout d’abord de
tester la méthode pour différentes conditions aux limites. Ensuite, afin d’obtenir des solution
plus réalistes une contrainte de fabrication sera ajoutée au probleme d’optimisation.

4.2 Micropoutre bi-encastrée

Le premier exemple choisi porte sur la conception d’une suspension optimale pour une
micropoutre bi-encastrée. Comme le montre la figure 4.1, les seules fixations du domaine
mécanique sont les encastrements de 1’électrode imposée. Le domaine d’optimisation ne
comporte par conséquent pas de fixations supplémentaires. La micropoutre considérée est
constituée de quartz isotrope de module de Young F = 86,79 GPa et d’'un module de Pois-
son v = 0,17. Le volume de matiere disponible est fixé & 40 % du volume du domaine de
conception. Par ailleurs, le probleme étudié étant symétrique, une seule moitié du domaine
est étudiée comme précédemment sur base d’un maillage de 48 par 16 éléments.
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Fi1G. 4.1 — Dimensions et conditions aux limites du premier cas test

L’optimisation topologique est tout d’abord effectuée avec un matériau de Halpin-Tsai de
parametre & = 0, 27, cette valeur étant équivalente a une loi SIMP de parametre 3. Le critere
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d’arrét du processus d’optimisation est basé sur la plus grande variation parmi les variables
de conception a chaque optimisation. Si cette variation maximale descend en dessous d’un
seuil déterminé, I'optimisation est considérée convergée et le processus est arrété. Dans le cas
présent, ce seuil est fixé a 0,01.
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FiG. 4.2 — Résultat de 'optimisation pour £ = 0.27

Dans ces conditions, partant d’une distribution homogene de pseudo-densités, le résultat
obtenu est présenté a la figure 4.2. L’optimisation topologique propose une structure en forme
d’arche afin d’augmenter la tension de pull-in. Grace a cette structure, la tension de pull-in
initialement égale & 371 V passe a 611 V en quarante itérations. L’évolution de la tension de
pull-in au cours de 'optimisation est tracée figure 4.3. Cette courbe montre une augmenta-
tion rapide et monotone de la tension de pull-in qui semble ensuite converger vers ’optimum.
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F1G. 4.3 — Evolution de la tension de pull-in au cours des itérations pour £ = 0, 27

Cependant, les deux figures 4.2 indiquent la présence de membres structuraux tres ténus re-
liant la partie centrale de I’électrode imposée a ’arche. La présence de larges plages d’éléments
possédant une densité intermédiaire révele que la distribution de pseudo-densité n’est pas suf-
fisamment claire. Il est donc nécessaire de modifier les parametres afin d’obtenir une structure
plus réaliste.
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Afin d’éviter 'existence de densités non entieres dans le résultat final d’optimisation to-
pologique, nous allons premierement augmenter la pénalisation de celles-ci en réduisant le
parametre £ ce qui aura également pour conséquence d’accélérer le processus d’optimisation.
D’autre part, la limite d’arrét portant sur la variation maximale des variables de conceptions
est également réduite de maniére a permettre au processus itératif de se poursuivre plus long-
temps. Par conséquent, le parametre £ est donc réduit a 0,15 tandis que le critere d’arrét est
fixé a 0,005. La topologie obtenue avec les nouveaux parametres est représentée figure 4.4(a).
Grace a 'augmentation de la pénalisation des densités intermédiaires, le domaine d’optimi-
sation est maintenant pratiquement exempt de celles-ci. Par ailleurs la suspente située en
dessous de ’arche est clairement définie et présente des densités unitaires.
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F1a. 4.4 — Résultat de 'optimisation topologique pour £ = 0,15 : (a) Structure et (b) Evolu-
tion de la tension de pull-in

La figure 4.4(b) présente 1’évolution de la tension de pull-in durant ’optimisation. Eton-
namment, la tension de pull-in effectue un palier au cours du processus itératif. Durant ce
palier, la structure est fort similaire a celle obtenue précédemment avec une pénalisation plus
faible (Fig. 4.2). Cependant a la différence du cas précédent I'optimisation se poursuit et trans-
forme la suspente en une structure possédant des densités unitaires. Ceci permet une nouvelle
augmentation de la tension de pull-in pour parvenir a 613,3 V soit une amélioration de 94%
par rapport a la configuration initiale. Malgré I’amélioration au point de vue structural, la
tension de pull-in n’a donc pas fortement évolué par rapport au résultat obtenu précédemment
avec & = 0,27. Ceci est probablement provoqué par la diminution de raideur des éléments
a densité intermédiaire résultant de la réduction du parametre de la la loi d’Halpin-Tsai.
L’existence d’éléments a densité intermédiaire dans le domaine de conception étant inévitable
suite a l'utilisation d’une technique de filtrage.

Notons finalement que la structure obtenue est en accord avec 'observation faite par
Bendsge et Sigmund & la référence [6]. Ces derniers avaient remarqué, dans le cadre de I'opti-
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misation de la compliance, que les structures soumises a une seule charge ponctuelle donnaient
lieu & un treillis possédant des cellules triangulaires. Par contre, si plusieurs charges sont ap-
pliquées dans le méme cas de charge, certaines cellules du treillis résultant sont en forme de
quadrilateres. Or, dans notre cas, la structure est soumise a une charge répartie. Il n’est donc
pas étonnant que la cellule centrale soit trapézoidale.

4.2.1 Convergence en fonction du maillage

La stabilité de la solution par rapport a une modification du maillage doit également étre
vérifiée. Celle-ci est principe garantie par 'utilisation d’une méthode de filtrage. Néanmoins, il
nous a semblé important de vérifier que notre procédure d’optimisation fournit une topologie
insensible a la discrétisation du maillage.

La distance de filtrage choisie précédemment valait une fois et demi la taille des éléments.
Cette distance permet une régularisation efficace du probleme d’optimisation puisqu’elle évite
I’apparition de structures en damier. Par ailleurs, en maintenant la distance absolue de fil-
trage constante et en raffinant le maillage il est également possible de montrer que la to-
pologie résultante est inchangée. Par exemple, la figure 4.5, compare la structure obtenue
précédemment pour un maillage du demi-domaine de 48 par 16 éléments a celle obtenue avec
un maillage de 96 par 32 éléments. Ces deux figures prouvent 'efficacité de la méthode de
filtrage pour la régularisation du probleme d’optimisation puisque les deux topologies sont
identiques. Par ailleurs, la tension de pull-in optimale n’est pratiquement pas modifiée par ce
raffinement de maillage puisqu’elle passe a 613,7 V.
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Fia. 4.5 — Influence du maillage sur le résultat d’optimisation topologique

4.2.2 Evolution des fréquences propres

L’optimisation de la tension de pull-in est basée sur le premier mode propre de la ma-
trice de raideur tangente. Cependant, suite aux modifications de la structure engendrée par
le processus d’optimisation, il est possible que deux modes propres s’inversent ou deviennent
confondus au cours des itérations. Ces deux phénomenes peuvent rendre le probleme d’opti-
misation non différentiable et provoquer des oscillations de I'optimiseur.

Afin de vérifier qu’il n’existe pas d’inversion de valeurs propres ou que la premiere valeur
propre ne se confond pas avec la seconde, I’évolution des quatre premieres fréquences propres
au point de pull-in a été tracée figure 4.6. Cette figure montre tout d’abord que la premiere
fréquence propre est logiquement toujours nulle au pull-in. Ensuite, nous pouvons constater
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que I’évolution des fréquences propres d’ordre supérieur est continue et ne présente pas de croi-
sement. Cependant, la forte diminution des fréquences d’ordre supérieur indique malgré tout
qu’une inversion ou une confusion de fréquence propre n’est pas a exclure systématiquement.
Ce point devrait donc faire 'objet d’une étude plus approfondie dans le futur.
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F1G. 4.6 — Evolution du carré des quatre premieres pulsations propres au pull-in

Par ailleurs, la figure 4.7 compare le premier mode propre de la matrice de raideur tangente
pour la structure initiale et la structure finale. Sur ces figures seule une moitié du domaine
i Se. ux ui i
de conception est affichée. Les deux modes sont fortement semblables ce confirme bien
qu’il n’existe pas d’inversion avec un mode d’ordre supérieur au cours du processus itératif.
L’optimisation effectuée est donc bien valide.
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Fi1G. 4.7 — Premier mode propre de la matrice de raideur tangente

4.3 Micropoutre encastrée-libre

Les conditions aux limites ainsi que les dimensions de cette seconde application sont
schématisées figure 4.8. L’électrode imposée est maintenant encastrée uniquement du coté
gauche. De plus, de ce cOté, des fixations sont également placées sur toute la hauteur du
domaine d’optimisation. Une derniere différence par rapport a 'application précédente se
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situe au niveau de ’électrode inférieure qui est cette fois située uniquement en dessous de la
seconde moitié de 1’électrode mobile comme cela est indiqué sur la figure 4.8. Par ailleurs la
quantité de matiere est limitée & 40 % du volume du domaine de conception pour un matériau
identique au précédent. Le parametre de pénalisation de la loi d’Halpin-Tsai est choisi égal a
0,27. Le domaine mécanique est discrétisé a 1’aide d’un maillage de 60 par 24 éléments.
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F1G. 4.8 — Dimensions, conditions aux limites et configuration initiale de la seconde application

Le seuil du critere d’arrét est différent pour cette application car il est apparu que la
limite précédente donnait lieu & un nombre d’itérations trop important sans gain significatif
au niveau de la tension de pull-in ou de la topologie. La nouvelle limite de variation maximale
est donc moins sévere et est placée a 0,02. Le processus d’optimisation s’arréte apres 149
itérations et le résultat obtenu est représenté figure 4.9(a).
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Fic. 4.9 — Résulat de l'optimisation pour la poutre encastrée-libre : (a) Structure et (b)
Evolution de la tension de pull-in

La suspension optimale tire pleinement profit des fixations proposées sur le coté gauche du
domaine d’optimisation puisqu’elle prend appui dans les coins supérieur et inférieur gauches.
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Par ailleurs, suite a la position de I’électrode fixe, la moitié gauche de ’électrode mobile n’est
pratiquement soumise a aucune force électrostatique. Il est donc logique qu’elle ne soit pas
soutenue. Au contraire, la suspension est ancrée sur 1’électrode mobile dans le coin inférieur
gauche profitant ainsi de la raideur propre de 1’électrode mobile. La seconde moitié est a
I'inverse soutenue en deux points. Leur position montre également que 'optimiseur utilise, a
cet endroit également, la raideur de I’électrode mobile.

La tension de pull-in obtenue est de 1395 V contre 884 V initialement ce qui correspond a
une augmentation relative de 58 %. L’évolution de la tension de pull-in tracée a la figure 4.9(b)
présente un long palier de la tension de pull-in avant ’arrét de ’optimisation. Par conséquent,
le critere d’arrét pourrait encore étre relaxé de maniere a réduire le nombre d’itérations, car
la structure n’évolue plus de maniere significative durant ce palier. Toutefois, le probleme
d’optimisation posé par cette seconde application semble plus simple que le précédent. En
effet, la tension de pull-in évolue tres rapidement vers le palier final et le domaine de conception
ne présente pas de densités intermédiaires malgré la faible pénalisation choisie.

4.4 Contrainte de fabrication

Les procédés de fabrication des microsystemes les plus souvent utilisés sont basés sur la
technique de lithographie. Celle ci consiste en un dépot successif de couches de matiere sur une
gaufrette de Silicium suivies d’étapes de gravure en surface par attaque chimique ou physique.
La lithographie donne généralement lieu & des structures essentiellement planes composées de
couches successives paralleles a la surface du substrat initial. Malheureusement les résultats
obtenus précédemment présentent une structure incluant de nombreuses cavités fermées. De ce
fait, ces structures sont trop complexes pour étre produites a ’aide des méthodes habituelles
de lithographie.

Afin d’obtenir des résultats plus facilement réalisables, il est donc nécessaire d’inclure une
contrainte de dépot dans le probleme d’optimisation de maniere a éviter la création de poches
vides a l'intérieur de la structure. Le probleme de fabricabilité rencontré dans cette étude se
rapproche fortement d’un probleme déja étudié précédemment en optimisation topologique. Il
s’agit de la conception de pieces mécaniques démoulables [24]. De fait, pour qu’une piece soit
démoulable, il est tout d’abord nécessaire qu’il n’y existe aucune cavité fermée. De plus, il faut
également que toutes les cavités ouvertes soient orientées suivant une direction déterminée
correspondant a la direction de démoulage.

Par conséquent, si une telle contrainte est ajoutée a notre probleme d’optimisation avec
une direction de démoulage verticale orientée vers le haut, nous serons certains d’obtenir
une structure exempte de cavités fermées. De plus, les seules cavités existantes seront alors
nécessairement ouvertes sur la face supérieure du domaine d’optimisation, la structure sera
plus facilement ”usinable” par dépot de couches.

4.4.1 Contrainte de démoulage

L’obtention d’une structure démoulable en optimisation topologique repose généralement
sur l'utilisation d’un maillage transfini aligné suivant la direction de démoulage. Cet aligne-
ment permet de créer des groupes d’éléments orientés selon la direction de démoulage. Nous
prenons la convention que la direction de démoulage est celle selon laquelle les cavités doivent
étre ouvertes. Par exemple, si nous considérons une direction de démoulage verticale orientée
vers le haut, les groupes seront formés a partir des colonnes du maillage éléments finis et les
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cavités doivent étre ouvertes sur la face supérieure du domaine. La contrainte de démoulage se
traduit alors par ’obligation pour les pseudo-densités d’étre décroissantes suivant la direction
de démoulage sur les éléments de chaque groupe. Par exemple, pour un groupe de n éléments
C sur lequel les éléments sont numérotés de 1 a n de proche en proche selon la direction de
démoulage (cfr. figure 4.10 dans le cas vertical), nous avons,

(1 > m >

Hn-1 2 Hn 2 [Hmin

Si une distribution entiére de pseudo-densités était considérée cela signifierait que dés qu'un
groupe contiendrait un élément de densité nulle, les éléments suivants devraient également étre
vides. De ce fait, il est impossible de refermer une cavité en plagant un élément solide apres un
élément vide. Puisqu’a la fin du processus itératif, les pseudo-densités sont en principe entieres,
toutes les cavités existantes sont nécessairement ouvertes dans la direction de démoulage.

Démoulage

Groupe C'

Fi1G. 4.10 — Contrainte de démoulage verticale orientée vers le haut

11 existe différentes possibilités pour prendre en compte de telles contraintes (4.1) comme
par exemple I'utilisation d’un Lagrangien augmenté ou l'utilisation de contraintes de borne.
Dans le cadre de ce travail, nous avons choisi d’utiliser les contraintes de bornes car cette
méthode permet de continuer a utiliser le méme optimiseur tout en fournissant un résultat
fiable. Les contraintes de borne sont fournies pour chaque variable a I'optimiseur et précisent
quelles sont les limites entre lesquelles "optimiseur peut modifier chacune des variables. Afin
de satisfaire les conditions (4.1) les contraintes de borne sur les variables i du groupe C' sont
calculées comme suit,

p— 5 <o

N
—_

pi — EEEEL <y < o+ B st 2<i<n—1

La variation maximale d’une variable est donc fonction de I’écart entre celle-ci et la variable
voisine. Cet écart est divisé par deux car la variable voisine pouvant également étre modifiée,
il faut éviter que ces variables se croisent. Par ailleurs, ces contraintes de borne doivent étre
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mises a jour apres chaque itération de maniere a prendre en compte les modifications opérées
par 'optimiseur.

4.4.2 Poutre bi-encastrée

Cette application est similaire a la premiere présentée au début de ce chapitre. Cependant,
afin de mettre en évidence certains résultats intéressants, 1’électrode imposée ainsi que le
domaine d’optimisation sont plus longs comme le montre la figure 4.11. Par ailleurs, des
fixations supplémentaires sont ajoutées au domaine d’optimisation de chaque coté de celui-ci.
Le matériau utilisé est cette fois un quartz isotrope avec un module de Young F = 77 Gpa.
Le volume de matiere disponible est fixé & 75 % du volume du domaine de conception. Le
demi-domaine mécanique est divisé par un maillage de 55 par 11 éléments finis.
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Fi1G. 4.11 — Dimensions, conditions aux limites et distribution initiale pour la poutre bi-
encastrée avec contrainte de démoulage

Une loi de Halpin-Tsai de parametre & = 0,27 est tout d’abord utilisée. Le résultat
obtenu avec ce parametre est présenté figure 4.12. Si ce résultat vérifie bien la contrainte de
démoulage (4.1), la topologie est loin d’étre satisfaisante au vu des grandes zones de densités
intermédiaires qu’elle présente.

OOfelie Graph

Density

0.600 0.800 1.00
~ LR

0.000 0.200

FiGc. 4.12 — Résultat pour £ = 0, 27

Le résultat précédent indique clairement que la pénalisation des densités intermédiaires
est insuffisante. Afin d’obtenir une solution acceptable le parametre d’Halpin-Tsai a di étre
trés fortement réduit. En effet, apres plusieurs réductions successives, il s’est avéré qu’il était
nécessaire de prendre £ égal a 0,005 pour obtenir une structure clairement définie. La solution
obtenue est représentée a la figure 4.13(a). La topologie obtenue est relativement simpliste
puisque la structure est essentiellement constituée de deux renforts trapézoidaux. Cependant,
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cette structure ne présente pas de cavités fermées et sa fabrication est donc plus facilement
envisageable.
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F1G. 4.13 — Résultat pour £ = 0,005 : (a) Structure et (b) Evolution de la tension de pull-in

La tension passe de 89,5 V initialement a 343,2 V. Cette augmentation conséquente de
la tension de pull-in (284%) provient de la forte pénalisation des densités intermédiaires
provoquant une tension de pull-in initiale relativement faible. Néanmoins, 1’évolution de la
tension de pull-in tracée figure 4.13(b) montre un départ tres lent du processus d’optimisation.
Cette stagnation initiale de la tension de pull-in provient de la distribution initiale de pseudo-
densités. Cette distribution étant uniforme, il s’en suit qu’une grande partie des variables de
conception sont bloquées par la contrainte de démoulage (4.1) puisque en général p; = p;—1 =
Wi+1. Par conséquent, a la premiere itération, les seules variables pouvant étre modifiées sont
celles de la premiere et de la derniere ligne du domaine d’optimisation. La modification de
variables sur ces deux lignes permet ensuite a la seconde itération de débloquer deux lignes
supplémentaires et ainsi de suite. De ce fait, il faut donc attendre quelques itérations avant
que l'entiereté du domaine d’optimisation soit modifiable.

Distribution initiale en dégradé

L’implémentation utilisée de la contrainte de démoulage avec une distribution initiale uni-
forme ralentit donc le processus d’optimisation. Des lors, il pourrait étre utile de modifier la
distribution initiale de maniere a libérer toutes les variables a partir de la premiere itération.
A cette fin, la distribution qui semble a priori la plus indiquée est une distribution en dégradé
vertical dont un exemple est présenté figure 4.14. Cette distribution est construite de sorte
que chaque ligne possede une densité différente en progression arithmétique. Le pas de la pro-
gression est calculé de maniere a étre maximal compte tenu de la densité minimale autorisée,
du nombre de lignes et de la quantité de matiere disponible.
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F1G. 4.14 — Distribution initiale en dégradé (demi domaine)

De maniere a évaluer I'influence de cette distribution initiale sur le résultat obtenu ainsi
que sur I’évolution de la tension de pull-in, I’exemple précédent est relancé avec les mémes
parametres en partant d’une distribution en dégradé (Fig. 4.14). Il est alors surprenant de
constater que le résultat d’optimisation présenté figure 4.15(a) est tres différent du résultat
obtenu précédemment. Il semble donc que le probleme d’optimisation considéré possede plu-
sieurs optimums locaux puisque la solution obtenue dépend du point de départ. Cependant,
malgré la différence de topologie existant entre les deux structures, la tension de pull-in obte-
nue est fort similaire dans les deux cas. En effet, la tension obtenue est cette fois de 344,8 V
ce qui est tres proche des 343,2 V obtenus précédemment. Mais la tension de pull-in initiale
étant cette fois légerement plus élevée (99,7 V), 'augmentation relative est de 246%.
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Fia. 4.15 — Résultat d’optimisation pour £ = 0,005 et une distribution initiale en dégradé :
(a) Structure et (b) Evolution de la tension de pull-in

La topologie résultante rappelle fortement le résultat obtenu par Abdalla et al. [1] pour une
micropoutre bi-encastrée présenté au second chapitre. Cette ressemblance est assez logique
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puisque la fonction objectif est identique pour les deux approches. Néanmoins, la modélisation
ainsi que la méthode d’optimisation utilisées sont tres différentes ce qui peut expliquer que
les résultats ne sont pas toujours semblables.

Par ailleurs, 'augmentation initiale de la tension de pull-in est maintenant plus rapide
comme le montre la figure 4.15(b). La modification de la distribution de densités de départ a
donc bien eu l'effet désiré. De plus le nombre d’itérations nécessaire passe de 62 a 51 ce qui
représente un gain significatif en temps de calcul.

Distribution initiale sous forme de poutre

Le résultat de 'optimisation étant dépendant de la configuration initiale, nous avons voulu
tester une distribution analogue a la configuration de départ utilisée par la référence [1], c’est-
a-dire une poutre d’épaisseur uniforme. Les inconnues ont donc été initialisées de telle sorte
que les m premieres lignes en partant du bas soit solides, la m + 1°™¢ ligne possede une
densité fiyeste €t les dernieres lignes de m + 2 & n soient vides (f = fmin). A nouveau, m
et lreste sont calculés en fonction du nombre de lignes, de la quantité de matiére disponible
et de pmin- La distribution obtenue pour 'application étudiée est présentée figure 4.16. Pour
le probleme qui nous occupe, tireste €st trés proche de 1 et par conséquent il n’existe pas de
différence visible entre les m premieres et la m + 1™ ligne.
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F1G. 4.16 — Distribution initiale similaire & une poutre uniforme (demi domaine)

Le résultat obtenu est proposé a la figure 4.17(a). Celui-ci ressemble également fortement
aux résultats obtenus par Abdalla et al. [1]. Cette ressemblance conforte notre procédure
d’optimisation topologique puisqu’a partir d’'un méme point de départ elle fournit des résultats
similaires & ceux donnés par la procédure de dimensionnement d’Abdalla et al.

Par ailleurs I’évolution de la tension de pull-in au début du processus itératif est tres
rapide comme le confirme la figure 4.17(b). Cette forte augmentation initiale est plutot in-
attendue étant donné qu’une grande partie des variables sont bloquées par la contrainte de
démoulage. Cependant, la figure indique que la configuration initiale possede une tension de
pull-in égale a 278,4 V et donc bien plus élevée que les deux configurations précédentes. La
tension de pull-in finale est par contre pratiquement égale aux précédentes et vaut 344,4 V.
Par conséquent, 'augmentation relative n’est que de 20%. La poutre d’épaisseur constante
est donc probablement beaucoup plus proche de 'optimum ce qui explique 'augmentation
rapide de la fonction objectif ainsi que le faible nombre d’itérations nécessaires pour arriver
a la convergence.
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F1G. 4.17 — Résultat obtenu pour une configuration initiale en poutre uniforme : (a) Structure
et (b) Evolution de la tension de pull-in

Modification du volume disponible

Nous avons constaté que 'application considérée ci-dessus possédait au moins deux op-
timums locaux. Ces optimums locaux peuvent donner lieu a des structures fort différentes.
Par contre, la variation de tension de pull-in entre les deux résultats n’est pas réellement
significative. Toutefois, il s’avére que cet écart n’est pas toujours négligeable. En effet, si sur
base de I'application précédente, la quantité de matiere disponible est modifiée, la tension de
pull-in optimale peut fortement changer en fonction de la distribution de densité initiale. Ce
phénomene est illustré a la figure 4.18. Chaque courbe de cette figure donne la tension de
pull-in obtenue en fonction de la fraction de volume' pour une des trois situations initiales
considérées ci-dessus.

Premierement, nous pouvons constater que les distributions en dégradé et en poutre four-
nissent toujours des tension de pull-in similaires. De méme, les structures obtenues sont
également semblables et ressemblent toutes deux au résultat obtenu par Abdalla et al. quel
que soit la fraction de volume.

Par contre, la distribution uniforme donne lieu a des résultats différents pour une fraction
de volume inférieure & 0,84 avec une différence de tension de pull-in pouvant atteindre 11%.
En dessous d’une fraction volumique de 0,84, la topologie est la méme que celle obtenue
précédemment pour cette distribution et une limite en volume de 75 %. Néanmoins, si la
fraction volumique disponible est supérieure a 0.84, les résultats du processus d’optimisation
sont tres proches de ceux obtenus a partir des deux autres points initiaux tant au point de
vue de la topologie que de la tension de pull-in. Nous observons donc un basculement de la

'La fraction de volume est définie comme étant le rapport entre le volume de matiére disponible et le volume
du domaine de conception
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FiG. 4.18 — Evolution de la tension de pull-in en fonction de la fraction de volume

solution vers le second optimum a partir de cette valeur de la fraction volumique.

D’autre part, la topologie la plus efficace varie également en fonction de la fraction de
volume disponible. En dessous de 75%, c’est la distribution initiale uniforme qui donne au
final la meilleure tension de pull-in. La meilleure topologie est donc celle faisant appel a
deux renforts trapézoidaux. A l'inverse, pour une quantité de matiere disponible supérieure
a trois quarts du volume du domaine de conception, une solution semblable & celle obtenue
par Abdalla et al. avec des poutre est plus performante.

4.5 Conclusion

La procédure d’optimisation topologique élaborée au cours de ce travail a été mise en
pratique dans ce dernier chapitre & 'aide de différentes applications. Pour certains de ces
exemples, un ajustement initial des parametres s’est avéré indispensable afin d’obtenir un
résultat valable. Cette phase de réglage peut nécessiter quelques itérations. Cependant, la
procédure a finalement permit maximiser la tension de pull-in pour chaque application don-
nant lieu & un gain relatif sur la tension de pull-in pouvant atteindre plus de 200%.

Par ailleurs, la robustesse de la méthode d’optimisation a également été évaluée. Nous
avons ainsi pu vérifier que la structure optimale était bien indépendante du maillage. Toute-
fois, le comportement des modes propres d’ordre supérieur de la matrice de raideur tangente
pourrait éventuellement poser probleme dans certaines applications en provoquant des oscil-
lations de 'optimiseur si une des valeurs propres d’ordre supérieur s’inverse avec la premiere.
Cet aspect mérite donc une étude plus poussée.

Néanmoins, les structures créées par ’optimiseur sont trop complexes pour les procédés
classiques de fabrication utilisés a 1’échelle microscopique. Deés lors, une contrainte de fabri-
cation inspirée du probleme de démoulage a été ajoutée au probleme d’optimisation. Grace
a l'introduction de cette contrainte, les résultats obtenus sont plus réalistes. Cependant, la
modification du point de départ sous cette contrainte de démoulage a révélé la présence d’op-
timums locaux. L’existence d’optimums locaux est d’autant plus génante que la tension de
pull-in peut varier fortement d’un maximum a ’autre.
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Conclusion

Ce travail a débuté par une revue bibliographique portant sur 'effet de pull-in présent dans
les microsystemes électromécaniques ainsi que sur la simulation numérique de ce phénomene.
Les difficultés posées par 'obtention des conditions de pull-in proviennent du couplage fort
existant entre les phénomenes électrostatiques et mécaniques. Cependant, il est possible sur
base d’'une modélisation éléments finis monolithique d’utiliser une méthode de continuation
pour atteindre avec précision le point de pull-in. Dans ce cadre, afin d’obtenir la recherche du
point de pull-in la plus performante possible, la fiabilité et l’efficacité de deux méthodes de
continuation, Riks-Crisfield et le normal flow, ont été comparées sur base de deux modeles
éléments finis. Il est ressorti de cette comparaison que la méthode de Riks-Crisfield est
a la fois la plus rapide et la plus robuste des deux méthodes dans 1'état actuel de leurs
implémentations respectives. Par conséquent, c’est l'algorithme de Riks-Crisfield qui a été
incorporé a la procédure d’optimisation.

Ce travail propose une étude préliminaire en vue de ’application de ’optimisation topolo-
gique aux systemes électromécaniques couplés. Dans le contexte de cette premiere approche,
des hypotheses provisoires ont été posées afin de dépouiller le probleme d’optimisation de cer-
taines complexités accessoires. Une expression semi-analytique des sensibilités a ensuite été
obtenue et validée par une comparaison avec une analyse de sensibilité par différences finies.
Cette expression permet de profiter de 'efficacité des optimiseurs basés sur la programma-
tion mathématique tel que ConLin. Néanmoins, il est apparu que la procédure d’optimisation
proposée peut étre incompatible avec la loi d’interpolation SIMP classiquement utilisée en
optimisation topologique. En effet, le faible rapport entre la raideur et la masse donné par
la loi SIMP pour les densités proches de zéro provoque ’apparition de modes locaux a faible
valeur propre empéchant la recherche du point de pull-in d’aboutir. Des lors, la loi SIMP a
été remplacée par une loi d’Halpin-Tsai donnant lieu & un rapport raideur sur masse plus
élevé. Cette nouvelle loi évite 'apparition de modes locaux a trop basse fréquence et permet
donc 'obtention du point de pull-in de maniere habituelle.

La méthode d’optimisation élaborée a ensuite été mise en pratique. Les résultats obte-
nus sont de bonne qualité. En effet, pour chacun des cas test, il a été possible d’obtenir une
distribution de matiere pratiquement exempte de densités intermédiaires. De plus, la stabi-
lité de la solution en fonction de la finesse du maillage a été vérifiée avec succes pour 1'une
des applications. Par ailleurs, afin de réduire la difficulté de fabrication des structures ob-
tenues, une contrainte de fabrication a été incorporée au probléeme d’optimisation. Gréace a
cette contrainte de dépot en couche, la production des structures obtenues est plus facilement
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envisageable. Cependant, la présence de deux optimums locaux a été observée lorsque cette
contrainte est ajoutée au probleme d’optimisation. Les perturbations provoquées par ces op-
timums locaux peuvent étre relativement importantes car la variation de tension de pull-in
peut atteindre 10 %. Néanmoins, le dernier chapitre montre Vefficacité de la procédure d’op-
timisation développée. De plus, nous avons pu constater qu’en 1’état de ’avancement actuel
il n’existe pas d’obstacle majeur a I'application de 'optimisation topologique aux problemes
électromécaniques.

Perspectives

Approfondissement de ’approche actuelle
Valeurs propres multiples

Un premier point intéressant a approfondir est I’évolution des valeurs propres d’ordre
supérieur de la matrice de raideur tangente. L’analyse de sensibilité se basant sur le premier
mode propre, un croisement de valeurs propres risque de déstabiliser processus d’optimisation.
Dans ce cas, il faudrait envisager d’utiliser un procédure d’optimisation de type "min-max”
de maniere a solutionner les problemes provoqués par ce croisement de valeurs propres.

Contraintes de tension

L’ajout d’'une borne maximale sur les contraintes mécaniques est également une exten-
sion possible de I'approche actuelle. Cet aspect, qui n’a pas été envisagé au cours de ce
travail, pourrait améliorer le réalisme du probleme de conception. Si ce type de contrainte
n’est pas implémentée actuellement pour 'optimisation topologique dans Oofelie, sa mise en
ceuvre en optimisation topologique est néanmoins bien développée dans la littérature comme
le montre la figure 4.19 provenant de la référence [11]. L’ajout d’une contrainte sur les tensions
mécaniques permettrait d’éviter ’apparition de membres structuraux trop fins qui ne seraient
pas assez résistants pour supporter la charge existant lors de I'utilisation.

AP

i

6!

(b) Contrainte de tension (¢) Contrainte sur la compliance

F1a. 4.19 — Probleme de minimisation du volume de matiére pour la poutre MBB [11]

Contrainte de fabrication

L’implémentation effectuée ici de la contrainte de fabrication permet de conserver 1’opti-
miseur utilisé précédemment. Cependant, elle est loin d’étre optimale car un traitement de
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ces contraintes intégré a I'optimiseur existe depuis peu dans une nouvelle version de ConLin.
Cette implémentation interne présente ’avantage d’étre beaucoup moins contraignante que
celle utilisée dans ce travail. Il serait donc intéressant de vérifier qu’avec le nouvel optimiseur,
le processus d’optimisation aboutit toujours a des solutions différentes en fonction du point
de départ.

Algorithme de résolution des probléemes non linéaires

Enfin, Paugmentation de la fiabilité de la méthode du normal flow est également un sujet
intéressant. A cette fin, il ressort de ce travail que 'utilisation d’une méthode d’extraction du
noyau plus robuste et plus efficace pourrait déja apporter une amélioration. L’obtention d’un
algorithme du normal flow pleinement fonctionnel pourrait permettre de pallier aux difficultés
occasionnellement rencontrées par la méthode de Riks-Crisfield.

Modification de I’approche

La perspective la plus importante est bien str la suppression de 'hypothese séparant le
domaine d’optimisation du domaine électrique. Dans ces conditions, le domaine d’optimi-
sation pourra couvrir tout le domaine électrique et mécanique. Des lors, le comportement
électrostatique d’un élément sera également fonction de sa pseudo-densité. Ceci nécessitera
Iinterpolation des propriétés électriques de la matiére en fonction des pseudo-densités. Grace
a cette amélioration, I'optimiseur sera en mesure de modifier le point d’application des forces
électriques. Le processus d’optimisation bénéficiera alors d’une liberté et d’une généralité ac-
crues ce qui se solde habituellement par une augmentation des performances optimales. Des
probléemes aussi généraux que ceux traités par Raulli [26] pourront alors étre considérés. Par
exemple, la figure 4.20 reprend le probleme d’optimisation d’un inverseur de force traité par
Raulli [26]. La figure de droite montre clairement que ’électrode imposée ne couvre plus
qu’'une partie de la largeur du domaine permettant au champ électrique d’entrer dans le
domaine d’optimisation.

Static Force

£ ~————— Supports

Initial Electrostatic—Structure
Interface

Electrostatic Domain

Electrode

(a) Probleme d’optimisa- (b) Structure optimale
tion

F1G. 4.20 — Inverseur de force électromécanique [26]
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Optimisation d’une électrode plane

Dans ce travail, le probleme de conception est toujours placé dans le plan perpendiculaire
aux électrodes. Cependant, avec I’extension du domaine électrique au domaine d’optimisation,
il sera possible d’optimiser la géométrie d’une électrode plane. Une application semblable
dont l'interprétation est rappelée figure 4.21, a été présentée au second chapitre au cours
de la description des travaux de Raulli. La structure obtenue étant nécessairement plane, sa
fabrication a l'aide de dépot de couches est en principe tres aisée.

Structural
Design ————>
Domain

Final
Structure

Electrostatic
Forces

Cantilever
Support

Electrostatic
Design
Domain

Final ’
Electrode

F1c. 4.21 — Optimisation d’une électrode plane [26]

Contrainte de fabrication

Cependant, il ne faut pas oublier que I’électrode mobile doit étre libérée du substrat durant
la fabrication. La libération est effectuée par attaque chimique du matériau sacrificiel placé
entre 1’électrode mobile et le substrat. Néanmoins, la distance de pénétration de ’acide sous
I’électrode mobile est limitée. D’un point de vue géométrique, cela signifie que tout point de
I’électrode doit étre suffisamment proche d’un des bords de celle-ci pour pouvoir étre libéré.
Si ce n’est pas le cas, les concepteurs de microsystemes percent volontairement 1’électrode
supérieure afin de permettre a ’acide d’éliminer 'entiéreté du matériau sacrificiel (Fig. 4.22).
Cette contrainte de fabrication pourra donc étre inclue dans le processus d’optimisation afin
de rapprocher le résultat d’une structure réaliste.

F1G. 4.22 — Exemple de structure perforée afin de permettre sa libération (source : IEF)



Bibliographie

1]

[14]

[15]

M.M. ABDALLA, C.K. REDDY, W. FARIS et Z. GURDAL : Optimal design of an electro-
statically actuated microbeam for maximum pull-in voltage. Computers and Structures,
83:1320-1329, 2005.

E.L. ALLGOWER et K.GEORG : Introduction to numerical continuation methods. SIAM,
2003.

M. BECKERS : Topology optimization using a dual method with discrete variables. Struct.
Opt., 17(1):14-24, février 1999.

M.P. BENDS@E : Optimal Shape Design as a Material Distribution Problem. Struct.
Opt., 1:193-202, 1989.

M.P. BENDSOQE et N. KIKUCHI : Generating optimal topologies in structural design using
a homogenization method. Comput. Methods Appl. Mech. Eng., 71(2):197-224, 1988.

M.P. BENDS@E et O. SIGMUND : Topology Optimization : theory, methods, and applica-
tions. Springer Verlag, 2003.

L. BERKE : An efficient approach to the minimum weight design of deflection limited
structures. USAF Technical Memorandum, AFFDL-TM-70-4-FDTR, 1970.

A. Di1az et O. SIGMUND : Checkerboard patterns in layout optimization. Struct. and
Mult. Opt., 10(1):40-45, aott 1995.

P. DUYSINX :  Optimisation topologique : Du milieu continu a la structure élastique.
These de doctorat, Université de Liege, 1996.

P. DUYSINX : Layout optimization : a mathematical programming approach. DCAMM
repport 540, 1997.

P. DuysinX et M.P. BENDSQ@E : Topology optimization of continuum structures with local
stress constraints. Int. J. for Num. Meth. Eng., 43:1453-1478, 1998.

P. Duysinx, W.H. ZHANG et C. FLEURY : Sensitivity analysis with unstructured free
mesh generators in 2D shape optimization. Structural Optimization 93, The World
Congress on Optimal Designe of Structural Systems, Rio de Janeiro (Brazil), aout 1993.

P. Duysinx, W.H. Zuanc, H.G. ZHONG, P. BECKERS et C. FLEURY : Structural shape
optimization with error control. Proceedings of 1994 ASME, Design Technical Conference,
Mineapolis, MN 11 - 14, pages 51-59, septembre 1994.

H. A. ESCHENAUER et N. OLHOFF : Topology optimization of continuum structures : A
review. Applied Mechanics Reviews, 54(4):331-390, juillet 2001.

C. FLEURY : Le dimensionement automatique des structures élastiques. These de docto-
rat, Université de Liege, 1978.

83



Bibliographie 84

16]
17)
18]
19]
20]
21]
22]
23]
24]

[25]

[26]
[27]

28]

C. FLEURY : A unified approach to structural weight minimization. Comput. Methods
Appl. Mech. Eng., 20(1):17-38, 1979.

C. FLEURY : CONLIN : an efficient dual optimizer based on convex approximation
concepts. Struct. and Mult. Opt., 1(2):81-89, juin 1989.

R.B. HABER, C.S. YOG et M.P. BENDS@E : Variable-topology shape optimization with a
control on perimeter. Advances in Design Automation, 69:261-272, septembre 1994.

J.C. HALPIN et S.W. Tsa1 : Effects of environmental factors on composite materials.
AFML-TR, 67(423), juin 1969.

T.S. Kim et Y.Y KiM : MAC-based mode-tracking in structural topology optimization.
Computer and Struct., 74:375-383, janvier 2000.

M.D. MANKAME et G.K. ANANTHASURESH : Topology synthesis of electrothermal com-
pliant mechanisms using line elements. Struct. and Mult. Opt., 26:209-218, 2004.

S. PAMIDIGHANTAM, R. PUERS et H.TILMANS : Pull-in voltage analysis of fixed-fixed
beams. In MMFE2001, pages 269-272, 2001.

N. PEDERSEN : Mazimization of eigenvalues using topology optimization. Struct. and
Mult. Opt., 20(1):2-11, aotut 2000.

F. PONCELET : Optimisation topologique : applications pratiques et prise en compte de
contraintes non structurales. Mémoire de D.E.A., Université de Liege, 2005.

S.A. RAGON, Z. GURDAL et L.T. WATSON : A comparison of three algorithms for tracing
non linear equilibrium paths of structural systems. Int. J. Solids Struct., 39:689-698,
février 2002.

M. RAULLI et K. MAUTE : Topology optimization of electrostatically actuated Microsys-
tems. Struct. and Mult. Opt., 30(5):342-359, novembre 2005.

V. ROCHUS : Finite element modelling of strong electro-mechanical coupling in MEMS.
These de doctorat, Université de Liege, 2006.

V. RocHus, D. J. RIXEN et J.-C. GOLINVAL : Monolithic modelling of electro-mechanical
coupling in micro-structures. Int. J. for Num. Meth. Eng., 65(4):461-493, 2006.

L.A. SCHMIT : Structural design by systematic synthesis. Proceedings of the 2"¢ ASCE
Conference on Electronic Computation, pages 105-132, 1960.

K. SCKITTKOWSKI : NLPQL : A Fortran subroutine solving constrained nonlinear pro-
gramming problems. Annals of Operation research, 5(2):485-500, juin 1986.

O. SIGMUND : On the design of compliant mechanisms using topology optimization. Mech.
Struct. Mach., 25(4):493-526, 1997.

O. SIGMUND : Design of multiphysic actuators using topology optimization - Part I : One
material structures. - Part II : Two-material structures. Comput. Meth. Appl. Mech.
Eng., 190(49-50):6577-6627, 2001.

K. SVANBERG : The method of moving asymptotes - a new method for structural optimi-
zation. Int. J. for Num. Meth. in Eng., 24(2):359-373, 1987.

1.C. Taic et R.I. KERR : Optimization of aircraft strucutures with multiple stiffness
requirements. AGARD Second Symposium on Structural Optimization, AGARD CP
123 : paper 16, 1973.



Bibliographie 85

[35] J.E. WARREN : Nonlinear stability analysis of frame-type structures with random geome-
tric imperfections using a total-lagrangian finite element formulation. These de doctorat,
Virginia Polytechnic Institute and State University, janvier 1997.

[36] J.J. YAO : RF MEMS from a device perspective. J. of Micromech. and Microeng.,
10(4):R9-R38, 2000.

[37] L. YIN et G.K. ANANTHASURESH : A novel topology design scheme for the multi-physics

problems of electro-thermally actuated compliant micromechanisms. Sensors ans Actua-
tors, 97-98:599-609, avril 2002.

[38] O.C. Z1ENKIEWICZ et J.S. CAMPBELL : Shape optimization and sequential linear pro-
gramming, pages 109-126. John Wiley & Sons, New York, 1973.



	Introduction
	Modélisation électromécanique du phénomène de pull-in
	Introduction
	Phénomène de pull-in dans les microsystèmes électromécaniques
	Microsystèmes électromécaniques
	Phénomène de pull-in

	Modélisation éléments finis fortement couplée
	Approche variationnelle
	Matrice de raideur tangente
	Résumé

	Calcul de la courbe d'équilibre
	Algorithme de Newton-Raphson
	Algorithme de Riks-Crisfield
	Algorithme du normal flow

	Conclusion

	Optimisation topologique
	Introduction
	Méthodes d'optimisation en mécanique
	Dimensionnement automatique
	Optimisation de forme

	Optimisation topologique
	Formulation du problème général d'optimisation topologique
	Régularisation du problème par une approche microstructurale
	Méthodes alternatives de régularisation

	Optimisation topologique de valeurs propres
	Optimisation de microsystèmes électromécaniques
	Optimisation de la tension de pull-in
	Optimisation topologique d'actionneurs électrothermiques
	Optimisation topologique d'actionneurs électrostatiques

	Conclusion

	Procédure d'optimisation de la tension de pull-in
	Introduction
	Description du problème d'optimisation
	Calcul des sensibilités
	Vérification par différences finies
	Implémentation de la recherche des conditions de pull-in
	Algorithme de Riks-Crisfield
	Algorithme du normal flow
	Application des méthodes
	Conclusion

	Traitement des modes locaux
	Loi d'Halpin-Tsai

	Conclusion

	Applications
	Introduction
	Micropoutre bi-encastrée
	Convergence en fonction du maillage
	Evolution des fréquences propres

	Micropoutre encastrée-libre
	Contrainte de fabrication
	Contrainte de démoulage
	Poutre bi-encastrée

	Conclusion

	Conclusion et perspectives
	Conclusion
	Perspectives
	Approfondissement de l'approche actuelle
	Modification de l'approche


	Bibliographie

