Synthesis of $[^{18}F]$4-(4-fluorophenyl)-1,2,4-triazole-3,5-dione: an agent for specific radiolabelling of tyrosine

Flagothier Jessica,a,b Warnier Corentin,b Dammicco Sylvestre,a,b Lemaire Christianb and Luxen Andréa,b

We developed a new $[^{18}F]$ prosthetic group, the $[^{18}F]$4-(4-fluorophenyl)-1,2,4-triazole-3,5-dione ($[^{18}F]$FTPAD), used for its specific ligation with tyrosine-containing peptides or protein in order to develop a new and versatile radiolabelling technique that could provide a useful tool for new developments in PET imaging.

Introduction

Peptides and proteins are largely used as radiopharmaceuticals for positron emission tomography (PET) studies. The most frequently used radionuclides for PET provide a wide range of physical half-lives that are compatible with the peptide or protein biological half-lives. They can be classified according to their mode of labelling. The peptide is covalently coupled, often via a spacer, to a chelator (e.g. DOTA, NOTA) which can complex radiometals as gallium-68, copper-64, yttrium-86 or carry a prosthetic group that can be labelled with iodine-124 or fluorine-18 ions.$^{3-5}$ The introduction of fluorine-18 requires harsh conditions (high temperature and strong base) that are not compatible with direct labelling of biomolecules. Therefore, two strategies are usually explored. The first one is the incorporation of a linker onto the amino acid. The peptide is coupled via the linker to the $[^{18}F]$ prosthetic group. For instance, the coupling can be realized via Huisgen cycloaddition between $[^{18}F]$fluoroethylazide7 or 1-(azidomethyl)-4-$[^{18}F]$-fluorobenzene8 and an alkyne or azide-bearing peptide or protein, via photoclick to avoid the use of copper,9 via oxime formation between $[^{18}F]$fluorobenzaldehyde and modified peptides9 or via the tetrazine trans-cyclooctene reaction.10

The second strategy is the $[^{18}F]$ prosthetic group ligation directly on naturally available function of amino acid side chains of peptides or proteins. E.g.: $[^{18}F]$SFB,11 $[^{18}F]$FBEM12,13 can be linked under mild conditions on NH_2, SH group of the peptide.

Lysine and cysteine are the most commonly functionalized amino acids: however, the high abundance of lysine makes specific modification difficult and cysteine is most often found in disulfide linked pairs in protein natural environment.

We hereby focus on the coupling between a new prosthetic group and a tyrosine-containing peptide. In literature, these reactions often use transition-metal-mediated processes.$^{14-17}$ However, transition metal mediated reactions are to be avoided as much as possible in radiochemistry. The transition metals are indeed often toxic and must be removed efficiently from the sample prior to injection, which complicates and lengthens both the synthesis and quality control of the radiotracer. Francis and co-workers have also explored the labelling of tyrosine residues through a three-component Mannich-type reaction with aldehydes and anilines.$^{18-20}$ But these reactions are not transposable in $[^{18}F]$ radiochemistry due to the long synthesis time (20–24 h).

Recently, Ban and co-workers have reported a tyrosine bioconjugation through ene-type reactions21,22 (Scheme 1).

In this reaction, the cyclic diazodicarboxamide PTAD, an electrophilic compound, reacts selectively on the o-position of the phenol side chain of tyrosine in mild aqueous conditions (aqueous buffer). They showed that histidine, serine and cysteine were not modified by PTAD and determined that tryptophan and lysine did not interfere with the modification of tyrosine. That indicates that this reagent exhibits a high degree

Scheme 1 Tyrosine bioconjugation through ene-type reaction developed by Ban and co-workers.

Cite this: RSC Adv., 2013, 3, 24936

Received 26th August 2013
Accepted 10th October 2013
DOI: 10.1039/c3ra44666b
www.rsc.org/advances
of chemoselectivity. They also demonstrated that the 1,2,4-triazolidine-3,5-dione linkage is hydrolytically and thermally stable, a great advantage for future in vivo injections.

Due to these positive properties, this technique was chosen to link a $^{[18}F$] prosthetic group to the tyrosine included in a peptide. We herein present the synthesis of $^{[18}F$]4-(4-fluorophenyl)-1,2,4-triazole-3,5-dione $^{[18}F$]F-PTAD and the preliminary results for the coupling with tyrosine.

Results and discussion

We initially focused on the direct introduction of fluorine-18 on the cyclic diazodicarboxamide 1. Compound 1 can be easily prepared in three steps with 4-nitrobenzylisocyanate as starting material$^{11-13,24}$ but cannot be isolated due to its high instability.25 The second approach to obtain compound 4 was the labelling of 4-(4-nitrophenyl)-1,2,4-triazolidine-3,5-dione 2 followed by the triazolidine ring oxidation step (Scheme 2).

Unfortunately, all the attempts to obtain this compound $^{[18}F$]F 3 (Krypto$^\text{at}$ temperatures between 90$^\circ$C and 180$^\circ$C were unsuccessful. The labelling conditions are too harsh and only ^{18}F fluoride and decomposition products of 4-(4-nitrophenyl)-1,2,4-triazolidine-3,5-dione precursor were recovered.

A second possibility was the addition of an aliphatic chain containing a tosylate leaving group on the PTAD compound (Scheme 3). Because of the poor results obtained during this aliphatic precursor synthesis including high instability of the triazolidine ring (data not shown), the strategy was changed and the fluorine-18 was introduced at the beginning of the synthesis.

Precursor 5 was synthesized according to the literature using 4-nitroaniline as starting material28 and involved two reaction steps: dimethylation of 4-nitroaniline with iodomethane and trimethylammonium triflate formation with methyltrifluoromethanesulphonate. Precursor 5 was obtained with a global yield of 28%.

During the radiosynthesis of compound $^{[18}F$]F 10 (Scheme 4), the identification of $^{[18}F$] compounds 6–10 was based on radio-TLC and radio-HPLC analyses showing the same eluting factor or retention time as the corresponding cold references compounds.

Compound 5 was labelled in DMSO at 100$^\circ$C in 10 minutes with standard KF$^{[18}F$]-K$_{222}$/potassium carbonate conditions to afford $^{[18}F$]6 with 91 ± 4% of radiochemical yield (decay corrected). $^{[18}F$]6 was diluted in water and washed on a C18 Sep-Pak cartridge to eliminate the remaining precursor and other impurities. This is why precursor 5 was preferred to the 1,4-dinitrobenzene which is hardly separated from 4-fluoronitrobenzene. Reduction of the nitro group with sodium borohydride in the presence of palladium on activated carbon in methanol gave compound $^{[18}F$]7 with a radiochemical yield (DC) of 80 ± 6%.28

This reduction method is well suited because Pd/C can be easily filtered through a glass fibre filter (Millex) before the trapping onto a tC18 environmental Sep-Pak® cartridge. Since the next step requires a dry reaction medium, the cartridge is dried under a stream of nitrogen. $^{[18}F$]7 is then eluted with dry dichloromethane and coupled with ethyl carbazate in the presence of triphosgene and triethylamine.29,30 This method was preferred to the one proposed by Mallakpour et al.,31 which is more longer, inapplicable to the fluorine-18 chemistry, and affords lower yield. Directly after the evaporation of dichloromethane, cyclisation of semicarbazide $^{[18}F$]8 was realized as described by Cookson et al.24 in basic aqueous medium and $^{[18}F$]9 was obtained in acetonitrile after its purification on a tC18® short Sep-Pak® cartridge. The radiochemical yield (DC) for the coupling and cyclisation steps is 65 ± 5%. The last step is the triazolidine ring oxidation with N-bromosuccinimide and pyridine in acetonitrile. The global radiochemical yield for the synthesis of $^{[18}F$]4-(4-fluorophenyl)-1,2,4-triazole-3,5-dione is 50% (DC).

Because of the high instability of the F-PTAD compound, the crude solution of $^{[18}F$]F 10 was directly used, without purification, in tyrosine ligation reaction. We chose N-acyl tyrosine methylamide as a model for the preliminary studies of the ligation of $^{[18}F$]F-PTAD with a tyrosine, as described by Ban and co-workers31 (Scheme 5). $^{[18}F$]11 was obtained after the coupling between $^{[18}F$]F 10 and N-acyl tyrosine methylamide in PBS/CH$_3$CN (1/1, v/v) solution with 65 ± 5% yield. When the $^{[18}F$]F-PTAD was added continuously over a period of 2 minutes, instead of a single addition, the reaction yield increased significantly from 40% to 70%. In some cases, when the tyrosine of the target compound or protein are

Scheme 2 (A) Radiolabelling not tested due to the high instability of compound 1. (B) Radiolabelling followed by the triazolidine ring oxidation.

Scheme 3 Aliphatic precursor derived from PTAD compound.

Scheme 4 Preparation of $^{[18}F$]4-(4-fluorophenyl)-1,2,4-triazole-3,5-dione and coupling with N-acyl tyrosine methylamide. (i) KF$^{[18}F$]-K$_{222}$/K$_2$CO$_3$, DMSO, 10 min, 100°C, 94%; (ii) NaBH$_4$, Pd/C, MeOH, 5 min, rt, 88%; (iii) triphosgene, rt, NEt$_3$, 5 min, 0°C, ethylcarbazate, 10 min, 80%; (iv) 4 M KOH, 5 min, rt, 85%; (v) NBS, pyridine, CH$_3$CN.
less accessible, the isocyanate decomposition products of PTAD compounds may be formed and urea formation at lysines is likely. This problem is solved by using Tris buffer. In our case, the use of Tris buffer in the [18F]F-PTAD-[N-acetyl tyrosine methylamide ligation instead of PBS provides the desired tyrosine ligation product with the same yield. The crude reaction mixture was diluted with water and injected onto a semipreparative HPLC to obtain pure [18F]F-PTAD. The global radiochemical yield (synthesis of [18F]F-PTAD, ligation with N-acetyl tyrosine methylamide and semipreparative HPLC purification) is 20% (DC) and the synthesis lasts 2 h 15 min.

Conclusion

We synthesized a new [18F]F prosthetic group, the [18F]F-4-(4-fluorophenyl)-1,2,4-triazole-3,5-dione ([18F]F-PTAD) with good yield and proved that this [18F]F-PTAD can be efficiently coupled with a tyrosine, the N-acetyl tyrosine methylamide. This radiosynthesis was designed to be implemented on an automatic synthesizer. Its automation is in progress in our laboratory on a Fastlab® synthesizer from GE Healthcare.

Experimental procedure

General procedure

Reagents and solvents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. NMR spectra were recorded on Bruker Avance DRX-400 instruments (1H at 400 MHz and 13C at 100 MHz). 1H and 13C spectra were referenced to TMS using the 13C resonance of the multiplet. All the values are expressed in part per million (ppm). TLC analyses were performed on Macherey-Nagel Polygram SIL G/UV254 plates using UV light as visualizing agent. A Bioscan TLC scanner model AR2000 was used for analysis of the [18F]F labelled compounds. HPLC analyses were run on a Waters system (616 pump, a manual Rheodyne injector, 996 PDA detector and NaI(Tl) scintillation detector from Eberline) controlled by Empower® software. Analytical HPLC Analyses were performed on an Xbridge® column C18 (4.6 x 150 mm; 5 μm) with a flow rate of 1 mL min⁻¹. During the radiochemical synthesis, analytical HPLC analyses were performed using the following conditions (grad1): CH3CN/H2O, linear 5 min from 5/95 to 15/85, linear 15 min from 15/85 to 50/50 and the washout linear 10 min from 50/50 to 90/10. Semipreparative HPLC analyses were performed on an Xbridge® column C18 (10 x 250 mm; 5 μm) using the following conditions (grad 2): CH3CN/H2O, linear 30 min from 5/95 to 25/75 and linear 5 min from 25/75 to 50/50 with a flow rate of 5 mL min⁻¹.

Chemistry

p-Fluoro-4-phenyl-1-carbethoxysemicarbazide. This compound was synthesized according to the literature.

4-(4-Fluorophenyl)-1,2,4-triazolidine-3,5-dione. This compound was synthesized according to the literature.

4-(4-Fluorophenyl)-3H-1,2,4-triazole-3,5(4H)-dione. This compound was synthesized according to the literature. The red solution should be used for bioconjugation without isolation.

(S)-2-Acetamido-3-(4-hydroxy-3-(4-fluorophenyl)-3,5-dioxo-1,2,4-triazolidin-1-yl)phenyl]-N-methylopropanamide. This compound was synthesized according to the literature.

N,N-Dimethyl-4-nitroaniline. This compound was synthesized according to the literature using 4-nitroaniline as starting material. The compound was purified by recrystallization and an orange solid was obtained with a yield of 70%.

N,N,N-Trimethyl-4-nitrobenzenammonium triflate. This compound was synthesized according to the literature using N,N,N-dimethyl-4-nitroaniline as starting material. The product was obtained as a pale yellow solid with a yield of 47%.

Radiochemistry

No-carrier-added [18F] fluoride was obtained by proton bombardment of an [18O]-enriched water target via the 18O(p,n)18F reaction. The activity was trapping by passing the target water through a Sep-Pak light QMA cartridges (Waters). The fluoride ions on the cartridge were eluted by 700 μL of 50/50 CH3CN/H2O solution of K2CO3 (8 mg) and Kryptofix 222 (26 mg) into a heated conical glass vial (120 °C). This eluate was brought to dryness by azotropic distillation after three additions of acetonitrile (150 μL) under a stream of nitrogen gas to give the no-carrier-added K[18F]-K222 complex. A solution of 10 mg of N,N,N-trimethyl-4-nitrobenzenammonium triflate in 1 mL of
DMSO was added to the dried residue and the mixture was heated at 100 °C during 8 minutes. Labelling efficiency was checked by radio-TLC (silica gel, ethyl acetate/hexane 1/1 v/v), \(R_t \) values: \([^{18}F]\text{fluoride} = 0, [^{18}F]\text{fluoronitrobenzene} = 0.8\). HPLC analysis (grad1): \(t_R = 22 \text{ min} \). TLC radiochemical conversion = 91 ± 4% (\(n > 10 \)).

The reaction medium was poured into water (10 mL) and trapped onto a previously activated with acetonitrile (5 mL) and washed with water (5 mL) C18 environmental Sep-Pak cartridge (Waters). The \([^{18}F]\text{fluoronitrobenzene} \) was rinsed with 10 mL of water in order to elimate the starting precursor and was eluted with 2 mL of methanol in a vial containing 3 mg of Pd/C and 25 mg of NaBH₄. The mixture was stirred 5 minutes at room temperature. The reduction efficiency was checked by radio-TLC (silica gel, ethyl acetate/hexane 1/1 v/v), \(R_t \) values: \([^{18}F]\text{fluoro-4-phenyl-1-carbethoxysemicarbazide} = 0.4\). HPLC analysis (grad1): \(t_R = 14 \text{ min} \). Radiochemical yield (decay corrected) = 80 ± 6% (\(n > 10 \)). The methanolic solution was poured into water (10 mL) and passed through a glass fiber filter (Milllex) and trapped onto a C18 environmental Sep-Pak cartridge (Waters) previously activated with acetonitrile (5 mL) and washed with water (5 mL). The cartridge was flushed by a stream of nitrogen during 5 minutes and then eluted with 2.5 mL of dry dichloromethane in a vial containing 10 mg of triphosgene. The vial was cooled at 0 °C and 20 mL of dry triethylamine was added. The mixture was stirred for 5 minutes before the addition of 40 mg of ethylcarbazate. The solution was stirred 10 minutes at 0 °C to give \([^{18}F]\text{fluoro-4-phenyl-1-carbazoylsuccinimide} \) (\(1 \)). HPLC analysis (grad1): \(t_R \) values: \([^{18}F]\text{fluoro-4-phenyl-1-carbazoylsuccinimide} = 0.1\). HPLC radiochemical conversion: 80 ± 10% (\(n = 9 \)). Dichloromethane was evaporated and 0.5 mL of 4 M KOH were added, the mixture was stirred for 5 minutes and finally quenched by 0.5 mL of HCl 6 M. The cyclisation reaction efficiency was checked by radio-TLC (silica gel, ethyl acetate/hexane 1/1 v/v), \(R_t \) values: \([^{18}F]2-(4\text{-fluorophenyl)-1,2,4-triazolidine-3,5-dione} = 0.02\). HPLC analysis (grad1): \(t_R = 4 \text{ min} \). Radiochemical yield DC for coupling step and cyclisation step = 65 ± 5% (\(n = 7 \)).

The reaction medium was then poured into water (10 mL), trapped onto a tC18 plus short Sep-Pak cartridge (Waters) previously activated with acetonitrile (5 mL) and washed with water (5 mL) and eluted with 1 mL of acetonitrile. 100 µL of pyridine solution (0.3 M in CH₃CN) was added to the previous solution followed by the addition of 100 µL of 10 M of N-bromosuccinimide solution (0.3 M in CH₃CN). This mixture was directly added to 1 mL of N-acetyl tyrosine methylamide solution (1 mg in 0.9 mL of PBS 100 mM pH = 7 (or Tris buffer 100 mM pH = 7)) during a period of 2 minutes. The solution was stirred at room temperature during 5 min. The coupling efficiency was checked by radio-TLC (silica gel, ethyl acetate/hexane 1/1 v/v), \(R_t \) values: \([^{18}F]\text{final compound} = 0.20\), and by analytical HPLC (grad 1): \(t_R = 9 \text{ min} \). Radiochemical purity of \([^{18}F]11\) was 65 ± 5% (\(n = 5 \)). The radiolabelled compound was purified by semipreparative HPLC (grad 2): \(t_R = 12 \text{ min} \). The purified sample was analyzed by analytical HPLC to confirm its chemical and radiochemical purity. The total decay corrected radiochemical yield was 25%.

Acknowledgements

The authors wish to acknowledge the financial support from the Biowin Project of the Walloon Region (KeyMarker) and GE Healthcare. We thank the CyclotronTeam at Cyclotron Research Centre at Liege for producing fluorine-18.

Notes and references

Synthesis of two new alkyne-bearing linkers used for the preparation of siRNA for labeling by click chemistry with fluorine-18

Jessica Flagothier a,b, Geoffroy Kaisin b, Frederic Mercier b, David Thonon b, Nathalie Teller c, Johan Wouters d, André Luxen b

a Department of Chemistry, University of Liège (ULg), 13 allée du 6 août, B-4000 Liège (Sart-Tilman), Belgium
b Cyclotron Research Center, University of Liège, 8 allée du 6 août, B-4000 Liège (Sart-Tilman), Belgium
c EUROGENTEC S.A., building 2, Liège Science Park, 5 Rue Bois Saint-Jean, B-4102 Seraing, Belgium
d Department of Chemistry, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium

ABSTRACT

Oligonucleotides (ONs) and more particularly siRNAs are promising drugs but their pharmacokinetics and biodistribution are widely unknown. Positron Emission Tomography (PET) using fluorine-18 is a suitable technique to quantify these biological processes. Click chemistry (Huisgen cycloaddition) is the current method for labeling siRNA. In order to study the influence of a linker bearing by [18F] labeled ONs, on the in vivo pharmacokinetic and metabolism, we have developed two modified ONs by two new linkers. Here we report the synthesis of two alkyne-bearing linkers, the incorporation onto a ONs and the conjugation by click chemistry with a [18F] prosthetic group.

1. Introduction

Oligonucleotides (ONs), especially small interfering RNA (siRNA), may be useful in the development of new drugs due to their fundamental cellular mechanism for silencing gene expression (RNA interference (RNAi)). RNAi is a process by which siRNAs direct the degradation of target messenger RNA (mRNA) and induce specific posttranscriptional gene silencing (Fire et al., 1998; Tavitian, 2003). The main obstacle to the development of new siRNA-drugs is the lack of knowledge regarding their pharmacokinetics and biodistribution.

Positron Emission Tomography (PET) is a sensitive molecular and functional imaging technique that permits repeated, non-invasive, assessment and quantification of specific biological and pharmacological processes in humans or animals (Ametamey et al., 2008). Among a number of positron-emitting nuclides, fluorine-18 is often the radionuclide of choice for labeling ONs, on the in vivo pharmacokinetic and metabolism, we have developed two modified ONs by two new linkers. Here we report the synthesis of two alkyne-bearing linkers, the incorporation onto a ONs and the conjugation by click chemistry with a [18F] prosthetic group.
the siRNA has been realized by means of a diol carboxylic linker derivated from hydroxybutyrolactone (Mercier et al., 2011).

In order to study the influence of the linker, bearing by labeled ONs, on the in vivo pharmacokinetic and metabolism, we have developed two modified ONs by two new linkers.

These two new linkers contain, as described by Mercier et al., a primary alcohol with a dimethoxytrityl group to start ON sequence, a secondary alcohol with a functional group allowing connection between the linker and the support solid and an amino group to connect the alkyn arm. The first linker synthesized is an N-heterocycle derivative of proline. This structure mimic a sugar associated with the oligonucleotide sequence, thus providing a well-defined and known stereochemistry supporting optimal in vivo conditions and minimizing or avoiding metabolic degradation (Ceulemans et al., 1997; Efimov et al., 2010). The second linker synthesized is derived from threonine. Much more similar to the linker synthesized by Mercier et al., this molecule is also a α,β-diol, the differences are the amide connection and the presence of a second asymmetric center.

Some studies was realized to demonstrate the best in vivo stability of a linker at the 3’-end of oligonucleotides compared to the stability of this linker at the 5’-end of oligonucleotides (Temsamani et al., 1993). We have thus decided to study in vivo the influence of the structure of the linker attached at 3’-end of the oligonucleotide sequence.

The syntheses of two linkers (10 and 21) are proposed. Alkyne-linker 10 was attached at the amino group of the controlled pore glass (CPG) support. The sense-strand was synthesized from this solid support and annealed with the antisense-strand. The double-stranded siRNA was thus synthesized with the alkyne-linker at the 3’ extremity of the sense-strand siRNA 23 and engaged in the 1,3-dipolar Huisgen cycloaddition with the 18F or 19F synthon 1-(azidomethyl)-4-fluorobenzene 24 to afford the 18F or 19F siRNA 25 which can be used for the cold reference and for in vivo PET imaging studies, respectively.

2. Results and discussion

2.1. Chemistry

2.1.1. Synthesis of linker 10

Trans-4-hydroxy-L-proline 1, commercially available, was considered as the starting material. This linker will mimic a sugar because proline and ON sugars have a similar structure. As described above, this provides a favorable linker.

The first strategy for the synthesis of this linker was based on a protection-deprotection system with diverse protecting groups to avoid side reactions. (Scheme 1) Trans-4-hydroxy-L-proline was converted into an ester by conventional methods using thionyl chloride and methanol esterification (Westwood and Walker, 1998). After Fmoc protection (Booth et al., 1998) (60% yield), compound 3 was reduced by in situ generation of borane with NaBH₄/I₂ (Lutsenko et al., 2003) with 45% yield. The two hydroxyl groups were protected by triisopropylsilyl chloride to afford the

![Fig. 1. Coupling between prosthetic groups and modified ONs with linkers using Click Chemistry.](image-url)

Scheme 1. Reaction scheme for the preparation of the (2S,4R)-N-(6-heptynoyl)-4-hydroxy prolinol 8. Reagents and conditions: (i) SOCl₂, dry MeOH, rt; (ii) FmocOSu, Na₂CO₃, dioxane, 24 h; (iii) NaBH₄, reflux, 24 h; (iv) TIPSCI, imH, CH₂Cl₂, 0 °C, 24 h; (v) piperidine 20% THF; (vi) 6-heptynoic acid 12, DIPEA, HBTU, CH₂Cl₂, DMF, rt, 12 h; (vii) HCl/MeOH 1.7 M, rt, 2 h; (viii) HMDS, TMSCI, CH₂CN, reflux, 9 h, BH₂,DMS, 1,4-dioxane, reflux 10 h, H₂O/HCl, reflux, 1 h; (ix) TSTU, NEt₃, CH₂Cl₂, CH₂CN, rt, 30 min; (x) NEt₃, dry MeOH, rt, 2 h.
fully protected derivative 5 (Kamal et al., 2004) with 90% yield. Stirring of this Fmoc-protected compound in a solution of 20% piperidine in THF (Nuti et al., 2007) afforded the corresponding Fmoc-deprotected compound 6. This compound was directly coupled with 6-heptynoic acid 12 leading to compound 7 with 61% yield. The best yield of coupling reactions was obtained in a mixture of dimethylformamide and dichloromethane in the presence of diisopropylethylamine (DIEA) and HBTU (Tedeschi et al., 2002). Trisopropylsilyl groups, necessary to avoid esterification during the coupling step, were removed with a solution of 1.5 M HCl in methanol to afford 8 (35% yield) as a crystalline solid. X-ray crystallographic confirmed the trans-structure as presented in Fig. 2.

Due to the high number of steps and the low yield of some steps, an alternative chemical synthesis was developed: Scheme 1 was elaborated upon to improve the yield of the steps between compound 1 and 8. This new synthesis method is presented in Scheme 1.

This modified synthesis also started with commercially available trans-4-hydroxyproline 1, which directly underwent a quantitative reduction to trans-4-hydroxyprolinol 11 using a dimethylsulfide complex of borane (Folkesen et al., 1999; Godskesen et al., 1996). Other classical carboxylic acid reduction methods, i.e., LiBH₄ reduction or LiAlH₄ reduction of the corresponding methyl ester, were investigated but did not provide satisfactory yields. The coupling reaction between trans-4-hydroxyprolinol 11 and 6-heptynoic acid 12 was next examined. Classical peptide coupling reagents are known to be inefficient in the presence of free alcohol moieties. Consequently, four activated forms of 6-heptynoic acid 12 were synthesized, succinimidyl ester 13 (Bannwarth and Knorr, 1991), N-acylthiazolidine 14 (Nagao et al., 1980), pentafluorophenyl ester 15 (Christensen, 2001; Wellendorph et al., 2003) and N-acylbenzotriazole 16 (Katzitzky et al., 1992) (Fig. 3).

These activating agents have reacted with 11 to afford compound 8 with different yields. The results are presented in Table 1.

These activating agents appeared to tolerate free hydroxyl groups and showed a high N-acylation versus O-acylation selectivity. After analysis of these results, it was decided to use TSTU as coupling agent (Bannwarth and Knorr, 1991). Using this method, compound 8 was synthesized with 60% yield (Table 1, Entry 1) (Scheme 1), with a clear improvement compared to the first method (Scheme 1) (5% yield).

<table>
<thead>
<tr>
<th>Activating agent</th>
<th>Activated acid</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSTU</td>
<td> 13</td>
<td>91%</td>
</tr>
<tr>
<td>TTH</td>
<td> 14</td>
<td>38%</td>
</tr>
<tr>
<td>Pentafluorophenol</td>
<td> 15</td>
<td>31%</td>
</tr>
<tr>
<td>1H-benzotriazol</td>
<td> 16</td>
<td>33%</td>
</tr>
</tbody>
</table>

Reaction of activating agent with 6-heptynoic acid. The couplings with TTH, pentafluorophenol and 1H-benzotriazole need in situ acid chloride formation with SOCl₂.

Fig. 3. Activating agents and activated acids.
Next, the primary hydroxyl group of 8 was selectively protected using the DMTr ether (Scheme 2). In spite of the use of inert atmosphere and freshly purified reagent, the best yield obtained was 15%. The remaining secondary hydroxyl group in 9 was esterified by treatment with succinic anhydride in acetonitrile (26% yield) to afford the final linker 10.

2.1.2. Synthesis of linker 21
Threoninol as starting material was chosen to afford linker 21. This compound meets all the requirements needed, described by Mercier et al., primary alcohol, secondary alcohol and presents on the second asymmetric center an amino group which is easily functionalisable to introduce an alkyne chain. Easily commercially available at low cost, derivated from natural threonine, enantiomerically pure, these criteria made us choose threoninol as starting material. (Scheme 3) This linker was obtained in the same conditions as previously described for compound 10 with 24% yield.

2.2. Synthesis of modified siRNA
The product 10 was used directly for immobilization on LCAA-CPG and oligonucleotide synthesis at Eurogentec (Liège, Belgium). The resin load was 33 μmol/g. The sense-strand and the anti-sense-strand of the siRNA were synthesized with modified alkyne solid support 10 and a normal solid support, respectively, and finally annealed according to Mercier et al. (2011). The following oligonucleotide sequences (synthesized by Eurogentec) were used: 5'-UCACUUACAGGAUCUAUAA-3' (sense) and 5'-UUAUAGAUCUGAUAGUGA-3' (antisense) (Garbacki et al., 2009).

2.3. Click chemistry
The modified siRNA 23 was clicked with 1-(azidomethyl)-4-fluorobenzene [19F]24 (Demko and Sharpless, 2002).

For this click reaction, azide [19F]24 and an excess of Cu(II)/TBTA ligand complex 1/1, sodium ascorbate in a H2O/Me2SO solution were added to the double-stranded modified siRNA 23 as described by Mercier et al. As described in literature, different solvent mixtures (H2O, dioxane, Me2SO, t-BuOH, etc) with an excess of sodium ascorbate and Cu(II)/TBTA complex are generally used for click reaction with ONs (Berndl et al., 2009).

Table 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Activated agent</th>
<th>Procedure</th>
<th>Solvent</th>
<th>Eq. activated agent</th>
<th>Eq. NEt3</th>
<th>Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>B</td>
<td>MeOH</td>
<td>0.5</td>
<td>3</td>
<td>1 h30</td>
<td>60%</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>C</td>
<td>THF</td>
<td>0.9</td>
<td>5</td>
<td>1 h30</td>
<td>34%</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>D</td>
<td>CH2Cl2</td>
<td>1.1</td>
<td>2.1</td>
<td>20 h</td>
<td>13.5%</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>E</td>
<td>MeOH</td>
<td>1</td>
<td>2.1</td>
<td>24 h</td>
<td>15%</td>
</tr>
</tbody>
</table>

Scheme 2. Reaction scheme for the preparation of the compound 4-((3S,5R)-5-((dimethoxytrityloxy)methyl)-1-(6-heptynoyl)-3-pyrrolidinyloxy)-4-oxobutanoic acid 10. Reagents and conditions: (i) DMTrCl, DMAP, NEt3, CH3CN, rt, 12 h; (ii) Succinic acid, DMAP, NEt3, CH3CN, rt 12 h.

Scheme 3. Reaction scheme for the preparation of the compound N-(2R,3R)-1-dimethoxytrityloxy-3-succinoyl-2-butanyl-6-heptynamide 21. Reagents and conditions: (i) HMDS, TMSCl, CH3CN, reflux, 9 h; BH3·DMS, 1,4-dioxane, reflux 1 h; (ii) TSTU, NEt3, CH2Cl2, CH3CN, rt, 30 min; (iii) NEt3, dry MeOH, rt, 2 h; (iv) DMTrCl, pyridine, dry THF, rt, 12 h; (v) Succinic anhydride, DMAP, pyridine, 50 °C, 12 h.

El-Sagheer and Brown, 2009; Kiviniemi et al., 2008). After semi-preparative HPLC purification and lyophilisation, the siRNA $^{[18F]}F_25$ was obtained. (Scheme 4).

2.4. Radiochemistry

No-carrier-added fluoride-18 was obtained by proton bombardment of $^{[18O]}$-enriched water (> 95%) via the 18O(p,n)18F nuclear reaction.

The modified siRNA $^{[23]}$ was clicked with 1-(azidomethyl)-4-$^{[18F]}$fluorobenzene $^{[24]}$ (Scheme 4). The radiosynthesis of this prosthetic group was fully automated on a FASTLab synthesizer from GE Healthcare. The 18F-azide has been obtained according to Thonon et al. (2009) with a modification: the 1-(azidomethyl)-4-$^{[18F]}$fluorobenzene $^{[24]}$ trapped on OASIS HLB LP was eluted with 6 mL of a solution of Me$_2$SO/diethyl ether: 0.5/5.5. After elimation of the ether by evaporation under N$_2$, 0.5 mL of 1-(azidomethyl)-4-$^{[18F]}$fluorobenzene $^{[24]}$ obtained was used directly for the click reaction. The duration of 1-(azidomethyl)-4-$^{[18F]}$fluorobenzene $^{[24]}$ synthesis was 45 min. This synthon was obtained with a radiochemical yield of 84% (decay corrected).

No click ligation between 1-(azidomethyl)-4-$^{[18F]}$fluorobenzene $^{[24]}$ and the double-stranded siRNA $^{[23]}$ was performed with a large excess of Cu(II)/TBTA complex and sodium ascorbate in a solvent mixture of H$_2$O/Me$_2$SO 19/81 (v/v) as described by Mercier et al. For the same radiochemical yield in comparison with Mercier et al., the quantity of siRNA used in the initial steps was reduced by a factor 10. This represents an important advantage of the method considering the high cost of this molecule. The crude click product was diluted with HPLC solvent and purified by semipreparative HPLC. The fraction containing the pure $^{[18F]}$siRNA $^{[25]}$ was collected and diluted with water, trapped on a tC18 plus Sep Pak cartridge, eluted with ethanol and finally transferred onto NAP10 gel filtration. The $^{[18F]}$siRNA $^{[25]}$ (2–10 mCi) was eluted with physiological solution to obtain the pharmaceutical form. The duration of the radiosynthesis of (1-(azidomethyl)-4-$^{[18F]}$fluorobenzene $^{[24]}$, click reaction, HPLC and formulation), was 120 min. Pure siRNA $^{[18F]}F_25$ was obtained with a radiochemical yield of 12% (decay corrected).

3. Conclusion

In summary, two new linkers 10 and 21 have been synthesized following well-defined aspects. Linker 10 owns a similar structure to that sugar of oligonucleotide, this is a advantage to minimize metabolic degradation (Ceulemans et al., 1997). These alkylene-bearing linkers 10, 21 can be incorporated onto solid-phase supports of ONs. The method is universal because any sequence of oligonucleotide can be synthesized from these linkers attached to the CPG. These ONs, (single or double-stranded) functionalized by an alkylene, can be coupled with any azido-bearing prosthetic group by click reaction. The mild click chemistry conditions eliminate the risks of ON degradation. siRNA $^{[18F]}F_25$ was obtained with this method by means of 1-(azidomethyl)-4-$^{[18F]}$fluorobenzene $^{[24]}$ (Thonon et al., 2009) and fully automated (Mercier et al., 2011) in our laboratory. This synthon was produced in 45 min with a 84% radiochemical yield. The low siRNA concentration (~ 10^{-5} M) needed for click reaction represents an important advantage of the method considering the high cost of this molecule. The quantity of $^{[18F]}$siRNA obtained allows direct use (2–10 mCi), after purification and formulation, for in vivo PET imaging studies.

Some preliminary PET studies will be carried with modified siRNA $^{[18F]}F_25$.

These ONs, (single or double-stranded) functionalized by an alkylene, can be also coupled with any DOTA derivatives comprise amine-reactive functionalities. The synthesized ON–DOTA-conjugates will be labeled with 68Ga (Wängler et al., 2011).

4. Material and methods

4.1. General procedures

Reagents and solvents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on Macherey-Nagel Polygram Sil G/UV254 plates using UV light as visualizing agent and an ethanolic solution of anisaldehyde, and heat as developing agents. NMR spectra were recorded on Bruker Avance DRX-400 instruments. $^{[1H]}$ at 400 MHz and $^{[13C]}$ at 100 MHz) $^{[H]}$ and $^{[13C]}$ spectra were referenced to TMS using the $^{[13C]}$ or residual proton signals of the deuterated solvents as internal standards. The following abbreviations were used to designate the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. All the values are expressed in part per million (ppm). HPLC analyses were run on a Waters system (616 pump, a manual Rheodyne injector, 996 PDA detector and NaI(Tl) scintillation detector from Eberline) controlled by Empower® software. HPLC Analyses were performed on a SYMMETRY C18 column C18 (3.9 × 150 mm; 5 μm), semipreparative HPLC analyses on a X-TERRA® column C18 (7.8 × 300 mm; 7 μm) and preparative HPLC on NOVASEP column LC50.500VE150 with Kromasil®. For siRNA HPLC analyses were performed on a Jupiter Proteo 90 Å column from Phenomenex (150 × 4.6 mm) using the following conditions: A = TEAA 0.1 M (pH 7.4) in H$_2$O/CH$_3$CN: 19/1; B = MeOH; gradient elution: 100% of A for 1 min then linear 30 min from 10/0 to 2/8 (A/B), then washout 6 min at 100% B; flow rate: 1 mL/min; temperature: rt; absorbance detection at λ = 254 nm. Semipreparative HPLC analyses for siRNA were performed on a Jupiter Proteo 90 Å column from Phenomenex (250 × 10 mm) with the same gradient (rt, 254 nm); flow rate: 4 mL/min. Mass spectra were recorded on a Thermo Finnigan TSQ 7000 mass spectrometer (Thermo- ElectronCorp.) operating in full scan MS mode with an ESI+ source. Mass spectroscopy experiments of siRNA were performed on a Q-TOF Ultima Global (Micromass, now Waters, Manchester, UK) with the normal ESI source. Melting points were recorded on a Büchi Melting Point B-545 apparatus.

4.2. Chemistry

(25,4R)-4-Hydroxy-2-(methoxycarbonyl)pyrroliдинium chloride (2)

This compound was synthesized according to the literature (Westwood and Walker, 1998). (25,4R)-N-((fluoren-9-ylmethoxycarbonyl)-4-hydroxyproprionaldehyde-2-carboxylic Acid Methyl Ester (3)

N-(Fluoren-9-ylmethoxybenzoyl)succinimide (24.2 g, 72 mmol) in dioxane (100 mL) was added to a stirred solution of 2 (13 g, 72 mmol) and 9% aqueous sodium carbonate (100 mL). Stirring at room temperature was continued overnight. The reaction mixture was diluted with water (100 mL) and washed with ethyl acetate (3 × 100 mL). The aqeous phase was acidic with concentrated hydrochloric acid and extracted with ethyl acetate (2 × 100 mL). The organic phase was dried over anhydrous MgSO$_4$, filtered and concentrated under reduced pressure. The product was purified by chromatography on silica gel with (CH$_2$Cl$_2$/MeOH 19:1, v/v) and eluate 6 mL of a solution of Me$_2$SO/diethyl ether: 0.5/5.5.

These ONs, (single or double-stranded) functionalized by an alkylne, can be also coupled with any DOTA derivatives comprise amine-reactive functionalities. The synthesized ON–DOTA-conjugates will be labeled with 68Ga (Wängler et al., 2011).
1H NMR (400 MHz, CDCl3): 1.02 (d, 36H), 1.18 (m, 1H), 1.36 (m, 1H), 1.57 (m, 1H), 1.84 (m, 1H), 2.12–2.16 (m, 2H), 3.0 (m, 1H), 3.28 (m, 1H), 3.61 (m, 2H), 4.05 (m, 1H), 4.27 (m, 1H, 2H), 7.28 (m, 2H), 7.38 (m, 2H), 4.14 (m, 1H, 2H), 7.60 (m, 2H), 7.79 (m, 2H). 13CNMR (100 MHz, CDCl3): 32.6, 37.2, 56.9, 60.2, 61.7, 66.9, 69.2, 70.12, 120.1, 125.2, 127.1, 127.8, 141.3, 153.0, 172.2.

(25SR)-(+)-(fluoren-9-ylmethoxycarbonyl)-4-hydroxy prolinol (4)

A round-bottomed flask was charged with sodium borohydride (1.33 g, 34.7 mmol) and 50 mL of dry THF. The solution was stirred while compound 3 (2.3 g, 8.6 mmol) was added. A solution of iodine (3.3 g, 13 mmol) in 25 mL of THF was added dropwise to the mixture under inert atmosphere at 0 °C during a period of 30 min. The solution was allowed to warm to room temperature and the reaction mixture was brought to reflux overnight. Methanol was added dropwise to the cloudy white suspension at room temperature until dissolution of the white material. The clear solution was acidified with conc. HCl to pH 2–3. The precipitated solid was filtered off and the concentrate filtrate was purified by column chromatography on silica gel (100% ethyl acetate).

Procedure A: Compound 7 (100 mg, 0.19 mmol) was dissolved in HCl/MeOH 1.7 M solution. To prepare this solution, gaseous HCl was introduced in MeOH. Gaseous HCl was prepared by the dropwise addition of H2SO4 on NaCl. The mixture was stirred at room temperature for 4 h. NaHCO3 solid was added to the solution to neutralize acidity. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (CH2Cl2/MeOH 9:1, v/v/).

Procedure B: Compound 11 (695 mg, 4.5 mmol) was dissolved in dry MeOH (15 mL) and NEt3 (681 mg, 6.75 mmol) and the solution was stirred for 15 min at room temperature. Compound 13 (500 mg, 2.25 mmol) was added and the mixture was left for 1 h 30. The residue obtained after solvent evaporation was purified by column chromatography on silica gel (CH2Cl2/MeOH 9:1, v/v/).

Procedure C: 11 (170 mg, 1.1 mmol) and NEt3 (700 µL, 5 mmol) were added a solution of 14 (228 mg, 1 mmol) in THF (5 mL). The reaction was stirred until completion (usually 1 h 30) indicated by the disappearance of the yellow color due to the presence of 14 in solution. Concentration and purification by column chromatography on silica gel (ethyl acetate/MeOH 9:1, v/v) gave product 8 (76 mg, 34%) as a white solid.

Procedure D: 11 (51 mg, 0.33 mmol) and NEt3 (100 µL, 0.7 mmol) were added a solution of 15 (106 mg, 0.36 mmol) in dichloromethane (5 mL). The reaction was stirred for 20 h, concentrated under reduced pressure and purified by column chromatography on silica gel (ethyl acetate/MeOH 9:1, v/v) gave product 8 (23 mg, 15%) as a white solid.

Procedure E: A mixture of 11 (102 mg, 0.66 mmol) and NEt3 (280 µL, 1.4 mmol) in dry MeOH (5 mL) was stirred for 15 min. Compound 16 (160 mg, 0.66 mmol) was then added and the mixture was stirred for 24 h, concentrated under reduced pressure and purified by column chromatography on silica gel (ethyl acetate/MeOH 9:1, v/v) gave product 8 (23 mg, 15%) as a white solid.

Melting point: 56.9–57.4 °C. TLC (CH2Cl2/MeOH 9:1, v/v/): Rf = 0.3. ESI-MS (ESþ): m/z = 226 [M + H]+. 1H NMR (400 MHz, CDCl3): 1.54–1.63 (m, 2H), 1.67–1.82 (m, 3H), 1.96 (t, J = 2.6 Hz, 1H), 2.11 (m, 1H), 2.23 (td, J = 7.0 Hz, 2.6 Hz, 2H), 2.25–2.44 (m, 2H), 3.51–3.62 (m, 3H), 3.70 (m, 1H), 4.33 (m, 1H), 1.45 (m, 2H), 7.20 (m, 2H), 7.39 (m, 1H), 7.60 (m, 2H), 7.74 (m, 2H). 13CNMR (100 MHz, CDCl3): 18.7, 24.3, 28.4, 35.2, 36.9, 67.3, 71.0, 83.4, 171.4.

Crystallographic data (Fig. 2): a = 4.907(1) Å, b = 7.353(1) Å, c = 37.254(3) Å, V = 13444.2(3) Å³, orthorhombic, P212121, Z = 4, MoKα, μ = 0.089 mm⁻¹, ρ = 1.202 g cm⁻³, F(0 0 0) = 528, 5771 reflections (Rint = 0.0195) from which 1769 unique and 1639 reflections (I > 2σ(I)), Ri (all reflections) = 0.0484, Ri (observed reflections) = 0.0443, wR2 (observed reflections) = 0.1084, S = 1.110, residual density (Δ) ±0.181 and ±0.145 e Å⁻³. Structure was solved and refined with the Shelxd package.
NEt₃ (2.77 mL, 20 mmol), DMAP (1.22 g, 10 mmol) and DMTMCl (4.6 g, 13 mmol) were added to a solution of 8 (2.34 g, 10 mmol) in acetonitrile (20 mL). The mixture was stirred overnight at room temperature.

The solvent was evaporated and the residue was purified by chromatography on aluminum oxide 90 active neutral (Toluene:acetone:NEt₃ 18:1:1 v/v/v). Product 7 (5.7 g, 96%) had a melting point: 132.4–133.3°C (ethanol). Recrystallization from methanol (30 mL) afforded the pure compound (5.7 g, 96%). Melting point: 108.9–109.3°C.

The solvent was evaporated and co-evaporated with 1% conc. HCl in methanol (30 mL). The mixture was heated to reflux for 1 h. The solvent was evaporated and co-evaporated with toluene (2 × 25 mL). The yellow oil obtained was diluted in anhydrous dichloromethane (20 mL). Pentfluorophenol (1.4 g, 7.6 mmol) was added and allowed to cool to 0°C. Triethylamine (1.6 g, 16 mmol) was added dropwise. The mixture was stirred at room temperature and, after 1 h, 30, diluted with dichloromethane (50 mL). The organic phase was washed with brine (3 × 10 mL), dried with anhydrous MgSO₄ and evaporated.

Brownish oil was obtained and purified by column chromatography on silica gel (Hexane/ethyl acetate: 19:1). Product 11 was obtained as a white oil (693 mg, 38%). (ES⁺): m/z = 244 [M+H⁺]. TLC (Hexane/ethyl acetate: 4:1): Rₖ = 0.73. ¹H NMR (250 MHz, CDCl₃): 1.54–1.74 (m, 2H), 1.81–1.93 (m, 2H), 1.95 (t, J = 2.7 Hz, 1H), 2.25 (dd, J = 2.7, 6.9 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H).

Pentafluorophenyl hept-6-ynoate (15)

Oxalyl chloride (1.5 g, 12 mmol) and 2 drops of DMF were added to a solution of 6-heptynoic acid (1 g, 8 mmol) in dry toluene (10 mL). The mixture was stirred until the end of gas production (3 h). The solvent was evaporated and co-evaporated with toluene (2 × 25 mL). The yellow oil obtained was diluted in anhydrous dichloromethane (20 mL). Pentfluorophenol (1.4 g, 7.6 mmol) was added and the yellow mixture was stirred for 3 h. The organic phase was washed with brine (3 × 10 mL), dried with anhydrous MgSO₄ and evaporated. Yellow oil was obtained and purified by column chromatography on silica gel (CH₂Cl₂/ethyl acetate: 19:1). Product 14 was obtained as an yellow oil (693 mg, 38%). (ES⁺): m/z = 244 [M+H⁺]. TLC (CH₂Cl₂/ethyl acetate: 19:1): Rₖ = 0.9. ¹H NMR (250 MHz, CDCl₃): 1.51–1.59 (m, 2H), 1.67–1.70 (m, 2H), 1.86–1.89 (m, 2H), 1.91–1.93 (m, 2H), 2.20 (s, 1H), 3.26 (t, J = 5 Hz, 2H), 4.54 (t, J = 5 Hz, 2H).

Pentafluorophenyl hept-6-ynoate (15)

Oxalyl chloride (1.5 g, 12 mmol) and 2 drops of DMF were added to a solution of 6-heptynoic acid (1 g, 8 mmol) in dry toluene (10 mL). The mixture was stirred until the end of gas production (3 h). The solvent was evaporated and co-evaporated with toluene (2 × 25 mL). The yellow oil obtained was diluted in anhydrous dichloromethane (20 mL). Pentfluorophenol (1.4 g, 7.6 mmol) was added and the yellow mixture was stirred for 3 h. The organic phase was washed with brine (3 × 10 mL), dried with anhydrous MgSO₄ and evaporated. Yellow oil was obtained and purified by column chromatography on silica gel (CH₂Cl₂/ethyl acetate: 19:1). Product 11 was obtained as a white oil (693 mg, 38%). (ES⁺): m/z = 244 [M+H⁺]. TLC (Hexane/ethyl acetate: 4:1): Rₖ = 0.73. ¹H NMR (250 MHz, CDCl₃): 1.54–1.74 (m, 2H), 1.81–1.93 (m, 2H), 1.95 (t, J = 2.7 Hz, 1H), 2.25 (dd, J = 2.7, 6.9 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H).

1-(1H-1,2,3-benzotriazole-1-yl)hept-6-ynoate (16)

1H-benzotriazole (1.9 g, 16 mmol) was added to a solution of SOCl₂ (476 mg, 4 mmol) in dry dichloromethane (20 mL) and the mixture was stirred for 30 min. 6-heptynoic acid (504 mg, 4 mmol) was added and the stirring was continued overnight. The solution was filtered and the organic phase was washed with NaOH 1M (3 × 50 mL) and brine (30 mL). The ethanol was evaporated and co-evaporated with 1% conc. HCl (90°C). ¹H NMR (250 MHz, CDCl₃): 1.63–1.78 (m, 2H), 1.89–2.09 (m, 3H), 2.29 (td, J = 7.7 Hz, 2H), 2.35 (t, J = 7.7 Hz, 2H), 2.74 (t, J = 7.7 Hz, 1H), 7.63 (t, J = 7.7 Hz, 1H), 8.10 (d, J = 8.3 Hz, 1H), 8.27 (d, J = 8.3 Hz, 1H).

2-(3R,3)-threoninol (18)

L-threonine (110 g, 84 mmol) was suspended in acetonitrile (150 mL) and a mixture of hexamethyldisilazane (54.2 mL, 260 mmol) and trimethylsilylchloride (2.16 mL, 17 mmol) was added. After stirring for 9 h at reflux, the mixture was filtered and evaporated. Yellow oil was obtained. The residue was dissolved in dichloromethane (150 mL) and under a N₂ atmosphere; Br₂-H₂S (4.14 mL, 436 mmol) was added. The mixture was then stirred for 4 h at reflux and allowed to cool to room temperature. 1M HCl (80 mL) was added dropwise and the mixture was heated to reflux for 1 h. The solvent was evaporated and co-evaporated with 1% conc. HCl in methanol (3 × 150 mL). Product 15 was obtained as a white solid (5.7 g, 96%). Melting point: 108.9–109.3°C. ESI-MS (ES⁺): m/z = 218 [M+H⁺].

1H NMR (400 MHz, CDCl₃): 2.05 (m, 1H), 2.23 (m, 1H), 3.14 (d, J = 12.7 Hz, 1H), 3.53 (dd, J = 3.8 Hz, 12.7 Hz, 1H), 3.80 (dd, J = 6.9, 12.5 Hz, 1H), 4.01 (dd, J = 3.5 Hz, 12.5 Hz, 1H), 4.12 (m, 1H), 4.75 (m, 1H). ¹C NMR (100 MHz, CDCl₃): 36.7, 54.4, 61.6, 61.7, 71.1.

1-((()-heptenyl)pyrrolidin-2-5-dione (13)

TSTU (5.72 g, 19 mmol) was dissolved in acetonitrile (50 mL) and the solution was added to a solution of 6-heptynoic acid (12) (2.5 g, 16 mmol), NEt₃ (4.44 mL, 32 mmol) in CH₂Cl₂ (50 mL). The mixture was stirred for 30 min at room temperature, diluted with ethyl acetate (100 mL), washed with H₂O (2 × 100 mL), brine (75 mL), and dried over anhydrous MgSO₄. Product 13 was obtained as an yellowish foam. (3.76 g, 91%) Melting point: 62.9–63.5°C. (ES⁺): m/z = 224 [M+H⁺].

¹H NMR (400 MHz, CDCl₃): 1.55–1.66 (m, 2H), 1.88–1.79 (m, 2H), 1.94 (t, J = 2.6 Hz, 1H), 2.21 (td, J = 7.4 Hz, 2.6 Hz, 2H), 2.61 (t, J = 7.4 Hz, 2H), 2.79 (s, 4H).

1-(2-thioxothiazolidine-3-yl)hept-6-yne-1-one (14)
N-((2R,3R)-1,3-dihydroxy-2-butanyl)-6-heptanamide (19)

Compound 18 (4.42 g, 32 mmol) was dissolved in dry MeOH (120 mL) and NaEt (6.7 mL) and the solution was stirred for 15 min at room temperature. Compound 19 (3.5 g, 16 mmol) was added and the mixture was stirred for 1 h. The solvent was evaporated and residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH 9:1, v/v). The mixture was stirred 4 h at room temperature. The solvent was evaporated and residue was purified by column chromatography on silica gel (CH₂Cl₂/acetone/NEt₃ 76:19:5 v/v/v). Product residue was purified by column chromatography on silica gel (toluene/acetone/NEt₃ 76:19:5 v/v/v). Product residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH 9:1, v/v). The mixture was stirred for 1 h. The white oil (80 mg, 61%). TLC (toluene/acetone/NEt₃ 76:19:5 v/v/v): Product was obtained as a white oil (1.70 g, 50%). TLC (toluene/acetone/NEt₃ 76:19:5 v/v/v): Product was obtained as a white oil (0.18 mmol) were added to a solution of 25.0, 28.0, 36.1, 55.1, 63.9, 67.6, 68.9, 84.2, 174.7. 1H NMR (400 MHz, CDCl₃): 17.2, 18.8, 26.2, 29.2, 36.4, 40.2, 47.6, 54.0, 127.9, 135.4, 144.1, 158.1, 172.8. 13C NMR (100 MHz, CDCl₃): 17.9, 19.8, 24.6, 27.6, 37.1, 38.6, 40.2, 47.6, 54.0, 127.9, 135.4, 144.1, 158.1, 172.8.

1.94 (t, J = 7.5 Hz, 2H), 3.69 (d, J = 4.7 Hz, 2H), 3.78 (s, 1H), 4.15–4.08 (m, 1H), 6.62 (d, J = 8.4 Hz, 1H), 11.3 (m, 2H), 17.2 (s, 1H), 18.8 (s, 1H), 21.7 (s, 1H), 22.6–23.2 (m, 2H), 3.07–3.12 (m, 1H), 3.30–3.32 (m, 5H), 3.77 (s, 6H), 3.97–3.99 (m, 2H), 6.85 (d, J = 7.5 Hz, 4H), 7.15–7.46 (m, 9H). 13C NMR (100 MHz, CDCl₃): 17.2, 18.8, 26.2, 29.2, 36.4, 40.2, 47.6, 54.0, 55.8, 63.4, 69.9, 70.7, 84.7, 87.4, 108.1, 114.1, 127.9, 128.8, 131.3, 137.1, 146.3, 160.1, 173.8, 176.0, 178.3.

4.3. Synthesis of siRNA

Sense-strand (22)

This compound was synthesized according to the literature. (Mercier et al., 2011). The synthesis was performed at Eurogentec (Liège, Belgium).

SiRNA modified (23)

This compound was synthesized according to the literature. (Mercier et al., 2011). The double-stranded siRNA 23 was obtained as lyophilized form.