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General overview

In this course:

1 Theory on signals and noise

2 Study of specific aspects of telecommunications systems

3 Towards engineering rules

Our main driving question: how?

−→ understand, model, build systems, and find rules
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Digital communication system (block diagram)
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Components of a telecommunications system I

Main components to“engineer” :

1 signals: useful signal (≡ payload), noise

2 electronics (transmitter, receiver, connectors, repeaters, etc.)

3 channel: cable (+ adapters), wireless (handle propagation
issues, such fading and statistical effects)
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Components of a telecommunications system II

Main concerns related to signals:

▶ Signal source handling (preparation of the signal, at the
source, in the transmitter):

filtering (remove what is useless for communications)
analog ↔ digital (digitization)
remove the redundancy in the signal: compression

▶ Signal over the channel

signal shaping to make it suitable for transmission (coding,
modulation, multiplexing, etc.)
signal power versus the noise power

▶ Signals in the equipment

limit noise (by adding a filter and an amplifier at proper
places!)
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Components of a telecommunications system III

Main constraints:

1 shared channel

bandwidth

2 perturbations due to noise.
Goals of a good design:

increase the Signal to Noise ratio
(
S
N

)
to reach the maximal

channel capacity (typically in the presence of white Gaussian
noise)
enable a communication with multiple/many users (seen as
interference for the main link)

3 power consumption
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Outline

1 Reminder

2 Representation of bandpass signals

3 Noise in telecommunications systems

4 Digital modulation

5 Spread spectrum

6 Channels for digital communications and intersymbol
interference

7 Navigation systems

8 Multiplexing

9 Telephone traffic engineering

10 Transmission over twisted pairs (fixed telephone network)

11 Radio engineering
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Reminder

▶ Physical layer (not all the transmission protocols)

▶ Deterministic - stochastic processes

▶ A tool for characterizing stochastic processes (including noise)
and linear systems: the power spectrum or power spectral
density

▶ Properties of the power spectrum

▶ Gaussian process

▶ Noise

▶ Modulation

▶ Digital communications
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Network ⇒ layers and protocols I
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Network ⇒ layers and protocols II
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Deterministic vs stochastic tools

transmitter receiver

User’s signal deterministic stochastic

Noise and interferences stochastic stochastic

deterministic stochastic

signal to consider voltage / current “average”power

power analysis instantaneous power Power Spectral Density (PSD)

p(t) = |v(t)|2
R

= R |i(t)|2 E
{
X 2(t)

}
=
∫ +∞

−∞ γX (f )df
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Central notion for stochastic processes: stationarity

Wide-sense stationary stochastic process

▶ Definition: X (t) is a wide-sense stationary stochastic process
if

1 its mean does not depend on time, that is

µX (t) = E {X (t)} = µX = constant (1)

2 its auto-correlation function does depend on the time
difference only, that is

ΓXX (t1, t2) = ΓXX (τ) (2)

with τ = t2 − t1.

▶ It’s a reasonable assumption for the development of models
and experiments in most of the cases, but it is not perfect.
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What if a process is not stationary?

If a process X (t) is not stationary, then

▶ you cannot define a PSD for a non-stationary process.

▶ But, you can sometimes make it stationary.
2 classical ways worth trying:

1 inject a random (independent) phase, suited for modulated signals:
S(t) = X (t) cos(2πfct +Θ) with pdfΘ(θ) =

1
2π

for θ ∈ [0, 2π].
2 inject a random (independent) time shift (≡jitter), suited for digital

signals: X (t + T0) with pdfT0
(t0) =

1
T

for t0 ∈ [0,T ].
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More about the Power Spectral Density (PSD) I

Let X (t) be a (wide-sense) stationary stochastic process (note that
we use a“capital” letter X for stochastic processes).

Definition (Auto-correlation function)

ΓXX (τ) = E {X (t + τ)X (t)} ∀t (3)

Very useful because it expresses the average power (when τ = 0):

ΓXX (τ = 0) = E
{
X 2(t)

}
(4)

In practice, we have that the power PX of a stochastic process is
given by:�



�
	PX = E

{
X 2(t)

}
(5)
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More about the Power Spectral Density (PSD) II

Definition (Power spectrum or power spectral density of a
stationary process PSD)

γX (f ) =

∫ +∞

−∞
ΓXX (τ) e−2πjf τdτ (6)

Summary:

PX = E
{
X 2(t)

}
(7)

= E {X (t + 0)X (t)} (8)

= ΓXX (τ = 0) =

∫ +∞

−∞
γX (f )e

2πjf 0df (9)

=

∫ +∞

−∞
γX (f )df (10)

Therefore, γX (f ) expresses the distribution of power for all the
frequencies.
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Example of a PSD
Let us consider a signal with a random phase θ, uniformly distributed over
[−π,+π] (or, likewise, [0, 2π]): pdfΘ (θ) = 1

2π

X (t) = Ac cos (2πfct +Θ) (11)

1 Mean of X (t)?

µX (t) = E {X (t)} =

∫ +π

−π
X (t) pdfΘ (θ) dθ =

∫ +π

−π
Ac cos (2πfct + θ)

1

2π
dθ = 0

(12)
2 Auto-correlation?

ΓXX (t1, t2) = E {X (t1)X (t2)} (13)

=

∫ +π

−π
Ac cos (2πfct1 + θ)Ac cos (2πfct2 + θ)

1

2π
dθ

=
A2

c

2
cos [2πfc(t2 − t1)] =

A2
c

2
cos [2πfcτ ] (14)

The signal is stationary. So,
▶ Power spectral density?

γX (f ) =
A2

c

4
[δ(f − fc) + δ(f + fc)] (15)
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Practical link between x(t) and X (t)? I

Let:

▶ X (t) be the stochastic (unknown) process behind the scenes,

▶ x(t) be the observation. This is what you measure/observe.

One can estimate the PSD of X (t) by taking the Fourier transform
of the observation x(t) (to the square).

Proof.
We want to show that γx(f ) can be estimated by ∥X (f )∥2.
[The theory of estimation provides other ways to estimate γx(f )
though]
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Practical link between x(t) and X (t)? II

Assume x(t) is deterministic and has finite energy, that is∫ +∞

−∞
|x(t)|2 dt (16)

Let us define:

▶ a“pseudo”auto-correlation function by

Γxx (τ) =

∫ +∞

−∞
x(t)x(t + τ)dt (17)

▶ and a“pseudo”PSD, which is an estimate of the true PSD, as

γx(f ) =

∫ +∞

−∞
Γxx (τ) e

−2πjf τdτ (18)
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Practical link between x(t) and X (t)? III

Some calculations lead to:

γx(f ) =

∫ +∞

−∞
Γxx (τ)e

−2πjf τdτ (19)

=

∫ +∞

−∞

(∫ +∞

−∞
x(t)x(t + τ)dt

)
e−2πjf τdτ (20)

=

∫ +∞

−∞
x(t)

(∫ +∞

−∞
x(t + τ)e−2πjf τdτ

)
dt (21)

=

∫ +∞

−∞
x(t)

(
X (f )e2πjft

)
dt (22)

= X (f )

∫ +∞

−∞
x(t)e2πjftdt (23)

= X (f )X ∗(f ) (24)

= ∥X (f )∥2 (25)
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Practical link between x(t) and X (t)? IV

In decibels (remember that v ↔ 10 log10(v) [dB]),

γx(f ) [dB] = 10 log10 ∥X (f )∥
2 = 20 log10 ∥X (f )∥ (26)

So, γX (f ) [dB] can be estimated with the help of ∥X (f )∥.

However,

▶ γX (f ) is not based on a single observation and therefore
γX (f ) is not equal to γx(f ).

x [W ] 10 log10(x) [dBW ]

1 [W ] 0 [dBW ]
2 [W ] 3 [dBW ]
0, 5 [W ] −3 [dBW ]
5 [W ] 7 [dBW ]
10n [W ] 10× n [dBW ]
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Power spectral density and linear systems (= filtering)

Consider a stationary process X (t), a linear system whose transfer
function is given by H(f ), and Y (t) the output process.

Theorem (Mean of a filtered stochastic process)

Mean of Y (t):
µY = µXH(0) (27)

Theorem (Wiener-Kintchine)

Power spectrum of a filtered stochastic process Y (t):

γY (f ) = ∥H(f )∥2 γX (f ) (28)
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Useful considerations about the PSDs

▶ Sum of (stationary) stochastic processes:

Y (t) = K (t) + N(t) (29)

If both signals are uncorrelated (which they are if they are
independent), then

γYY (f ) = γKK (f ) + γNN(f ) (30)
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Gaussian processes

What does it mean that a process X (t) is “Gaussian”?

▶ the probability density function (pdf) of its voltage/current is
Gaussian distributed:

pdfX = fX (x) =
1

σX
√
2π

e
− (x−µX )

2

2σ2
X (31)

▶ the mean and variance of X suffice to characterize it.

▶ it is a good approximation for the sum of a number of
independent random variables with arbitrary one-dimensional
pdfs.

Useful properties:

▶ If the input of a linear system is a Gaussian stochastic process,
then the output is also a Gaussian process.
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Noise - white noise I

Definition (White noise)

A white noise is defined as a stochastic process whose power
spectral density is constant for each frequency

γN(f ) =
N0

2

[
W

Hz

]
(32)

In practice, there is no“pure”white noise, but it does not matter as
long as the PSD is constant inside the useful bandwidth.

A common signal in telecommunications is a wide-sense stationary
zero-mean white Gaussian noise:

▶ the probability density function of the voltage of the noise is a
Gaussian.

▶ the observed mean voltage has a zero mean.

▶ its power spectrum is constant for each frequency.
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Noise - white noise II

Fact

Power of a white noise (for a B large bandwidth)

PN = N =

∫ +∞

−∞
γN(f ) df = 2

∫ fc+
B
2

fc−B
2

N0

2
df = 2×B × N0

2
= B N0

(33)
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Modulation

Principle: modulation is all about using of a carrier fc for
transmitting information

Amplitude modulation [AM]

Amplitude

s(t) = A(t) cos (2πf (t)t + ϕ(t))

Phase

Frequency modulation [FM]

Phase modulation [PM]
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Consequences of modulation

▶ On analog signals:

frequency band is shifted towards the carrier frequency (⇒ fc)
bandwidth modification

▶ On digital signals:

power spectral density is shifted

γS(f ) =
γM(f − fc) + γM(f + fc)

4
(34)

(note the presence of 4!)
shape of the power spectral density may be tailored

30 / 508



Rice’s decomposition

An expression such as

s(t) = A(t) cos(2πfct + ϕ(t)) (35)

may also be written as

s(t) = A(t) cos(2πfct + ϕ(t)) (36)

= sI (t) cos(2πfct)−sQ(t) sin(2πfct)

with

sI (t) = A(t) cosϕ(t) (37)

sQ(t) = A(t) sinϕ(t) (38)

Rice’s decomposition is essential as it says that any modulated
signal can be decomposed into two amplitude modulated signals
(proof will follow).
Many receivers in telecommunications use this principle!
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Information theory and channel capacity: there is
maximum bit rate! I

Theorem (Shannon-Hartley)

Channel capacity C (conditions for the error rate Pe → 0)

C [b/s] = B log2

(
1 +

S

N

)
(39)

where

▶ B is the channel bandwidth in Hz.

▶ S
N the signal-to-noise ratio (in watts/watts, not in dB).
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On the importance of the Eb

N0
ratio for digital transmissions

Assume infinite bandwidth and a white Gaussian channel,

C = lim
B→ ∞

{
B log2

(
1 +

S

N

)}
(40)

As

▶ S = EbRb (Eb is the energy of one bit and Rb = 1
Tb

is the
bitrate)

▶ N = B N0

Therefore,

C = lim
B→ ∞

{
B log2

(
1 +

EbRb

B N0

)}
= lim

x→0

 log2

(
1 + x EbRb

N0

)
x


H
=

log2 e lim
x→0

{
1

1 + x EbRb
N0

EbRb

N0

}
=

1

ln 2

EbRb

N0
(41)

At maximum capacity: C = Rb, so that Eb
N0

= ln 2 ≡ −1.59 [dB] is
the absolute minimum.
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Towards a dedicated representation for bandpass signals

Why do we use“frequency-based” representations?

[Systems] it is convenient for linear systems, and most
communication systems are linear (channel, filter,
etc.).

[Sharing] channels can be shared if signals are
“frequency”-friendly (multiplexing).
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When do we talk about frequency signals?

1 Bandwidth (band) related
1 in its original form, a signal is in its baseband (voice in the

telephone network is in the [300Hz, 3400Hz] band).
2 bandwidth or spectrum ≡ band occupied by the signal:

1 V(f ) for a deterministic signal v(t)
2 X (f ), γX (f ) for a stochastic process X (t)

2 For digital signals, sampling −→ sampling (frequency) rate
(driven by Nyquist’s criterion and relating to the highest
frequency, thus the frequency content).
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Purposes of dealing with bandpass signals specifically

Why is a bandpass representation a convenient tool?

1 Helps to reduce the sampling rate (not twice the highest
frequency!): we do revisit Shannon/Nyquist’s sampling
theorem

2 There are many more convenient representations of such a
signal (analytic signal, complex envelope, baseband
equivalent, quadrature components, etc.):

1 They are equivalent, but not equal.
2 Which one is the most appropriate depends on the context

(hard to foresee).
3 See these representations as tools!
4 Almost every receiver can be modeled according to the

theory of bandpass signals.
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Sampling of bandpass signals

Theorem (“Revised” sampling theorem)

Assume that v(t) is a deterministic, energy limited signal, with a
W large bandwidth, whose Fourier transform V(f ) is upper
bounded by fu (that is V(f ) = 0 for f > fu).
Then, it is possible to characterize this signal with samples v [nTs ],
n ∈ {−∞,+∞}, taken at a fs sampling frequency if this frequency
is equal to fs =

2fu
k , where k is the largest integer strictly smaller

than fu
W .

It should be noted that not all sampling frequencies are valid (in
order to reconstruct v(t) perfectly), except for all those that are
strictly larger than 2fu.

Important practical consequences:

1 sampling frequency: from fs = 2fu to fs =
2fu
k . k times less!

2 there are other ways to look at bandpass signals: new
representations!
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Representations of deterministic bandpass signals: 2 key
definitions I

What are the signals we want to deal with?

Deterministic signal Stochastic signal

v(t) V(f ) X (t) X (f ) or γX (f )

Two definitions:

Definition (Bandpass)

A bandpass signal v(t) is a signal for which there exist two values,
B and f0, such that B ≪ f0, and

∀f ̸∈
[
f0 −

B

2
, f0 +

B

2

]
, V(f ) = 0 (42)
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Representations of deterministic bandpass signals: 2 key
definitions II

Definition (Equivalent baseband)

Assume a deterministic bandpass signal v(t).
v(t) is an equivalent baseband of v(t) if there exists a frequency
f0, comprised inside the frequency band of v(t), such that

v(t) = Re
(
v(t)e2πjf0t+jφ0

)
(43)

Note: in fact, v covers a family of equivalent baseband signals,
since

v(t) = (v(t) + jz(t))e−2πjf0t−jφ0 (44)

are all valid candidates.
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Summary of some representations of a bandpass signal

v(t) vI(t) + jvQ(t)

va(t) ev(t) av(t)e
jφv(t)

≡

≡Re(.)

×e−2πjf0t

×e+2πjf0t

⊗
(
δ(t) + j

πt

)

vI(t) cos(.)− vQ(t) sin(.)
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Working on the spectrum I
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Working on the spectrum II

Why do we double the height of V(f ) to define Va(f )?
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Analytic signal I

f

2

1

||H(f)||

Let us consider the following filter that removes the negative
frequency components of a signal with the (Heaviside) step
function:

H(f ) =
{

0 if f < 0
2 if f ≥ 0

= 1 + sign(f ) (45)

whose impulse response is

h(t) = δ(t) +
j

πt
(46)
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Analytic signal II

Definition (Analytic signal)

A signal which has no negative-frequency components is called an
analytic signal. In the time domain, it is obtained as

va(t) = v(t)⊗
(
δ(t) +

j

πt

)
(47)

= v(t) + jv(t)⊗ 1

πt
(48)

The norm of the analytic signal is named“envelope”.
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Representation map: analytic signal

v(t) vI(t) + jvQ(t)

va(t) ev(t) av(t)e
jφv(t)

≡

≡Re(.)

×e−2πjf0t

×e+2πjf0t

⊗
(
δ(t) + j

πt

)

vI(t) cos(.)− vQ(t) sin(.)
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Hilbert transform

Definition (Hilbert transform)

The Hilbert transform of a signal v(t), denoted as ṽ(t), is defined
by

ṽ(t) = v(t)⊗ 1

πt
(49)

With this definition,

va(t) = v(t) + j ṽ(t) (50)

Properties of the Hilbert transform

▶ The energy (or power) of a signal and that of its Hilbert
transform are equal.

▶ [Hilbert transform of a modulated signal] Assume that v(t) is
a baseband signal, then

˜v(t) cos(2πfct) = v(t) sin(2πfct) (51)
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Going backwards I

va(t) = v(t) + j ṽ(t) (52)

So,

v(t) = Re (va(t)) (53)

v(t) vI(t) + jvQ(t)

va(t) ev(t) av(t)e
jφv(t)

≡

≡Re(.)

×e−2πjf0t

×e+2πjf0t

⊗
(
δ(t) + j

πt

)

vI(t) cos(.)− vQ(t) sin(.)
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Going backwards II

Properties of the analytic signal

▶ it has no negative frequency

▶ it carries the same power as the original signal

▶ v(t) can be reconstructed from va(t)

▶ va(t) is not a real signal. Is that a problem?

Why would we want to use va(t)?
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Baseband representation derived from the analytic signal I

Ev (f ) = Va(f + f0) (54)
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Baseband representation derived from the analytic signal II

Definition (Complex envelope of a signal)

The signal that results from a right-to-left shift of the analytic
signal in the frequency domain is named the complex envelope of
the signal. It is denoted as ev (t).

Mathematically, the complex envelope and its spectrum are related
to the analytic signal as follows:

Ev (f ) = Va(f + f0) (55)

ev (t) = va(t)e
−2πjf0t (56)

It remains to find a good practical method to determine the
complex envelope!
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Representation map: complex envelope

v(t) vI(t) + jvQ(t)

va(t) ev(t) av(t)e
jφv(t)

≡

≡Re(.)

×e−2πjf0t

×e+2πjf0t

⊗
(
δ(t) + j

πt

)

vI(t) cos(.)− vQ(t) sin(.)

Question

What sampling frequency to choose for the complex envelope?
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Rice components I

ev (t) = vI (t) + jvQ(t) (57)

v(t) vI(t) + jvQ(t)

va(t) ev(t) av(t)e
jφv(t)

≡

≡Re(.)

×e−2πjf0t

×e+2πjf0t

⊗
(
δ(t) + j

πt

)

vI(t) cos(.)− vQ(t) sin(.)
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Theoretical determination of Rice components I

In-phase component: vI (t)

vI (t) = Re (ev (t)) (58)

= Re
(
va(t) e

−2πjf0t
)

(59)

= Re
(
(v(t) + j ṽ(t)) e−2πjf0t

)
(60)

= v(t) cos(2πf0t) + ṽ(t) sin(2πf0t) (61)

Quadrature component: vQ(t)

vQ(t) = Im (ev (t)) (62)

= Im
(
va(t) e

−2πjf0t
)

(63)

= −v(t) sin(2πf0t) + ṽ(t) cos(2πf0t) (64)
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Theoretical determination of Rice components II

Therefore,

v(t) = Re (va(t)) (65)

= Re
(
ev (t) e

2πjf0t
)

(66)

= Re
(
(vI (t) + jvQ(t))e

2πjf0t
)

(67)

= vI (t) cos(2πf0t)− vQ(t) sin(2πf0t) (68)

v(t) vI(t) + jvQ(t)

va(t) ev(t) av(t)e
jφv(t)

≡

≡Re(.)

×e−2πjf0t

×e+2πjf0t

⊗
(
δ(t) + j

πt

)

vI(t) cos(.)− vQ(t) sin(.)
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Theoretical determination of Rice components III

v(t) = vI (t) cos(2πf0t)− vQ(t) sin(2πf0t) (69)

−

cos (2πf0t)

sin (2πf0t)

+π
2

vI (t)

v(t)

vQ(t)

+

Figure: Recover v(t) starting from the Rice components.
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Theoretical determination of Rice components IV

cos (2πft + ϕ(t)) = cosϕ(t) cos (2πft)− sinϕ(t) sin (2πft)

Any bandpass signal can be seen as the sum of two modulated
signals by lowpass signals.
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A practical method to compute Rice components I

Theoretically,

vI (t)

+π
2

v(t)

cos (2πf0t)

HILBERT

sin (2πf0t)

+

+
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A practical method to compute Rice components II

v(t) × 2 cos(2πf0t) = 2 [vI (t) cos(2πf0t) − vQ(t) sin(2πf0t)] cos(2πf0t)

= 2
[
vI (t) cos

2(2πf0t) − vQ(t) sin(2πf0t) cos(2πf0t)
]

= vI (t) + vI (t) cos(4πf0t) − vQ(t) sin(4πf0t) (70)

And after a low-pass filter,

v(t) × 2 cos(2πf0t) −→ lowpass filter −→ vI (t) (71)

Likewise,

v(t) × 2 sin(2πf0t) −→ lowpass filter −→ −vQ(t) (72)
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A practical method to compute Rice components III

v(t)

+π
2

vI (t)

2 sin (2πf0t)

2 cos (2πf0t)

−vQ(t)
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Amplitude/phase representation of the complex envelope I

ev (t) = vI (t) + jvQ(t) = av (t) e
jϕv (t) (73)

v(t) vI(t) + jvQ(t)

va(t) ev(t) av(t)e
jφv(t)

≡

≡Re(.)

×e−2πjf0t

×e+2πjf0t

⊗
(
δ(t) + j

πt

)

vI(t) cos(.)− vQ(t) sin(.)
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Amplitude/phase representation of the complex envelope II

By substituting ev (t) by its amplitude + phase description, we have

v(t) = Re
(
ev (t)e

2πjf0t
)

(74)

= Re
(
av (t) e

jϕv (t)e2πjf0t
)

(75)

= av (t) cos (2πf0t + ϕv (t)) (76)

with, by definition,

av (t) =
√
v2
I (t) + v2

Q(t) (77)

ϕv (t) = tan−1 vQ(t)

vI (t)
(78)
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Amplitude/phase representation of the complex envelope
III

Conclusions for v(t) = av (t) cos (2πf0t + ϕv (t))

1 the amplitude av (t) of the complex envelope is the envelope
of the original signal v(t).

2 the instantaneous phase of v(t) is given by the phase of the
complex envelope.

Any bandpass signal can be seen as a signal modulated both in
amplitude and in phase.
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Linear bandpass systems

Assume a bandpass filter, around f0, whose response filter is

h(t) = Re
(
eh(t)e

2πjf0t
)

(79)

The filtered signal is given by

y(t) = v(t)⊗ h(t) (80)

=

∫ +∞

−∞
h(λ)v(t − λ)dλ (81)

Thesis:

ey (t) =
1

2
eh(t)⊗ ev (t) (82)
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Proof I

y(t) = v(t)⊗ h(t) =

∫ +∞

−∞
h(λ)v(t − λ)dλ (83)

To get rid of Re (...), we use

Re (a+ jb) =
a+ jb

2
+

a− jb

2
=

a+ jb

2
+

(
a+ jb

2

)∗

(84)

So, v(t − λ) = 1
2

(
ev (t − λ)e2πjf0te−2πjf0λ + e∗

v (t − λ)e−2πjf0te2πjf0λ
)
and

h(λ) = 1
2

(
eh(λ)e

2πjf0λ + e∗
h (λ)e

−2πjf0λ
)

Therefore,

y(t) =
1

4
e2πjf0t

∫ +∞

−∞
eh(λ)ev (t − λ)dλ+

1

4
e−2πjf0t

∫ +∞

−∞
e∗
h (λ)e

∗
v (t − λ)dλ

+
1

4
e−2πjf0t

∫ +∞

−∞
eh(λ)e

∗
v (t − λ)e4πjf0λdλ

+
1

4
e2πjf0t

∫ +∞

−∞
e∗
h (λ)ev (t − λ)e−4πjf0λdλ
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Proof II

y(t) =
1

2
Re

(∫ +∞

−∞
eh(λ)ev (t − λ)dλ e2πjf0t

)
(85)

+
1

2
Re
(∫ +∞

−∞ e∗
h (λ)ev (t − λ)e−4πjf0λdλ e2πjf0t

)
(86)

But, e∗
h(λ)ev (t − λ) is low frequency and e−4πjf0λ is high

frequency. Therefore,∫ +∞

−∞
e∗
h(λ)ev (t − λ)e−4πjf0λdλ ≈ 0 (87)

Finally,

y(t) =
1

2
Re
(
(eh(t)⊗ ev (t)) e

2πjf0t
)

(88)

or�
�

�
�

ey (t) =
1

2
eh(t)⊗ ev (t) (89)
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Bandpass filtering

Use of ey (t) =
1
2 eh(t)⊗ ev (t)

▶ the output is a bandpass signal too (⇒ it has a baseband
equivalent).

▶ we have a way to filter a bandpass signal by its baseband
equivalent. This is really helpful when we work with digital
signals (because the sampling frequency is much lower).

▶ why do we have the 1
2 factor?
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Signals that can be modeled with an equivalent baseband

▶ Deterministic signal v(t):

its Fourier transform V(f )

▶ Stochastic signal X (t):

its Fourier transform X (f ) : similar developments as for a
deterministic signal
its power spectral density γX (f ): this is a different issue since
filtering is handled by Wiener-Kintchine
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Link between a stochastic process and its complex envelope

X (t) is related to its complex envelope by

X (t) = Re
(
eX (t) e

2πjf0t
)

(90)

X (t) being a stochastic process, its complex envelope eX (t) is also
a stochastic process.

But there is a practical issue: in general, X (t) is not stationary
because its mean is time dependent.
Solution: introduction of a random phase Θ uniformly distributed
over [0, 2π[

X (t) = Re
(
eX (t) e

j(2πf0t+Θ)
)

(91)
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Analytic signal of a stochastic process

Two signals can be considered:

1 the stochastic process: X (t)

2 its auto-correlation function ΓXX (τ) or its power spectrum
γX (f )

The theory of equivalent baseband signals applies both to X (t)
and to ΓXX (τ), but they are very different concepts.

Remember that when a stochastic process X (t) passes through a
(linear) filter, its power spectrum is multiplied by ∥H(f )∥2.
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Rice decomposition of a stochastic process I

Likewise to developments for deterministic signals, the in-phase and
quadrature components of a stochastic process can be expressed as

eX (t) = XI (t) + j XQ(t) (92)

Rice components of the X (t) stochastic process are then obtained
by

X (t) = Re
(
eX (t) e

2πjf0t
)

(93)

= Re
(
(XI (t) + j XQ(t)) e

2πjf0t
)

(94)

= XI (t) cos(2πf0t)− XQ(t) sin(2πf0t) (95)

By analogy with the developments for deterministic signals, we
build the analytic signal by filtering X (t) with the following filter
H(f ) that removes all components for negative frequencies:

H(f ) =
{

0 if f < 0
2 if f ≥ 0

(96)
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Rice decomposition of a stochastic process II

By applying Wiener-Kintchine, the power spectral density of the
analytic signal is given by

γXa(f ) = ∥H(f )∥2 γX (f ) (97)

=

{
4 γX (f ) if f ≥ 0

0 if f < 0
(98)

Note that it can also be written as γXa(f ) = 2H(f ) γX (f ).

74 / 508



Power spectrum

γeX (f ) = γXa(f + f0) (99)

ΓXX (τ) =
1

2
Re (ΓXaXa (τ)) (100)

=
1

2
Re
(
ΓeX eX (τ) e2πjf0τ

)
(101)

It is shown in a later chapter that, after stationarization, we get

γX (f ) =
γeX (f − f0) + γ∗

eX
(−f − f0)

4
(102)

Important practical result: γX (f ) can be derived from γeX ().
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Outline

1 Reminder

2 Representation of bandpass signals

3 Noise in telecommunications systems

4 Digital modulation

5 Spread spectrum

6 Channels for digital communications and intersymbol
interference

7 Navigation systems

8 Multiplexing

9 Telephone traffic engineering

10 Transmission over twisted pairs (fixed telephone network)

11 Radio engineering
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Steps

1 Noise signal
1 Understand the origin of noise (thermal noise)
2 Look for a model of noise (in terms of the power spectral

density of a stochastic voltage)
3 Find a subsequent model for the noise generated by a one-port

circuit ( 12kBT )

2 Noise in systems
1 Define a practical way to derive the amount of noise when

dealing with a two-port circuit (noise figure, F0)
2 Find formulas to calculate the amount of noise accumulated in

a cascade of two-port circuits (F0 for the cascade)

3 Engineering
1 Define good“practical” rules for a cascade
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Noise in telecommunications systems I

Noise is a recurrent issue/problem in telecommunications systems.
Remember for example the following theorem:

Theorem (Shannon-Hartley)

Channel capacity C (conditions for the error rate Pe → 0)

C

[
b

s

]
= B log2

(
1 +

S

N

)
(103)

where

▶ B is the channel bandwidth in Hz

▶ S
N the signal-to-noise ratio (in watt/watt, not in dB).

Therefore, we need to understand how to deal with noise.
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Noise in telecommunications systems II

There are several physical sources of noise:

▶ thermal noise

▶ shot noise

▶ ...

There are also“system” sources of noise

▶ quantization noise

▶ intermodulation noise

▶ crosstalk

▶ interference noise

▶ ...
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Noise in telecommunications systems III

Steps towards a solution for dealing with noise in
telecommunications systems

1 model the most common noise: thermal noise for electronic
circuits.

2 the principles of thermal noise can also be used to model
noises that are not of thermal origin (such as white noises).
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Modeling noise in electronic circuits: outline

1 Characterization of a one-port circuit (source)

Available noise power
Noise temperature of a one-port circuit
Signal to noise ratio

2 Characterization of a two-port circuit (channel, amplifiers,
filters, etc.)

Gain
Noise factor
Figure of merit
Effective noise temperature
Particular case: attenuator

3 Cascade of two-port circuits (a complete chain)
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Thermal noise: a measuring experiment

R

E (t)

(a) (b)

I (t) = E(t)
R

noisy R

Figure: (a) Physical circuit with noise, (b) Thévenin equivalent circuit for a

resistor considered as a noise generator.

A conductive element with two endpoints (≡ one-port circuit) may be
characterized by:

▶ its resistance R.

▶ Free electrons have some random motion depending on the
temperature T ⇒ noise voltage source E (t).

The noise voltage source, E (t), is a stochastic process.
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Thermal noise: towards a model for E(t) I

A natural source of noise is thermal noise, caused by the motion of free
electrons in conducting material.

▶ Because a voltage that would be measured at the output of a
resistance R is produced by many free electrons, by the central limit
theorem, the probability density function of the voltage’s amplitude
can be modeled by a Gaussian:

The thermal noise has a zero mean (can be shown analytically
and experimentally).
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Thermal noise: towards a model for E(t) II

▶ The voltage E (t) is a stochastic process.
It can be shown, experimentally, that the autocorrelation
function of thermal noise is well modeled by

ΓEE (τ) = kBTR
e−|τ |/t0

t0
(104)

where

kB = 1.38 × 10−23 [J/K] is Boltzmann’s constant.
T = 273.15 + C is the absolute temperature of the resistor (in
Kelvin); C is the temperature in Celsius.
t0 = 10−12 [s] is the average time between collisions of
electrons.
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Thermal noise: towards a model for E(t) III

As the autocorrelation function is

ΓEE (τ) = kBTR
e−|τ |/t0

t0
(105)

the power spectral density γE (f ) is

γE (f ) =
2kBTR

1 + (2πft0)
2 (106)

Empirically, at room temperature, for low frequencies
(< 1000 [GHz]), the noise PSD is almost flat so that we may take�� ��γE (f ) ≃ 2kBTR (107)
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Thermal noise: towards a model for E(t) IV

Noise power spectral density: γE (f ) ≃ 2kBTR

Consider a thermal noise with a noise temperature of T = 290 [K]
and R = 1 [Ω], then we have

γE (f ) = 2× 1.38× 10−23 × 290× 1 = 8× 10−21
[
W

Hz

]
(108)

Note that γE (f ) is the power due to thermal noise; it is not the
power available at the output!
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Thermal noise: towards a model for E(t) V

Calculating the power of E (t)
For a B bandwidth, a resistor in a short circuit dissipates a noise
power of (non sinusoidal signal):

P =

∫ ∞

−∞
γE (f )df /R = 2

∫ ∞

0
γE (f )df /R = 4kBTB (109)

In the following, we calculate the available noise power.
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Characterization of a single-port circuit (dipole)

Source impedance:

Zs (f ) = Rs (f ) + jXs (f ) (110)

Load impedance:

ZL(f ) (111)

E

Zs

ZL

Figure: Thermal source with a load ZL.
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Available power

Definition (Available power)

The available power is the maximum power that can be drawn
from a source.

Theorem (Maximum power transfer)

The maximum power transfer occurs when the load impedance is
equal to the conjugate of the source impedance (matched
impedances):

ZL(f ) = Z ∗
S (f ) (112)

If impedances are almost purely resistive, then

RL = RS (113)
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The case of sinusoidal signals I

When the signals are sinusoidal, the power provided by a source S
at the output of the dipole, PpS , is given by (ergodicity property)

PpS = lim
T→∞

1

T

∫ T

0
v(t)i(t)dt (114)

=
1

2
Re
(
V̂ Î ∗

)
(115)

where V̂ and Î are phasors defined with peak values, instead of
root mean square (rms) values, and therefore there is a 1

2 factor.
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The case of sinusoidal signals II

Zs

ZLE

I

V

In a load ZL, we have (voltage divider):

V̂ =
ZL

Zs + ZL
Ê

and

Î =
Ê

Zs + ZL

Therefore,

PpS =
1

2
Re
(
V̂ Î ∗

)
=

1

2
Re

(
ZLÊ

Zs + ZL

Ê∗

(Zs + ZL)∗

)
=

Re (ZL) Ê
2

2 ∥Zs + ZL∥2

(116)
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The case of sinusoidal signals III

So, the available power (that is when ZL(f ) = Z ∗
S (f ), so that

Zs + ZL = 2Re (Zs)) from the Source is

PaS =
Re (ZL) Ê

2

2 ∥Zs + ZL∥2
=

Re (ZL) Ê
2

8Re (Zs)
2 =

Ê 2

8Re (Zs)
(117)
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The case of sinusoidal signals IV

Summary

The available power in the load is

PaS =
Ê 2

8Re (Zs)
(118)

By definition, the effective power produced by the source is (for an open
circuit, matched impedance, so that Zs + ZL = 2× Re (Zs))

PS =
1

2
Ê Î ∗ =

1

2
Ê

Ê∗

(Zs + ZL)
∗ =

Ê 2

4Re (Zs)
(119)

It follows then that the power delivered by the Thévenin generator
and the power dissipated in the generator’s Thévenin resistance are
the same.
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Available noise power (matched impedance)

For an arbitrary random noise source, the provided noise power is
(we make use of the ergodicity property)

PpN = lim
T→+∞

1

T

∫ T

0
V (t)I (t)dt (120)

R

RE V

I

For the particular case of thermal noise

The available power spectral density is, by applying
Wiener-Kintchine:

γaN(f ) = ∥H(f )∥2 γE (f ) =
(

R

R + R

)2

2kBT =
kBT

2
(121)

Remember that this assumes impedances are matched (Zs = Z ∗
L );

otherwise, the result would depend on the impedances!
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Noise at the output of an antenna pointing towards the sky

Sky temperature

γE (f ) = 2kBTa

RNoiseless resistorTa

Noise
source

Example

Contributions to Ta:

▶ the sky contributes to 10 [K] (3 [K] of residual temperature of the Big Bang +
7 [K] due to atmospheric absorption).

▶ the ground contribution is typically 0.1 of 290 [K] (contributions of secondary
lobes looking at the ground)

Thus,
Ta = 0.9 × 10 + 0.1 × 290 = 38 [K] (122)

The noise power spectral density (PSD) is then

γaN(f ) =
kBT

2
= 2.6 × 10−22

[
W

Hz

]
(123)
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A note on matched impedances

There exist two ways to match loads:

1 Z ∗
S = ZL (conjugate matching). This ensures the maximum

transfer of power (that is the“available power”).

2 Zc = ZL, where Zc denotes the characteristic impedance of a
transmission line. Zc is the ratio of the amplitudes of voltage
and current of a single wave propagating along the line.
When Zc = ZL, there is no reflection.

In practice, what should we do when we connect a circuit to a line?

▶ Z ∗
S = ZL is mandatory. It is the matching condition for this

chapter.

▶ Luckily, Zc = Rc + jLc and Lc ≪ Rc , so that Zc ≃ Rc .

We can almost fulfill both conditions simultaneously.
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Summary I

Arbitrary load Matched load

Sinusoidal signals PpS = 1
2
Re
(
V̂ Î ∗
)
= Ê2Re(ZL)

2∥Zs+ZL∥2 PaS = Ê2

8Re(Zs )

Stochastic processes PpN = limT→+∞
1
T

∫ T

0
V (t)I (t)dt γaN(f ) =

γE (f )

4Re(Zs )

Thermal noise γaN(f ) =
kBT
2

Table: Power provided by a one-port circuit.

Theorem (Available power)

The available power from a thermal source for a bandwidth B is

PN =

∫ +∞

−∞
γaN(f ) df = 2×

∫ f0+
B
2

f0−B
2

kBT

2
df = kBTB (124)
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Summary II

Conclusions:
We have a model for the power of (thermal) noise

PN = kBTB (125)

It does not depend on the impedance (because we assume
impedance matching). It depends only on

▶ the temperature T

▶ the bandwidth B

Noise power

Consider a thermal noise with a noise temperature of T = 290 [K]
and B = 10 [MHz], then we have

PN(f ) = 1.38× 10−23 × 290× 107 = 40× 10−15 [W] (126)

Where does noise matter? [transmitter? channel? receiver?]

98 / 508



Summary III

PN = kBTB (127)

As the noise power increases with the bandwidth, we may want to
reduce the bandwidth.
However, the capacity is given by

C = B log2

(
1 +

S

N

)
(128)

If S is fixed and we only have a white noise, then

C = B log2

(
1 +

S

kBTB

)
(129)

To increase the capacity C , there is no alternative other than to
increase the bandwidth ⇒ trade-off !
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Noise temperature for a one-port circuit [generic model]

Definition (Noise temperature [at a given frequency])

The noise temperature at a given frequency is the absolute
temperature that an impedance should have to produce, by
thermal effect, for a given frequency, a noise power spectral density
equal to that of the circuit.

By definition thus,

γaN(f ) =
kBT (f )

2
(130)

Definition (Frequency average for T (f ) and bandwidth)

The maximum temperature, denoted T , the noise temperature of
the dipole and the bandwidth are defined such that

PaN = kBTB (131)
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Noise temperature for a one-port circuit [generic model]

Definition (Noise temperature [at a given frequency])
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Signal to noise ratio of a one-port circuit

Definition

The Signal to Noise ratio (S/N) of a dipole is defined as the ratio
between the available power of the signal and the noise power

S

N
=

PaS

PaN
(132)

Warning: in the following S denotes the Signal and not the noise source!

By convention, if the signal is modulated, the power of the useful
signal is defined as follows (it is just a reference to compare
techniques):

▶ for amplitude or angular modulations, we consider the power
of the carrier (it is then a carrier to noise ratio C

N ),

▶ for suppressed carrier amplitude modulation techniques, we
take the mean power of the modulating signal, and

▶ for impulse coded modulation techniques, it is the peak power.
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Characterization of a two-port circuit (quadripole) I

input

1

1 2

2

linear

quadripole output

ZS

E

V

Figure: Scheme of a two-port circuit.
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Characterization of a two-port circuit (quadripole) II

Steps:

▶ Notion of gain?

▶ Characterization of the amount of internal noise of the
quadripole by means of the normalized notion of noise figure

▶ Equivalent circuits

▶ Figure of merit (not normalized)

▶ Effective noise temperature

▶ Special case: purely resistive attenuator

Hypothesis: loads are matched (complex conjugate) at the input
and at the output
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Noise figure of a two-port circuit

Definition (Noise Figure (NF), F0)

Assuming fixed internal impedances, the (spot) noise figure of a
two-port circuit, for a given frequency f , denoted F0(f ), is the
ratio between
(1) the noise power spectral density at the output of the
quadripole, for the appropriate frequency f , when the noise
temperature of the generating one-port put at the input is
normalized to be T0 = 290 [K ], and
(2) only the contribution of the generating input source, at a
frequency f , to the noise power spectral density at the output.

4kBTRsB

2

2

quadripole

Rs

Rin = Rs

γaN1(f ) =
1
2
kBT0

γaN2(f ) = G (f )γaN1(f ) + γaNq(f )

linear

1

1
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Property: F0 > 1

4kBTRsB

2

2

quadripole

Rs

Rin = Rs

γaN1(f ) =
1
2
kBT0

γaN2(f ) = G (f )γaN1(f ) + γaNq(f )

linear

1

1

So, by definition,

F0(f ) =
γaN2(f )

G (f )γaN1(f )
=

G (f )γaN1(f ) + γaNq(f )

G (f )γaN1(f )
> 1 (133)
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Equivalent circuit

F0(f ) =
G (f )γaN1(f ) + γaNq(f )

G (f )γaN1(f )
⇐⇒ γaNq(f ) = [(F0(f )− 1) γaN1(f )]G (f )

γaNq(f )

G

G

γaN2(f ) = G (f )γaN1(f ) + γaNq(f )

γaN1(f )

γaN1(f )

γaN2(f ) = G (f )F0(f )γaN1(f )

(F0(f )− 1)γaN1(f )

Figure: Scheme of a noisy quadripole and an equivalent circuit (we model
the internal noise by (F0(f )− 1) γaN1(f ) at the entrance).
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Interpretation of the notion of noise figure

The input signal to noise ratio is given by(
S

N

)
in

=
γin(f )

γaN1(f )
(134)

At the output of the two-port circuit, we have(
S

N

)
out

=
γout(f )

γaN2(f )
(135)

Therefore, (
S
N

)
in(

S
N

)
out

=
γin(f )

γaN1(f )

γaN2(f )

γout(f )
(136)

As γout(f ) = G (f )γin(f ) , this ratio becomes(
S
N

)
in(

S
N

)
out

=
γaN2(f )

γaN1(f )G (f )
=

G (f )F0(f )γaN1(f )

γaN1(f )G (f )
= F0(f ) (137)

F0 therefore expresses the signal to noise ratio degradation.
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Noise figure for un-normalized temperatures (Ts ̸= T0)

What if the input temperature Ts ̸= T0?
This leads to define a different notion ⇒ the figure of merit F .

Link between F and F0 (F0 is provided by the manufacturer)?
Remember that, considering γaN1(f ) |T=T0 = 1

2kBT0:

γaNq(f ) = (F0 − 1)
1

2
kBT0G (f ) (138)

The internal noise of a two-port circuit is independent of the input
temperature (the last is just a convention). Therefore, another
temperature Ts then leads to another figure of merit F . It is
derived as follows

γaNq(f ) = (F0 − 1)
1

2
kBT0G (f ) = (F − 1)

1

2
kBTsG (f ) (139)

and, finally,

F = 1 +
T 0

Ts
(F 0 − 1) (140)

109 / 508



Effective noise temperature of a two-port circuit I

γaNq(f )

G

G

γaN2(f ) = G (f )γaN1(f ) + γaNq(f )

γaN1(f )

γaN1(f )

γaN2(f ) = G (f )F0(f )γaN1(f )

(F0(f )− 1)γaN1(f )

γaN2(f ) =
1

2
kBT0G (f ) + γaNq(f ) =

1

2
kB [T0 + (F0 − 1)T0]G (f )
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Effective noise temperature of a two-port circuit II

Definition (Effective (input-)noise temperature)

Te = (F0 − 1)T0 (141)

It is the additional temperature required for an input source to
produce the same available power at the output.

Note that:

Te = (F0 − 1)T0 ⇔ F0 = 1 +
Te

T0
(142)

Noisy two-port circuit

Consider an effective noise temperature Te = 120 [K], then

F0 = 1 +
120

290
= 1.41 = 1.5 [dB] (143)
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Attenuator with a“Gain”G = 1/L or Loss L

Let us take an attenuator (for example a purely resistive circuit or
a lossy transmission line) at temperature T0.
(1) Assuming matched input and output impedances, the available
noise power at the output is

γaN2(f ) =
1

2
kBT0 (144)

(2) But that the attenuator is characterized by its effective noise
temperature Te , then the output noise power is

γaN2(f ) =
1

2
kB (T0 + Te)

1

L
(145)

By combining these two expressions: Te = (L− 1)T0. So that,

F0 = 1 +
Te

T0
= 1 +

(L− 1)T0

T0
= L (146)

Conclusion: attenuators have a noise figure F0 equal to their
attenuation ratio L when their physical temperature equals T0.
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What about the attenuator L at other temperatures?

Let us consider Ts ̸= T0 and calculate F .
There are two possible ways to calculate F :

1 same reasoning as previously: it is impossible to discriminate
the output of the two-port circuit from the input one-port
circuit, so that

γaN2(f ) =
1

2
kBTS = γaN2(f ) =

1

2
kB (TS + Te)

1

L
(147)

and F = L.
2 Remember that F0 represents the signal to noise degradation

F0 =

(
S

N

)
in
/

(
S

N

)
out

= L (148)

But, as L =Sin/Sout, we have Nin = Nout.

Conclusion: for an attenuator with a factor L, the amount of noise
is always unaffected, so that

F0 = F = L (149)
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Noise figure of two-port networks I

F01

γaN1
(f )

(F01 − 1)γaN1
(f )

(F02 − 1)γaN1
(f )

G1F01γaN1
(f )

G2G1

F02

Figure: Cascading two-port elements.

For a two-port network with 2 stages,

F0 =
γaN1(f )G1G2 + (F01 − 1) γaN1(f )G1G2 + (F02 − 1) γaN1(f )G2

γaN1(f )G1G2

= 1 + (F01 − 1) +
(F02 − 1)

G1
(150)

= F01 +
(F02 − 1)

G1
(151)
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Noise figure of two-port networks II

For a two-port network with n stages,

F0 = F01 +
F02 − 1

G1
+

F03 − 1

G1G2
+ · · · = F01 +

n∑
i=2

F0i − 1∏i−1
j=1 Gj

(152)

Likewise,

Te = Te1 +
Te2

G1
+

Te3

G1G2
+ · · · = Te1 +

n∑
i=2

Tei∏i−1
j=1 Gj

(153)
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Low-noise amplifier for receivers

F0 = F01 +
F02 − 1

G1
+

F03 − 1

G1G2
+ · · · (154)

Two consequences:

1 the noise figure always increases with an additional stage.

2 the overall noise figure of a receiver is primarily set by the
noise figure of its first amplifying stage.

Therefore, the first stage amplifier is often a Low-Noise Amplifier
(LNA). Then, the overall receiver noise figure is

Freceiver ≃ FLNA +
Fothers − 1

GLNA
(155)
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Outline

1 Reminder

2 Representation of bandpass signals

3 Noise in telecommunications systems

4 Digital modulation

5 Spread spectrum

6 Channels for digital communications and intersymbol
interference

7 Navigation systems

8 Multiplexing

9 Telephone traffic engineering

10 Transmission over twisted pairs (fixed telephone network)

11 Radio engineering
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Digital modulation

1 Criteria ruling the selection of a modulation scheme

2 Definition and typology of digital modulations
3 Classic linear modulations

Description
Determination of the power spectrum
Amplitude modulation (ASK)
Phase modulation (PSK)
Quadrature modulation (QPSK)

4 Offset modulations

Description
Determination of the power spectrum
Offset quadrature modulation (OQPSK)
Minimum shift modulation techniques (MSK)
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Introduction to digital modulation
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A subset of digital modulation techniques
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Criteria for choosing a modulation scheme

1 Resistance to distortion and perturbation. That includes:

resistance to additive white Gaussian noise. Noise usually
results in a bit error rate Pe , expressed in terms of the Eb/N0

ratio.
sensitivity to interference (multipath, other users, etc.).
sensitivity to imperfect filters. This is associated to the
phenomenon of intersymbol interference.
sensitivity to non-linearities.

2 Spectral occupancy:
1 spectral efficiency η, expressed in bit per second per Hertz[

b/s
Hz

]
, which measures the bit rate that can be transmitted per

unit of frequency bandwidth for a given modulation.
2 asymptotic behavior, defined by the values of the spectral

density for frequencies relatively distant from the carrier
frequency.

3 Simplicity of implementation.
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Spectral efficiency of linear modulation techniques

C = B log2

(
1 +

EbRb

B N0

)
max:Rb→C

=⇒ η ≃ Rb

B
= log2

(
1 + η

Eb

N0

)
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Understanding digital modulations

We will make an intensive use of alternative representations

v(t) vI(t) + jvQ(t)

va(t) ev(t) av(t)e
jφv(t)

≡

≡Re(.)

×e−2πjf0t

×e+2πjf0t

⊗
(
δ(t) + j

πt

)

vI(t) cos(.)− vQ(t) sin(.)
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Reminder: building a digital signal
∑+∞

k=−∞ Ak p(t − kT )

Result:

-1 -1+1

Information: Pulse shape:

pulse shapes

Combining modulated

A0 A2A1

Ak

p(t)

t t t

p(t − kT )

p(t − T ) p(t − 2T )

−T/2 T/2
T

t

t

t

t

A1 p(t − T )

A0 p(t)

A2 p(t − 2T )

+∞∑
k=−∞

Ak p(t − kT )

Main characteristics of digital signals:
1 With digital signals, the fundamental unit is a time slot T .
2 One information symbol Ak per time slot T (no overlap).

p(t − kT ) thus also acts as a time window!
3 Same pulse shape for each time slot (eases the task of the

receiver).
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Definition and typology of digital modulations I

Definition (General expression for digital modulations (based on
the complex envelope))

s(t) = Re
(
ψ [m(t)] e j(2πfc t+φc)

)
(156)

The complex function ψ [m(t)], which is related to the modulating
waveform m(t), defines the type of modulation. It is also the
complex envelope es(t) of the modulated signal s(t).
Depending on the form of ψ(.) = ψI (.) + j ψQ(.), we generally
distinguish:

▶ linear modulations for which ψ [m(t)] is a linear function of
m(t).

▶ angular modulations for which ψ [m(t)] has the form of

ψ [m(t)] = e jφ[m(t)] (157)

where φ [m(t)] is a linear function of m(t).
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Definition and typology of digital modulations II

The modulated signal can also be expressed as

s(t) = ψI [m(t)] cos (2πfct + φc)− ψQ [m(t)] sin (2πfct + φc)
(158)

s(t) = ∥ψ [m(t)]∥ cos (2πfct + φc + argψ [m(t)]) (159)

In the following, we will focus on modulations that can be written
as

s(t) = Re

 +∞∑
k=−∞

dk(t) e
j(θk−2πfckT )

 e j(2πfc t+φc)

 (160)

Two types of linear modulations will be studied:

1 “classic”modulations, for which θk = 2πfckT

2 offset modulations, for which θk = 2πfckT + k π
2

Usually, one takes φc = 0.
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Classic linear modulations

Description
Classic linear modulations are such that θk = 2πfckT . Therefore,
we have that

s(t) = Re
(
es(t) e

j(2πfc t+φc)
)

(161)

The complex envelope takes the form

es(t) =
+∞∑

k=−∞
dk(t) (162)

=
+∞∑

k=−∞
Dk pk(t − kT ) (163)

where Dk = Ak + jBk is complex and Ak , Bk are two real random
variables.
In most cases, the pulse shape of pk(t − kT ) is the same for each
symbol k. Therefore, pk(.) becomes p().
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Complex envelope of classic linear modulation techniques

The complex envelope can also be written as
es(t) = sI (t) + jsQ(t), so that

sI (t) =
+∞∑

k=−∞
Ak p(t − kT ) (164)

sQ(t) =
+∞∑

k=−∞
Bk p(t − kT ) (165)

resulting in

s(t) = sI (t) cos (2πfct + φc)− sQ(t) sin (2πfct + φc) (166)

and, by replacing sI and sQ by their value,

s(t) =

[
+∞∑

k=−∞

Ak p(t − kT )

]
cos (2πfc t + φc)−

[
+∞∑

k=−∞

Bk p(t − kT )

]
sin (2πfc t + φc)
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Derivation of the power spectral density I

Power spectral density of a modulated signal?
The modulated signal is a stochastic process S(t) that can be
written, taking φc = 0, as

S(t) = Re
(
M(t) e j2πfc t

)
(167)

where M(t) is a complex stochastic process (such as the complex
envelope es(t) in our case).

But is S(t) stationary?
Obviously, we take M(t) stationary. However, even then

µS = E {S(t)} = Re
(
µM e j2πfc t

)
(168)

is time-dependent (not constant), unless µM = 0.
Therefore, as such, we cannot calculate γS(f ).
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Derivation of the power spectral density II

Figure: Taxonomy of random signals.
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Derivation of the power spectral density III

Stationarization
The S(t) process is not stationary because its mean is
time-dependent. We have to“stationarize” the signal.

For that purpose, we add the random phase Θ whose probability
density function (pdf) is uniformly distributed over [0, 2π[ (in other
words, pdfΘ(θ) =

1
2π for θ ∈ [0, 2π[ and 0 outside):

S(t) = Re
(
M(t) e j(2πfc t+Θ)

)
(169)
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Derivation of the power spectral density IV

Mean of S(t) = Re
(
M(t) e j(2πfc t+Θ)

)
?

Note that M(t) and Θ are independent.
For the computation, we do

1 Re (a+ jb) is replaced by Re (a+ jb) = a+jb
2 + a−jb

2

2 Then, we take the expectation of both terms: the expectation
of a sum is the sum of the expectations.

3 Then, for the first term, we have

1

2
E
{
M(t) e j(2πfc t+Θ)

}
=

1

2
E {M(t)}E

{
e j(2πfc t+Θ)

}
=

1

2
µM

∫ 2π

0
e j(2πfc t+θ) 1

2π
dθ

=
1

2
µM × 0 = 0

µS = E {S(t)} = 0 (170)
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Derivation of the power spectral density V

Autocorrelation function of S(t)?

ΓSS (t, t − τ) = E {S(t) S(t − τ)} (171)

As

S(t) = Re
(
M(t) e j(2πfc t+Θ)

)
(172)

=
1

2

[
M(t) e j(2πfc t+Θ) +M∗(t) e−j(2πfc t+Θ)

]
(173)

we have

S(t)S(t − τ) =
1

2

[
M(t) e j(2πfc t+Θ) +M∗(t) e−j(2πfc t+Θ)

]
(174)

× 1

2

[
M(t − τ) e j(2πfc (t−τ)+Θ) +M∗(t − τ) e−j(2πfc (t−τ)+Θ)

]
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Derivation of the power spectral density VI

S(t)S(t − τ) =
1

4
M(t) e j(2πfc t+Θ)M(t − τ) e j(2πfc (t−τ)+Θ) (175)

+
1

4
M(t) e j(2πfc t+Θ)M∗(t − τ) e−j(2πfc (t−τ)+Θ) (176)

+
1

4
M∗(t) e−j(2πfc t+Θ)M(t − τ) e j(2πfc (t−τ)+Θ) (177)

+
1

4
M∗(t) e−j(2πfc t+Θ)M∗(t − τ) e−j(2πfc (t−τ)+Θ)

S(t)S(t − τ) =
1

4
M(t)M(t − τ) e j(2πfc (2t−τ)+2Θ) (178)

+
1

4
M(t)M∗(t − τ) e j2πfcτ (179)

+
1

4
M∗(t)M(t − τ) e−j2πfcτ (180)

+
1

4
M∗(t)M∗(t − τ) e−j(2πfc (2t−τ)+2Θ) (181)
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Derivation of the power spectral density VII

Because, ΓSS (t, t − τ) = E {S(t) S(t − τ)}, the terms of E {.}
containing 2Θ are null. Therefore, we are left with

ΓSS (t, t − τ) =
1

4
E
{
M(t)M∗(t − τ) e j2πfcτ +M∗(t)M(t − τ) e−j2πfcτ

}
=

1

4
E
{
2Re

(
M(t)M∗(t − τ) e j2πfcτ

)}
(182)

=
1

2
Re
(
E
{
M(t)M∗(t − τ) e j2πfcτ

})
(183)

=
1

2
Re
(
ΓMM (t, t − τ) e j2πfcτ

)
(184)

Finally, because

ΓSS (τ) =
1

4

[
ΓMM (τ) e j2πfcτ + ΓMM (τ)∗ e−j2πfcτ

]
(185)

and x∗(t)↔ X ∗(−f ), we have that

γS(f ) =
γM (f − fc) + γ∗

M (−f − fc)

4
(186)

where γM(f ) is the power spectral density of M(t).
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Derivation of the power spectral density VIII

Power spectral density of a modulation signal for classic linear
modulation techniques

If γM is real:

γS(f ) =
γM (f − fc) + γM (f + fc)

4
(187)

If γM is complex:

γS(f ) =
γM (f − fc) + γ∗

M (−f − fc)

4
(188)
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Calculation of the power spectrum of the complex envelope
(for classic linear modulation techniques)

The complex envelope of the modulated signal is (es(t) = M(t))

M(t) =

+∞∑
k=−∞

Dk p(t − kT ) (189)

The sequence of complex random variables Dk is characterized by
▶ mean: µD = E {Dk}
▶ variance: σ2

D = E {(Dk − µD) (Dk − µD)
∗}

▶ autocorrelation function: ΓDD (k, k − l) = E {DkD
∗
k−l}

▶ covariance function: CDD(k, k − l) = E {(Dk − µD) (Dk−l − µD)
∗}

After the stationarization of Dk , the PSD of the baseband complex
envelope is (see first course in telecommunications)

γM(f ) =
∥P(f )∥2

T

[
σ2
D + ∥µD∥2

+∞∑
m=−∞

1

T
δ
(
f − m

T

)]
(190)

In conclusion (γM(f ) being real in this case):

γS(f ) =
γM (f − fc) + γM (f + fc)

4
(191)
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Amplitude Shift Keying (amplitude modulation) I

Definition (Complex envelope of the Amplitude Shift Keying
(ASK))

es(t) =
+∞∑

k=−∞
Ak p(t − kT ) (192)

Common choice for the shaping pulse function over [0,T ]:

p(t) = rect[0,T ] (t) (193)

Goal of the following slides: we need to find the envelope a(t)
and the phase φ(t) of the modulated signal. These two signals can
be derived from

es(t) = a(t) e jφ(t) (194)
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Amplitude Shift Keying (amplitude modulation) II

Trick: ±Ak can be expressed as ±Ak = ∥Ak∥ e(1−sign(Ak ))π2 j

Let us verify this:
▶ Ak is positive (Ak = ∥Ak∥):

Ak = ∥Ak∥ e(1−sign(Ak ))π
2
j = ∥Ak∥ e(1−1) π

2
j = ∥Ak∥ e0

π
2
j = ∥Ak∥ (195)

▶ Ak is negative (Ak = − ∥Ak∥):

Ak = ∥Ak∥ e(1−(−1)) π
2
j = ∥Ak∥ e2

π
2
j = ∥Ak∥ eπj = − ∥Ak∥ (196)

So, we have

es(t) =
+∞∑

k=−∞
Ak p(t − kT ) (197)

=
+∞∑

k=−∞
∥Ak∥ e(1−sign(Ak))π2 j p(t − kT ) (198)
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Amplitude Shift Keying (amplitude modulation) III

Therefore, the envelope a(t) and the phase φ(t) of the modulated
signal are given by

a(t) =
+∞∑

k=−∞
∥Ak∥ rect[0,T ] (t − kT ) (199)

φ(t) =
+∞∑

k=−∞

π

2
(1− sign (Ak)) rect[0,T ] (t − kT ) (200)

Note the presence of the time windowing function
rect[0,T ] (t − kT ) in these expressions. Why?
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Power spectral density of the ASK-2

Hypothesis: both signals ±A have an equal probability!

▶ The mean µA of the random variable Ak is equal to 0.

▶ The variance is given by σ2A = E
{
A2
k

}
= A2.

▶ p(t) = rect[0,T ] (t). Thus, its Fourier transform is

P(f ) = e−j2πf T
2 T sinc(fT ) (201)

Therefore, the power spectrum of the complex envelop is(
γes (f ) =

∥P(f )∥2
T

[
σ2A + ∥µA∥2

∑+∞
m=−∞

1
T δ
(
f − m

T

)])
:

γes (f ) = A2T sinc2 (fT ) (202)

and that of the ASK-2 modulated signal is

γs(f ) =
A2T

{
sinc2 [(f − fc)T ] + sinc2 [(f + fc)T ]

}
4

(203)

143 / 508



ASK-2: bandwidth and spectral efficiency

The PSD of ASK-2 is

γs(f ) =
A2T

{
sinc2 [(f − fc)T ] + sinc2 [(f + fc)T ]

}
4

(204)

At fixed bitrate Rb:

Technique bandwidth spectral efficiency η

Baseband (NRZ) W = 0.6Rb η = Rb
0.6Rb

≃ 1.6

ASK-2 B = 2× 0.6Rb = 1.2Rb η = Rb
1.2Rb

≃ 0.8
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Constellation or state diagram: definition I
We have:

s(t) = sI (t) cos (2πfct) − sQ(t) sin (2πfct) (205)

and, for the complex envelope:
es(t) = sI (t) + jsQ(t) (206)

The alternative is
s(t) = as(t) cos (2πfct + ϕs(t)) (207)

with

as(t) =
√

s2I (t) + s2Q(t) (208)

and

ϕs(t) = tan−1 sQ(t)

sI (t)
(209)

Definition (Constellation diagram)

The plot of es(t) in a diagram whose axis units are (cos (2πfct),
− sin (2πfct)) defines the constellation diagram.
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Constellation or state diagram: definition II

Constellation diagram of a ASK-2 or BPSK modulation

p(t) cos (2πfct + φc)

(A, 0)(−A, 0)

−p(t) sin (2πfct + φc)

The presence of p(t) reinforces the idea that there is only one symbol per time
slot, but it is often dropped. Likewise, φc is often taken equal to 0.
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Constellation diagram: purposes

p(t) cos (2πfct + φc)

(A, 0)(−A, 0)

−p(t) sin (2πfct + φc)

▶ Representation of the possible states in the complex plane.

▶ See how the state diagram is used (here, we immediately see
that the sin() axis is not used).

▶ The distance between states is essential for finding the Pe .
Closer states mean less resistance to noise.

▶ See the paths from one state to another (trajectories).

Note that we move from one state to another state at the rhythm
of the symbol rate (not the bit rate!)
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Constellation diagram of an On-Off Shift Keying (OOK)

p(t) cos (2πfct + φc)

(0, 0) (A, 0)

−p(t) sin (2πfct + φc)

Infrared signals are usually sent using On-Off Shift Keying (because
it is hard to determine the phase of an infrared signal).
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Constellation diagrams

OOK, ASK-2≡BPSK≡PSK-2, and QPSK.
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16-QAM constellation diagram
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Example of a noisy (real) constellation diagram (ASK-2)

Noise can also be expressed according to its Rice’s decomposition:

n(t) = nI (t) cos (2πfct)− nQ(t) sin (2πfct) (210)

Therefore, for a noisy modulated ASK-2 modulation, we will
observe
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Phase Shift Keying modulation (PSK) I

Definition (Phase Shift Keying modulation (PSK))

s(t) = A
+∞∑

k=−∞
rect[0,T ] (t − kT ) cos (2πfct + φc + ψk) (211)

where ψk is a random variable that:

1 remains constant over the [kT , (k + 1)T [ interval,

2 takes a value among N possible values:

ψk ∈
{
ψ

∣∣∣∣ψ = φ0 + i
2π

N
, i = 0, ..., N − 1

}
(212)
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Phase Shift Keying modulation (PSK) II

The modulated signal is (using
cos(a+ b) = cos a cos b − sin a sin b)

s(t) = A

+∞∑
k=−∞

rect[0,T ] (t − kT ) [cos (2πfct + φc) cosψk − sin (2πfct + φc) sinψk ]

=

+∞∑
k=−∞

([
A cosψk rect[0,T ] (t − kT )

]
cos (2πfct + φc) (213)

−
[
A sinψk rect[0,T ] (t − kT )

]
sin (2πfct + φc)

)
(214)

= sI (t) cos (2πfct + φc) − sQ(t) sin (2πfct + φc) (215)

We then derive its complex envelope

es(t) = sI (t) + j sQ(t) (216)

= A
+∞∑

k=−∞
rect[0,T ] (t − kT ) (cosψk + j sinψk)(217)

153 / 508



Phase Shift Keying modulation (PSK) III

es(t) = A

+∞∑
k=−∞

rect[0,T ] (t − kT ) (cosψk + j sinψk) (218)

= A

+∞∑
k=−∞

rect[0,T ] (t − kT ) e jψk (219)

Conclusions for a PSK modulation:

Therefore, the envelope and phase of the modulated signal s(t) are:

a(t) = A
+∞∑

k=−∞

rect[0,T ] (t − kT ) = A (220)

φ(t) =
+∞∑

k=−∞

ψk rect[0,T ] (t − kT ) (221)

The envelope of a PSK modulated signal is constant.
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8-PSK constellation diagram
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Bit error rates when increasing the number of states
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Bandwidth and spectral efficiency

The PSD of ASK-2 is

γs(f ) =
A2T

{
sinc2 [(f − fc)T ] + sinc2 [(f + fc)T ]

}
4

(222)

At fixed bitrate Rb:

modulation bandwidth spectral efficiency η

ASK-2 1.2Rb η = Rb
1.2Rb

≃ 0.8

BPSK (≡ PSK-2) 1.2Rb η = Rb
1.2Rb

≃ 0.8

157 / 508



Digital modulation

1 Criteria ruling the selection of a modulation scheme

2 Definition and typology of digital modulations
3 Classic linear modulations

Description
Determination of the power spectrum
Amplitude modulation (ASK)
Phase modulation (PSK)
Quadrature modulation (QPSK)

4 Offset modulations

Description
Determination of the power spectrum
Offset quadrature modulation (OQPSK)
Minimum shift modulation techniques (MSK)
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Quadrature Phase Shift Keying modulation (QPSK) I

Why would we be using quadrature modulation?

1 Starting point: for quadrature modulation, we would like to
use the cos (2πfct) axis AND the sin (2πfct) axis.

2 There exist techniques capable to recover m1(t) and m2(t)
separately from a modulated signal such as

s(t) = m1(t) cos (2πfct) +m2(t) sin (2πfct) (223)

3 Benefit: reduce the used bandwidth (m1(t) ̸= m2(t)) or
reinforce the signal (m1(t) = m2(t)).

Definition (QPSK)

A Quadrature Phase Shift Keying (QPSK) typically uses different
phases (4 in this particular example):

Dk ∈
{
Ae−j 3π

4 , Ae−j π
4 , Ae j

π
4 , Ae j

3π
4

}
(224)
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Quadrature Phase Shift Keying modulation (QPSK) II

This corresponds to the following constellation diagram

p(t) cos (2πfct + φc)

(+ A√
2
,+ A√

2
)

(+ A√
2
,− A√

2
)

00

01

(− A√
2
,+ A√

2
)

(− A√
2
,− A√

2
)

11

10

−p(t) sin (2πfct + φc)

Side note: this diagram is equivalent to a constellation diagram whose states
are located on the axes (diagram rotated by π

4
)!
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Quadrature Phase Shift Keying modulation (QPSK) III

For the development, we introduce a new binary random sequence!

Let us consider a binary source generated by a regularly
time-spaced series of Dirac delta functions:

I (t) =
+∞∑

k=−∞
Ik δ(t − kTb) (225)

where Ik = −1 or + 1 corresponds to a binary symbol 0 or 1,
respectively. It is a sequence whose symbols are normalized to an
amplitude of 1.
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QPSK: decomposition into 2 sequences I

Starting from I (t), we split the original sequence in two sequences
with a“slower”bitrate (even I2k and odd I2k+1 bits):

sI (t) =
A√
2

+∞∑
k=−∞

I2k p(t − kT ) =
+∞∑

k=−∞
Ak p(t − kT )(226)

sQ(t) =
A√
2

+∞∑
k=−∞

I2k+1 p(t − kT ) =
+∞∑

k=−∞
Bk p(t − kT )

where

▶ T = 2Tb. T is twice longer than Tb!

▶ p(t) is a T -long rectangular pulse: p(t) = rect[0,T ] (t)

▶ Ak = I2k
A√
2
(even index bits) and Bk = I2k+1

A√
2
(odd index

bits)

Note that the bit rate Rb is twice the symbol rate RS (RS = Rb/2)
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QPSK: decomposition into 2 sequences II

0 t

t

t

Tb

0

1

0

1

0

1 1

0

1

1 1 1

0 0 0 0

1 1 1 1 1

0 0

I (t)

sI (t)

sQ(t)

+1

−1

+ A√
2

− A√
2

T = 2Tb

+ A√
2

− A√
2

t
3π
4

−π
4

3π
4

3π
4

−π
4

3π
4

π
4

ϕ(t)

1 1 1

0

Figure: Construction of in-phase and quadrature signals of a QPSK
(remember that Ik = −1 for a 0 bit and Ik = +1 for a 1 bit).
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Complex envelope, amplitude, and phase of a QPSK I

es(t) = sI (t) + j sQ(t) =
+∞∑

k=−∞
(Ak + j Bk) rect[0,T ] (t − kT )

=
A√
2

+∞∑
k=−∞

(I2k + j I2k+1) rect[0,T ] (t − kT ) (227)

a(t) =
√
s2I (t) + s2Q(t) (228)

=
A√
2

+∞∑
k=−∞

√
I 22k + I 22k+1 rect[0,T ] (t − kT ) (229)

= A
+∞∑

k=−∞
rect[0,T ] (t − kT )= A (230)

⇒ The amplitude of a QPSK is constant.
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Complex envelope, amplitude, and phase of a QPSK II

Phase?

φ(t) = tan−1
(
sQ(t)

sI (t)

)
(231)

=
+∞∑

k=−∞
rect[0,T ] (t − kT ) tan−1

(
I2k+1

I2k

)
(232)

Conclusions about the phase of a QPSK modulated signal:

▶ knowing that I2k , I2k+1 = ±1, we have tan−1
(
I2k+1

I2k

)
= ±π

4 .

▶ but there is an ambiguity between 1
1 or −1

−1 , and
−1
1 or 1

−1 .
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QPSK: illustration

0 2 4 6 8 10 12
−1

0

1

(a
)

Modulation QPSK

0 2 4 6 8 10 12
−1

0

1

(b
)

0 2 4 6 8 10 12
−1

0

1

(c
)

0 2 4 6 8 10 12
−1

0

1

(d
)

0 2 4 6 8 10 12
−1

0

1

(e
)

0 2 4 6 8 10 12

−1

0

1

(f
)

Figure: Illustration for the QPSK modulation: (a) binary input sequence
I (t), (b) in-phase signal sI (t), (c) quadrature signal sQ(t), (d)
sI (t) cos (2πfct), (e) sQ(t) sin (2πfct), and (f) modulated signal s(t).
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QPSK modulator

I (t)

−π
2

cos (2πfc)t

sin (2πfc)t

sQ(t) sQ(t) sin (2πfct)

parallel

sI (t) sI (t) cos (2πfct)

+

−
s(t)

serial
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QPSK demodulator

1
2
I (t)

−π
2

cos (2πfc)t

s(t)

sin (2πfc)t

1
2
sQ(t)

1
2
sI (t)

Matched filter and decision

Matched filter and decision

serial

parallel
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QPSK-4: calculation of the power spectral density

Reasoning:
1 the two signals sI (t) and sQ(t) that modulate either a

cos (2πfct) or a sin (2πfct) are independent.
2 the power spectral density of a two-state amplitude modulated

signal (ASK-2), such as sI (t) cos (2πfct) is known to be

γsI (f ) =
B2T

{
sinc2 [(f − fc)T ] + sinc2 [(f + fc)T ]

}
4

(233)

where the amplitude B is, in this case, A/
√
2.

3 the power spectral density of a sum of two independent
stochastic processes is the sum of the power spectral densities.

Taking T = 2Tb,

γs(f ) =
A2Tb

{
sinc2 [(f − fc) 2Tb] + sinc2 [(f + fc) 2Tb]

}
2

(234)

For the same bitrate, it needs half the bandwidth of that of a PSK.
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Discussion on the spectral efficiency and resilience to noise

We use the bitrate Rb and the symbol rate RS .

modulation bandwidth spectral efficiency η

ASK-2 1.2Rb η = Rb
1.2Rb

≃ 0.8

BPSK (≡ PSK-2) 1.2Rb η = Rb
1.2Rb

≃ 0.8

QPSK 1.2RS = 0.6Rb η = Rb
0.6Rb

≃ 1.6

ASK-2N or PSK-2N 1.2RS = 1.2 Rb
N η = Rb

1.2Rb
N ≃ 0.8N

Concatenating N bits in larger symbols has the following consequences:

▶ (+) it increases the spectral efficiency.

▶ (–) for the same power level, it decreases the average distance
between symbols, which leads to an increase in the Bit Error Rate
(BER or Pe).

Solution: use pre-coding to change the input sequence.
Probabilities to move between neighboring states should be
less than that of distant states in the constellation diagram.
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QPSK trajectories

▶ Possible transitions: self, close neighbors, opposite state
(transition crosses the origin)

▶ Time between state changes: 2Tb (changes occur at the
speed of the symbol rate RS)
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Offset modulation techniques I

General form for linear modulation techniques:

s(t) = Re

e j(2πfc t+φc)
+∞∑

k=−∞
dk(t) e

j(θk−2πfckTb)

 (235)

Offset modulations have θk = 2πfckTb + k π
2 .

Definition (Offset modulation)

The complex envelope of offset modulation techniques is:

es(t) =
+∞∑

k=−∞
Ak p(t − kTb) e

jk π
2 (236)

So, we rotate the constellation diagram by π
2 after each bit (and by

π after each symbol)!
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Offset modulation techniques II

s(t) =
+∞∑

k=−∞
Ak p(t − kTb) cos

(
2πfct + φc + k

π

2

)
(237)

=

 +∞∑
k=−∞

Ak p(t − kTb) cos

(
k
π

2

) cos (2πfct + φc)

−

 +∞∑
k=−∞

Ak p(t − kTb) sin

(
k
π

2

) sin (2πfct + φc)

▶ For k odd (1, 3, 5, . . .) ⇒ cos
(
k π

2

)
= 0.

One out of two cosine terms is null; remaining terms: k even.

▶ For k even (0, 2, 4, . . .) ⇒ sin
(
k π

2

)
= 0.

One out of two sine terms is null; remaining terms: k odd.
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Offset modulation techniques III

Considering that cos (kπ/2) = 0 for k odd and that sin (kπ/2) = 0
for k even, in-phase sI (t) and quadrature sQ(t) are respectively:

sI (t) =
+∞∑

k=−∞
Ak p(t − kTb) cos

(
k
π

2

)
(238)

=
+∞∑

k′=−∞
A2k′ p

(
t − 2k ′Tb

)
cos

(
2k ′π

2

)
(239)

=
+∞∑

k′=−∞
A2k′ (−1) k′

p
(
t − 2k ′Tb

)
(240)

and

sQ(t) =
+∞∑

k=−∞
Ak p(t − kTb) sin

(
k
π

2

)
(241)

=
+∞∑

k′=−∞
A2k′+1 (−1) k′

p
(
t −

(
2k ′ + 1

)
Tb
)
(242)

174 / 508



Offset Quadrature Phase Shift Keying (OQPSK) I

Building an Offset Quadrature Phase Shift Keying signal
Consider a binary source generated by a regularly time-spaced
series of Dirac delta functions:

I (t) =

+∞∑
k=−∞

Ik δ(t − kTb) (243)

We construct two signals with the odd and even bits of the input
sequence:

sI (t) =
A√
2

+∞∑
k=−∞

(−1)k I2k p (t − 2kTb) =

+∞∑
k=−∞

A2k p (t − kT ) (244)

sQ(t) =
A√
2

+∞∑
k=−∞

(−1)k I2k+1 p (t − (2k + 1)Tb) =

+∞∑
k=−∞

A2k+1 p (t − kT−Tb)

where p(t) is a unit rectangular pulse over [0, 2Tb] = [0, T ],
A2k = A√

2
(−1)k I2k and A2k+1 =

A√
2
(−1)k I2k+1, ∀k.
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Offset Quadrature Phase Shift Keying (OQPSK) II

Discussion on the encoding of 0 and 1 bits

Let us consider the following bit stream: b0b1b2b3 = 11 1 0
If we take Iα = −1 or +1 respectively when the bit is 0 and 1, then
according to A2k = A√

2
(−1)k I2k and A2k+1 =

A√
2
(−1)k I2k+1, we

would have the following encoding:

Bit Value k Amplitude Final value

b0 1 0 A2k = A√
2
(−1)k I2k A√

2
(−1)0 (+1) = + A√

2

b1 1 0 A2k+1 =
A√
2
(−1)k I2k+1

A√
2
(−1)0 (+1) = + A√

2

b2 1 1 A2k = A√
2
(−1)k I2k A√

2
(−1)1 (+1) = − A√

2

b3 0 1 A2k+1 =
A√
2
(−1)k I2k+1

A√
2
(−1)1 (−1) = + A√

2
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Offset Quadrature Phase Shift Keying (OQPSK) III
Impact on the constellation diagram

b0b1b2b3 = 11 1 0 −→ +
A√
2
+

A√
2
− A√

2
+

A√
2

(245)

Therefore, consecutive equal even bits such as 11 result in +−
polarities (which is due to two consecutive turns of π

2 between
consecutive even bits).

However, for the ease of the interpretation only (on the
constellation diagram and time plot), we do not rotate the
diagram, which means that we will ignore (−1)k in the A2k and
A2k+1 terms.

In other words, each symbol, such as (1, 1), will remain at the
same location in the constellation diagram.
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Offset Quadrature Phase Shift Keying (OQPSK) IV

Tb

t

t

t

Tb

1 1

0

1 1

0 0

1

0

1 1

0 0

1

1 1 1

0 0 0 0

I (t)

sI (t)

sQ(t)

+1

−1

+ A√
2

− A√
2

T = 2Tb

t
ϕ(t)

1 1 1 1 1

0 0

+ A√
2

− A√
2

3π
4

3π
4

−
π
4

−
π
4

3π
4

3π
4

3π
4

−−
3π
4

π
4

π
4

3π
4

3π
4

π
4

Figure: Formation of in-phase and quadrature signals of a OQPSK (for this drawing,

we assume that the constellation diagram does not turn by π
2
for each bit).

Important note: the signal changes every Tb instead of every 2Tb!
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Offset Quadrature Phase Shift Keying (OQPSK) V

p(t) cos (2πfct + φc)

(+ A√
2
,+ A√

2
)

(+ A√
2
,− A√

2
)

00

01

(− A√
2
,+ A√

2
)

(− A√
2
,− A√

2
)

11

10

−p(t) sin (2πfct + φc)

Figure: Constellation diagram of an OQPSK (note: we have frozen the π
2

rotation factor between consecutive bits).
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Offset Quadrature Phase Shift Keying (OQPSK) VI

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(a
)

Modulation OQPSK

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(b
)

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1
(c

)

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(d
)

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(e
)

1 2 3 4 5 6 7 8 9 10 11 12

−1

0

1

(f
)

Figure: Illustration for the OQPSK modulation: (a) binary input sequence I (t),

(b) in-phase signal sI (t), (c) quadrature signal sQ(t), (d) sI (t) cos (2πfct), (e)

sQ(t) sin (2πfct), and (f) modulated signal s(t).
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Power spectral density of the OQPSK modulation I

First guess?

▶ construction of two independent sequences.

▶ one sequence modulates the cos (.) function, the other the
sin (.) function.

▶ the power spectrum of a sum is the sum of the power
spectrum densities if the sequences are independent.

⇒ why should the spectral occupancy of an OQPSK be different
to that of a QPSK?
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Power spectral density of the OQPSK modulation II

Towards an analytic expression of the power spectral density
of an offset modulation.
Trick: we modify the expression of the pulse function by adding

the e
−j2π t

4Tb term (later compensated in the general expression by

e
j2π t

4Tb ), to get:

p(t − kTb) e
jk π

2 e
−j2π t

4Tb = p(t − kTb) e
−j π

2Tb
(t−kTb) (246)

The introduction of a phase factor in the envelope has to be
compensated by introducing a new carrier frequency f ′

c

s(t) = Re

(
es(t) e

−j2π t
4Tb e j(2πfc t+φc)e

j2π t
4Tb

)
(247)

= Re

(
es(t) e

−j2π t
4Tb e

j

(
2π

(
fc+

1
4Tb

)
t+φc

))
(248)
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Power spectral density of the OQPSK modulation III

So,

s(t) = Re

(
es(t) e

−j2π t
4Tb e

j

(
2π

(
fc+

1
4Tb

)
t+φc

))

We introduce z(t) = es(t)e
−j2π t

4Tb and f ′
c = fc +

1
4Tb

s(t) = Re
(
z(t) e j(2πf ′

c t+φc)
)

(249)

If the power spectral density of the complex signal z(t) was known,
then

γs(f ) =
γz (f − f ′

c ) + γ∗
z (−f − f ′

c )

4
(250)

=
γz

(
f − fc − 1

4Tb

)
+ γ∗

z

(
−f − fc − 1

4Tb

)
4

(251)
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Power spectral density of the OQPSK modulation IV

It remains to calculate γz (f ):

z(t) =

+∞∑
k=−∞

Ak p(t − kTb) e
jk π

2 e
−j2π t

4Tb (252)

=

+∞∑
k=−∞

Ak p(t − kTb) e
−j π

2Tb
(t−kTb) (253)

=

+∞∑
k=−∞

Ak h(t − kTb) (254)

where we have defined the new function h(x) by

h(x) = p(x) e
−j π

2Tb
x
= p(x) e

2πjx
(

− 1
4Tb

)
(255)

h(t) is in fact a new“shaping” function whose Fourier transform is
derived from that of p(t) by

H(f ) = P
(
f −

(
− 1

4Tb

))
= P

(
f +

1

4Tb

)
(256)

184 / 508



Power spectral density of the OQPSK modulation V

Therefore, we only need to adapt the power spectral density of
z(t) by considering H(f ) in replacement of P(f )

γz(f ) =

∥∥∥P
(
f + 1

4Tb

)∥∥∥2
Tb

[
σ2
A + µ2

A

+∞∑
m=−∞

1

Tb
δ
(
f − m

Tb

)]
(257)

in

γs(f ) =
γz

(
f − fc − 1

4Tb

)
+ γ∗

z

(
−f − fc − 1

4Tb

)
4

(258)

Obviously, the 1
4Tb

component of the filter annihilates the factor

− 1
4Tb

in the expression of γs(f ) (except for the series of δ())

In conclusion, the OQPSK and the QPSK have the same power
spectral density (except for the locations of δ() in some cases).
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OQPSK-4: calculation of the power spectral density

The complex envelope of the modulated signal is given by

es(t) =
+∞∑

k=−∞
Ak p(t − kTb) e

jk π
2 (259)

where p(t) is the shaping function and Ak is the random variable
containing the information, respectively given by

p(t) = rect[0, 2Tb] (t) (260)

Ak ∈
{
+

A√
2
,− A√

2

}
(261)

The power spectral density of z(t) is calculated as follows:

γz(f ) = 2A2Tb sinc
2
[(

f +
1

4Tb

)
2Tb

]
(262)

Therefore, the power spectral density of the OQPSK modulation is

γs(f ) =
A2Tb

2

{
sinc2 [(f − fc) 2Tb] + sinc2 [(f + fc) 2Tb]

}
(263)

which is also that of the QPSK.
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OQPSK-4 trajectories in the constellation diagram

11

1000

01

Q

I

[reminder: for this
drawing, we assume
that the constellation
diagram does not turn
by π

2
after each bit]

▶ Possible transitions: self (1 unchanged bit) or close neighbors

▶ Time rhythm between state changes: Tb (changes occur at
the speed of the bit rate, which is twice that of the symbol
rate!).
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Minimum Shift Keying modulation (MSK) I

From OQPSK
towards MSK:
rectangular shapes
are replaced by half
sin shapes
[in this drawing, we
do not ignore the
(−1)k term, that is
we have a shift of π
between consecutive
even (odd) bits]
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Minimum Shift Keying modulation (MSK) II

Definition (MSK)

For defining the Minimum Shift Keying modulation (MSK)
modulation, we use the principle of the OQPSK and a
non-rectangular pulse shape. More precisely, we take

p(t) = rect[0, 2Tb] (t) sin

(
πt

2Tb

)
(264)

sI (t) and sQ(t) are built exactly as for the OQPSK.
sI (t) is calculated as

sI (t) =
A√
2

+∞∑
k=−∞

I2k rect[0, 2Tb] (t − 2kTb) sin

[
π (t − 2kTb)

2Tb

]

=
A√
2

+∞∑
k=−∞

I2k rect[0, 2Tb] (t − 2kTb) sin

[
πt

2Tb
− kπ

]
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Minimum Shift Keying modulation (MSK) III

Since sin(a− b) = sin a cos b − cos a sin b, we have

sI (t) =
A

√
2

+∞∑
k=−∞

I2k rect[0, 2Tb ]
(t − 2kTb) sin

[
πt

2Tb
− kπ

]
(265)

=
A

√
2

+∞∑
k=−∞

I2k rect[0, 2Tb ]
(t − 2kTb)

[
sin

(
πt

2Tb

)
cos (kπ) − cos

(
πt
2Tb

)
sin (kπ)

]
=

A
√
2

+∞∑
k=−∞

I2k rect[0, 2Tb ]
(t − 2kTb) sin

(
πt

2Tb

)
cos (kπ) (266)

=

+∞∑
k=−∞

A
√
2
I2k (−1)k rect[0, 2Tb ]

(t − 2kTb) sin

(
πt

2Tb

)
(267)

= cos

(
π

2
−

πt

2Tb

) +∞∑
k=−∞

A
√
2
I2k (−1)k rect[0, 2Tb ]

(t − 2kTb) (268)

= cos

(
πt

2Tb
−

π

2

) +∞∑
k=−∞

A
√
2
I2k (−1)k rect[0, 2Tb ]

(t − 2kTb) (269)

190 / 508



Minimum Shift Keying modulation (MSK) IV

Likewise,

sQ(t) = sin
(
πt

2Tb
− π

2

) +∞∑
k=−∞

A√
2
I2k+1 (−1)k rect[0, 2Tb ] (t − (2k + 1)Tb)

The instantaneous envelope of the modulated signal is then (we
ignore the rect[0, 2Tb] (.) in the following expressions)

a(t) =
√

s2I (t) + s2Q(t) (270)

=

√(
A√
2

)2

cos2
(
πt

2Tb
− π

2

)
+

(
A√
2

)2

sin2
(
πt

2Tb
− π

2

)
(271)

=

√(
A√
2

)2

=
A√
2

(272)
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Minimum Shift Keying modulation (MSK) V

The instantaneous phase is

φ(t) = tan−1
[
sQ(t)

sI (t)

]
(273)

= tan−1

[
tan

(
πt

2Tb
−

π

2

) ∑+∞
k=−∞

A√
2
I2k+1 (−1)k rect[0, 2Tb ]

(t − (2k + 1)Tb)∑+∞
k=−∞

A√
2
I2k (−1)k rect[0, 2Tb ]

(t − 2kTb)

]

φ(t) = tan−1

[
tan
(
πt

2Tb
− π

2

) ∑+∞
k=−∞

A√
2
I2k+1 (−1)k rect[0, 2Tb ] (t − (2k + 1)Tb)∑+∞

k=−∞
A√
2
I2k (−1)k rect[0, 2Tb ] (t − 2kTb)

]
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Minimum Shift Keying modulation (MSK) VI

Understanding the phase of an MSK

▶ there is an ambiguity between 1
1 or −1

−1 , and
−1
1 or 1

−1 .

▶ the phase evolves linearly with time:

φ(t) = tan−1
[
tan
(
πt

2Tb
− π

2

)
× (±1)

]
(274)

= ±
(
πt

2Tb
− π

2

)
(275)

It is continuous with time t!
▶ the transition rate is given by the duration Tb.

the time slope is π
2Tb

or − π
2Tb

.
the phase increment after a Tb period is π

2 or −π
2
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Minimum Shift Keying modulation (MSK) VII

∆φ(t)
Tb

t

3π/2

π

π/2

−π/2

−π

−3π/2

Figure: Phase trellis diagram of the MSK modulation.
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Minimum Shift Keying modulation (MSK) VIII

rect[0,Tb] (t) cos (2πfct)

00

01 11

10

−rect[0,Tb] (t) sin (2πfct)

Figure: Constellation diagram of the MSK modulation.
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Minimum Shift Keying modulation (MSK) IX

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(a
)

Modulation MSK

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(b
)

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(c
)

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(d
)

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(e
)

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

(f
)

Figure: Illustration for the MSK modulation: (a) binary input sequence
I (t), (b) in-phase signal sI (t), (c) quadrature signal sQ(t), (d)
sI (t) cos (2πfct), (e) sQ(t) sin (2πfct), and (f) modulated signal s(t).
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Which family of modulation techniques does the MSK
belong to?

Because the envelope is constant and the phase evolves as (over a
period of Tb)

∆φ(t) = ± πt

2Tb
(276)

we can write that

s(t) = A cos

(
2πfct ±

πt

2Tb

)
(277)

= A cos

[
2π

(
fc ±

1

4Tb

)
t

]
(278)

This illustrates that, in fact, the MSK modulation is a“pure”
frequency modulation (whose frequency excursion is limited to
∆f = 1

4Tb
).
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Power spectral density of the MSK I

The complex envelope of the modulated signal is again given by

es(t) =
+∞∑

k=−∞
Ak p(t − kTb) e

jk π
2 (279)

where p(t) is the shaping function and Ak is the random variable
containing the information, respectively given by

p(t) = rect[0,2Tb] (t) sin

(
πt

2Tb

)
(280)

Ak ∈ {+A,−A} (281)

After considering the Fourier transform of H(f ) = P
(
f + 1

4Tb

)
,

γz(f ) =
16A2Tb

π2


cos

[
2π
(
f + 1

4Tb

)
Tb

]
1− 16

(
f + 1

4Tb

)2
T 2
b


2

(282)
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Power spectral density of the MSK II

This yields the power spectral density of the MSK modulation:

γs(f ) =
4A2Tb

π


(
cos [2π (f − fc)Tb]

1− 16 (f − fc)
2 T 2

b

)2

+

(
cos [2π (f + fc)Tb]

1− 16 (f + fc)
2 T 2

b

)2


(283)
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Power spectral density of the MSK III

The modulation technique used in the GSM standard is an MSK variant; it is
the Gaussian Minimum Shift Keying (GMSK) for which the pulse shaping
function is a Gaussian.
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Outline

1 Reminder

2 Representation of bandpass signals

3 Noise in telecommunications systems

4 Digital modulation

5 Spread spectrum

6 Channels for digital communications and intersymbol
interference

7 Navigation systems

8 Multiplexing

9 Telephone traffic engineering

10 Transmission over twisted pairs (fixed telephone network)

11 Radio engineering

201 / 508



Spread spectrum

1 Motivation

Utilization
Techniques for spread spectrum

2 Direct sequence spreading

Principles
Generation of pseudo-random sequences
Principles of baseband transmission
BPSK modulated spreading

3 Performance study

Error probability
Interference margin
Capacity
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Application of spread spectrum systems
Spread-spectrum involves the transmission of a signal in a frequency
bandwidth substantially greater than the information bandwidth to
achieve a particular operational advantage.

Purposes Military use Commercial use

Anti-jamming
√ √

Multiple access
√ √

Detection harvesting
√

Message privacy
√ √

Selective calling
√ √

Identification
√ √

Navigation
√ √

Multipath mitigation
√ √

Low radiated flux density
√ √

There exist two main spread spectrum families:
1 Frequency Hopping.
2 Direct Sequence Spread Spectrum (DSSS or DS). This technique

leads to Code-Division Multiplexing (CDM).
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Frequency Hopping Spread Spectrum I

Definition

Frequency Hopping Spread Spectrum (FHSS) is a method of
transmitting radio signals by rapidly switching a carrier among
many frequency channels, using a pseudo-random sequence known
to both the transmitter and receiver.

Bandwidth. (−) The overall bandwidth required for frequency
hopping is much wider than that required to transmit
the same information using only one carrier frequency.

Challenge. (−) Need to synchronize the hopping sequence
between the transmitter and the receiver.

Advantage. (+) Possibility to avoid being permanently locked in
a“bad” frequency channel.
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Frequency Hopping Spread Spectrum II

Bluetooth

▶ total bandwidth of 79 [MHz]

▶ width of individual signals: 1 [MHz]

▶ 1600 changes per second (hopping time of 625 [µs])
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Direct Sequence spreading: principles I

Definition

Direct Sequence Spread Spectrum (DSSS or DS) transmissions
multiply the data being transmitted by a“noise/carrier” signal.

This noise/carrier signal is a pseudo-random NRZ-like sequence of
+1 and −1 values, also known as spreading sequence, at a bitrate
much higher than that of the original signal.

For a Direct Sequence spreading (DS) system, there are two
signals:

1 a binary baseband waveform b(t), whose symbol rate is
Rb = 1/Tb. This is the original sequence.

2 a pseudo-random binary spreading waveform c(t), whose
“chip” rate Rc = 1/Tc is much faster than the symbol rate Rb

(Tc ≪ Tb). This waveform is the spreading sequence.
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Direct Sequence spreading: principles II

Note that the two signals are aligned (synchronized).
In the following, we will consider:

Rc = NRb ⇐⇒ Tb = NTc (284)

N is the spreading factor.

Questions:

▶ effects of spreading (bandwidth, Bit Error Rate Pe , etc.)?

▶ how do we build an appropriate spreading waveform?
How should a spreading sequence look like?
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Effects of direct sequence spreading

−(N + 1)B

f

f

NB0
t

t

t f
(N + 1)B0

Tb

Binary data waveform

Spreading sequence

Spread sequence

B−B 0

−NB

Tc

(one bit)

F

F

F

1 Compare the power of the original signal and the power of the
spread signal.

2 What is the bandwidth of a spread waveform? (in baseband or
modulated form)
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Power Spectral Density I

Bandwidth? Summary

▶ The bandwidth of b(t) is related to 1/Tb [Hz]

▶ The bandwidth of c(t) is related to 1/Tc [Hz]

Because Tc ≪ Tb, c(t) is a wideband signal.

The resultant spectrum of the product c(t)b(t) is the a
convolution of two spectra.

Essentially, it will occupy a bandwidth that is practically the same
as that of c(t).
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Power Spectral Density II

SPECTRAL DOMAIN

-1

-1

− 1
Tc

− 1
Tb

f

f

Period of one symbol

Tb

Data
symbols

+1
F

F

t

Period of one chip
Tc

+1

symbol
Spread

TEMPORAL DOMAIN

1
Tc

1
Tb

T

Tc

POWER SPECTRAL DENSITY

The bandwidth of a spread waveform is about N times larger.
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Generation of pseudo-random spreading sequences I

How can we construct a pseudo-random spreading sequence?

There are digital circuits to generate sequences that“look like”
random sequences.

Logical circuit

....2 m1

Flip-flop

Output
sequence

Clock

Figure: Feedback shift register.

Why should the spreading sequences be“almost” random?

▶ random sequences have a flat power spectral density.
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Generation of pseudo-random spreading sequences II

Example

1

adder
modulo-2

Flip-flop

Output
sequence

s3s2s1s0

Clock

32

Figure: Example of a“linear” feedback shift register.

Questions:

▶ how does it work?

▶ what are the properties of the generated sequence? For
example, what is the spreading factor that can be achieved
with these circuits?
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Consider an example I

(a) [5,2]

bit sequence

adder
modulo-2

Output

Flip-flop

54321

Clock

Figure: A valid configuration of feedback shift register of length R = 5.

▶ Generation of a sequence [5,2]

5 registers.
the contents of registers 2 and 5 are XORed (eXclusive OR) to
feed register 1.

▶ We are interested in understanding what is outputted by the
circuit.
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Consider an example II
2 XOR 5 Register

Feedback bit 1 2 3 4 5 Output bit

0 1 0 0 0

1 −→ 1 0 1 0 0 0

0 −→ 0 1 0 1 0 0

1 −→ 1 0 1 0 1 0

1 −→ 1 1 0 1 0 1

1 −→ 1 1 1 0 1 0

0 −→ 0 1 1 1 0 1

1 −→ 1 0 1 1 1 0

1 −→ 1 1 0 1 1 1

0 −→ 0 1 1 0 1 1

0 −→ 0 0 1 1 0 1

... ... ... ... ... ... ...

Table: State of the registers over time (one row per clock pulse).
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Consider an example III

▶ The length of the outputted sequence is related to the number
of possible states stored in the registers.

Maximum of 25 = 32 possible states.

▶ One state is forbidden.

▶ Finally, we have 25 − 1 = 31 possible states.

Conclusions

▶ The generated (pseudo-random) sequence is periodic with a
period of 2R − 1. Such sequences are named of
“maximum-length”.

▶ The length of the period is odd.
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Choosing a maximum-length sequence I

Output

Flip-flop

(a) [5,2]

(b) [5,4,2,1]

bit sequence

4321

Clock

Clock

adder
modulo-2

Output

Flip-flop

5432

bit sequence

1

5

Figure: Two different configurations of feedback shift registers of length R = 5.
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Choosing a maximum-length sequence II

Shift register

length R

Possible configurations for the feedback taps

2 [2,1]

3 [3,1]

4 [4,1]

5 [5,2], [5,4,3,2], [5,4,2,1]

6 [6,1], [6,5,2,1], [6,5,3,2]

7 [7,1], [7,3], [7,3,2,1], [7,4,3,2], [7,6,4,2],

[7,6,3,1], [7,6,5,2], [7,6,5,4,2,1], [7,5,4,3,2,1]

8 [8,4,3,2], [8,6,5,3], [8,6,5,2], [8,5,3,1], [8,6,5,1],

[8,7,6,1], [8,7,6,5,2,1], [8,6,4,3,2,1]

Figure: Maximum-length sequences of shift register lengths 2 through 8.
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Properties of maximum-length sequences I

Maximal length

The all-zeros 0000... state is forbidden. So, for R flip-flops, the
maximum length is exactly N = 2R − 1.

Balance property

The number of 1s is always one more than the number of 0s.

Therefore, the mean of a pseudo-random sequence c(t) is

E {c(t)} = 1

N
(285)

It is not equal to 0 as for a real random sequence.

218 / 508



Properties of maximum-length sequences II

Correlation property

The autocorrelation function of a maximum-length sequence is
periodic.

1 [Definition] The autocorrelation of a periodic sequence (new
definition because otherwise the autocorrelation function
would be infinite) is defined as

Γcc (τ) =
1

Tb

∫ Tb

0
E {c(t)c(t − τ)} dt (286)

2 [Auto-correlation function] The autocorrelation function of
a maximum-length sequence:

Γcc (τ) =

{
1−

(
1 + 1

N

)
|τ |
Tc
, |τ | ≤ Tc

− 1
N elsewhere

(287)
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Properties of maximum-length sequences III

3 [Periodicity of the autocorrelation function]
The auto-correlation function of a maximum-length sequence
is periodic (with period Tb = NTc).
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Power spectral density of a spread signal I

− 1
N

0 0 1 1 1 0 1 0 0 1 1 1 0 1

t

binary sequence

-1

1.0

(a)

−Tc

0−NTc NTc

(b)

f
0− 1

Tc

(c)

Tc

NTc

+1

Tc

2
Tc

1
Tc

− 2
Tc

1
NTc

τ

Γcc (τ)

γc(f )
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Power spectral density of a spread signal II

γc(f ) =
1

N2
δ(f ) +

1 + N

N2

+∞∑
n=−∞, n ̸=0

(
sin(π n

N )

π n
N

)2

δ

(
f − n

NTc

)
Let us compare this expression (for a maximum-length sequence)
with that of a random sequence:

▶ for a purely random sequence (which is not periodic), the
autocorrelation function would be{

1− |τ |
Tc
|τ | ≤ Tc

0 |τ | > Tc
(288)

The waveforms have the same envelope sinc2(), for their
power spectral densities.

▶ the main difference is that, for a maximum-length sequence, it
consists of delta functions spaced 1/NTc [Hz] apart.
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Spread spectrum in the presence of interference noise

1 Transmitter: the signal is spread (we know how to spread a
signal)

2 In the channel, interferers add noise on the signal.

3 Receiver: what happens to the signal and to the noise after
despreading?
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Baseband spread spectrum transmission: transmitter side I

Let {bk} denote a binary data sequence, and b(t) be its polar ±1
NRZ representation.

+1

t

t

NTc

(b)

(c)

t0

(a)

NRZ encoded data b(t)

Spreading code c(t)

Tb

Product signal m(t)

+1

-1

-1

0

+1

0

-1

Tc
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Baseband spread spectrum transmission: transmitter side II

For a baseband transmission, the transmitted signal is the product
y(t) obtained by

y(t) = c(t)b(t) (289)

where c(t) is the spreading sequence.

In the Fourier domain,

Y(f ) = B(f )⊗ C(f ) =
∫ +∞

−∞
C(τ)B(f − τ) dτ (290)

If all signals were deterministic, the bandwidth of Y(f ) would be
almost equal to that of C(f ).
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Baseband spread spectrum transmission: receiver side I

Input of the receiver before despreading

The received signal r(t) consists of the transmitted signal y(t) plus
an additive interference, denoted by i(t),

r(t) = y(t) + i(t) (291)

= c(t)b(t) + i(t) (292)

i(t) is the signal due to other users (plus white noise). It has the
form of

i(t) =
∑
k

ck(t)bk(t)
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Baseband spread spectrum transmission: receiver side II

At the receiver after despreading

Assuming a perfect synchronization between the transmitter and
the receiver, the input of the receiver is built as (the synchronized
sequence c(t) also serves to despread the signal):

z(t) = c(t)r(t) (293)

= c2(t)b(t) + c(t)i(t) (294)

The c(t) sequence alternates between −1 and +1. Therefore,
c2(t) is equal to +1, for all t. This leads to

z(t) = b(t) + c(t)i(t) (295)

At the multiplier output of the receiver, we have

▶ b(t), the original decoded signal.

▶ an interference signal spread by c(t).
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Understanding the role of c(t)i(t) I

The receiver gets

z(t) = c2(t)b(t) + c(t)i(t) = b(t) + c(t)i(t) (296)

If i(t) originates from another user, it is of the same type as of
b(t). Let assume that:

i(t) = c ′(t)b′(t) (297)

Then, it is important to compare:

▶ c2(t), whose average value is the value of the autocorrelation
function for τ = 0, and

▶ c(t)c ′(t), whose average is given by the cross-correlation
function Γcc′(τ).
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More about c(t)c ′(t)

In fact, there are two possibilities for building the signal i(t) of
another user:

1 use a different spreading sequence c ′(t). Then, because we
don’t know the synchronization time of i(t), we need to upper
bound Γcc′(τ) to a much lower value than Γcc (0):

Γcc′(τ)≪ Γcc (0) (298)

2 use the same spreading sequence, but delayed by some known
time shift value △T . Then, the condition becomes

|Γcc (△T )| ≪ Γcc (0) (299)

Many systems, such as the GPS system, are designed to work with
a unique sequence ⇒ hardware simplification.
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For systems that use different spreading sequences

Figure: Cross-correlation functions.
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Direct sequence spreading + modulation

We note that:

▶ spreading occurs by a multiplication

▶ amplitude modulation (AM/ASK) also occurs by a
multiplication

As the multiplication is commutative, ASK (or other modulations
that behave similarly) does not change the performance or the
effects of spreading.

231 / 508



Direct sequence spread BPSK modulation I

Figure: Direct sequence spread modulation: general overview.
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Direct sequence spread BPSK modulation II

device
Low-pass
filter X

(b) receiver

NRZ level
X x(t)

(a) transmitter

y(t)
0 if v < 0

1 if v > 0

data sequence
Binary

{bk}
b(t) m(t) Binary PSK

Carrier
PN code
generator

c(t)

Coherent detector

Product
modulator

Local carrier

∫ Tb

0
dt

v Decision

Local
PN code
generator

modulatorencoder

Received signal

Figure: Direct sequence spread coherent phase-shift keying.
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Direct sequence spread BPSK modulation III

Tb

(a) ±1 NRZ encoded sequence

t

−Ac

(b) carrier

(c) after multiplication

-1

t

−Ac

Ac

Ac

s(t)

Amplitude

m(t)

+1

t

Figure: Spreading + BPSK modulation.
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Model for analysis

From a conceptual point of view, it is possible to interchange the
order of spectrum spreading and (binary) phase modulation.

c(t)

y(t) u(t)
Estimate
of b(t)

X

Transmitter Channel Receiver

s(t) x(t)
XΣ

Local

modulator
Binary PSK Coherent

detector

Local carrierCarrier

NRZ encoded
data b(t)

j(t)
c(t)

PN code
generator

generator
PN code

Figure: Model of direct sequence spread BPSK system.

Note

The interference, modeled by j(t), limits the performance.
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Sources of noise in the channel of a spread spectrum
system I

In a channel, we have:

1 additive white Gaussian noise, that models a sum of
independent noise signals.

2 small bandwidth noises (“colored”noises), that are very
localized in the spectrum. Note that despreading a useful
signal will spread these noises.

3 BPSK/CDMA signals of other users.
If M represents the number of users that share the same
bandwidth, the level of noise power is estimated as M − 1
times the nominal power of one user.

It is important to understand what happens after despreading.
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Sources of noise in the channel of a spread spectrum
system II

Figure: A small bandwidth noise (drawn in red) in the channel is spread by the

despreading sequence of the user (drawn in blue).
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Sources of noise in the channel of a spread spectrum
system III

in the channel after despreading at the transmitter

additive white noise remains a white noise at the same level

small bandwidth
noises (“colored”
noise)

is spread by the specific spreading
sequence of the user.
The total amount of power is spread
but remains unchanged.

signals of other
users

are spread by the specific spreading
sequences of the users.
The total amount of power is spread
but remains unchanged.
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Spread spectrum

1 Motivation

Utilization
Techniques for spread spectrum

2 Direct sequence spreading

Principles
Generation of pseudo-random sequences
Principles of baseband transmission
BPSK modulated spreading

3 Performance study

Error probability
Interference margin
Capacity
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Performances of a coherent BPSK spread spectrum system
I

A thorough analysis of the performance leads to (no proof
provided)

10 log

(
S

N

)
OUT

= 10 log

(
S

N

)
IN

+ 3 + 10 log

(
Tb

Tc

)
(300)

▶ The 3 [dB] term originates from the coherent demodulation
mechanism.

▶ There is a gain that is proportional to

Tb

Tc
= N (301)

N is named the processing gain.
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Performances of a coherent BPSK spread spectrum system
II

Theorem (Bit Error Rate for a DS/BPSK modulation system)

Pe ≃
1

2
erfc

(√
Eb

JTc

)
(302)

where J is the average interference power: J = 1
Tb

∫ Tb
0 j2(t) dt.

In other terms, if NJ =
∫ Tb
0 j2(t) dt, then

Pe ≃
1

2
erfc

(√
Tb

TC

Eb

NJ

)
=

1

2
erfc

(√
N

Eb

NJ

)
(303)

The N factor is obtained because:

▶ noise is unaffected by the despreading operation

▶ the useful signal is concentrated in a N times smaller
bandwidth after despreading.
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Performance: interference margin I

N0
Power = S

Power = S

original B

spread B

Power spectral density

(M − 1)users

margin

Definitions and notations:

▶ S [W] received power for the desired signal. It is equal to the energy per
bit × the bitrate (S = Eb × Rb),

▶ Eb [J = W × s] received energy per bit for the desired signal,

▶ Rb = 1
Tb

[Hz] data bitrate,

▶ B [Hz] spread bandwidth in Hz,

▶ J [W] received power for the jamming signals,

▶ N0 [W/Hz] equivalent noise power spectral density.
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Performance: interference margin II

Case 1: absence of spreading

The signal to noise (jamming) ratio is given by
S

J
=

EbRb

N0B
(304)

For a system that is not spread in bandwidth: B ≈ Rb.(
Eb
N0

)
is then equal to the signal to noise ratio:

S

J
=

Eb

N0
(305)

Equivalently,
J

S
=

1

Eb/N0
(306)

and the minimal S
J is set by the required Eb

N0
:

J

S
[dB] = −

(
Eb

N0

)
req

[dB] (307)
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Performance: interference margin III

Case 2: with spreading

The ratio of the equivalent“noise”power J to S is given by

J

S
=

N0B

EbRb
=

B/Rb

Eb/N0
(308)

When the value of Eb
N0

is set to that required for acceptable

performance of the communication system
(
Eb
N0

)
req

, then the ratio

J
S bears the interpretation of a jamming margin:

J

S
[dB] = margin [dB] =

B

Rb
[dB]−

(
Eb

N0

)
req

[dB] (309)

The quantity B
Rb

is called the spread-spectrum processing gain. It is
equal to (B ≈ Rc)

B

Rb
≈ Rc

Rb
=

Tb

Tc
= N (310)
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Capacity of a spread spectrum system I

Theorem

The capacity (=number of users) of a multi-user spread spectrum
system is the ratio of the spread bandwidth to the data rate:

M = α
B

Rb
= αN (311)

To calculate its value, we consider a unique cell.

▶ The carrier power is

C = S = RbEb (312)

▶ Likewise, the interference power I , at the base station
receiver, is

I = BN0 (313)

where B is the transmission bandwidth.
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Capacity of a spread spectrum system II

Thus, the carrier to interference power ratio for a particular mobile
user at the base station is given by

C

I
=

RbEb

BN0
=

Eb/N0

B/Rb
(314)

Let M denote the number of users. Assuming that all users have
the same power level at the base station, then the total
interference power for one user is caused by M − 1 interferers

I = C (M − 1) (315)

which leads to
C

I
=

1

M − 1
(316)

By combining the expressions (314) and (316) for C
I , we derive that

M =
B

Rb

1

Eb/N0
+ 1 ≃ B

Rb

1

Eb/N0
= N

1

Eb/N0
(317)
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Additional factors I

1 Duty-cycle α of a full-duplex voice conversations is 35%. In
practice, we take 50%.
Consequence:

the power sent by each user drops to αRbEb

M ≃ B

αRb

1

Eb/N0
=

B

R

1

Eb/N0

1

α
(318)

2 Antenna directivity. Cells are divided into 3 sectors (with 15%
overlap) and they provide a“gain”.
Consequence:

The number of possible users is multiplied by the number of
available frequencies (3).
Because a user in between two cells must chose one single
frequency, we have 15% loss. Therefore, we have a“gain”of
G = 3× 0.85 = 2.55:

M ≃ B

Rb

1

Eb/N0

1

α
G (319)
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Additional factors II

3 The re-usability factor of frequencies Fe is less than 1
(Fe ≃ 0.65 for the IS-95 mobile system):

Fe =
Effective surface covered by a frequency

Total geographic surface
(320)

Final estimation of users per cell

M ≃ B

Rb

1

Eb/N0

1

α
G Fe (321)

Example

For the IS-95 radio mobile system: B
Rb

= 128, Eb
N0

= 7 [dB] = 5,
α = 0.5, G = 2.55, and Fe = 0.65.
These parameters yield a capacity of

M = 128× 1

5
× 1

0.5
× 2.55× 0.65 = 85 (322)
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Channels for digital communications and intersymbol
interference (ISI)

▶ Context
▶ Nyquist’s filtering

1 Ideal channel
2 Nyquist’s criterion
3 Raised cosine roll-off filtering
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Introduction I

▶ In a communication chain, we have:

a transmitting filter (why?)
a channel that, if linear, is described by a transfer function
a receiver filter (why?)

One should“optimize” the shape of the transmitting and the
receiver filters with respect to the channel characteristics.
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Introduction II

The pulse of each may be smeared into adjacent time slots: this
causes InterSymbol Interference (ISI).
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Back to the basics: from digital to an analog representation

Theorem (Interpolation formula of Whittaker)

Let y(t) be a signal band limited to ]−W ,W [. Take the {y [nTb]}
set of samples regularly spaced by Tb = 1/fb. Then the y(t)
function can be obtained by (with fb = 2W)

y(t) =
+∞∑

n=−∞
y [nTb] sinc

(
t − nTb

Tb

)
(323)

y(t)

Ts 2Ts t

y(0)
y(1)

y(2)

Figure: Whittaker’s reconstruction scheme (interpolation).
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Interpretation of Whittaker’s formula

▶ y(t): is an analog signal (theoretically, perfectly
reconstructed)

▶ y [nTb]: are samples taken every Tb

▶ sinc
(
t−nTb
Tb

)
= p(t) is a real shape (pulse) whose spectrum is

strictly limited to [−W ,W ], which is unfeasible in practice.

What about imperfections in the channel?

▶ Noise? ⇒ matched“filter”

▶ Pulse shape? Some pulse shapes are impossible to build.

▶ Multi-path, obstacles, etc.
This is a problem from an operational point of view.

⇒ multiple time-shifted versions of the signal.
⇒ need to“compensate” the effects of the channel.
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Choice for a“better”pulse shape p(t) than sinc
(
t−nTb

Tb

)

Constraints:

1 A pulse p(t) should be time limited. We expect that p(t) = 0
except for t ∈ [τ1, τ2].

2 P(f ) should be a bandpass signal, whose content is mainly
concentrated inside of [− 1

2Tb
, 1
2Tb

].

3 When there is no noise, we should be able to reconstruct the
signal perfectly.

Note that 1 and 2 are incompatible.

Therefore, we are looking for a trade-off:

1 p(t) should be close to 0 outside its main interval, and

2 P(f ) should be almost 0 outside its main bandwidth.
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Definition

Receiving filter

Transmission

Clock

s(t)

noise w(t)

x(t)

y(t)

Decision
trigger

Channel

Receiver

yi(t)

PAM Modulation

for ti = iTb

Σ

1 if y(ti) > λ 0 if y(ti) < λ

Input binary signal {bk}

Transmitter

Sampling

White Gaussian

threshold λ

channel h(t)

gR(t)

filter gT (t)

{Ak}

Transmitter shaping
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Model I

At the output of the transmission chain, we can write that

y(t) =
+∞∑

k=−∞
Akδ(t − kTb)⊗ gT (t)⊗ h(t)⊗ gR(t) +w(t)⊗ gR(t)

(324)
where ⊗ denotes the convolution.

We adopt the following notations (we take µ such that p(0) = 1):

µp(t) = gT (t)⊗ h(t)⊗ gR(t) (325)

n(t) = w(t)⊗ gR(t) (326)

In the frequency domain,

µP(f ) = GT (f )H(f )GR(f ) (327)
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Model II

As w(t) is modeled as an additive zero mean white Gaussian noise,
w(t)⊗ gR(t) is of the same type. It is denoted n(t) hereafter.

y(t) =
+∞∑

k=−∞
Akδ(t − kTb)⊗ µp(t) + w(t)⊗ gR(t) (328)

= µ
+∞∑

k=−∞
Akp(t − kTb) + n(t) (329)

Once sampled at ti = iTb, the output signal y(t) becomes

y [ti ] = µ
+∞∑

k=−∞
Akp[(i − k)Tb] + n[ti ] (330)

= µAi +
+∞∑

k = −∞
k ̸= i

Akp[(i − k)Tb] + n[ti ] (331)
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Analysis of
y [ti ] = µAi +

∑+∞
k = −∞
k ̸= i

Akp[(i − k)Tb] + n[ti ]

▶ Useful signal: µAi

▶ Noise:∑+∞
k = −∞
k ̸= i

Akp[(i − k)Tb] represents the residues of all

other symbols (k ̸= i) on the i-iest bit. It is the source of a
phenomenon called“intersymbol interference”. This is an
artificial noise that should be minimized or even nullified.
the noise effect due to n[ti ] is “reduced”via the matching filter.

Minimizing the intersymbol interference increases the signal to
noise ratio (and decreases the bit error rate Pe).
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Nyquist’s criterion

Goal: choose the best pulse shape p(t) to minimize, or suppress,
intersymbol interferences.

This is achievable if p(t) verifies (noise-free channel)

p[(i − k)Tb] =

{
1 if i = k
0 if i ̸= k

(332)

where p[0] = 1 (by normalization).

Let us determine the best pulse shape p(t).
To compute it, we inject the constraints on p[(i − k)Tb] in the
Fourier transform of a sampled version of p(t).
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Towards Nyquist’s criterion I

Sampled version of p(t)

Consider p(t), represented by a series of its samples {p[mTb]}, for
m = 0,±1,±2, ... Then, the signal

ps(t) =
+∞∑

m=−∞
p[mTb]δ(t −mTb) (333)

is a sampled version of p(t) (by definition of the sampling process).

Its Fourier transform is given by

Ps(f ) = fb

+∞∑
m=−∞

P(f −mfb) (334)

where fb = 1/Tb is the bitrate (or rhythm) expressed in [b/s].
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Towards Nyquist’s criterion II

We have two expressions for the Fourier transform Ps(f )
1 Expression [1]: Ps(f ) = fb

∑+∞
m=−∞ P(f −mfb)

2 Expression [2]: based on the definition, it can be written as

Ps(f ) =
∫ +∞

−∞

+∞∑
m=−∞

[p[mTb]δ(t −mTb)] e
−2πjft dt (335)

but, as the sum reduces to the m = 0 term (according to the
p[(i − k)Tb] = 0 if i ̸= k constraint), we may write

Ps(f ) =
∫ +∞

−∞
p[0]δ(t) e−2πjtf dt = e−2πj0f = 1 (336)

By combining [1] and [2]:

+∞∑
m=−∞

P(f −mfb) =
1

fb
= Tb (337)
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Towards Nyquist’s criterion III

This leads to Nyquist’s criterion for an ideal, noiseless, baseband
transmission.

Theorem (Nyquist’s criterion)

The Fourier transform P(f ) of the pulse shaping function p(t)
removes all intersymbol interferences due to other samples taken
every Tb seconds if

+∞∑
m=−∞

P(f −mfb) = Tb (338)

Note that the expression P(f ) encompasses the transmitting filter,
the channel, and the receiver filter.
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“Ideal”channel

The easiest way to satisfy Nyquist’s criterion consists to take a
rectangular shape for P(f ) (in the spectral domain):

P(f ) =

{
1

2W −W < f <W
0 |f | >W

(339)

=
1

2W
rect[−W ,+W ] (f ) (340)

where the bandwidth W is

W =
fb
2

=
1

2Tb
(341)

1.0

Instants d'�chantillonnage

intervalles du signal

0 321-3 -2 -1

0.5

(b)

(a)

-1 0 1

1.0

W = 1
2Tb

= fb
2

2WP(f )

Tb

f
W

t
Tb

p(t)
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Alternative pulse shapes I

There are several reasons that prevent us to use a time sinc filter
(or rectangular frequency filter):

1 such a filter requires P(f ) to be constant over [−W ,+W ]
and 0 outside.

2 the function p(t) decreases as 1/|t| for large |t| values; it
decreases slowly, which means that many samples interfere
with each others.

Solution: raised cosine-pulse, whose spectrum is given by

P(f ) =


1

2W 0 ≤ |f | < f1
1

4W

{
1− sin

[
π(|f |−W )
2W−2f1

]}
f1 ≤ |f | ≤ 2W − f1

0 |f | ≥ 2W − f1

(342)

The constant f1 and bandwidth parameter W are related by (α is
the roll-off factor)

α = 1− f 1
W

(343)
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Alternative pulse shapes II

(a)

-3 -2 -1 1 2 30

0.5

1.0

(b)

f
W

α = 0
α = 0.5

α = 1

2WP(f )

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.8

0.6

0.4

0.2

α = 1

α = 0.5

α = 0

p(t)

t
Tb

The bandwidth BT is therefore given by: BT = 2W − f1 = W (1 + α)
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Practical remarks

µP(f ) = GT (f )H(f )GR(f ) (344)

It is the complete chain that needs to be optimized, but H(f ) is
unknown!
Solution:

1 estimate H(f ): ⇒ Ĥ(f ).
2 compensate for the presence H(f ) by taking the inverse of
Ĥ(f ).

In conclusion, after compensation, we should have

µP(f ) = GT (f )GR(f ) (345)

268 / 508



But how to chose the transmitter and the receiver filters?

In a real communication environment:

▶ we need a transmitter filter, whose purpose consists to avoid
the appearance of a spectral content outside the useful
bandwidth.

▶ there must be a receiver filer. It eliminates out-of-band noise.

▶ P(f ) is therefore constrained to be partly implemented at the
transmitter and at the receiver.

=⇒ we can equally divide P(f ) over the transmitter and the
receiver (such filters are named half-Nyquist)

Link with the notion of ideal channel for the transmission of an
analog signal in a channel (delay and no amplitude distortion):

H(f ) = Ae−2πjf τ (346)
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Positioning systems
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Definition and objectives

GPS = Global Positioning System

Definition

Network of satellites that sent signals permanently to allow the
positioning on the earth surface by trilateration measurements
(sometimes, incorrectly, named as triangulation).

▶ Started by the U.S. Department of Defense

▶ First operational satellite in 1978

▶ Full constellation since 1994

▶ Precision of 6 to 12 [m] since May 2000

Constraints:
∗ need to be able to receive the transmitted signals.
∗ does not work inside of buildings or underground.
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Architecture of the GPS network

3 segments:

▶ Space segment

comprising a constellation of 24 satellites (with 21 in service)

▶ Control segment

comprising ground stations
goal: correct the position of satellites

▶ User segment
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Satellite trajectories

▶ Located on high orbits (but sub-geostationary)

▶ Revolution period of 12 hours

▶ Transmitting power of 20 to 50 [W]

▶ 6 planes with a 55° angle with the equator, spaced by 60° and
with 4 satellites per plane (24 satellites in total)
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Geoid and reference ellipsoid

Definition (Geoid)

The geoid is essentially the figure of the earth abstracted from its
topographical features. It is an idealized equilibrium surface of sea
water, the mean sea level surface in the absence of currents, air
pressure variations, etc., and continued under the continental
masses.

▶ Because of the non-uniform repartition of masses, the earth is
not a sphere.

▶ The geoid is close to an ellipsoid whose long axis is equal to
6400 [km].
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Principles of localization/positioning

1 A distance d is related to a propagation time by t

d = c × t (347)

where c = 3× 108 [m/s] is the speed of light.

2 Trilateration (or even multilateration).

Figure: Positioning by means of intersecting the loci of 2 or 3 satellites.
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Basic equations for finding user position

ρ1 =
√
(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 (348)

ρ2 =
√
(x2 − xu)2 + (y2 − yu)2 + (z2 − zu)2 (349)

ρ3 =
√
(x3 − xu)2 + (y3 − yu)2 + (z3 − zu)2 (350)

▶ Second order equations → difficulties

▶ Resolution with linearization and iterative approach

▶ In principle, 3 distances ρi suffice. But, to minimize errors due
to inaccuracies, 4 distances are needed (and thus 4 satellites
in line of sight).
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Measurement of pseudo-range

Every satellite i sends a signal at a certain time tsi . It is received
by the user at time tu. The distance between the user and the
satellite is

ρiT = c × (tu − tsi) (351)

where c is the speed of light.
In practice, both times are biased tu (inaccuracies)

t ′
u = tu + but (352)

and, for tsi ,
t ′
si = tsi +△bi (353)

But there are other sources of errors (∆Di= satellite position error
on range, ∆Ti= tropospheric delay error, vi= receiver
measurement noise error, △vi = relativistic time correction),
leading to

ρi = ρiT+∆Di−c×(△bi−but)+c×(∆Ti+∆Ii+vi+△vi ) (354)
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Error and precision

Errors over time Histogram of errors

Figure: Statistical errors on the distance measurements.
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Signals and frequencies

A GPS signal comprises 2 spectral components: L1 (Link 1), L2

▶ L1 = 1575.42 [MHz] = 154× 10.23 [MHz] is used for
consumer market receivers.

▶ L2 = 1227.6 [MHz] = 120× 10.23 [MHz] reserved for military
applications.

The frequencies are very accurate as their reference is an atomic
frequency standard.

P C/A

L1 −133 [dBm] −130 [dBm]
L2 −136 [dBm] −136 [dBm]

Table: Minimal required power levels at the receiver.
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Signal and frame

Each satellite sends three types of information:
1 data

1 type of satellite
2 maintenance data
3 precise calculus of the orbit (precision < 1 m), etc.

2 a precision code P: this allows a precise calculus of delays.
Civilian users have access to a degraded version of P.

3 a coarse (or clear) acquisition code C/A: allows an
approximated calculus of delays. Usually acquired first.
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Signal sent by a satellite

Figure: Building the signal sent by GPS satellites.

282 / 508



Precision code P

▶ Bi-phase modulating signal → BPSK modulation

▶ Bitrate of 10.23 [Mb/s] → bandwidth as defined by the main
lobe size: 20.46 [MHz].

▶ Tc = 97.8 [ns]
▶ Generated from two pseudorandom noise codes

sequence 1: 15, 345, 000 chips, 1.5 [s] long period
sequence 2: 15, 345, 037 chips

▶ As these numbers are relative prime, they have no common
factors between them. Therefore, the code length generated
by these codes is

1.5× 15, 345, 037 = 23, 017, 555.5 [s] (355)

which is slightly longer than 38 weeks.

However, the actual code length is 1 week as the code is reset every
week. This code can be divided into 37 different P codes and each
satellite can use a different portion of the code (identification).
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Code generation
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Autocorrelation et cross-correlation of satellite codes
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C/A code

▶ Bi-phase NRZ code → modulation BPSK
▶ Bitrate of 1.023 [Mb/s] → width of the main lobe

2.046 [MHz].
→ the bandwidth is thus fixed by the P code, not the C/A
code.

▶ Tc = 977.5 [ns]

▶ Generated by means of a pseudorandom sequence of 1023
chips → period of 1 [ms]
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Better precision with the help of ground stations:
Differential GPS

Figure: Working of the DGPS.

▶ FM band

▶ Precision up to 1 to 5 [m]
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Galileo

▶ Orbital altitude: 23,222 [km] (MEO - Medium Earth Orbit)

▶ 3 orbital planes, 56° inclination, separated by 120° longitude
▶ Constellation of 30 satellites (with working 24 [3x8] satellites and 6 [3x2]

spares)
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Deployment of Galileo

▶ First launches: 2 satellites in October 2011, 2 satellites in October 2012.
These were test satellites.

▶ First Full Operational Capability satellite launched in November 2013.

▶ August 2014, two more satellites (but ... injected on a wrong orbit).

▶ October 2022: 23 satellites fully operational, 1 unavailable, and 4 not
usable.

289 / 508



Starlink

Main characteristics:

▶ LEO orbits (550 km for phase 1)

▶ 7, 000 launched and on orbit (Sep 2024)

▶ American regulator (FCC) approved 12.000 satellites

▶ Internet service: 3.000.000 subscribers (May 2024)



Starlink: controversy

Main issues:

▶ light pollution; ground based astronomy is jeopardized
(creation of trails in the sky)

▶ presence of space debris, danger for satellite collision

▶ technology not fully tested

▶ usefulness ?! (it’s available in Belgium)
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Multiplexing and multiple access

▶ Multiplexing: principles and access modes
▶ Specific techniques for multiplexing:

1 Frequency Division Multiplexing (FDM)
2 Time Division Multiplexing (TDM)

Example: signals between telephone exchanges

3 Code Division Multiplexing (CDM)
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Multiplexing

Historically, there are two major techniques:

1 Frequency Division Multiplexing (FDM). This technique
allocates a dedicated frequency band to each signal (user).

2 Time Division Multiplexing (TDM). This techniques monitors
the time allocated to each user. Two users cannot use the
channel simultaneously.

More recent technique: multiplexing by spread spectrum → Code
Division Multiplexing (CDM)

Variants for optical fibers:

▶ Wave(length) Division Multiplexing (WDM): it is equivalent
to FDM (but in terms of wavelengths)

▶ some variants especially targeting high speed links: Dense
Wave Division Multiplexing (DWDM).
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Multiple access

Multiplexing is introduced for sharing resources. Therefore, a
multiplexing technique should propose and implement:

▶ techniques to access individual resources. We refer to the
techniques and protocols to access a resource by the letter A,
denoting Access: FDMA, TDMA, CDMA, . . .

▶ strategies to allocate resources to users. These strategies,
which are specific to a network operator, are based on
performance targets: high bitrate, low delay, low congestion
rate, . . . These strategies are studied in other courses.
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Principles of Frequency Division Multiplexing (FDM) I

Multiplexed signal

f−f3 f3

f−f3 f3

−f2 f2

−f2 f2

−f1 f1

−f1 f1

f

f

f

X1(f )

X2(f )

X3(f )

f1

f2

f3

f

f
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Principles of Frequency Division Multiplexing (FDM) II

f3

f−f3 f3−f2 f2−f1 f1

Multiplexed signal

f

X3(f )

f

X2(f )

f

X1(f )

f2 f3f1

f1 f2

Figure: Frequency demultiplexing.
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Bandwidth and access to the multiplex

W >
∑
i

Wi (356)

Time

Frequency

Free capacity

A

B

C

A,B,C : carriers

Physical channel

User 1

User 2

Figure: Frequency Division Multiple Access (FDMA): multiplexing
mechanism.
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Illustration: Plain Old Telephone Service (POTS)

▶ Wired network

▶ Trunks are shared

▶ Frequency band per user:
[300Hz, 3400Hz]

Voice channel: [0→ 4 kHz]

300 / 508



Analog multiplexing between voice exchanges (obsolete) I

of voices (en kHz)

0

Supergroup
of 5 groups

of 12 voices

1 voice

4 kHz

Basic group

108
104
100
96
92
88
84
80
76
72
68
64

12
11
10
9
8
7
6
5
4
3
2
1

108 kHz

60

552 kHz
504
456
408
360
312

Carrier frequency
of groups (in kHz)

612
564
516
468
420

5
4
3
2
1

Carrier frequency

Figure: Construction of a basic group and a super group.
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group N0

basic groups

60 108

420

468

516

564
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carrier frequencies

kHz

1 2 3 4 5

411.920

312 360 408 456 504 552

Figure: Building mechanism for super groups.

302 / 508



Principles of Time Division Multiplexing (TDM) I

High speed
U
L
T
I
P
L
E
X

M
U
L
T
I
P
L
E
X

1
2

n

1

n

2

Low speed

M

framing code

N1 2 3N1 2 3

Te

Figure: Formation process of a TDM multiplex.

The time slots for users, plus the information necessary for the
multiplex itself, constitute a frame.
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Bandwidth

s2

...
...

..... .....

baseband signal

synchronization

channel

s1

s1

s2

s1

t

sN

sN

s1

s2

sN

s2
..... .....

source 2

source N

user 1

user 2

user N

source 1

The total number of samples is ns =
∑

i 2WiT
If W is the bandwidth, we need 2W samples. For an interval T ,
we need

ns = 2WT =
∑
i

2WiT (357)

So that,
W =

∑
i

Wi (358)
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Access to the multiplex

Frequency

Time
2 3 4

User 1

User 2
Free capacity

1,2,3,4 : time slots

Physical channel

1 2 3 4 1

Figure: Time Division Multiple Access (TDMA).
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Public switch telephone network in Europe: 30 digital voice
channels (E1) I

Characteristics
The European standard TDM frame for 30(+2) digital voice
channels (E1):

▶ W = bandwidth of the signal = 300− 3400 [Hz] and
fs = 8 [k sample/s].

▶ PCM encoding with the A (=87,6) quantization law,
compression with 13 segments on 8 bits, Rv = bitrate for one
digital voice channel = 64 [kb/s].

▶ total bitrate = 32× 64 [kb/s]=2.048 [Mb/s].
This is the minimal bitrate for communicating with a digital
public network in Europe.
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Public switch telephone network in Europe: 30 digital voice
channels (E1) II

▶ time multiplexing with 32 time slots comprising:

TS0 channel: framing, synchronization, alarms, CRC, etc.
TS1-TS15 + TS17-T31: 30 voice channels
TS16: signaling
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Frame structure I

488[ns]

0 1 2 ...... 16 ...... 30 31

87654321 3, 9[µs]

Figure: Frame structure at the bit level.
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Frame structure II
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Synchronous Digital Hierarchy (SDH)

In the network, we need higher bit rates than E1 bit rates.
Synchronous Digital Hierarchy (SDH) is a standardized protocol
that transfer multiple digital bit streams synchronously over optical
fiber.

SDH level and frame format Payload bandwidth [kb/s] Line rate [kb/s]

STM-1 150 336 155 520

STM-4 601 344 622 080

STM-16 2 405 376 2 488 320

STM-64 9 621 504 9 953 280

STM-256 38 486 016 39 813 120
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SDH frame structure

1 RSOH = regenerator section overhead

2 Pointers are used to address a Virtual Container in the
payload.

3 MSOH = multiplex section overhead

311 / 508



Typical structure of a SDH network

▶ Presence of Add and Drop Multiplexers (ADM)

▶ Structure of a ring → redundancy in the paths
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Code Division Multiplexing Access (CDMA) I

Main multiplexing techniques:

▶ FDMA: use some of bandwidth all of the time

▶ TDMA: all of the bandwidth some of the time

and ...

▶ CDMA: all of the bandwidth all of the time!
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Code Division Multiplexing Access (CDMA) II
user j

of the i th user
Receiver

Transmitter
of the i th user

Transmitter
of the j th user

ci (t − τ)

cos (2πfct) cos (2πfct)

bj(t) = 0

channel

cos (2πfct) cos (2πfct)

ci (t − τ)

cj(t)

cj(t)

device
decision

vi > 0 vj > 0
Say 0 ifSay 1 if Say 0 if Say 1 if

vi < 0 vj < 0

vi vj
of the j th user

Receiver

∫ Tb

0
dt

∫ Tb

0
dt

decision
device

bi (t − τ)
user i

threshold of 0

Figure: Scheme for the study the cross-correlation phenomenon.
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Code Division Multiplexing Access (CDMA) III

The interference (only) due to user i evaluated at the input of the
decision device in the receiver of user j is given by

vj(τ)|bj (t)=0 =

∫ Tb

0
bi (t − τ) ci (t − τ) cj(t)dt (359)

= ±
∫ Tb

0
cj(t)ci (t − τ)dt (360)

We may rewrite this in the following form

vj(τ)|bj (t)=0 = ±TbΓj i (τ) (361)

where

Γj i (τ) =
1

Tb

∫ Tb

0
cj(t)ci (t − τ)dt (362)

This time-averaged quantity is called the partial cross-correlation
function of two pseudo-random sequences.

315 / 508



Code Division Multiplexing Access (CDMA) IV

Rij(τ)

-15

-20

-10

-5

0

5

10

15

20

-60 -40 -20 0 20 40 60

Delay τ

Figure: Cross-correlation of two sequences of length N = 63 (generated
by [6, 1] and [6, 5, 2, 1]).
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Role of auto-correlation and cross-correlation I

There are two techniques for multiplexing with Direct Sequence
Spread Spectrum (DSSS):

▶ one identical spreading sequences for all the users. As long as
synchronization times are kept separated by a time larger than
one chip, this is not problematic

→ the auto-correlation function is important to measure the
performance of the system.

▶ different spreading sequences for all the users.

→ the cross-correlation function is important to measure the
performance.

317 / 508



Role of auto-correlation and cross-correlation II

Figure: Auto-correlation and cross-correlation (R4,1(τ) and R4,6(τ)).
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Other generators for pseudo-random sequences I

Figure: “Gold” sequence generator.

319 / 508



Other generators for pseudo-random sequences II

It is important to find an upper bound for the cross-correlation
function. There are such results:

Theorem

It can be shown that the Gold sequences, under certain generation
conditions, satisfy the following cross-correlation function values
(where n is the number of registers):

|R1,t(k)| ≤
{

2
n+1
2 + 1 if n is odd

2
n+2
2 + 1 if n is even but n ̸= 0mod 4

(363)
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Code Division Multiplexing (CDMA)

Frequency
Time

Code

Physical channel

User 1

User 2
Free channel

Figure: Code Division Multiple Access (CDMA).
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Combination of multiplexing techniques

Frequency

Time

A

B

C

A,B,C : carriers1 2 3 4 1 2 3 4

User 1

User 2
Free channel

1,2,3,4 : time slots

Figure: Resource sharing by combining time and frequency multiplexing
(TDMA/FDMA).
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Overview of multiplexing/modulation techniques (+
diversity techniques)
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Space-time transmission I

Figure: Space diversity: (a) one transmit and two receive antennas and
(b) two transmit and one receive antennas.
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MIMO: Multiple Inputs Multiple Outputs I

Objectives:
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MIMO: Multiple Inputs Multiple Outputs II

1 improve the link reliability (reduces fading)

2 increase the spectral efficiency (more bits per second per hertz
of bandwidth)

One possibility:

time → [(k − 1)Tb, kTb] [kTb, (k + 1)Tb]

antenna 1 Ak

√
Eb/Tb cos(2πfct) −Ak+1

√
Eb/Tb cos(2πfct)

antenna 2 Ak+1

√
Eb/Tb cos(2πfct) Ak

√
Eb/Tb cos(2πfct)
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Ethernet protocol: Carrier Sense Multiple Access with
Collision Detection (CSMA-CD)

▶ It is a protocol (not a multiplexing technique)

▶ Relates to the Access

▶ Complex state diagram

327 / 508



Comparison of mobile standards

System GSM [EUR] DCS-1800 [EUR] IS-54 [USA] IS-95 (DS) [USA]

Access mode TDMA/FDMA TDMA/FDMA TDMA/FDMA CDMA/FDMA

Used bandwidth

Upwards (MHz) 890-915 1710-1785 824-849 824-849

Downwards (MHz) 935-960 1805-1880 869-894 869-894

Distance between channels

Upwards (kHz) 200 200 30 1250

Downwards (kHz) 200 200 30 1250

Modulation GMSK GMSK π/4 DQPSK BPSK/QPSK

Characteristics for the mobile device

Max./Mean 1W/125mW 1W/125mW 600mW/200mW 600mW

Voice encoding RPE-LTP RPE-LTP VSELP QCELP

Voice rate (kb/s) 13 13 7,95 8 (var.)

Channel bitrate

Upwards (kb/s) 270,833 270,833 48,6

Downwards (kb/s) 270,833 270,833 48,6

Frame (ms) 4,615 4,615 40 20
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Outline

1 Reminder

2 Representation of bandpass signals

3 Noise in telecommunications systems

4 Digital modulation

5 Spread spectrum

6 Channels for digital communications and intersymbol
interference

7 Navigation systems

8 Multiplexing

9 Telephone traffic engineering

10 Transmission over twisted pairs (fixed telephone network)

11 Radio engineering
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Telephone traffic engineering

▶ Characterization of a telephone network

Intensity
Carried traffic load
Reference load
Offered load

▶ Probabilistic analysis of calls

Counting process
Poisson distribution: definition and properties

▶ Probabilistic law for telephone traffic

Memoryless model: Erlang B statistic
Sizing of a trunk
Other models
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Structure of a switched telephone network

copper wireradio link

TelephoneTelephone

Local switchLocal switch switch
Intermediate

copper wire optical fiber

▶ For economic reasons, there are fewer lines available than the number of
telephones or potential callers (the cost is proportional to the number of
lines).

▶ There is a probability that someone willing to make a call find that all the
lines are in use. The call attempt is then“blocked”.

Goal: establish the relationship between the number of lines N of a trunk and
the blocking probability.

331 / 508



Intensity, traffic and load: which measure(s)?

There are two types of links in a switched telephone network:

▶ links that carry telephone signals or data

▶ links dedicated to the transmission of signaling data

Trunk = multiple lines

Channel dedicated for signalization

Channel for communication

Switch Switch

Figure: A trunk between two switches.

332 / 508



Intensity measures I

0
1

2

4

5

1

Number of communications

3

5

time

time

Occupancy profile of individual links

4
3
2

Figure: Activity profile of a trunk of 5 links.

We need a measure for the level of activity!
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Intensity measures II

Definition (Intensity of the carried traffic)

The intensity I of the carried traffic is defined as the ratio between
the observed traffic volume divided by the observation time T :

I =

∫ T
0

∑N
i=1 1i (t)dt

T
=

∑N
i=1

∫ T
0 1i (t)dt

T

[
s

s

]
(364)

where 1i (t) is the indicator function of a link (line i).

The intensity represents the average carried traffic during a given
amount of time. It has no unit; however it is given a unit name
and is expressed in Erlang, denoted [E].
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Intensity measures III

In practice, the traffic is characterized by two important
parameters:

1 the average rate of carried calls λc , measured in [call/s],

2 the average call duration tm, in [s/call].
If #T represents the number of calls done during a time T ,
then the average duration is given by

tm =

∑N
i=1

∫ T
0 1i (t)dt

#T
(365)
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Notions of load(s)

Definition (Carried traffic load)

The carried load, expressed en Erlang, is the product of the
entering call rate (thus carried) by the average duration of a call.
It is denoted Ac .

Ac = λctm (366)

Reference load?
The maximum load on a N-lines trunk is theoretically N.
But in practice, not all the lines are used permanently and we
distinguish between two types of loads:

1 the offered load; it is the load that would be carried if the
network could carry all calls, without any limit.

2 the carried load; it is the load really measured in the network.

By definition, the carried load is always lower than the offered
load: Ac ≤ A.
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Notions of load(s)

Definition (Carried traffic load)

The carried load, expressed en Erlang, is the product of the
entering call rate (thus carried) by the average duration of a call.
It is denoted Ac .

Ac = λctm (366)

Reference load?
The maximum load on a N-lines trunk is theoretically N.
But in practice, not all the lines are used permanently and we
distinguish between two types of loads:

1 the offered load; it is the load that would be carried if the
network could carry all calls, without any limit.

2 the carried load; it is the load really measured in the network.

By definition, the carried load is always lower than the offered
load: Ac ≤ A.
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Offered load

Definition

The offered load A is defined by

A = λtm (367)

where λ is the average rate of call trials.

How do we determine the load when we have no possibility to
measure it? ⇒ rules of good practice
It is common to choose a practical reference load (capacity) that
represents the load to be allocated to a user during the peak hours.
Typically, the network could be sized to allocate a capacity A0

comprised between 0.02 and 0.1 [E] per user (and per type of
activity: internal/in/out)

A good network should be sized such that the carried load is
(remember that Ac ≤ A):
▶ as close as possible to the offered load during the peak hours.
▶ equal to the offered load outside the peak hours.
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Measures (statistics) available in a real telephone switch

A telephone switch is usually able to collect the following statistics,
for a given period T (typically a quarter of an hour):

▶ the average call duration tm. Note that certain calls might
have started before the observation time and finish later.

▶ the number of call trials [attempts] (counter), λ.

▶ the number of carried calls (counter).

▶ the number of terminated calls (counter).

To establish our statistical analysis of telephone calls, we will use
T and λ.
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Probabilistic analysis of telephone calls I

Counting process
We start by establishing the law of the random process D(t) that
counts the number of calls initiated after t = 0.

D8

872...

D(t)

t

D1

1

2

3

4

5

∆T

1

Figure: Integrating the number of calls over time (realization of D(t)).
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Probabilistic analysis of telephone calls II

Elements of our model:

1 [Time discretization] We divide the observation time T into
m sub-intervals ∆T such that T = m∆T .
Important note: we take ∆T so small that only one
occurrence per interval is possible.

2 [Probability] Let p be the probability (supposed to be
stationary) of a call trial to occur during ∆T .
Because ∆T is fixed, we can define λ such that p = α∆T ,
where α is a constant.
Later, it appears that in fact α = λ, so that we take
p = λ∆T directly.

Let consider one random variable per sub-interval ∆T : D1, D2, . . .
(there are m of them). Each variable assigns 1 if a trial has
occurred, 0 otherwise.
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Probabilistic analysis of telephone calls III

By accumulating the values of all the D1, D2, . . . variables, we get
the expression of D(t):

1 the probability of having n call trials during T is (n successes
for a binomial law):

(λ∆T )n =

(
λT

m

)n

(368)

2 the probability of having m − n sub-intervals ∆T with no trial
is (m − n failures for a binomial law)

(1− λ∆T )m−n =

(
1− λT

m

)m−n

(369)

3 we need to consider all the possible permutations: Cn
m
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Binomial law

The number of occurrences (call trials) Dm during T = m△T is
therefore given by the following binomial probability density
function (pdf)

fDm(n) = p(Dm = n) =

{
Cn
m

(
λT
m

)n (
1− λT

m

)m−n
n = 0, 1, . . . , m

0 n ̸= 0, 1, . . . , m
(370)

Its expectation (average/mean) is given by the number of trials ×
the probability to succeed: m(λT

m ) = λT (property of binomial
law).

▶ λ can thus be interpreted as the average number of trials
during the time period T .
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Poisson distribution: definition and properties I

The previous expression can be rewritten as

fDm(n) = C n
m

(
λT

m

)n (
1 − λT

m

)m−n

(371)

=
m!

n!(m − n)!

(
λT

m

)n (
1 − λT

m

)m−n

(372)

=
m(m − 1) . . . (m − n + 1)

n!

(λT )n

mn

(
1 − λT

m

)m−n

(373)

=
m(m − 1) . . . (m − n + 1)

mn

(λT )n

n!

(
1 − λT

m

)m−n

(374)

Then we take the limit △T → 0 (≡ m→ +∞) of it:

lim
m→+∞

fDm(n) = lim
m→+∞

m(m − 1) . . . (m − n + 1)

mn

(λT )n

n!

(
1 − λT

m

)m−n

(375)

= lim
m→+∞

1 × (λT )n

n!

(
1 − λT

m

)m−n

(376)

=
(λT )n

n!
lim

m→+∞

(
1 − λT

m

)m−n

(377)
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Poisson distribution: definition and properties II

If x is small, then e−x = 1 − x + x2

2!
− . . ., so that

lim
m→+∞

(
1 − λT

m

)m−n

= lim
m→+∞

(
1 − λT

m

)m(
1 − λT

m

)n (378)

= lim
m→+∞

(e− λT
m )m

1
= e− λT

m
m = e−λT (379)

Therefore, for m→ +∞,

fD(n) =

{
(λT )n

n! e−λT n = 0, 1, . . .
0 n ̸= 0, 1, . . .

(380)

This is a Poisson probability distribution function of parameter λT .
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Poisson distribution: definition and properties III

Theorem

The mean and variance of a Poisson distribution are respectively

µD = λT (381)

σ2D = λT (382)
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Poisson distribution: definition and properties IV

Proof.

The expectation (mean) is defined as

µD =

∞∑
i=0

ifD(i) =

∞∑
i=0

i
(λT )i

i!
e−λT (383)

= 0
(λT )0

0!
e−λT +

∞∑
i=1

i
(λT )i

i!
e−λT =

∞∑
i=1

i
(λT )i

i!
e−λT (384)

Then we take j = i − 1 (variable change):

µD =

∞∑
j=0

(j + 1)
(λT )j+1

(j + 1)!
e−λT =

∞∑
j=0

(λT )j+1

j!
e−λT (385)

= λT

∞∑
j=0

(λT )j

j!
e−λT = λT × 1 = λT (386)

Remember that λ is given/measured by the switch and T is chosen!
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Sizing a trunk

Trunk = N lines

Switch Switch

▶ We can measure some statistics (λ, tm, etc.). If they are not
available, we take values given by good practice (reference
load depending of the users profile).

▶ We know the law for call trials. A similar law counts the call
releases; it is also a Poisson probability distribution function
(although with a different parameter value).

▶ We need to establish the probability Pk to have k busy lines
out of N lines of the trunk. Then, PN is the value we are
looking for (for sizing the trunk at peak hours).
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Sizing a trunk: model based on transition probabilities

p(k + 1; t + dt)p(k + 1; t)

p(k ; t)

p(k − 1; t) p(k − 1; t + dt)

P=

P−1

P+1

p(k ; t + dt)

Components of our approach:

1 find the expression of transition probabilities from p(k; t) to
p(k; t + dt).

2 add some assumptions to reduce the number of unknown
values.

3 derive the expression of PN .
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Towards the Erlang B statistic: a memoryless model for
telephone traffic

Number of arriving/entering calls
In a time interval △t, the number of arriving/entering calls, NA is
a Poisson process given by

p(NA = n) =
(λ△t)n

n!
e−λ△t , n = 0, 1, . . . (387)

where λ is the average arrival rate (for the trunk).

Example

The probability of exactly one arrival in △t is λ△t e−λ△t .

Number of calls that departure/leaving (releases)
Likewise, the number ND of calls that departure/leave is a Poisson
process with average departure rate η:

p(ND = n) =
(η△t)n

n!
e−η△t , n = 0, 1, . . . (388)
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Towards the Erlang B statistic: a memoryless model for
telephone traffic

Number of arriving/entering calls
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Load analysis I

At any time, the load fluctuates between 0 and N ongoing calls.
For a very brief time interval dt, considering one line only,

▶ the probability that exactly one call will arrive (n = 1) is

λdte−λdt ≃ λdt (389)

▶ the probability that exactly one call will depart from an
occupied line is

ηdte−ηdt ≃ ηdt (390)

Thus, given that k lines (of the N lines) are occupied at time t, we
need to calculate the following transition probabilities, from time t
to time t + dt:

1 P+1 the probability that one call will arrive in the interval

2 P−1 the probability that one call will depart in the interval

3 P= the probability that neither an arrival nor a departure
occurs in the interval
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Load analysis II

Calculation of P+1 , P−1 and P=:

▶ P+1: the probability of a call arriving is independent of the
number of lines. Therefore:

P+1 = λdt (391)

▶ P−1: if one of the k lines is released, then the k − 1 other
lines remain occupied.
Taking all permutations into account:

P−1 = C 1
k (ηdt)

1(1− ηdt)k−1 ≃ kηdt (392)

▶ P=: unchanged situation ≡ no entering call, no leaving call
(don’t forget that k lines are occupied)

P= = (1− λdt)(1− kηdt) ≃ 1− λdt − kηdt (393)
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Transition equations

Establishing the transition equations:
Let p(k; t + dt) be the probability to have k busy lines at time
t + dt. It is then possible to determine p(k; t + dt) based on
P+1, P−1, P=, and probabilities at time t:

p(k; t + dt) = P= p(k; t) + P+1 p(k − 1; t) + P−1 p(k + 1; t) (394)

≃ (1 − λdt − kηdt) p(k; t) (395)

+ λdt p(k − 1; t) (396)

+ (k + 1)ηdt p(k + 1; t) (397)

There are two particular cases:
▶ k = 0 (no line occupied)

p(0; t + dt) = (1 − λdt) p(0; t) + ηdt p(1; t) (398)

▶ k = N (all lines are occupied)

p(N; t + dt) = (1 − λdt − Nηdt) p(N; t) + λdt p(N − 1; t) (399)
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At steady state I

Summary:

▶ we have N + 1 transition equations of type
p(k; t+dt) = (1−λdt−kηdt) p(k; t)+λdt p(k−1; t)+(k+1)ηdt p(k+1; t)

▶ p(k; dt) and p(k; t + dt) probabilities are unknown: 2(N + 1)
unknown values

⇒ we need to reduce the number of unknown values.

At steady state, it is assumed that the probabilities are not
function of time (reasonable assumption of [strict!] time
stationarity):

p(k; t + dt) = p(k; t) = Pk , k = 0, 1, 2, ..., N (400)

The transition equations then become

Pk = (1− λdt − kηdt)Pk + λdt Pk−1 + (k + 1)ηdt Pk+1 (401)

⇒ 0 = [(−λ− kη)Pk + λPk−1 + (k + 1)η Pk+1] dt (402)

⇒ (λ+ kη)Pk = λPk−1 + (k + 1)η Pk+1, 0 < k < N (403)
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At steady state II

Likewise, we have, for the two particular cases:

λP0 = η P1, k = 0 (404)

(λ+ Nη)PN = λPN−1, k = N (405)

Intermediate conclusion: we have N + 1 unknown probabilities and
N + 1 equations. But these are relative equations (all probabilities
can be derived up to a scale factor).
[Scaling condition] Because the number of occupied lines is
restricted to 0 ≤ k ≤ N, the probabilities Pk also must satisfy

P0 + P1 + ...+ PN = 1 (406)

The form of the probability Pk that satisfies all the conditions is
(for all k)

Pk =
(λ/η)k

k!∑N
i=0

(λ/η)i

i!

(407)

This is the probability to have k occupied lines.
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Erlang B formula I

Erlang B formula

The state of having all lines occupied is referred to as congestion. If
calls are rejected when all N lines are occupied, then PN (k = N)
is the probability that a call is rejected or blocked:

B = PN =
(λ/η)N

N!∑N
i=0

(λ/η)i

i!

(408)

This is known as the Erlang B formula.

If (1) K is a random variable representing the number of occupied
lines in a N-lines trunk, and (2) Pk is the probability to have k
occupied lines of the trunk, then the carried load Ac is given by the
expectation of K :

Ac = E{K} =
N∑

k=0

k Pk (409)
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Erlang B formula II

Theorem (Expectation of K?)

The expectation (mean/average) of the variable K provides the
average number of occupied lines; this is the carried load Ac . It is
equal to

Ac = E{K} = A(1− B) (410)

where A is the offered load.
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Erlang B formula III

Proof.

Let β = λ/η. The expectation (mean) is defined as

E {K} =

N∑
k=0

k Pk =

∑N

k=0
k βk

k!∑N

i=0
βi

i!

=

∑N

k=1
k βk

k!∑N

i=0
βi

i!

(411)

=

∑N

k=1
k βk

k!∑N

i=0
βi

i!

=

∑N−1

l=0
βl+1

l!∑N

i=0
βi

i!

(412)

= β

N−1∑
l=0

βl

l!∑N

i=0
βi

i!

=
λ

η
(1 − B) (413)

Therefore also, λ
η defines the offered load A:

A =
λ

η
and Ac = A(1− B) (414)

359 / 508



Erlang B formula IV

Engineering

In the expression of the Erlang B statistic,

B = PN =
AN

N!∑N
i=0

Ai

i!

(415)

we have three parameters:

▶ the blocking probability B

▶ the size of the trunk N

▶ the offered load A

⇒ if we set two parameters, we can calculate the third one. But
this expression is not easily inverted.
In practice, engineers use tables with values or graphics.
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Interpreting Erlang B probability law I

Blocking probability B as a function of the offered load per line (A/N)
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Interpreting Erlang B probability law II

N 10 20 30 40 50 60 70 80 90 100

A 4.5 12.0 20.3 29.0 37.9 46.9 56.1 65.4 74.7 84.1
A
N

0.45 0.60 0.68 0.73 0.76 0.78 0.80 0.82 0.83 0.84

Table: Example: proportionality of A/N to N for B = 0.01.
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Sizing the capacity

B B

N 0.01 0.005 0.003 0.001 N 0.01 0.005 0.003 0.001

1 0.01 0.005 0.003 0.001 31 21.2 19.9 19.0 17.4

2 0.153 0.105 0.081 0.046 32 22.0 20.7 19.8 18.2

3 0.46 0.35 0.29 0.19 33 22.9 21.5 20.6 19.0

4 0.87 0.7 0.6 0.44 34 23.8 22.3 21.4 19.7

5 1.4 1.1 1.0 0.8 35 24.6 23.2 22.2 20.5

6 1.9 1.6 1.4 1.1 36 25.5 24.0 23.1 21.3

7 2.5 2.2 1.9 1.6 37 26.4 24.8 23.9 22.1

8 3.1 2.7 2.5 2.1 38 27.3 25.7 24.7 22.9

9 3.8 3.3 3.1 2.6 39 28.1 26.5 25.5 23.7

10 4.5 4.0 3.6 3.1 40 29.0 27.4 26.3 24.4

11 5.2 4.6 4.3 3.7 41 29.9 28.2 27.2 25.2

12 5.9 5.3 4.9 4.2 42 30.8 29.1 28.0 26.0

... ... ... ... ... ... ... ... ... ...

Table: Erlang B: offered load, given B and N.
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Alternative models I

Assumptions for building the Erlang B model

▶ stationarity.

▶ rejected calls are not re-submitted.

▶ the blocking probability is given by PN .

Types of loads:

1 carried load Ac = E{k} = A(1− B)

2 offered load A = λ
η

3 what if rejected calls are returning? Then the offered load A′

is larger than A, because users return until they are served.
Therefore,

A′ ≥ A ≥ Ac (416)

How do we determine A′?
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Alternative models II

Trials and calls returning.
Until now, we have ignored what happens when a call has been
blocked.

Let A′ be the estimated offered load that considers the effects of
blocked calls returning and being accepted:

▶ A is the original load (1st attempt)

▶ AB is the load that returns to the trunk after calls have been
blocked (2nd attempt)

▶ AB2 results from 3rd attempts

▶ ...

Therefore, A′ can be expressed as

A′ = A+ AB + (AB)B + (AB2)B + ... =
A

1− B
(417)

Note that A′ > A.
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Alternative blocking formulas

Blocking analysis Treatment of lost calls Blocking formula

Formulas for a large (infinite) number of traffic sources

Erlang B Calls “cleared”; no recur B1 = PN∑N

k=0
Pk

with Pk = Ak

k!

Lost calls Calls reenter until Given B, effective load is

return served A′ = A/(1 − B)

Erlang C Lost calls “held” in B = B1[
1− A(1−B1)

N

]
infinite queue

Molina Same as Erlang C B = 1 − e−A

N−1∑
k=0

Pk = e−A

∞∑
k=N

Pk

Formulas for finite number of traffic sources, M

Engest Lost calls are cleared B2(ρ) =
pN∑N

k=0
pk
, pk =

(
M
k

)
ρk

and A(ρ) ≃ Mρ
[1+ρB2(ρ)]

Bernoulli Lost calls held B =

M∑
k=N

(
M
k

)(
A
M

)k (
1 − A

M

)M−k
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Comparison of blocking probability formulas

10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

B

Offered load A [ERLANG]

MOLINAERLANG C

Calls return

ERLANG B
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Outline

1 Reminder

2 Representation of bandpass signals

3 Noise in telecommunications systems

4 Digital modulation

5 Spread spectrum

6 Channels for digital communications and intersymbol
interference

7 Navigation systems

8 Multiplexing

9 Telephone traffic engineering

10 Transmission over twisted pairs (fixed telephone network)

11 Radio engineering
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Transmission over twisted pairs (“fixed”telephone network)

▶ Transmission over copper lines

Electrical properties
Model
Spectral study
Examples of lines

▶ Telephone network structure
▶ Crosstalk and high bitrate transmission

Principles
Crosstalk study
NEXT, FEXT, signal to noise ratio

▶ Estimation of the channel capacity

Information, uncertainty and entropy
Memoryless discrete channel
Mutual information
Channel capacity
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How will we proceed?

1 Understand the principles of transmission over copper lines

2 Establish a model for dealing with disturbers (other users on
neighboring copper wires)

3 Estimate the efficiency of transmission over copper lines ⇒
notion of channel capacity
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Introduction

twisted pair

1

1

10

100

1000

10 100 1000 10000

Maximal distance [km]

Achievable bitrate [Mb/s]

coaxial cable

single-mode optical fiber

multi-mode optical fiber

Figure: Comparison of different transmission media.
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Factor of limitations

Several phenomenons affect the transmission over copper lines:

Signal [S] attenuation Attenuation results in a decrease of the
power along the copper line. It is commonly
expressed [dB] per kilometer. It will be expressed by
the α line attenuation constant.

Noise [N] Noise originates from electromagnetic disturbances:
environment + other users (named disturbers)

Non-linearities Here, we will assume that the channel (made of
copper wires) is linear to a large extend.
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Cables

There are many types of cables, but basically two families:

▶ coaxial cables (mainly used by cable TV operators)

▶ cables of twisted pairs (used for network and telephone lines)
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Cables of twisted pairs
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Why do we twist pairs? I

A uniform (but time-varying) magnetic field induces a current in a
loop of two wires
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Why do we twist pairs? II

Conclusion: twisting pairs make them more resilient to
electro-magnetic noise.
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Organization of cables I

Cables might be organized in binder groups.
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Organization of cables II
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Organization of cables III
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Street cabinets (Belgium) I
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Street cabinets (Belgium) II

At the other side:
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Local Distribution Center (LDC)
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Pulling a cable through a conduit
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Electrical model of a line and primary line constants
(reminder)

Ldx Rdx

Gdx Cdx

Figure: Infinitesimal section of a copper line.

Name Symbol Units Unit symbol

loop resistance R ohms per meter Ω/m

loop inductance L henries per meter H/m

insulator capacitance C farads per meter F/m

insulator conductance G ≃ 0 siemens per meter S/m
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Equivalent circuit representation of a transmission line
using distributed elements and (telegrapher’s) equations

I (x)

Gdx
Cdx

V (x + dx)
= V (x)− dV

load

Ldx Rdx

V (x)

I (x + dx) = I (x)− dI

source

By taking a small section:

∂V

∂x
= −RI − L

∂I

∂t
(418)

− ∂I
∂x

= GV + C
∂V

∂t
(419)
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Solution to these equations

∂2V

∂x2
= RGV + (RC + LG )

∂V

∂t
+ LC

∂V 2

∂t2
(420)

At steady state
At steady state, we express voltages and currents with phasors
V (x , t) = V (x)e jωt . Then, the equation becomes

∂2V

∂x2
= (R + jLω)(G + jCω)V (x) = γ2V (x) (421)

with γ = α+ jβ.
We then obtain

V (x) = VF e
−γx + VBe

γx (422)

▶ VF e
−γx : forwards propagating wave

▶ VBe
γx : backwards propagating wave
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Secondary line constants

Primary line constants aim at describing the line behavior at the
“microscopic” scale. Lines are easier to characterize by their
secondary line constants:

▶ the characteristic impedance Zc .
It is defined as the impedance looking into an infinitely long
line. Such a line will never return a reflection since the
incident wave will never reach the end to be reflected.

▶ the propagation constant, γ, whose real and imaginary parts
are the attenuation constant, α, and phase change constant,
β, respectively:

γ = α+ jβ (423)
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Relationship between primary and secondary line constants

Primary and secondary line constants are related by the following
equations:

Zc =

√
R + jωL

G + jωC
(424)

γ =
√
(R + jωL)(G + jωC ) (425)

If we admit that G ≈ 0,

Zc ≃
√

R + jωL

jωC
(426)

γ ≃
√
(R + jωL)jωC (427)
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Spectral dependence of parameters

At high frequencies (ω = 2πf ) and taking
√
1 + α ≈ 1 + α

2 ,

γ ≃
√
(R + jωL)jωC (428)

≃
√
jωC

√
jωL

√
1 +

R

jωL
(429)

≃
√
jωC

√
jωL

(
1 +

R

j2ωL

)
(430)

≃ 1

2
R

√
C

L
+ jω

√
LC = α+ jβ (431)

In the following, the take the following approximations:

▶ C and L are independent of the frequency.
▶ due to the skin effect,

R is proportional to
√
f : R = R0

√
f

and consequently α is also proportional to
√
f : α = α0

√
f
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Attenuation

If Vin(f , 0) is the input voltage (x = 0), then

V (f , L) = Vin(f , 0)e
−γ(f )L (432)

is the voltage at location L.

Definition

The attenuation is defined as

A =

∣∣∣∣Vin(f , 0)

V (f , L)

∣∣∣∣ = ∣∣∣eγ(f )L
∣∣∣ = eα(f )L (433)

In decibels and considering that α = α0

√
f , we have

A [dB] = 20 log10

[
eα0

√
f L
]
=

20 ln
[
eα0

√
f L
]

ln 10
= A0

√
f L [dB]

(434)
This means that doubling the length doubles the losses in decibels.

390 / 508



Examples of line constants

Twisted pair

Frequency R [Ω/km] L [µH/km] |Zc | [Ω] α [mNp/km]

10 [kHz] 52,3 766 188 151

120 [kHz] 98,7 67,5 156 363

Table: Sample values of lines encountered in a telephone network (note
that a neper [Np] is approximately 8.7 [dB])
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Structure of a telephone network

digital network

analog analog

Figure: Transmission of analog voice signals over the telephone network
(so called“analog” lines).

Bandwidth for voice communications: [300Hz, 3400Hz]
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Digital transmission by using modems over a telephone
network

modem

analog

modem

digital network

analog

Figure: Digital information is modulated and sent transparently in the
[300Hz, 3400Hz] bandwidth.
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Integrated Services Digital Network (ISDN): digital access

The entry level interface to ISDN is the Basic(s) Rate Interface
(BRI), a 2× 64 [kb/s] service delivered over a pair of standard
telephone copper wires (these channels are identical to the E1
channels).

digital analog

digital network

N NT1

digital

Figure: Integrated Services Digital Network (ISDN).
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Digital Subscriber Line (DSL) technologies and
transmission

ATM / IPsplitter

modem

digital network (central office)

Figure: Configuration of an Asymmetric DSL (ADSL) line.
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Cutoff filter (in the splitter)
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Spectral occupancy

f

Voice signal : 0− 4kHz

upstream : 25− 100kHz

downstream : 100kHz− 1MHz

Figure: Spectral occupancy of an ADSL line.

▶ Lower frequencies are dedicated to the voice and upstream
bitrate.
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DSL standards I

Technologies for asymmetric bit streams (ADSL):

Version Standard name Common name Downstream Upstream Approved in

ADSL ITU G.992.1 ADSL (G.dmt) 8 [Mb/s] 1.3 [Mb/s] 1999-07

ADSL2 ITU G.992.3 ADSL2 12 [Mb/s] 1.3 [Mb/s] 2002-07

ADSL2+ ITU G.992.5 Annex M ADSL2+M 24 [Mb/s] 3.3 [Mb/s] 2008
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DSL standards II

Other DSL technologies:

▶ High-bit-rate digital subscriber line (HDSL) is a
telecommunications protocol standardized in 1994. It was the
first digital subscriber line (DSL) technology to use a higher
frequency spectrum of copper, twisted pair cables.

▶ Very-high-bit-rate digital subscriber line (VDSL or VHDSL):
up to 52 [Mb/s] downstream and 16 [Mb/s] upstream using
the frequency band from 25 [kHz] to 12 [MHz].
VDSL2 is even faster.
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Real cables I
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Real cables II
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Real cables III
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Crosstalk and high speed transmission

Principle

Pair 1

Pair 3

Pair 2

Figure: Crosstalk originates from the proximity of neighboring copper
wires.
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Towards an analysis of crosstalk effects

Each input signal generates 3 output signals
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Types of crosstalk in telephone networks I

1 NEXT (Near-End Crosstalk): disturbing pair’s source is at the
same side

2 FEXT (Far-End Crosstalk)

NEXT is usually more damaging than FEXT.

multi-pair cable

NEXT

disturbed pair

disturbing pair

modem

modem

FEXT

switch
data

Figure: Two types of crosstalk. We examine NEXT and FEXT at one side.
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Derivation of an analytical model for NEXT and FEXT

For two neighboring twisted pairs, capacitive and inductive
components exist between each of the four wires and also between
each wire and ground. Therefore, we consider two models:

1 capacitive unbalance model

2 inductive unbalance model

We will see that they produce similar results.
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Capacitive unbalance model I

Framework:

▶ we consider 2 pairs, or 4 wires

▶ there are 8 unknown quantities: V1, V2, V3, V4, I1, I2, I3, I4
(voltages are defined with respect to the ground reference)

▶ how many circuits do we have?

▶ how many circuits do we use in practice?

differential (metallic) modes are easier to use. They are
defined by V1 − V2, V3 − V4, I1 − I2, and I3 − I4.

so we use 2 circuits only.
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Capacitive unbalance model II

I2(x)

I1(x)

V4(x)

V3(x)

V2(x)

Z1∆x

Z2∆x

Z3∆x

Y34∆x

Z4∆x

Y24∆xY23∆x

Y2G∆x

Y3G∆x

Y4G∆x

I1(x +∆x)

I2(x +∆x)

V1(x +∆x)

V2(x +∆x)

I3(x +∆x)

I4(x +∆x)

V3(x +∆x)

V4(x +∆x)

V1(x)

I3(x)

I4(x)

Y1G∆x

Y12∆x

Y13∆x Y14∆x

Figure: Capacitive model of a short section of two twisted pairs.
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Capacitive unbalance model III

For convenience:

▶ we write all capacitances as admittances: Y = jωC (we
assume that G = 0).

▶ All voltages are defined with respect to the ground reference.

According to Kirchhoff’s mesh rule (on voltages):

V1(x +△x) = V1(x)− I1(x)Z1△x (435)

V2(x +△x) = V2(x)− I2(x)Z2△x (436)

V3(x +△x) = V3(x)− I3(x)Z3△x (437)

V4(x +△x) = V4(x)− I4(x)Z4△x (438)
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Capacitive unbalance model IV

Likewise, the current nodes law provides:

I1(x + △x) = I1(x) − V1(x + △x)Y1G△x − [V1(x + △x) − V2(x + △x)]Y12△x

−[V1(x + △x) − V3(x + △x)]Y13△x − [V1(x + △x) − V4(x + △x)]Y14△x

I2(x + △x) = I2(x) − V2(x + △x)Y2G△x − [V2(x + △x) − V1(x + △x)]Y12△x

−[V2(x + △x) − V3(x + △x)]Y23△x − [V2(x + △x) − V4(x + △x)]Y24△x

I3(x + △x) = I3(x) − V3(x + △x)Y3G△x − [V3(x + △x) − V1(x + △x)]Y13△x

−[V3(x + △x) − V2(x + △x)]Y23△x − [V3(x + △x) − V4(x + △x)]Y34△x

I4(x + △x) = I4(x) − V4(x + △x)Y4G△x − [V4(x + △x) − V1(x + △x)]Y13△x

−[V4(x + △x) − V2(x + △x)]Y24△x − [V4(x + △x) − V3(x + △x)]Y34△x

We have:

▶ 8 equations

▶ but 16 unknown values?!
Vj(x), Vj(x +△x), Ij(x), Ij(x +△x), with j ∈ {1, 2, 3, 4}.

Therefore, in the equations, we divide both members by △x and
take the limit for △x → 0.
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Capacitive unbalance model V

For example,

V1(x +△x) = V1(x)− I1(x)Z1△x (439)

becomes

lim
△x→0

V1(x +△x)− V1(x)

△x
= −Z1I1(x) (440)

d

dx
V 1(x) = −Z1I 1(x) (441)

Note that V1(x) depends on a current.
Likewise it appears that currents depend on voltages.
⇒ equations are coupled.
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Capacitive unbalance model VI

In a matrix form, the 8 equations can be expressed as

d

dx



V 1

V2

V3

V4

I1
I2
I3
I4


=



0 0 0 0 −Z1 0 0 0
0 0 0 0 0 −Z2 0 0
0 0 0 0 0 0 −Z3 0
0 0 0 0 0 0 0 −Z4

A1 Y12 Y13 Y14 0 0 0 0
Y12 A2 Y23 Y24 0 0 0 0
Y13 Y23 A3 Y34 0 0 0 0
Y14 Y24 Y34 A4 0 0 0 0





V1

V2

V3

V4

I1
I2
I3
I4


= A

−→
S

(442)
with

A1 = −(Y1G + Y12 + Y13 + Y14) (443)

A2 = −(Y2G + Y12 + Y23 + Y24) (444)

A3 = −(Y3G + Y13 + Y23 + Y34) (445)

A4 = −(Y4G + Y14 + Y24 + Y34) (446)
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Capacitive unbalance model VII

Change of variables (we transform the voltages and currents on the
four lines to metallic [≡differential] and longitudinal voltages and

currents):
−→
S −→

−→
S ′

V1M = V1 − V2 (447)

V2M = V3 − V4 (448)

V1L =
V1 + V2

2
(449)

V2L =
V3 + V4

2
(450)

I1M =
I1 − I2

2
(451)

I2M =
I3 − I4

2
(452)

I1L = I1 + I2 (453)

I2L = I3 + I4 (454)
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Capacitive unbalance model VIII

In a matrix form:

−→
S = T



V1M

V1L

V2M

V2L

I1M
I1L
I2M
I2L

 = T
−→
S ′ (455)

where T is a transformation matrix:

T =



1
2

1 0 0 0 0 0 0

− 1
2

1 0 0 0 0 0 0

0 0 1
2

1 0 0 0 0

0 0 − 1
2

1 0 0 0 0

0 0 0 0 1 1
2

0 0

0 0 0 0 −1 1
2

0 0

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 −1 1
2


(456)

So that, −→
S ′ = T−1−→

S (457)
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Capacitive unbalance model IX

This can be written as

d

dx

−→
S = A

−→
S (458)

d

dx
T−1−→S = T−1A

−→
S (459)

d

dx

−→
S ′ = T−1AT

−→
S ′ (460)

This results in currents depending only on the metallic and
longitudinal voltages.
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First solution: the capacitive model I
By replacing Y by jωC (only capacitive effects are considered),

d

dx


I1M
I1L
I2M
I2L

 = − jω

4


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




V1M

V1L

V2M

V2L

 (461)

with

a11 = C1G + C2G + 4C12 + C13 + C14 + C23 + C24 (462)

a21 = a12 = 2C1G − 2C2G + 2C13 + 2C14 − 2C23 − 2C24 (463)

a31 = a13 = −C13 + C14 + C23 − C24 (464)

a41 = a14 = −2C13 − 2C14 + 2C23 + 2C34 (465)

a22 = 4C1G + 4C2G + 4C13 + 4C14 + 4C23 + 4C24 (466)

a23 = a32 = −2C13 + 2C14 − 2C23 + 2C34 (467)

a24 = a42 = −4C13 − 4C14 − 4C23 − 4C24 (468)

a33 = C3G + C4G + C13 + C14 + C23 + C24 + 4C34 (469)

a34 = a43 = 2C3G − 2C4G + 2C13 − 2C14 + 2C23 − 2C24 (470)

a44 = 4C3G + 4C4G + 4C13 + 4C14 + 4C23 + 4C24 (471)



First solution: the capacitive model II

The parameter a31 defines the coupling between the metallic
(differential) voltage in the disturbing pair V1M to the metallic
(differential) current in the disturbed pair I2M ; it is referred to as
capacitance unbalance of a twisted pair:

d

dx
I2M = − jω

4
CM1M2V1M (472)

where CM1M2 is equal to a31 (or a13).



Inductive unbalance model I

Zc

V1m

I1m

I2m

V2m

∆xM3

∆xM1

∆xM4

∆xM2

Zc

Zc

Zc

Figure: Mutual inductance model of a short section of two twisted pairs.
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Inductive unbalance model II

A detailed analysis leads to

d

dx
I2M ≃

jωM

4Z 2
c

V1M (473)

where M equals M1 +M2 +M3 +M4.
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General unbalance expression

Both models provide expressions that can be combined to

d

dx
I2M =

(
jωM

4Z 2
c

− jω

4
CM1M2

)
V1M (474)

that can be grouped together to form a new unbalanced constant

d

dx
I2M(x) = jωQM1M2(x)V1M(x) (475)

where

▶ QM1M2(x) takes into account capacitive and inductive effects.

▶ (x) emphasizes the dependence with the location along the
line.
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Near-end crosstalk (NEXT) calculation I

jωQM1M2(l)V0(f )e
−γ(f )l

modem

modem

disturbing pair

disturbed pair

V0(f ) V0(f )e
−γ(f )l

l

multi-pair cable

data
switch

0 x

NEXT

jωQM1M2(l)V0(f )e
−2γ(f )l

Figure: NEXT at location x = l .
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Near-end crosstalk (NEXT) calculation II
1 At the input of the disturbing line, the voltage is

V (f , x = 0) = V0(f ).
2 At location x = l , the voltage along the disturbing pair is

equal to (→ propagation)

V1(f , x = l) = V0(f ) e
−γ(f )l (476)

3 At location x = l , the induced current on the disturbed pair is

d

dx
I2(f , x = l) = jωQM1M2(l)V1(f , x = l) = jωQM1M2(l)V0(f ) e

−γ(f )l

(477)
4 This current propagates back to the input (x = 0) of the

disturbed line (← propagation):

I2(f , x = 0) = I2(f , x = l) eγ(f )(−l) = I2(f , x = l) e−γ(f )l (478)

so that

d

dx
I2(f , x = 0) = jωQM1M2(l)V0(f ) e

−2γ(f )l (479)
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Derivation of the NEXT power transfer function:
integration along the line I

We have

I2(f ) =

∫ L

0

jωQM1M2(l)V0(f )e
−2γ(f )ldl (480)

Power?
The power due to the disturbing pair is given by

P2(f ) = V2(f )I
∗
2 (f ) = ZLI2(f )I

∗
2 (f ) (481)

ZL is chosen to:

▶ maximize the transfer of power (conjugate matching:
Z ∗
L = Zc) and

▶ to avoid any reflection (ZL = Zc), where Zc is the
characteristic impedance of a transmission line.

So that, ZL = RL. Consequently,

P2(f ) = RLI2(f )I
∗
2 (f ) (482)
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Derivation of the NEXT power transfer function:
integration along the line II

The problem is that QM1M2 is unknown and it depends on the
location ⇒ we adopt a probabilistic approach for evaluating the
power

E {P2(f )} = E

{
RLV

2
0 (f )

∫ L

0

jωQM1M2
(x)e−2γ(f )xdx

∫ L

0

−jωQ∗
M1M2

(y)e−2γ∗(f )ydy

}
= RLω2V 2

0 (f )E

{∫ L

0

∫ L

0

QM1M2
(x)Q∗

M1M2
(y)e−2γ(f )xe−2γ∗(f )ydxdy

}
(483)

= RLω2V 2
0 (f )

∫ L

0

∫ L

0

E
{
QM1M2

(x)Q∗
M1M2

(y)
}
e−2γ(f )xe−2γ∗(f )ydxdy (484)

How do we estimate E
{
QM1M2(x)Q

∗
M1M2

(y)
}
?
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Derivation of the NEXT power transfer function I

We assume that QM1M2(x) and Q∗
M1M2

(y) (at two different
locations) are uncorrelated, which means that

E
{
QM1M2(x)Q

∗
M1M2

(y)
}
= kδ(x − y) (485)

According to this assumption:

E {P2(f )} = RLω
2V 2

0 (f )

∫ L

0

[∫ L

0

kδ(x − y)e−2γ(f )xe−2γ∗(f )ydy

]
dx

Knowing that there is no contribution to crosstalk outside of [0, L]
and that

∫ +∞
−∞ δ(x − y)f (y)dy = f (x):∫ L

0

kδ(x − y)e−2γ(f )xe−2γ∗(f )ydy =

∫ +∞

−∞
kδ(x − y)e−2γ(f )xe−2γ∗(f )ydy

= ke−2γ(f )xe−2γ∗(f )x

= ke−2(α(f )+jβ(f ))xe−2(α(f )−jβ(f ))x

= ke−4α(f )x
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Derivation of the NEXT power transfer function II

Therefore,

E {P2(f )} = RLω
2V 2

0 (f )

∫ L

0

[∫ L

0

kδ(x − y)e−2γ(f )xe−2γ∗(f )ydy

]
dx

= RLω
2V 2

0 (f )k

∫ L

0

e−4α(f )xdx (486)

= RLω
2V 2

0 (f )k

[
e−4α(f )x

−4α(f )

]L
0

(487)

=
RLω

2V 2
0 (f )k

−4α(f )

(
e−4α(f )L − 1

)
(488)

For long lines, e−4α(f )L ≪ 1 and, consequently,

E {P2(f )} ≈
RLω

2V 2
0 (f )k

−4α(f )
(−1) = RLω

2V 2
0 (f )k

4α(f )
(489)
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Derivation of the NEXT power transfer function III

At high frequencies (the ones used for ADSL transmission), α(f ) is
proportional to

√
f , so that

E {P2(f )} =
RL(2πf )

2V 2
0 (f )k

4α0

√
f

=
RLV

2
0 (f )π

2k

α0
f

3
2 (490)

Thus, for a disturber whose power is given by V 2
0 (f )/RL, we have

the NEXT power transfer function between the disturbing
transmitter and the disturbed receiver:

HNEXT (f ) =
R2
Lπ

2k

α0
f

3
2 = KNEXT f

3
2 (491)

Interpretation:

▶ the NEXT is proportional to f
3
2 .

▶ it does not depend on the length. Why? What does it mean?
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Measured crosstalk values I

Setup:
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Measured crosstalk values II

Result: the received power decreases as 15 [dB] per frequency decade
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Recap

We have:

1 Thanks to the telegrapher’s equations, a model for the
propagation of waves along an electrical line and a solution:

V (x) = VF e
−γx +VBe

γx and I (x) = IF e
−γx + IBe

γx (492)

2 A model and a formula for the calculation of crosstalk (for
each infinitesimal section):

d

dx
I2M(x) = jωQM1M2(x)V1M(x) (493)

3 A strategy to derive E {P2(f )}, which includes
1 Integration of the crosstalk interferences along the line.
2 An assumption for dealing with QM1M2(x):

E
{
QM1M2(x)Q

∗
M1M2

(y)
}
= kδ(x − y) (494)
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Calculation of the FEXT I

modem

modem switch

disturbing pair

disturbed pair

V0(f )e
−γ(f )l

l

V0(f )

FEXT

0

multi-pair cable

Data

jωQM1M2(l)V0(f )e
−γ(f )l jωQM1M2(l)V0(f )e

−γ(f )L

Figure: Far-end crosstalk due to only one section dx (with unbalance)
located at x = l .
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Calculation of the FEXT II
1 At the input of the disturbing line, the voltage is V0(f ).
2 At location x = l , the voltage on the disturbing pair is equal

to (→ propagation)

V1(f , x = l) = V0(f ) e
−γ(f )l (495)

3 At location x = l , the induced current on the disturbed pair is

d

dx
I2(f , x = l) = jωQM1M2(l)V1(f , x = l) = jωQM1M2(l)V0(f ) e

−γ(f )l

4 This current propagates to the output (x = L) of the
disturbed line (→ propagation):

I2(f , x = L) = I2(f , x = l)e−γ(f )(L−l) (496)

so that

d

dx
I2(f , x = L) = jωQM1M2(l)V0(f )e

−γ(f )le−γ(f )(L−l)

= jωQM1M2(l)V0(f )e
−γ(f )L (497)
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Derivation of the FEXT power transfer function:
integration along the line I

We have, at the output of the disturbed line:

I2(f ) =

∫ L

0

jωQM1M2(x)V0(f )e
−γ(f )Ldx (498)

Power?
The power due to the disturbing pair is given by

P2(f ) = V2(f )I
∗
2 (f ) = RLI2(f )I

∗
2 (f ) (499)
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Derivation of the FEXT power transfer function:
integration along the line II

By a similar reasoning to that of the NEXT,

E {P2(f )} = RLV
2
0 (f )E

{∫ L

0

jωQM1M2(x)e
−γ(f )Ldx

∫ L

0

−jωQ∗
M1M2

(y)e−γ∗(f )Ldy

}
= RLω

2V 2
0 (f )e

−2α(f )L

∫ L

0

∫ L

0

kδ(x − y)dxdy (500)

= RLω
2V 2

0 (f )e
−2α(f )L

∫ L

0

k dy (501)

= RL (2πf )
2 V 2

0 (f )e
−2α(f )LkL (502)

So, we get the FEXT power transfer function

HFEXT (f ) =
E {P2(f )}
V 2
0 (f )/RL

= kFEXT f
2e−2α(f )LL (503)

where L is the length of the cable with some FEXT effects.

434 / 508



Derivation of the FEXT power transfer function:
integration along the line III

Interpretation:

HFEXT (f ) = kFEXT f
2e−2α(f )LL (504)

▶ it depends on the length L.

▶ it increases with the frequency (similar effect to that of
NEXT).

▶ e−2α(f )L =
(
e−α(f )L

)2
is the power attenuation for any signal

along the line. It is the usual input-output power transfer
function or channel power transfer function ∥Hc(f )∥2.
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Calculation of the FEXT Signal to Noise ratio I

PT PR

FEXT

PD

disturbed pair

disturbing pair

Figure: Calculation of the power spectral density at the receiver with the
presence of FEXT.

In the case of FEXT, by applying Wiener-Kintchine’s theorem, one
gets, at the receiver side R:

γR(f ) = γT (f ) ∥Hc(f )∥2 + γD(f )HFEXT (f ) (505)
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Calculation of the FEXT Signal to Noise ratio II

This leads to the following signal to noise ratio:

S(f )

N(f )
=

γT (f ) ∥Hc(f )∥2

γD(f )HFEXT (f )
(506)

=
γT (f ) ∥Hc(f )∥2

γD(f )Lf 2kFEXT ∥Hc(f )∥2
(507)

If we have γT (f ) ≃ γD(f ), which means that both signals are of
the same type, then

S(f )

N(f )
=

γT (f ) ∥Hc(f )∥2

γD(f )Lf 2kFEXT ∥Hc(f )∥2
(508)

=
k ′

Lf 2
(509)

Note that the transfer function of the channel does not appear in
this expression.
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Influence of the number of disturbers

Let consider a cable with N disturbing lines. A simple idea consists
to sum up the individual effects of the N disturbing lines:

γout(f ) =
N∑
i=1

γini (f )HFEXT/NEXT (f ) (510)

If all the signals have the same power spectrum,
γout(f ) = Nγin(f )HFEXT/NEXT (f ) (511)

However, this formula overestimates the real disturbing power
because only neighboring lines interfere with the considered line.

Unger’s formula (empirical formula)

γout(f ) = N0.6γin(f )HFEXT/NEXT (f ) (512)
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Cable building considerations I
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In the field
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Performance evaluation for digital transmissions with the
presence of crosstalk

Bitrate ≤ channel capacity !?
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Impact of an error during the transmission: bit/packet
error rate (for packets of length N)

Assume a packet of size N and let Pe be the probability error on
one bit.
The probability for the packet to be correct is

(1− Pe)
N (513)

Therefore the packet error rate is

PP = 1− (1− Pe)
N . (514)

For large packets and small Pe , this becomes
PP ≃ 1− (1− NPe) = N × Pe . (515)

Example

With N = 105 bits and a bit error rate of Pe = 10−7, PP ≃ 10−2.

We thus need to lower Pe ⇒ understand how disturbance occurs.
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Estimation of the channel capacity I

Approach:

1 Define the notion of information

2 Provide a model for the channel

3 Establish the channel capacity

Example

Two types of channels for carrying information:

A, C, ..
channel

A, C, ..
noise-free

channel
A, C, .. D, B, ..

noisy
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Estimation of the channel capacity II

Notion of information

Definition (Information of a symbol)

Let sk be an event with a probability of pk of a source S , we
quantify the information provided by its observation by

i(sk) = log2

(
1

pk

)
= − log2 pk (≥ 0 ) (516)

▶ Rare event: small pk → i(sk) = − log2 pk tends towards +∞
→ a lot of information

▶ pk close to 1 → i(sk) = − log2 pk tends towards 0
→ no information

The unit of information is the bit of information.
Note that there is a difference between a bit (which measures the
number of sent binary symbols) and a bit of information (which
measures the rate of information).
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Notion of entropy I

Definition (Entropy of a source S comprising K symbols)

The average information, per symbol, provided by a source is the
entropy. It is denoted by H(S) and is defined as

H(S) =

K−1∑
k=0

pk log2

(
1

pk

)
=

K−1∑
k=0

pk i(sk) (517)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

H
(S

)

Figure: Entropy of a binary source (p denotes the probability of one symbol).

So, H(S) = −p log2 p − (1 − p) log2(1 − p).

445 / 508



Notion of entropy II

Binary source with p(0) = p(1) = 1
2 .

In that case, we have

H(S) =
1

2
log2 2 +

1

2
log2 2 = log2 2 = 1 [bit of information/symbol]

(518)

For all other values of p(0) and p(1), H(S) < 1.

Source with 4 symbols, such that p(0) = p(1) = p(2) = p(3) = 1
4 .

In that case, we have

H(S) = 4× 1

4
log2 4 = log2 4 = 2 [bit of information/symbol] (519)

Question:

Do we want a source with a minimal or maximal amount of
information? Why?
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Memoryless discrete channel

Channel: p(yk |xj)

x1

x0 y0

y1

YX

xJ−1 yK−1

Figure: Model of a discrete memoryless channel.

Ideally,
p(yk |xj) = 0 if k ̸= j

when there is no noise (and no pre-encoding). In practice however,
this is not the case, because there is always noise on the channel.
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Conditional entropy

For a noisy channel, the question consists in evaluating the amount
of uncertainty relative to the input X when we observe Y = yk at
the output. This leads to the definition of conditional entropy.

The uncertainty on X , given Y = yk , is

H(X |Y = yk) = E {− log2 p(X |yk)} =

J−1∑
j=0

p(xj |yk) log2

(
1

p(xj |yk)

)
(520)

Definition (Conditional entropy)

Average of this information ⇒ conditional entropy H(X |Y )

H(X |Y ) =

K−1∑
k=0

H(X |Y = yk)p(yk) (521)

=

K−1∑
k=0

J−1∑
j=0

p(xj |yk)p(yk) log2

(
1

p(xj |yk)

)
(522)
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Mutual information I

The uncertainty about X is always larger before observing Y than
after doing it. The difference is a measure of the information
passing through the channel, on average.

Definition (Mutual information)

We define
I (X ;Y ) = H(X )− H(X |Y ) (523)

as the average mutual information.

Theorem

The mutual information is symmetric I (X ;Y ) = I (Y ;X )

Therefore:

I (X ;Y ) = H(X )− H(X |Y ) (524)

I (Y ;X ) = H(Y )− H(Y |X ) (525)
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Mutual information II

Questions:

1 Is it intuitive to have that the mutual information is
symmetric?

2 Is it better to have a channel with the lowest or highest
mutual information I (X ,Y ) = H(X )− H(X |Y )?
Why?
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Channel capacity

Definition

The channel capacity per symbol is defined as the maximum
information conveyed over all possible input probability
distributions

Cs = max{p(xj )}I (X ;Y ) (526)

It corresponds to the best possible usage of the channel.

This capacity is expressed in bit/symbol, where a symbol is one
sample of X !
If the channel is used s times per second, then the channel
capacity in bits per second is

C = s Cs (527)
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Calculation of the capacity of a binary symmetric channel I

The capacity for one symbol is given by

Cs = max{p(xj )}I (X ;Y ) (528)

= max{p(xj )} [H(X )− H(X |Y )] (529)

= max{p(xj )} [H(Y )− H(Y |X )] (530)

Y

x1 = 1p(x1) = 1− α

p(x0) = α
p

q q

p

x0 = 0 y0 = 0

y1 = 1

X

Figure: Calculation of the capacity of a binary symmetric channel.
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Calculation of the capacity of a binary symmetric channel II

We have that

H(Y |X ) =
J−1∑
j=0

K−1∑
k=0

p(yk |xj)p(xj) log2

(
1

p(yk |xj)

)
(531)

So, for the input-output pair (x0, y0), the conditional entropy is

H(Y |X )(x0,y0) = −p(x0)p(y0|x0) log2 (p(y0|x0)) (532)

Given that p(x0) = α and that p(y0|x0) = p (= 1− q), we have

H(Y |X )(x0,y0) = −αp log2 p (533)

Likewise:

H(Y |X )(x0,y1) = −αq log2 q (534)

H(Y |X )(x1,y0) = −(1− α)q log2 q = −q log2 q + αq log2 q

H(Y |X )(x1,y1) = −(1− α)p log2 p = −p log2 p + αp log2 p
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Calculation of the capacity of a binary symmetric channel
III

By summing all these contributions,

H(Y |X ) =
1∑

i=0

1∑
j=0

H(Y |X )(xi ,yj ) (535)

= −p log2 p − q log2 q (536)

We observe that H(Y |X ) is (≥ 0) and that it only depends on the
channel characteristics.
Finally, we get

I (X ;Y ) = H(Y ) + p log2 p + q log2 q (537)

that we want to maximize to find the capacity.
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Calculation of the capacity of a binary symmetric channel
IV

Maximum of ?

I (X ;Y ) = H(Y ) + p log2 p + q log2 q (538)

Note that p log2 p + q log2 q = −Hc ≤ 0 and that it depends on
the channel. Therefore, we maximize I (X ;Y ) by maximizing
H(Y ), whose maximum is 1 for a binary output alphabet.

In conclusion, (remember that q = 1− p)

CS = 1 + p log2 p + q log2 q = 1− Hc < 1 (539)

For a transmission with 2 symbols (such as the NRZ or the ASK-2),
the bit error rate q = pe depends on the Eb

N0
ratio and is given by

q = pe =
1

2
erfc

(√
Eb

N0

)
(540)
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Influence of the type of modulation

For a modulation technique with 4 states, Cs has the same form
and is given by

Cs = H(Y )− Hc < 2 (541)

with the maximum of H(Y ) being equal to 2.

pe = 10−5

pe = 10−5

(bit/symbol)Cs

Eb

N0
[dB]

2-AM

4-AM

8-AM

16-AM

0
0

1

2

3

4

10 20 30

pe = 10−5

pe = 10−5

Figure: Channel capacity for different types of modulation.
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Discrete inputs and continuous output: Shannon’s second
law

In an additive noise channel, the output is

Y = X + N(0, σ2N) (542)

where X is a discrete random input to the channel and N(0, σ2N) is
a continuous noise variable (taken to be a Gaussian here).

Theorem (Shannon’s second law)

For an additive Gaussian noise channel (zero-mean, variance σ2N),
the capacity per symbol is given by

Cs =
1

2
log2

(
1 +

σ2X
σ2N

)
[bit/symbol] (543)

where
σ2
X

σ2
N
represents the signal to noise ratio.
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Illustration of the second theorem of Shannon

(bit/symbol)

Shannon’s limit

Cs

Eb

N0
[dB]

2-AM

4-AM

8-AM

16-AM

0
0

1

2

3

4

10 20 30

pe = 10−5

pe = 10−5

pe = 10−5

pe = 10−5
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Loop performance for different types of crosstalk

According to Rauschmayer (ADSL/VDSL principles: a practical
and precise study of asymmetric digital subscriber lines and very
high speed digital subscriber lines, page 144, 1999):

Channel capacity

Disturbers Upstream (kb/s) Downstream (Mb/s)

AWGN only 2601 16.8

24 ISDN NEXT 1485 14.4

2 HDSL NEXT 1089 12.2

24 T1 NEXT 2338 7.29

24 ADSL NEXT 1126 14.8

24 ADSL FEXT 2072 14.1

Dowstream ADSL NEXT 1109 2.45
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Outline

1 Reminder

2 Representation of bandpass signals

3 Noise in telecommunications systems

4 Digital modulation

5 Spread spectrum

6 Channels for digital communications and intersymbol
interference

7 Navigation systems

8 Multiplexing

9 Telephone traffic engineering

10 Transmission over twisted pairs (fixed telephone network)

11 Radio engineering
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Engineering of mobile radio communication systems

▶ Introduction

Propagation and fading
Mobile sensitivity

▶ Theory: 3 probabilistic propagation models

Propagation loss
Shadowing

Lognormal distribution

Fading

Rayleigh and Rician fading laws

▶ Empirical models

Types of environment
Influence of ground and antenna heights
Macrocellular model
Indoor propagation
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Introduction

Ae

Receiver

LT
LR

GT

GR

Transmitter

Figure: Elements contributing to the power budget in a radio link.

At the receiver, the power PR , expressed in [dB], is given by

PR = PT − LT + GT − Ae + GR − LR (544)
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Fading

Definition (Fading)

Fading is a deviation of the attenuation affecting a signal over
certain propagation media.

The fading may vary with time, location or radio frequency.
Different classifications/typologies for fading effects exist:

▶ slow/fast fading. It relates to time and delays considerations.

▶ flat/frequency selective fading.

▶ large-scale/small-scale fading.

▶ ...

Mitigation techniques:

▶ Rake receiver (estimation of the channel impulse response)

▶ Convolutional encoding and Viterbi decoding (pre-encoding)

▶ Diversity (MIMO, ...)

▶ Margins
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Fading channel manifestations

Key manifestations that a fading channel can exhibit:

▶ large-scale fading, which represents the average signal-power
attenuation or the path loss due to motion over large areas
⇒“slow” fading.

▶ small-scale fading. It refers to the dramatic changes in signal
amplitude and phase that can be experienced as a result of
small changes (as small as half a wavelength) in the spatial
positioning between a receiver and a transmitter
⇒“fast” fading.

We will study examples of both types of fading and develop
probabilistic models for them.
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Mobile sensitivity and quality of service I

For a“good” radio communication, the system needs to fulfill two
conditions:

1 The level of power received by the mobile device must be
larger than the mobile/device sensitivity level C , that is the
minimal amount of power that the device can interpret for a
given level of noise at the input.

2 The channel should not distort the signal and the level of
noise should be acceptable. This relates to Eb/N0.

Calculation: link the Eb
N0

ratio to the mobile sensitivity C (taking a
spectral efficiency of 1 ⇒ Rb ≈W )

C

N
=

EbRb

N0W
≈ EbW

N0W
=

Eb

N0
(545)

Therefore

C =
Eb

N0

∣∣∣∣
threshold

+ N (546)
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Mobile sensitivity and quality of service II

Calculation of the device sensitivity C , at the decoding point in the
receiver

For the GSM:

▶ Eb
N0

∣∣∣
threshold

= 8 [dB] for a channel with fading

(6 [dB] for devices with higher power levels)

▶ The bandwidth of a GSM channel is W = 271 [kHz].
Therefore, for a temperature of 290 [K], the amount of noise
due to the channel is

N = kBTW = 1.1× 10−12 [mW] ≡ −120 [dBm] (547)

▶ As the typical input amplifier gain is 10 [dB], the amplified
amount of noise at the entrance of the decoder, N ′, is

N ′ = −110 [dBm] (548)
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Mobile sensitivity and quality of service III

C =
Eb

N0

∣∣∣∣
threshold

+ N ′ (549)

Receiver type Device sensitivity C in [dBm]

Base station device −104
8 [W] mobile device −104
2 [W] mobile device (GSM 900) −102
Dual-band mobile device (GSM) −102
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General propagation model I

(b) Top view

(a) Lateral view

Figure: Views of a transmission between a mobile and a base station.
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General propagation model II

35 [dB] / decade

1 10 100 1000 10000

(b) Second measurement

(a) First measurement

1 10 100 1000 10000

P1 [dB]

P2 [dB]

d [m]

d [m]

35 [dB] / decade

Figure: Power measurements as a function of the distance along a same
path. There are differences between the two observations.
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General propagation model III

Fading is often computed as a combination of three terms:

1 a median attenuation due to distance,

2 a random component that considers large-scale fading effects.
We first consider shadowing effects
→ Lognormal probabilistic law

3 a random component that takes into account small-scale
fading effects. Later, we study multipath effects
→ Rayleigh and Rician probabilistic laws
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Shadowing effects: towards a probabilistic model I

Shadowing is due to obstacles (hills, building, etc.).
Assumption: to model shadowing effects, we assume that the
total attenuation is given by (multiplicative model)

A = A1 × A2 × . . .× AN , with Ai ≥1 (550)

When there is shadowing, the received power PR is

PR = PT/ (APL × A) = PT/ (APL × A1 × A2 × . . .× AN) (551)

where APL is the propagation loss.
In decibels, the total attenuation loss is the sum of these terms:

Ltotal = LPL + L = LPL + L1 + L2 + . . .+ LN (552)

Note: here, LPL is a deterministic value (for example given by
Friis’s relationship).

471 / 508



Shadowing effects: towards a probabilistic model II

More specifically, the loss due to shadowing L is the sum of N
contributions

L = L1 + L2 + . . .+ LN (553)

If all the contributions are random variables with an identical mean
and variance, L is a Gaussian random variable:

L [dB] = N(L50%, σ
2
s ) [dB] = L50% [dB] + σs [dB]× N(0, 1) (554)

where L50% is the median/(mean) value of the distribution of the
propagation loss due to shadowing and σs [dB] is its standard
deviation (which can typically vary over the range of 8 to 10 [dB]).

If we consider Ltotal = LPL + L, then

Ltotal [dB] = N(LPL + L50%, σ
2
s ) [dB] (555)
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Shadowing effects: towards a probabilistic model III

In absolute numbers (natural units, instead of [dB]) and denoting
the reduced Gaussian by N(0, 1) = X , the loss is the variable La

La = 10L[dB]/10 = 10(L50% [dB]+σs [dB]×X )/10 (556)

= 10L50% [dB]/10 10σs [dB]×X/10 = LoV (557)

where Lo ≜ 10L50% [dB]/10 is a constant, and

V = 10σs [dB]×X/10 (558)

V , and subsequently the loss La = LoV , are random variables with
a lognormal probability density function.
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Probability density function of a lognormal variable I

Let us find the expression of the lognormal probability density
function of V

The probability density function (pdf) of the zero-mean,
unit-variance Gaussian variable X is, for x ∈ [−∞,+∞],

fX (x) =
1√
2π

e− x2

2 (559)

The lognormal variable V is given by (changing the base:
bz =

(
e ln b

)z
=
(
ez ln b

)
)

V = 10
σsX
10 = e

σsX
10

ln(10) = eβσsX (560)

where

β =
ln(10)

10
= 0.23 (561)
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Probability density function of a lognormal variable II

The pdf is obtained by taking the formula of variable changes
applicable to pdfs:

fV (v) =
fX (x)

|∂v/∂x |

∣∣∣∣
x= ln v

βσs

=

1√
2π

e− x2

2

βσseβσsx

∣∣∣∣∣∣∣
x= ln v

βσs

(562)

=


1

βσse
βσs

ln v
βσs

1√
2π

e
− (ln v)2

2β2σ2s if v ≥ 0

0 if v < 0

(563)

=

 1
βσsv

1√
2π

e
− (ln v)2

2β2σ2s if v ≥ 0

0 if v < 0
(564)
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Probability density function of a lognormal variable III

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

fV (v)

v

σs = 1 [dB]
σs = 2 [dB]
σs = 6 [dB]

Figure: Probability density function of a lognormal random variable.
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Impact of shadowing on the coverage zone at the border of
a mobile cell

We have seen that the loss including the shadowing can be
modeled as
Ltotal [dB] = L50% [dB] + σs [dB]× N(0, 1) = N(L50%, σ

2
s ) [dB]

(565)
where

▶ L50% is the median loss, as given by an empirical model (such
models are obtained from measurements and they include
LPL; see the COST 231-Hata model, later in this document).

▶ N is a Gaussian variable.

If the observed loss, Lobserved, is such that

▶ Lobserved ≤ L50% [dB], then we have a favorable case.

▶ Lobserved ≥ L50% [dB], then there is a risk for a connection
failure.

⇒ the probability to be in the favorable case has to be increased
(50% is not enough!).

477 / 508



Lognormal margin I

To decrease the risk (%) of failure and mitigate the effects of
shadowing, we add a power margin.

median

adding a margin

maximum authorized attenuation

L[dB]

pdfL(l)
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Lognormal margin II

Towards the computation of a power margin ms [dB]

p(ls < ms) =

∫ ms

−∞

1

σs

√
2π

e
−l2s
2σ2

s dls (566)

=
1

2
+

∫ ms

0

1

σs

√
2π

e
−l2s
2σ2

s dls (567)

=
1

2
+

1

2
erf

(
ms√
2σs

)
(568)

erf(x) is the error function defined as

erf(x) =
2√
π

∫ x

0

e−t2dt (569)
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Lognormal margin III

Power margin

So, there are two terms:

1 1
2 → level of power to get 50% of favorable cases.

2 1
2 erf

(
ms√
2σs

)
→ leads to a power margin ms if we want more

favorable cases (in excess of 50% thus).

Definition (Power margin)

The power margin is the additional amount of power sent by
the transmitter to obtain more favorable cases at the receiver.
The power margin“compensates” for possibly higher fading losses.

480 / 508



Lognormal margin IV

Relationship between a % of coverage and a power margin (at the
border of a cell)
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Fading channel manifestations (reminder)

Key manifestations that a fading channel can exhibit:

▶ large-scale fading, which represents the average signal-power
attenuation or the path loss due to motion over large areas
⇒“slow” fading.

→ Lognormal probabilistic law

▶ small-scale fading. It refers to the dramatic changes in signal
amplitude and phase that can be experienced as a result of
small changes (as small as a half wavelength) in the spatial
positioning between a receiver and a transmitter
⇒“fast” fading.

We now study the effect of fast fading.
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Fast fading I

Consider the transmission over a scattering or multipath channel

X (t)A cos(2πfot)
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Fast fading II

The transmitter emits a clean sinusoidal wave of the form
A cos(2πfot). At the receiver, we get

X (t) =
∑

i

Ci cos(2πfot + θi ) (570)

This expression can be rewritten to express the in-phase and
quadrature components (cos(a+ b) = cos a cos b − sin a sin b):

X (t) =
∑

i

[Ci cos(2πfot) cos θi − Ci sin(2πfot) sin θi ] (571)

=
∑

i

Ai cos(2πfot) −
∑

i

Bi sin(2πfot) (572)

= XI cos(2πfot) − XQ sin(2πfot) (573)

where we have defined

XI =
∑

i

Ai =
∑

i

Ci cos θi and XQ =
∑

i

Bi =
∑

i

Ci sin θi (574)
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Fast fading III

What are XI =
∑

i
Ai =

∑
i
Ci cos θi and XQ =

∑
i
Bi =

∑
i
Ci sin θi?

▶ we can consider XI and XQ as two random variables.

▶ they are sums of terms that are identically distributed.

⇒ XI and XQ are two Gaussian random variables with:

1 a zero mean and,

2 the same variance σ2X .

Calculation of the mean:

E {XI} = E

{∑
i

Ci cos θi

}
=
∑

i

E {Ci cos θi} (575)

=
∑

i

E {Ci}E {cos θi} =
∑

i

E {Ci} × 0 (576)

= 0 (577)
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Fast fading IV

Calculation of the variance:

σ2
XI

= E
{
(XI − µI )

2
}
= E

{
(XI − 0)2

}
(578)

= E

{(∑
i

Ci cos θi

)2}
(579)

= E

{∑
i

C 2
i cos

2 θi +
∑
i,j, i ̸=j

Ci cos θiCj cos θj

}
(580)

=
∑

i

E
{
C 2
i cos

2 θi
}
+
∑
i,j, i ̸=j

E {Ci cos θiCj cos θj} (581)

=
∑

i

E
{
C 2
i

}
E
{
cos2 θi

}
+
∑
i,j, i ̸=j

E {Ci}E {cos θi}E {Cj}E {cos θj}

=
∑

i

E
{
C 2
i

}
× 1

2
+
∑
i,j, i ̸=j

E {Ci} × 0 × E {Cj} × 0 (582)

=
1

2
α = σ2

X (583)
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Fast fading V
Probability density functions of XI and XQ

In conclusion, we have

fXI
(xI ) =

1

2πσ2X
e

−
x2
I

2σ2
X (584)

and

fXQ
(xQ) =

1

2πσ2X
e

−
x2
Q

2σ2
X (585)

Note also that XI and XQ are the Rice components of the
stochastic process X (t):

X (t) = XI cos(2πfot)− XQ sin(2πfot) (586)
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Fast fading VI

To determine the amplitude of the electrical field at the receiver,
we need to analyze the amplitude of X (t).
It is given by

R =
√
X 2
I + X 2

Q , R ≥ 0 (587)

while the phase is

Φ = tan−1 XQ

XI
, Φ ∈ [0, 2π[ (588)
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Towards the probability density function of R and Φ

Both R and Φ are obtained from XI and XQ . So, we have to find
the joint fR,Φ(r , ϕ) from that of fXI XQ

(xI , xQ).
The joint pdf fXI XQ

(xI , xQ) is, by definition,

fXI XQ
(xI , xQ) =

1

2πσ2X
e

−
x2
I
+x2

Q

2σ2
X (589)

From equations (587) and (588), we have that
xI = r cosϕ, xQ = r sinϕ. So (formula of change of variables):

fR,Φ(r , ϕ) =

∣∣∣∣∣ cosϕ sinϕ
−r sinϕ r cosϕ

∣∣∣∣∣ fXI XQ
(r cosϕ, r sinϕ)(590)

=
r

2πσ2X
e

− r2 cos2 ϕ+r2 sin2 ϕ

2σ2
X (591)

=

 r
2πσ2

X
e

− r2

2σ2
X , r ≥ 0, ϕ ∈ [0, 2π[

0 r < 0
(592)
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Marginal probability density function of the envelope fR(r)

By integrating over Φ, we obtain the marginal probability density
function of the envelope:

fR(r) =

 r
σ2
X
e

− r2

2σ2
X , r ≥ 0

0 r < 0
(593)

This is a Rayleigh distribution.

rσX
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0.1

Figure: Rayleigh probability density function.
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Probability density function of the phase fΦ(ϕ)

To obtain fΦ(ϕ), we integrate on the r parameter from 0 to +∞,
to get:

fΦ(ϕ) =
1

2π
, ϕ ∈ [0, 2π[ (594)

Φ is thus the probability density function of a uniform random
variable, which is independent of R.

In conclusion,
fR,Φ(r , ϕ) = fR(r)fΦ(ϕ) (595)
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Experimental data
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Figure: Histogram of real measured power levels.
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Fading in the presence of a direct path I

If there is a direct path to the receiver, the signal at the
receiver is

Z (t) = A cos(2πfot + θ) + X (t) (596)

Assume that Z (t) is a bandpass signal, we can take its Rice
decomposition

Z (t) = ZI cos(2πfot)− ZQ sin(2πfot) (597)

where

ZI = A cos θ + XI (598)

ZQ = A sin θ + XQ (599)

In terms of amplitude and phase, this leads to

Z = R cos(2πfot +Φ) (600)

with
R =

√
Z 2
I + Z 2

Q , R ≥ 0 (601)
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Fading in the presence of a direct path II

and

Φ = tan−1 XQ

XI
, Φ ∈ [0, 2π[ (602)

Therefore,

ZI = R cosΦ (603)

ZQ = R sinΦ (604)

For a given θ, the XI and XQ are independent variables. This
remains true, so that

ZI = N(A cos θ, σ2
X ) (605)

ZQ = N(A sin θ, σ2
X ) (606)

The joint pdf, given θo , is then

fZI ZQ (zI , zQ |θ = θo) =
1

2πσ2
X

e
− (zI −A cos θo )

2+(zQ−A sin θo )
2

2σ2
X (607)
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Probability density function

fR,Φ(r , ϕ |θo) =

∣∣∣∣∣ cosϕ sinϕ
−r sinϕ r cosϕ

∣∣∣∣∣ fZI ZQ
(r cosϕ, r sinϕ|θo)

=
r

2πσ2X
e

− (r cosϕ−A cos θo )
2+(r sinϕ−A sin θo )

2

2σ2
X (608)

=
r

2πσ2X
e

− r2+A2−2rA cos(θo−ϕ)
2σ2

X (609)
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Marginal probability density function of the envelope I

When integrating over Φ, we obtain the Rician pdf

fR(r) =

 r
σ2
X

e
− r2+A2

2σ2
X I0

(
Ar
σ2
X

)
, r ≥ 0

0 r < 0

(610)

where I0(x) is the modified Bessel function of order 0.
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Figure: Modified Bessel function of order 0.
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Marginal probability density function of the envelope II
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Figure: Rician pdf (for different values of a = A
σX

).
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Fast fading: conclusions

1 The receiver gets X (t) =
∑

i Ci cos(2πfot + θi ) (no direct
path):

the amplitude of X (t) follows a Rayleigh distribution
the phase of X (t) follows a uniform distribution

2 The receiver gets Z (t) = A cos(2πfot + θ) + X (t) (there is a
direct path):

the amplitude of Z (t) follows a Rician distribution
the phase of Z (t) is not uniformly distributed
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Influence of ground and antenna heights on the radio
budget link I

hm

d

d1

d2

hb

Figure: Influence of a reflection on the ground.
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Influence of ground and antenna heights on the radio
budget link II

Analysis of the electrical field phasor E :

▶ direct path → Ae−jβd1 ,

▶ reflected signal → −Ae−jβd2 ,

▶ the received signal is

Ae−jβd1−Ae−jβd2 = Ae−jβd1
(
1− e jβ(d2−d1)

)
.

So, the reflection adds the following factor:

Γ = 1 − e jβ(d2−d1) (611)

As (for right-angled triangles)

d1 =
√

d2 + (hb − hm)2 (612)

d2 =
√

d2 + (hb + hm)2 (613)
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Influence of ground and antenna heights on the radio
budget link III

we have that (
√
1 + α ≃ 1 + α

2 )

d2 − d1 =
√

d2 + (hb + hm)2 −
√

d2 + (hb − hm)2 (614)

= d

√
1 +

(
hb + hm

d

)2

− d

√
1 +

(
hb − hm

d

)2

(615)

≃ d

(
1 +

1

2

(
hb + hm

d

)2
)

− d

(
1 +

1

2

(
hb − hm

d

)2
)

(616)

≃ d
1

2

(
hb + hm

d

)2

− d
1

2

(
hb − hm

d

)2

(617)

≃ 1

2d

(
(hb + hm)

2 − (hb − hm)
2
)

(618)

≃ 1

2d

((
h2
b + 2hbhm + h2

m

)
−
(
h2
b − 2hbhm + h2

m

))
(619)

≃ 4hbhm
2d

=
2hbhm

d
(620)
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Factor modifying the power

To deal with the power, we take the square of the electrical field
modifying factor, that is Γ2:

Γ2 =
∣∣1 − e−jβ(d2−d1)

∣∣2 (621)

=
∣∣e−jβ(d2−d1)/2

∣∣2 ∣∣e jβ(d2−d1)/2 − e−jβ(d2−d1)/2
∣∣2 (622)

=
∣∣e−jβ(d2−d1)/2

∣∣2 ∣∣∣2 sin(β d2 − d1
2

)∣∣∣2 (623)

= 1 ×
(
2 sin

(
β
hbhm
d

))2

(624)

= 4 sin2
(
β
hbhm
d

)
(625)

≃ 4
(
β
hbhm
d

)2

= 4
(
2π

λ

hbhm
d

)2

=
(
4π

λ

hbhm
d

)2

(626)

502 / 508



Receiver power PR

According to Friis’s relationship, the received power PR is given by

PR = PEGEGR

(
λ

4πd

)2

(627)

Because of the presence of ground, the received power PR is given
by

PR ≃ PEGEGR

(
λ

4πd

)2 (4π
λ

hbhm
d

)2

(628)

≃ PEGEGR
h2
bh

2
m

d4
(629)

or, in decibels,

PR [dB] = 10 log10(PEGEGR) + 20 log10 hb + 20 log10 hm − 40 log10 d (630)

503 / 508



Empirical models

Different types of environments

▶ rural. Here, the topographic relief is the major factor.

▶ suburban (small towns)

▶ urban (large cities)

Environment exponent

rural 3.2

suburban 3.5

dense urban 3.8

Table: Exponent for the distance dependency of the attenuation loss.
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Model for macrocells

COST 231-Hata model

In a urban environment, the median attenuation Lu is given, in
[dB], by

Lu = 46.33+33.9 log(f )−13.82 log(hb)−a(hm)+[44.9−6.55 log(hb)] log d+Cm

(631)

where

▶ f is the frequency, d the distance, hb, hm, heights; all these
values are expressed in, respectively, [MHz], [km] and [m].

▶ a(hm) = (1.1 log(f )− 0.7)hm − (1.56 log(f )− 0.8) for
middle-sized towns; this correction factor depends on the
mobile height but also from the type of environment.

▶ Cm = 0 [dB] middle-sized towns and suburbs, and Cm = 3 [dB]
for large cities.
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Indoor propagation (inside of buildings) I

reflected ray diffracted rays

transmitted ray

Figure: Transmission, reflection and diffraction.
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Indoor propagation (inside of buildings) II

transmitter

receiver
facade

Figure: Wave guide effects.
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Indoor propagation (inside of buildings) III

“Outdoor-indoor” propagation

▶ we can define two types of situations:
1 soft indoor, representing the attenuation close to the front of a

building, and
2 deep indoor, representing the attenuation deeper inside the

building.

Typical values are 10 [dB] soft indoor and 20 [dB] for deep
indoor at 900 [MHz].

“Indoor-indoor” propagation”
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