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Abstract

Pseudo-Boolean functions naturally model problems in a number of dif-
ferent areas such as computer science, statistics, economics, operations re-
search or computer vision, among others. Pseudo-Boolean optimization (PBO)
is NP-hard, even for quadratic polynomial objective functions. However,
much progress has been done in finding exact and heuristic algorithms for the
quadratic case. Quadratizations are techniques aimed at reducing a general
PBO problem to a quadratic polynomial one. Quadratizing single monomials
is particularly interesting because it allows quadratizing any pseudo-Boolean
function by termwise quadratization. A characterization of short quadratiza-
tions for negative monomials has been provided. In this report we present a
proof of this characterization for the case of cubic monomials, which requires
a different analysis than the case of higher degree.

1 Introduction

A pseudo-Boolean function is a mapping f : {0,1}" — R, i.e., a mapping that
assigns a real value to each tuple (x, ..., x,) of n binary variables. Every pseudo-
Boolean function can be represented by a unique multilinear polynomial, that is,
for a function f on {0, 1}" there exists a unique mapping a : 2" — R, which
assings a real value ag to every subset S of the n variables, such that

fx1,x2,...,x) = Z as ﬂxi- (1

S e2[nl €S

Pseudo-Boolean optimization (PBO) problems are of the form

min{ f(x) : x € {0, 1}"},
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where f(x) is a pseudo-Boolean function. Pseudo-Boolean optimization models
arise naturally in diverse areas such as computer science, statistics, economics, fi-
nance, operations research or computer vision, among others. A detailed list of
applications can be found in [2], [3].

Pseudo-Boolean optimization is NP-hard, even if the objective function is
quadratic. However the quadratic case is particularly interesting; on one hand, be-
cause it encompasses relevant problems such as MAX-2-SAT (satisfiability theory)
or MAX-CUT (graph theory), and on the other hand, due to much progress that has
been done in finding heuristic and exact algorithms for quadratic pseudo-Boolean
optimization (QPBO). Therefore, given a pseudo-Boolean function f, we aim to
find an equivalent quadratic function g, for which quadratic binary optimization
algorithms are applicable.

Definition 1 Given a pseudo-Boolean function f : {0, 1}" — R, g(x, y) is a quadra-
tization of f if g(x, y) is a quadratic polynomial depending on x and on m auxiliary
binary variables y1, Y2, . . ., Ym, such that

f(x) = min{g(x,y) : y € {0, 1}"},¥x € {0, 1}"".

Using this definition, min{f(x) : x € {0, 1}"} = min{g(x, y) : (x,y) € {0, 1}"*™},
reducing a general PBO problem to the quadratic case.

Anthony, Boros, Crama and Gruber have initiated a systematic study of quadra-
tizations of pseudo-Boolean functions [1]]. Among other results, they provide a
precise characterization of quadratizations for negative monomials. The aim of this
report is to provide a proof of this characterization for cubic negative monomials,
which is different from the proof for the case of monomials of degree > 4.

2 Negative Monomials

Finding quadratizations for monomials is particularly interesting; if quadratizations
for single monomials are known and well-described, it is possible to use termwise
quadratization procedures, which are based on the following scheme. For a real
number c, let sign(c) = +1 (resp., —1) if ¢ > 0 (resp., ¢ < 0). Then, given f as in

(.

1. foreachS € 2" let gs (x, ys ) be a quadratization of the monomial sign(as) [],c s Xi,
where (ys,S € 2["1) are disjoint vectors of auxiliary variables, one for each
S,

2. letg(x,y) = Xgeom las| gs(x,ys).



Then g(x, y) is a quadratization of f(x).

Several quadratizations of monomials have been proposed in the literature (see,
e.g., [1]]). In this report we describe quadratizations for the case where f is a neg-
ative monomial. We first introduce the notion of prime quadratizations [1]], which
are interesting because they define ”small” quadratizations, and because our objec-
tive is to minimize f. Then, we will prove that there are essentially only two prime
quadratizations using a single auxiliary variable for negative cubic monomials.

Definition 2 A quadratization g(x,y) of f is prime if there is no quadratization
h(x, y) such that h(x,y) < g(x,y) for all (x,y) € {0, 1Y"*™, and such that h(x*,y*) <
g(x*,y*) for at least one point (x*, y*).

Definition 3 The standard quadratization of a negative monomial M, = —[]'_, x;
is the quadratic function

n

saCty) = (= Dy = > xiy. @)
i=1
The extended standard quadratization of M,, is the function
n—1
stO6Y) = (0= 2%y = D xily = E), 3)

i=1

where X, = 1 — x,,.
Anthony et al. [1] state the following theorem:

Theorem 1 For n > 3, assume that g(x, y) is a prime quadratization of M,, involv-
ing a single auxiliary variable y. Then, up to an appropriate permutation of the
x-variables and up to a possible switch of the y-variable, either g(x,y) = s, or
g(x,y) = s;.

The proof in [1] is valid for all » > 4, but the authors skipped the details of

the case n = 3, which requires slightly different arguments. We present next the
missing details.

Proof. (case n = 3). The proof consists in a case study on the coefficients of
the general form of a quadratization with a single auxiliary variable for the cubic
negative monomial. Until Claim 2, the proof is identical to the case n > 4 presented
in [1]].

The general form of a quadratization using a single auxiliary variable is

3 3
g(x,y) = ay + Z bixiy + Z CiXi + Z DijXiXj. 4)
i=1 i=1

1<i<j<3



Notice that there is no constant term because, since we must have M3(x) =
min,eo,1) g(x, y) for all binary vectors x, we can assume g(0, 0) = 0 after substitut-
ing i by y if necessary.

For subsets S € N = {1,2,3}, we write b(S) = Y5 bi, ¢(S) = Yes Ci, and
p(S) = X jes i<j Pij» and we can write

g(S,y) = ay + b(S)y + c(S) + p(S). %)

The fact that g is a quadratization of M3 can be written as

0= H{l(i)l}}(a +b(S))y +c(S)+ p(S),YS C N, (6)
y<l{0,

-1= H{l(i)f}}(a +b(N))y + c¢(N) + p(N). (7
yel{0,

Let us first note that by (6)), we have g(0, 1) > 0, and hence
a>0. (3)
Furthermore, we must have g({i},0) > 0 for i = 1,2, 3, implying
¢; >0, fori=1,2,3. )
Based on @, we can partition the set of indices as N = NY U N*, where

N ={ueN|c, =0}, (10)
N*={ieN|c >0} (11)

Since g({i}, 0) = ¢;, relation (6] implies

glil, ) =a+bi+ci=0,Yie N*, and (12)
g({u},1) =a+b, >0,Yu e N°. (13)

Let us next write @) for subsets of size two. Consider first a pair u,v € N°,
u # v. Sincd ¢, = ¢, = 0, we get g({u, v}, y) = (a + b, + b,)y + puy, implying

min{p,,,a + b, + b, + p,} = 0. (14)

Let us consider next i, j € N*, i # j. Then, by and by the definitions we
get g({i, j}, 1) = pij —a > 0. This, together with (8) implies that p;; > a > 0. Thus,
g({i, j},0) = ¢; + ¢; + p;j > 0 implying that g({i, j}, 1) = 0, that is

pij=a>0,¥i,jeN". (15)
This allows us to establish a property of N°:

Claim 1 N9 % 0.



>

Proof. If N° = 0, then we have g(N, y) = (a + b(N*))y + c(N*) + (‘N;')a by qp
Since [N*la + b(N*) + c(N*) = 0, by (12), we get g(N. 1) = ("} "")a > 0 by (8)

and g(N,0) = c(N*) + (ll\gl)a > 0 by @i and @) This contradicts and proves
the claim. o

The following two claims distinguish two cases: N* = 0, and N* # (.

Claim 2 Theorem|l| holds for n = 3 when N* = 0.

1. Case p12, p13, p23 > 0. All quadratizations are of the form:

g(x,y) = 2+ p12+ p13 + p23)y
= (1 + p12+ p13)x1y — (1 + p12 + pa3)xoy — (1 + p13 + p23)x3y
+ p12X1X2 + p13X1X3 + p23X2X3,

which is never prime because g(x,y) > s3(x,y),¥(x,y) € {0, 133+,

2. Case p12 > 0, p13, p23 = 0 (w.Lo.g.). All quadratizations are of the form:

g(x,y) = (=b1 — by — p12)y + b1x1y + baxoy — X3y + p12X1X2,
where
2.1 =by—pr2 21,
(22) =b1—-pr2 21,

which is never prime because g(x,y) > s3(x,y),Y(x,y) € {0, 133+,

3. Case p12, p13 > 0, p23 = 0 (w.lo.g.). All quadratizations are of the form:

g(x,y) = (1 = by + bixiy — (1 + pr2)xoy — (1 + p13)xay + praxix2 + p13x1x3
where
(3.1) =b1 —p12 20,
(3.2) =b1—p13 =0,
(33) —-1-b—pi2n—pi13 20,

which is never prime because g(x,y) > s3(x,y),¥(x,y) € {0, 133+,

4. Case p12, p13, p23 = 0. All quadratizations are of the form:

g(x,y) = (=1 = by — by — b3)y + bix1y + baxoy + b3xzy
where
4.1) -1-b; 20,
“42) -1-b, >0,
43) -1-b3>0,

which is never prime because g(x,y) > s3(x,y), Y(x,y) € {0, 133+



Proof.
Since Nt =0,

3
g(x,y) = ay + Z bixiy + Z PijXiX;j. (16)
i=1

1<i<j<3

By (14), g(N,0) = pi2 + p13 + p23 = 0 which implies that g(N, 1) = —1, or

gN,1)=a+by+by+b3+po+pi3z+py=-1 (17)

1. Case p12, p13, p23 > 0.
By (14), we have the system of equations

a+by+by+ppn=0,
a+by+bs+p;3=0,
a+b2+b3+p23:O.

Considering this system along with equation (17)), and solving it as a function
of pi2, p13, p23, we obtain that the general form (16)) of the quadratization in
this case is

g(x,y) = 2+ p1o+ p13 + prly
= (1 + pi2 + p13)xiy — (1 + p12 + p3)xoy — (1 + p13 + p23)x3y
+ P12X1X2 + P13X1X3 + P23 X2X3,

where p12, p13, p23 > 0.
It can be easily checked that g(x,y) — s3(x,y) > 0, Y(x,y) € {0, 131, and
therefore g is not prime.

2. Case p12 > 0, p13 = p23 = 0.
By (14), we have the equation

a+b1+b2+p12:0.

Considering this equation along with equation (17)), and solving the sys-
tem as a function of by, by, p12, we obtain that the general form @ of the
quadratization in this case is

g(x,y) = (=b1 = by — p2)y + bix1y + byxoy — X3y + proxix2.
For g to be a quadratization we also need

g{L,3L 1) ==by - p2 - 120, (18)
9({2,3L 1) ==b1 —p12 - 120. (19)

Using conditions and (19), it can be easily checked that g(x, y)—s3(x, y) >
0, V(x,y) € {0, 1}**!, and therefore ¢ is not prime.



3. Case p12, p13 > 0, p23 = 0.
By (14), we have the system of equations

a+b1+b2+p12=0,
a+b1+b3+p13=0.

Considering this system along with equation (17), and solving the system
as a function of by, p1», p13, we obtain that the general form of the
quadratization in this case is

g(x,y) = (1 =b1)y+bixiy— (1 + pr2)xoy — (1 + p13)x3y + p12x1x2 + p13x1 x3.

For g to be a quadratization we also need

g({2’3}7 1):_1—b1_p12_p1320’ (20)
g({2},1) = =by — p12 2 0, 21)
g{3},1) = =by - p1320. (22)

Using conditions (20), (1), and a = 1—b; > 0, it can be easily checked
that g(x, y) — s3(x, ) > 0, V(x,y) € {0, 1}**!, and therefore g is not prime.

4. Case p12 = p13 = p23 =0.
Equation (17) gives

g(N,l):a+b1+b2+b3:—1.

Using this equation to express a in terms of by, b, and b3 in the general form
(16) of the quadratization, we obtain

g(x,y) = (=1 = by — by — b3)y + b1 x1y + baxoy + b3x3y.

For g to be a quadratization we also need

g({1,2},1) = -1 -b3 2 0, (23)
g({1,3L, 1) =-1-by >0, (24)
9(2,3},1) = =1 -b; > 0. (25)

Using conditions (23), (24), (25), it can be easily checked that g(x,y) —
s3(x,y) =20, Y(x,y) € {0, 113*!, and therefore g is not prime. O

Claim 3 Theorem |I| holds for n = 3 when N* # 0. Since NO # 0, there are two
cases:



1. Casecy,cy > 0,c3 =0 (w.lo.g.). All quadratizations are of the form:

g(x,y) = ay — (a+ c)xry — (a + c2)xoy — (1 + p13 + p23)xay + c1x1 + c2x2
axixy + p13x1x3 + pa3xoXx3
where
(5.)c1+pi13 20,
(5.2) -1-p13 20,
(5.3) c2 + p23 20,
(54) —1-px =0,

which is never prime because g(x,y) > sé'(x, yYVY(x,y) € {0, 11341

2. Case cy > 0,c0 = ¢3 = 0 (wlo.g.). Then, any quadratization g satisfies
g(x.y) = s3(x,§), Y(x,y) € {0, 1+,

Proof.

In this case, the general form of the quadratization is

3 3
g(x,y) = ay + Z bixiy + Z Cixi + Z DijXiXjs (26)
i=1 i=1

1<i<j<3

where ¢; = 0 for at least one i € {1, 2, 3}.

1. Case Cc1,Cp > 0,03 =0.
By (12)) we obtain equations

a+b1+c1 20, (27)
a+by+cy=0. (28)

By,plzzaZO.

For g to be a quadratization we need

g({1,3},0) = c1 + p13 20, (29)
9(12,3},0) = c2 + p23 2 0. (30)
Hence,
g(N,0) =c1 +cp +a+ pi3+ pr = 0. (3D
Therefore, for g to be a quadratization we need g(N, 1) = -1, i.e.,

g(N,1)=a+b1+b2+b3+c1+c2+a+p13+p23:—1. (32)



Solving the system given by (27)), and (32), as a function of py3, p3, a,
ci and ¢, the general form (26) of the quadratization becomes

g(x,y) =ay — (a + c1)x1y — (a + c2)xoy — (1 + p13 + p23)x3y
+cCc1x1 + Crxp

+ ax;xy + p13X1X3 + pa3xX2Xx3.

For g to be a quadratization, we also need

91,3}, 1) = =1 - p»3 20, (33)
9({2,3L 1) =-1-p13>0. (34)

Using conditions (29), (30), and (34), it can be easily checked that
g(x,y) > s3(x,y), ¥(x,y)**!, therefore g is not prime.

. Case c1 > O,Cz =C3 = 0.
By we obtain equation

a+by+c =0, (35)

and by (13),
a+by >0, (36)
a+bsy>0. 37)

Using (35)), we obtain the following conditions for g to be a quadratization,

g({1,2},0) = c1 + p12 20, (38)

g({1,3},0) = c1 + p13 20, (39)
and

g({1,2},1) = by + p12 2 0, (40)

g({1,3}, 1) =bs + p13 2 0. 41)

Equations and (40), and (41), respectively imply
min{c| + p12,b2 + p12} = 0, (42)
min{c; + p13,b3 + p13} = 0. (43)
For i € {2, 3}, we say that

e jec Bifb;+ p;; =0, and
e jcCifcy+p; =0,



in equations (42)-(43).

We will now show that py3 = 0.
First, note that by (14),

min{pgg,a + bg + b3 + p23} =0. (44)
Now, (@4), (35) and (#2)-(@3), imply that
g(N,1) = by + b3 + p12 + p13 + p23 2 0. (45)

Therefore, for g to be a quadratization we need
g(N,0) =c1+ pia+piz+pas=-L (46)

Assume now that pp3 > 0. Then, (44) implies that a + by + b3 + p3 = 0.
Together with and (37), this implies b, < 0 and b3 < 0. From (#2),
pi2 = —by > 0 and from @3)), p13 > —b3 > 0. Since pi2, p13, p23, c1 > 0, we
have a contradiction with (46).
Therefore, we can assume from now on that p3 = 0. Then, @]} reduces to
g(N,0) =ci + pi2+p13=-1L 47)
By @#2)-(43), we get 2¢; + p12 + p13 2 0 and hence, in view of (47),
c1 > 1. (48)

We distinguish now among several subcases.

e Case 1. If C = {2,3}, then (47) implies ¢; = 1 and p1» = pi13 = —1.
With these values, becomes b; = —1 — a, and (@2))-(43) become
by>1,b3>1.

Moreover, the general form (26)) of the quadratization becomes
g(x.y) = ay + (=1 —a)x1y + baxoy + b3xzy + x1 — x1x2 — x1x3. (49)
Compare this expression with
53(x, ) = x1 — x1y — x2(x1 — y) — x3(x1 — y),

(where x plays the role of x3).

We obtain
g(x,y) — 55(x, ) = aXiy + (b — Dxay + (b3 — Dx3y > 0,

and g is not prime.

10



e Case 2. If 2 € Band 3 € C, then by definition, pj» = —b; and pj3 =
—cy. Then, (#7) implies pj» = —by = —1. Let us substitute the values
p12 =-1,by =1, p13 = —cy and by = —c| — a in the general form (26)
of the quadratization,

g(x,y) = ay + (—c1 —a)x1y + xoy + baxzy + c1x1 — x1x02 — ¢ x1x3. (50)
When y = 0, this yields (taking into account),
g(x,0) = c1x1%3 — X1x2 > X1 X3 — x1x2 = 55(x, 1).
Wheny =1,
gx,1)=a—ax; + xp + b3xz — x1xX3 — c1 X1 X3
=ax| + x1x2 + (b3 — ¢1)x3 + c1 X1 X3.
Note that a > 0, b3 + p13 = b3 —c; > 0 by {#3)), and ¢; > 1 by #8). So,
g(x, 1) > X1x2 + X1x3 = 55(x,0).
Obtaining that g(x,y) > 53 (x, §), and g is not prime.
e Case 3. Assume finally that B = {2, 3}, meaning that p; = —b, and
p13 = —b3. Substituting in (47) yields ¢; — by — b3 = —1, and equations
(@2)-@3) imply ¢; — b> > 0 and ¢; — b3 > 0. From these relations we

deduce
by>1,b3>1. (51)

With p12 = by, p13 = =bs,c; =by+bs—land b = —a—-c| =
—a — by — b3 + 1, the general form of the quadratization becomes

g(x,y) = ay+(—a—by—b3+1)x1y+brx2y+b3x3y+(ba+b3—1)x1—bax1 X2=b3 X1 X3.
When y = 0, and considering (51)),
g(x,0) = (by + b3 — D)x1 — byx1x2 — b3x1x3
= box1Xy + b3x1X3 — X1
> XX + X1%3 — x1 = 53(x, 1).
Wheny =1,
g(x, 1) =a—ax| + b2x2 + b3X3 - bzX])Cz - b3X1X3
=ax) + byX1xy + b3xXi1x3
> X1X2 + X1x3 = S;(x, 0).

Obtaining that g(x,y) > s3(x, %), and g is not prime. O

We have covered all cases for N* = () and for N* # 0. As the theorem states,
we have seen that the only possibilities for prime quadratizations using one auxil-
iary variable of the cubic negative monomial are s3 or s3. O

11



3 Conclusion

Quadratization techniques are aimed at transforming a general pseudo-Boolean
function expressed as a multilinear polynomial into a quadratic function, in or-
der to apply quadratic pseudo-Boolean optimization algorithms which have been
well-studied in both exact and heuristic approaches. Quadratizations of negative
monomials are particularly interesting because they allow using techniques such
as termwise quadratization, which can be applied to any pseudo-Boolean function
expressed as a multilinear polynomial.

This technical report presented a proof of the theorem of Anthony, Boros,
Crama and Gruber [[1]], characterizing short prime quadratizations for cubic neg-
ative monomials. The proof for the cubic case is based on the proof for the general
case n > 4 of the cited article. However the case study is different for n = 3, and
requires the exhaustive analysis presented in this report.
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