Research of phosphate accumulating microorganisms from WWTPs for the recovery of phosphorus from organic wastes (3BV.3.47)

Tarayre C1, Michels E1, Buyse J2, Meers E2, Thonart P1, Delvigne F1
1 - Bio-Industries unit - Gembloux Agro-Bio Tech, University of Liege, Belgium
2 - Faculty of Bioscience Engineering, Ghent University, Belgium

Introduction

Many wastes containing reusable components, such as nitrogen, phosphorus and potassium, are not exploited through ideal processes. As an example, in Wallonia (Belgium), the main treatment applied to sewage sludge consists in incinerating the material. Such a process is chosen when the heavy metals are too concentrated in the sludge, preventing an agricultural use. However, sewage sludge, as well as manure, slurry and digestate, contain notable amounts of nutrients (nitrogen, phosphorus and potassium). Some Waste Water Treatment Plants (WWTPs) are actually designed in order to promote Phosphate Accumulating Organisms (PAOs), able to store or release phosphorus in accordance with the environmental conditions. The aim of this work is to isolate PAOs from WWTPs and evaluate their applicability to phosphorus recovery from organic wastes. Metagenomics and metabolic properties are also considered. This work is supported by the BioRefine Project, a European project in which various member states focus on recovery of inorganics from organic wastestreams.

The biological phosphate removal from wastewater is achieved by a specific microflora in WWTPs

Anaerobic conditions

\[\text{Glycogen} \rightarrow \text{Polyhydroxybutirate} \rightarrow \text{ATP} \rightarrow \text{PO}_4^{3-} \]

Aerobic-anoxic conditions

\[\text{Glycogen} \rightarrow \text{Polyhydroxybutirate} \rightarrow \text{ATP} \rightarrow \text{PO}_4^{3-} \]

CH\textsubscript{3}COOH

PO\textsubscript{4}^{3-}1

Sampling of activated sludge in 3 WWTPs achieving a 100% biological phosphate removal

WWTP\textsubscript{1}

WWTP\textsubscript{2}

WWTP\textsubscript{3}

WWTP\textsubscript{2}, Negative control

Analyses

Fingerprints of consortia (flow cytometry)

Enrichment of consortia (SBR)

Analysis of the consortia through metagenomics

Analysis of the consortia through BIOLOG Eco Microplates

What are the purposes of the analyses?

Metagenomics

Metagenomic analyses will provide data about the composition of the microflora

BIOLOG Eco Microplates

BIOLOG Eco Microplates will provide data about the metabolic properties

Flow cytometry

Flow cytometry can establish the profiles of consortia on the basis of fingerprints

Consortia can be enriched in PAOs through the use of the SBR system

The partners of the BioRefine Project

Acknowledgements

This work is supported by the BioRefine Project (INTERREG IVB NWE Programme) (ref. 3207-BIOREFINE)