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Introduction  22 

As the two main schools of statistical reasoning through which inference to the 23 

population is made by analysing data and incorporating uncertainty of measures, Bayesian 24 

and Frequentist philosophies have been used for estimation of diagnostic test performance and 25 

the true prevalence of diseases. However, some controversies exist in this estimation between 26 

these two philosophies like (e.g.) the use of fixed parameters values in frequentist approach or 27 

the inclusion of prior information in Bayesian approach. Is the philosophical debate between 28 

these two approaches still relevant for such practical questions?  29 

 30 

The Bayesian philosophy arose from a statement made by the Reverend Thomas 31 

Bayes (1702-1761), a British mathematician and theologian, who was the first to apply 32 

statistical probability inductively. According to Bayes, ‘all forms of inference are based on 33 

the validity of their premises’ and that ‘no inference can be known with certainty’ (Thrusfield, 34 

2005). In 1814, the French mathematician, Simon-Pierre Laplace published a mathematical 35 

description based on idea of Bayes (Gelman et al., 2004). In the Bayesian philosophy, 36 

scientific observations do not exist in a vacuum and information available prior to making a 37 

series of observations influences the interpretation of those observations (Thrusfield, 2005). 38 

 39 

Bayesian analysis can be regarded as a process of adjusting and updating the 40 

likelihood of an event based on data. Thus, population parameters, such as sensitivity (Se) and 41 

specificity (Sp) are assumed to have a probability distribution representing our prior 42 

knowledge of their values. This information is combined with observed factual field data in a 43 

model for estimation (Speybroeck et al., 2012a). For Bayesians, a parameter is assumed to 44 

have an intrinsic probability distribution with a 95% credibility interval (Gardner, 2002). 45 

Thus, Bayesian principles often are applied to estimate disease prevalence and test 46 
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characteristics, especially when there is no gold standard, in veterinary or human health (EnØe 47 

et al., 2000; Branscum et al., 2005; Rutjes et al., 2007; Meyer et al., 2009). 48 

 49 

The frequentist philosophy emerged in the 20th century with the works of Fisher 50 

(1922) and Neyman and Pearson (1928), who enunciated the concept of relative frequency 51 

(Vallverdu, 2008). This concept sustains the idea that a probability is a frequency determined 52 

from an experiment repeated a large number of times. Frequentist statisticians attempt to draw 53 

conclusions by focussing primarily on results obtained from experiments or samples. In the 54 

frequentist reasoning, a parameter is a fixed value with a 95% confidence interval derived 55 

from the sample. It is assumed that this 95% confidence interval would contain the true value 56 

of the parameter 95% of the time if estimation were repeated a large number of times. 57 

 58 

Therefore, Bayesian philosophical methods are based on the idea that unknown 59 

quantities, such as population means or proportions, have a probability distribution that 60 

expresses our prior knowledge or belief about such quantities, before we add the knowledge 61 

gained from observational data. Bayesian inference considers the data to be fixed and 62 

parameters to be random, because they are unknown. In frequentist methods, prior knowledge 63 

is apprehended differently and population means or proportions are considered as fixed values 64 

(Bland and Atlman, 2002). Frequentist inference considers the unknown parameters to be 65 

fixed and the data to be random. 66 

 67 

Both Bayesian and frequentist methods have been published to handle a variety of 68 

situations in which diagnostic tests are evaluated. In this personal view, we comment on 69 

requirements, limitations and controversial points of proposed methods for estimating test 70 

performance and the true prevalence of disease, through the case where one test or a 71 
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combination of two imperfect diagnostic tests is used in the absence of an appropriate gold 72 

standard. 73 

 74 

Estimating the true prevalence of disease and diagnostic test performance with 75 

imperfect tests 76 

The ability of a diagnostic test to correctly distinguish truly diseased from non-77 

diseased individuals when applied to a randomly chosen population is required to 78 

understanding the epidemiology of the disease, to implement disease control programmes and 79 

to evaluate new diagnostic tests (Greiner and Gardner, 2000; Lewis and Torgerson, 2012). 80 

Mathematically, estimation of test performance parameters is essentially the same question as 81 

estimating true prevalence (Lewis and Torgerson, 2012). The true prevalence (the proportion 82 

of truly diseased individuals in the population of interest) is also an essential parameter to 83 

appraise the impact of a disease in a population of interest and to prevent biased estimation of 84 

disease burden (Dohoo et al, 2003; Speybroeck et al., 2012a). 85 

 86 

The accuracy of estimation of true prevalence depends on the performance parameters 87 

of the test(s) to be applied (Ihorst et al., 2007). Among performance indicators of a diagnostic 88 

test, Se and Sp are the most commonly used. Test Se (or Sp) indicates the probability that a 89 

truly infected (or non-infected) individual yields a positive (or a negative) test result. Ideally, 90 

Se and Sp values for a given test should be estimated from a reference population with a 91 

clearly identified status determined by historical (accurate) information or, more commonly, 92 

by a relevant gold standard (Se = 1 and Sp = 1), which is able to discriminate 93 

infected/diseased individuals from non-infected/non-diseased individuals in a population 94 

(Dohoo et al., 2003). When such a perfect test exists, estimation of performance parameters of 95 

the new test, as well as true prevalence, can be done easily (Rogan and Gladen, 1978). 96 
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 97 

In practice, such a test is hardly ever available, given that the diagnostic performance 98 

of a test is influenced by a number of endogenous and exogenous factors (Rutjes et al., 2007). 99 

As an alternative, a combination of multiple imperfect tests (Se<1 and/or Sp<1) may be used 100 

for estimation of disease parameters (Black and Graig, 2002). With multiple tests, the overall 101 

misclassification errors are reduced and are expected to be lower than with a single imperfect 102 

test. 103 

 104 

As an example, isolation and identification of Brucella spp is considered as the 105 

reference standard method, and a positive test result provides an unequivocal diagnosis of a 106 

positive brucellosis case (OIE, 2009). However, these methods are not always feasible in 107 

diagnostic investigations. Therefore, diagnosis must be based on imperfect serological 108 

methods, such as the Rose Bengal test (RBT) and the indirect ELISA (iELISA), which are the 109 

two OIE proscribed tests for trade and are commonly used in combination for the diagnosis of 110 

brucellosis (Nielsen, 2000; Saegerman et al., 2004; OIE, 2009; Godfroid et al., 2010; Sanogo 111 

et al., 2013). 112 

 113 

Estimation of true disease prevalence and test characteristics with combined imperfect 114 

tests implies to deal with various challenges including (1) potential misclassification errors, 115 

(2) possible dependence between tests and (3) sparseness of data (Cowling et al., 1999; 116 

Dohoo, et al., 2003; Messam et al., 2008). Both Bayesian and frequentist approaches have 117 

been proposed to tackle these challenges. 118 

 119 

Estimation with a single test 120 



 6 

In the simple case where a single imperfect diagnostic test is applied in a population of 121 

interest, a total of three parameters have to be estimated, whatever the method: Se, Sp and true 122 

prevalence. In this case, the apparent prevalence (the proportion of positive test results) is the 123 

only information given by the data. From a frequentist perspective, estimation can be done 124 

only if fixed external information is provided on the values of Se and Sp, but this is difficult, 125 

since test properties are known to be context-specific and cannot be realistically assumed to 126 

be fixed and known in advance (Thrusfield, 1995), for example, the given values by the 127 

manufacturer of a test. 128 

 129 

As far as external information has to be included for estimation, Bayesian methods 130 

seem to be more helpful in obtaining acceptable and realistic results, since they offer the 131 

possibility to include the known uncertainty on diagnostic test characteristics while testing 132 

whether data conflict with prior information (Joseph et al., 1995; Berkvens et al. 2006; 133 

Speybroeck et al., 2012b). However, the accuracy of Bayesian estimates is dependent on the 134 

availability and the quality of prior knowledge, which may be a limiting factor and also 135 

constitute a source of controversy with frequentist philosophy. 136 

 137 

Estimation with a more than a single test 138 

When a combination of at least two tests is used, the test results for a given individual 139 

could be interpreted either in series (only animals testing positive to both tests are considered 140 

to be test positive) or in parallel (animals that tested positive to one test, to the other test or to 141 

both tests are considered to be test positive) (Black and Graig, 2002). A combination of tests 142 

may also result in dependence or correlation between the test results. As a consequence, either 143 

conditional independence or conditional dependence assumptions need to be made for 144 

accurate estimation of disease prevalence and test properties (Jones et al., 2010). 145 
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 146 

 Conditional independence implies that the results of the second test (T2) do not 147 

depend on whether the results of the first test (T1) are positive or negative among infected (or 148 

non-infected) individuals (Gardner et al., 2000; EnØe et al, 2000). If we consider the skin test 149 

or the iELISA, two tests for the diagnosis of brucellosis, conditional independence is likely to 150 

exist considering their respective targets (cellular response for the skin test and humoral 151 

response for iELISA), especially in a low prevalence context (Saegerman et al., 1999). In this 152 

case, calculation of test Se and Sp will depend mainly on the testing strategy (in parallel or in 153 

series) adopted (Dohoo et al., 2003). 154 

 155 

Mathematically, assumptions such as conditional independence and a constant 156 

prevalence over sub-populations, are needed to estimate the prevalence (EnØe et al., 2000). 157 

These assumptions are necessary to reduce the number of unknown parameters to be 158 

estimated (Berkvens et al., 2006). Gart and Buck (1966) and Staquet et al. (1981) proposed 159 

frequentist methods assuming conditional independence between a new test and a reference 160 

test with known Se and/or Sp. However, test Se (stage of infection) and Sp (similar 161 

immunogenic component) values are known to be under the influence of the characteristics of 162 

the population in which the test is applied (Saegerman et al., 2004; Berkvens et al., 2006) and 163 

cannot be considered as intrinsic constant and known parameters (Thrusfield, 1995). 164 

Moreover, assuming fixed values might not be realistic, since many factors, such as the 165 

presence of cross-reacting agents (Saegerman et al., 2004) and low infection pressure, may 166 

influence test parameter values (Speybroeck et al., 2012b). 167 

 168 

Another major frequentist method was proposed by Hui and Walter (1980) to deal 169 

with the case where Se and Sp values of the reference test are unknown. In addition to 170 
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conditional independence assumption, this latter approach required testing results from at 171 

least two populations with distinct prevalences of disease, but constant Se and Sp (Hui and 172 

Zhou, 1998; EnØe et al., 2000; Dohoo et al., 2003). This approach was extended to cover 173 

other settings, including cases with more than two tests and multiple populations (Walter and 174 

Irwig, 1988; Johnson et al., 2001). Accuracy of estimates with these methods also relies on 175 

the assumption of a large sample size (EnØe et al., 2000; Pouillot et al., 2002; Berkvens et al., 176 

2003; Pouillot, 2003). Toft et al. (2005) provide a useful overview of possible pitfalls when 177 

using this paradigm, especially the conditional independence assumption, which is not always 178 

satisfied in practice (Gardner et al., 2000; Dendukuri and Joseph, 2001; Branscum et al., 179 

2005; Berkvens et al, 2006). 180 

 181 

Testing situations handled by the frequentist models of Gart and Buck (1966) and the 182 

case of unknown Se and Sp already covered by the model of Hui and Walter (1980) were also 183 

examined under the Bayesian framework. Joseph et al. (1995) proposed a Bayesian model for 184 

estimation with no constrained parameters and assuming conditional independence. 185 

Numerically, this model appeared to be approximately equivalent to the frequentist approach 186 

(Dendukuri and Joseph, 2001). Nevertheless, even if estimation was possible with this latter 187 

model, inclusion of information on the uncertainty of parameters to be determined is required 188 

to get realistic and meaningful estimates (EnØe et al., 2000). 189 

 190 

Conditional dependence particularly occurs when combined tests target a similar 191 

biological phenomenon, such as presence of immunoglobulins (Igs) (Gardner et al., 2000; 192 

Dendukuri and Joseph, 2001). Thus, conditional dependence is likely to exist between the 193 

RBT and iELISA, two assays targeting the similar anti-Brucella antibodies. In fact, RBT 194 

detects the presence of IgG1 (IgG2 and IgM also have some agglutination activity), while the 195 
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iELISA targets IgG1 and/or IgG2, depending on the conjugate used (Nielsen, 2002; 196 

Saegerman et al., 2004 and 2010; Sanogo et al., 2013). In this scenario, calculation of test Se 197 

and Sp under conditional independence is adjusted with the inclusion of the covariance factor 198 

expressing the extent of the dependence among positive and negative results, and by taking 199 

the testing strategy into account (Dohoo et al., 2003). 200 

 201 

When dependence is present, adjustment of estimations should be done by considering 202 

biological and technical mechanisms giving rise to the test results and by including the extent 203 

of the dependence between them (Pepe and Janes, 2007). With two correlated tests, a total of 204 

seven parameters have to be estimated instead of five under conditional independence (e.g. 205 

two sensitivities, two specificities, two covariances and the true prevalence) and the 206 

dependence needs to be accounted for (Berkvens et al., 2006; Praet et al., 2006). Some 207 

frequentist methods require the application of at least two tests to allow estimation of 208 

parameters of interest (Dendukuri and Joseph, 2001). Such an approach might be impractical, 209 

when tests are expensive, time consuming or invasive. 210 

 211 

Instead of using results from at least two tests to allow estimation of disease 212 

parameters, Bayesian modelling offers an alternative option to get the estimates of the true 213 

prevalence of disease and test Se and Sp, while accounting for conditional dependence (Qu 214 

and Hagdu, 1998; Gardner et al., 2000; Dendukuri and Joseph, 2001; Georgiadis et al., 2003; 215 

Sanogo et al., 2013). However, informative priors are needed for at least four of the 216 

parameters of the model, which are two sensitivities, two specificities, two covariances and 217 

the true prevalence. 218 

 219 

Bayesians versus frequentist methods 220 
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Previously difficult to apply because of major mathematical and computational 221 

requirements, application of Bayesian approaches was facilitated by the Markov Chain Monte 222 

Carlo (MCMC) methods and the availability of high quality statistical software packages 223 

including JAGS (Plummer, 2003), WinBUGS (Lunn et al., 2000) and OpenBUGS (Lunn et 224 

al., 2009). These approaches are now the tools of choice in many areas of application and 225 

appear to offer some practical advantages over their frequentist counterparts (Greiner and 226 

Gardner, 2000; Dunson, 2001; O’Hagan, 2004). 227 

 228 

By giving the possibility to combine additional knowledge and the likelihood of 229 

parameters in the population of interest in the same model, estimation is facilitated in 230 

Bayesian methods. Thus, uncertainty on Se and/or Sp of the reference test, expressed as 231 

probability distributions, are combined with factual observed field data to produce posterior 232 

probability distributions of true prevalence and test performance (Speybroeck et al, 2012b). 233 

Compared to frequentist methods, Bayesian methods also seem to offer more options and 234 

flexibility to get the best possible estimates of parameters in various realistic settings. 235 

Especially, the presence of conditional dependence when two imperfect tests are used can be 236 

addressed in a Bayesian framework by running both models with conditional independence 237 

between tests given true disease status and those with conditional dependence and checking 238 

the robustness of parameters or using model selection criteria such as the Deviance 239 

Information Criterion (DIC) (Berkvens et al., 2006; Dendukuri et al., 2010). Robustness of 240 

estimates should also be systematically checked across a range of plausible values based on 241 

the evidence to date (EnØe et al., 2000, Speybroeck et al., 2012a). 242 

 243 

A systematic review and/or quantitative reviews summarising data using appropriate 244 

meta-analytic methodologies should be particularly preferred to get informative priors on 245 
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diagnostic test performance (Irwig et al., 1995; Dohoo et al., 2003, EFSA, 2009). In any case, 246 

application of evidence-based medicine and the quality assurance of the process to get prior 247 

information are important to assess the quality of the approach. In the case of emerging 248 

infectious diseases, where prior information may not be available yet and constitutes a 249 

limiting factor, non-informative priors might be used. When no informative prior knowledge 250 

is included in the estimation process, results of frequentist and Bayesian analysis are 251 

extremely similar (EnØe et al., 2000; Dendukuri and Joseph, 2001). Whatever the priors, a 252 

sensitivity analysis of prior information should be undertaken to assess its potential influence 253 

on estimates (Menten et al., 2008; Sanogo et al., 2013). Thus special care should be given to 254 

the selection of available information in order to get unbiased estimates (Spiegelhalter et al., 255 

2002; Berkvens et al., 2006). The procedure for incorporating available knowledge or the 256 

prior information into the model and the mathematical issues have been described previously 257 

(EnØe et al., 2000; Gardner et al., 2000; Dendukuri and Joseph, 2001; Branscum et al., 2005; 258 

Berkvens et al. 2006). 259 

 260 

 Besides the challenges related to misclassification bias, the representativeness of data 261 

regarding the population of interest and the quality assurance of the process (traceability) are 262 

two key issues to be considered in both approaches. Thus, different stages of the disease and 263 

age of animals should be considered and an appropriate sampling strategy should be used to 264 

compose the reference population and consequently minimise sampling error and biased 265 

posterior estimates. Consequences of using imperfect tests should be accounted for at the 266 

analysis stage as well as the planning stage of the estimation process. 267 

 268 

Conclusions 269 
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Controversies between the two approaches are more a philosophical issue than a 270 

practical issue. Although they originate from different statistical philosophies, Bayesian and 271 

frequentist approaches are two methodological options to deal with test performance and true 272 

prevalence estimation issues. While frequentists concentrate only on likelihood-based 273 

estimation, Bayesians use the likelihood and prior information for estimation. Both 274 

approaches proposed solutions to address challenges related to estimation of test performance 275 

and true prevalence taking into account field conditions. Whatever the approach, one should 276 

ensure that appropriate assumptions related to the application of a given approach hold.  277 

 278 

Conflict of interest statement 279 

None of the authors of this paper has a financial or personal relationship with other 280 

people or organisations that could inappropriately influence or bias the content of the paper. 281 

 282 

Acknowledgements 283 

The authors would like to thank the Institute of Tropical Medicine of Antwerp and the 284 

University of Liège, Belgium, for academic support. 285 

 286 

References 287 

Berkvens, D., Speybroeck, N., Praet, N., Adel, A., Lesaffre, E., 2006. Estimating disease 288 
prevalence in a Bayesian framework using probabilistic constraints. Epidemiology 289 
17, 145-153. 290 

 291 
Berkvens, D.L., Speybroeck, N., Lesaffre, E., Saegerman, C., 2003. Comments on “Pouillot, 292 

R., Gerbier, G., Gardner, I.A., 2002. “TAGS”, a program for the evaluation of test 293 
accuracy in the absence of a gold standard. Preventive Veterinary Medicine 53, 67-294 
81”. Preventive Veterinary Medicine 59, 181-183. 295 

 296 
Black, M.A., Craig, B.A., 2002. Estimating disease prevalence in the absence of a gold 297 

standard. Statistics in Medicine 21, 2653-2669. 298 

 299 
Bland, J.M., Altman, D.G., 2002. Statistics notes: Validating scales and indexes. British 300 

Medical Journal 324, 606-607. 301 



 13 

 302 
Branscum, A.J., Gardner, I.A., Johnson, W.O., 2005. Estimation of diagnostic-test sensitivity 303 

and specificity through Bayesian modelling. Preventive Veterinary Medicine 68, 304 
145-163. 305 

 306 
Cowling, D.W., Gardner, I.A., Johnson, W.O., 1999. Comparison of methods for estimating 307 

individual-level prevalence based on pooled samples. Preventive Veterinary 308 
Medicine 39, 211-225. 309 

 310 

Dendukuri, N., Bélisle, P., Joseph, L., 2010. Bayesian sample size for diagnostic test studies 311 
in the absence of a gold standard: Comparing identifiable with non-identifiable 312 
models. Statistics in Medicine 29, 2688-2697. 313 

 314 
Dendukuri, N., Joseph, L., 2001. Bayesian approaches to modeling the conditional 315 

dependence between multiple diagnostic tests. Biometrics 57, 158-167. 316 
 317 

Dohoo, I., Martin, W., Stryhn, H., 2003. Veterinary Epidemiologic Research. AVC, 318 
Charlottetown, Prince Edward Island, Canada, pp. 85-120. 319 

 320 
Dunson, D.B., 2001. Commentary: Practical advantages of Bayesian analysis of 321 

epidemiologic data. American Journal of Epidemiology 12, 1222-1226. 322 
 323 
EnØe, C., Georgiadis, M.P., Johnson, W.O., 2000. Estimation of sensitivity and specificity of 324 

diagnostic tests and disease prevalence when the true disease state is unknown. 325 

Preventive Veterinary Medicine 45, 61-81. 326 
 327 
European Food Safety Authority (EFSA), 2009. Scientific Opinion of the Panel on Animal 328 

Health and Welfare (Question No EFSA-Q-2008-665), adopted on 5 June 2009. 329 
Porcine brucellosis (Brucella suis). EFSA Journal 1144, 1-112. 330 

 331 
Gardner, I.A., 2002. The utility of Bayes theorem and Bayesian inference in veterinary 332 

clinical practice and research. Australian Veterinary Journal 80, 758-761. 333 

 334 
Gardner, I.A., Stryhn, H., Lind, P., Collins, M.T., 2000. Conditional dependence between 335 

tests affects the diagnosis and surveillance of animal diseases. Preventive Veterinary 336 

Medicine 45, 107-122. 337 

 338 
Gart, J.J., Buck, A.A., 1966. Comparison of a screening test and a reference test in 339 

epidemiologic studies. II. A probabilistic model for the comparison of diagnostic 340 
tests. American Journal of Epidemiology 83, 593-602. 341 

 342 

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian data analysis. Chapman & 343 
Hall/CRC, London, UK, 696 pp. 344 

 345 
Georgiadis, M. P., Johnson, W. O., Gardner, I. A. and R. Singh, R., 2003. Correlation-346 

adjusted estimation of sensitivity and specificity of two diagnostic tests. Journal of 347 

the Royal Statistical Society Series C 52, 63-76. 348 

 349 
Godfroid, J., Nielsen, K., Saegerman, C., 2010. Diagnosis of brucellosis in livestock and 350 

wildlife. Croatian Medical Journal 51, 296-305. 351 



 14 

 352 
Greiner, M., Gardner, I.A., 2000. Application of diagnostic tests in veterinary epidemiologic 353 

studies. Preventive Veterinary Medicine 45, 43-59. 354 
 355 

Hui, S.L., Walter, S.D., 1980. Estimating the error rates of diagnostic tests. Biometrics 36, 356 
167-171. 357 

 358 
Hui, S.L., Zhou, X.H., 1998. Evaluation of diagnostic tests without gold standards. Statistical 359 

Methods in Medical Research 7, 354-370. 360 

 361 
Ihorst, G., Forster, J., Petersen, G., Werchau, H., Rohwedder, A., Schumacher, M., 2007. The 362 

use of imperfect diagnostic tests had an impact on prevalence estimation. Journal of 363 

Clinical Epidemiology 60, 902-910. 364 
 365 
Irwig, L., Macaskill, P., Glasziou, P., Fahey, M., 1995. Meta-analytic methods for diagnostic 366 

test accuracy. Journal of Clinical Epidemiology 48, 119-130. 367 

 368 
Johnson, W.O., Gastwirth, J.L., Pearson, L.M., 2001.Screening without a ‘‘gold standard’’: 369 

the Hui-Walter paradigm revisited. American Journal of Epidemiology 153, 921-924. 370 
 371 

Jones, G., Johnson, W.O., Hanson, T.E., Christensen, R., 2010. Identifiability of models for 372 
multiple diagnostic testing in the absence of a gold standard. Biometrics 66, 855-863. 373 

 374 

Joseph, L., Gyorkos, T., Coupal, L., 1995. Bayesian estimation of disease prevalence and the 375 

parameters of diagnostic tests in the absence of a gold standard. American Journal of 376 
Epidemiology 141, 263-272. 377 

 378 

Lewis, F.I., Torgerson, P.R., 2012. A tutorial in estimating the prevalence of disease in 379 
humans and animals in the absence of a gold standard diagnostic. Emerging Themes 380 

in Epidemiology 9, 9. 381 
 382 
Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D., 2000. WinBUGS-A Bayesian modelling 383 

framework: concepts, structure, and extensibility. Statistics and Computing10, 325–384 
337 385 

 386 

Lunn, D., Spiegelhalter, D., Thomas, A., Best, N., 2009. The BUGS project: evolution, 387 

critique and future directions (with discussion). Statistics in Medicine 28, 3049–3082 388 
 389 
Menten, J., Boelaert, M., Lesaffre, E., 2008. Bayesian latent class models with conditionally 390 

dependent diagnostic tests: A case study. Statistics in Medicine 27, 4469-4488. 391 
 392 

Messam, L.L.M., Branscum, A.J., Collins, M.T., Gardner, I.A., 2008. Frequentist and 393 
Bayesian approaches to prevalence estimation using examples from Johne‘s disease. 394 
Animal Health Research Reviews/Conference of Research Workers in Animal 395 
Diseases, 9, 1-23. 396 

 397 

Meyer, N., Vinzio, S., Goichot, B., 2009: La statistique Bayésienne: Une approche des 398 

statistiques adaptée la clinique. La Revue de Médecine Interne 30, 242-249. 399 
 400 



 15 

Nielsen, K., 2002. Diagnosis of brucellosis by serology. Veterinary Microbiology 90, 447-401 
459. 402 

 403 
O’Hagan, A., 2004. Bayesian statistics: Principles and benefits. Wageningen UR Frontis 404 

Series 3, 31-45. http://library.wur.nl/frontis/bayes/03_o_hagan.pdf (accessed 12 405 
August 2013). 406 

 407 
Pepe, M.S., Janes, H., 2007. Insights into latent class analysis of diagnostic test performance. 408 

Biostatistics 8, 474-484. 409 

 410 
Plummer, M., 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs 411 

sampling. URL http://www.ci.tuwien.ac.at/Conferences/DSC-412 

2003/Drafts/Plummer.pdf 413 
 414 
Pouillot, R., Gerbier, G., Gardner, I. A., 2002. “TAGS”, a program for the evaluation of test 415 

accuracy in the absence of a gold standard. Preventive Veterinary Medicine 53, 67-416 

81. 417 
 418 
Pouillot, R., 2003. Response from R. Pouillot, G. Gerbier and I.A. Gardner to D.L. Berkvens 419 

et al. (2002). Preventive Veterinary Medicine 59, 185-187. 420 

 421 
Praet, N., Dorny, P., Saegerman, C., Marcotty, T., Berkvens, D., 2006. Estimation de la 422 

prévalence d’une maladie et des caractéristiques des tests diagnostiques par une 423 

approche Bayésienne. Epidémiologie et Santé Animale 49, 113-130. 424 

 425 
Qu, Y., Hagdu, A., 1998. A model for evaluating the sensitivity and specificity for correlated 426 

diagnostic tests in efficacy studies with an imperfect reference test. Journal of the 427 

American Statistical Association 93, 920-928. 428 
 429 

Rogan, W.J., Gladen, B., 1978. Estimating prevalence from the results of a screening test. 430 
American Journal of Epidemiology 107, 71-76. 431 

 432 

Rutjes, A., Reitsma, J., Coomarasamy, A., Khan, K., Bossuyt, P., 2007. Evaluation of 433 
diagnostic tests when there is no gold standard. A review of methods. Health 434 

Technology Assessment 11, 1-51. 435 

 436 

Saegerman, C., Berkvens, D., Godfroid, J., Walravens, K., 2010. Bovine brucellosis. 437 
Lavoisier & Commonwealth Agricultural Bureau – International (Ed.).  In: Infectious 438 
and Parasitic Diseases of Livestock, Paris, France, pp. 971-1001.  439 

 440 
Saegerman, C., De Waele, L., Gilson, D., Godfroid, J., Thiange, P., Michel, P., Limbourg, B., 441 

Vo, T.K.O., Limet, J., Letesson, J.J., Berkvens, D., 2004. Evaluation of three serum 442 
i-ELISAs using monoclonal antibodies and protein G as peroxidase conjugate for the 443 
diagnosis of bovine brucellosis. Veterinary Microbiology 100, 91-105. 444 

 445 
Saegerman, C., Vo, T.K.O., De Waele, L., Gilson, D., Bastin, A., Dubray, G., Flanagan, P., 446 

Limet, J.N., Letesson, J.J., Godfroid, J., 1999. Diagnosis of bovine brucellosis by 447 

skin test: Conditions for the test and evaluation of its performance. Veterinary 448 
Record 145, 214-218. 449 

 450 

http://library.wur.nl/frontis/bayes/03_o_hagan.pdf
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf
http://yadda.icm.edu.pl/yadda/contributor/d972040eb3f05b3f3d5d87c893f26ef2
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.elsevier-37d6f812-86a7-3db1-b0fd-a3ad18061ea0
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.elsevier-d06183cb-125d-38c1-be13-0e283d2de834


 16 

Sanogo, M., Thys, E., Achi, Y.L., Fretin, D., Michel, P., Abatih, E., Berkvens, D., Saegerman, 451 
C., 2013. Bayesian estimation of true prevalence, sensitivity and specificity of Rose 452 
Bengal test and indirect ELISA for the diagnosis of bovine brucellosis. The 453 
Veterinary Journal 195, 114-120. 454 

 455 
Speybroeck, N., Devleesschauwer, B., Joseph, L., Berkvens, D., 2012a. Misclassification 456 

errors in prevalence estimation: Bayesian handling with care. International Journal of 457 
Public Health. 58, 791-795. 458 

 459 

Speybroeck, N., Williams, C.J., Lafia, K.B., Devleesschauwer, B., Berkvens, D., 2012b. 460 
Estimating the prevalence of infections in vector populations using pools of samples. 461 
Medical and Veterinary Entomology 26, 361-371. 462 

 463 
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A., 2002. Bayesian measures of 464 

model complexity and fit. Journal of the Royal Statistical Society. Series B. 465 
Statistical Methodology 64, 583-616. 466 

 467 
Staquet, M., Rozencweig, M., Lee, Y.J., Muggia, F.M., 1981. Methodology for the 468 

assessment of new dichotomous diagnostic tests. Journal of Chronic Diseases 34, 469 
599-610. 470 

 471 
Thrusfield, M., 2005. Veterinary Epidemiology. Blackwell Science, Oxford, UK, pp. 303-330. 472 
 473 

Toft, N., Jorgensen, E., Hojsgaard, S. 2005. Diagnosing diagnostic tests: Evaluating the 474 

assumptions underlying the estimation of sensitivity and specificity in the absence of 475 
a gold standard. Preventive Veterinary Medicine 68, 19-33. 476 

 477 

Vallverdú, J., 2008. The false dilemma: Bayesian vs. Frequentist. E-LOGOS Electronic 478 
Journal for philosophy 1-17. 479 

 480 
Walter, S.D., Irwig, L.M., 1988. Estimation of test error rates, disease prevalence and relative 481 

risk from misclassified data: A review. Journal of Clinical Epidemiology 41, 923-482 

927. 483 
 484 

World Animal Health Organisation (OIE), 2009. Chapter 2.4.3. Bovine brucellosis. In: 485 

Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Paris, France, pp. 486 

1-35. 487 
http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.03_BOVINE_B488 
RUCELL.pdf (accessed 12 August 2013). 489 

 490 

http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.03_BOVINE_BRUCELL.pdf
http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.03_BOVINE_BRUCELL.pdf

