Short Prime Quadratizations of Cubic Negative Monomials

Yves Crama*1 and Elisabeth Rodríguez-Heck†1

¹QuantOM, HEC Management School, University of Liège, Belgium

July 18, 2014

Abstract

Pseudo-Boolean functions naturally model problems in a number of different areas such as computer science, statistics, economics, operations research or computer vision, among others. Pseudo-Boolean optimization (PBO) is \mathcal{NP} -hard, even for quadratic polynomial objective functions. However, much progress has been done in finding exact and heuristic algorithms for the quadratic case. Quadratizations are techniques aimed at reducing a general PBO problem to a quadratic polynomial one. Quadratizing single monomials is particularly interesting because it allows quadratizing any pseudo-Boolean function by $termwise\ quadratization$. A characterization of short quadratizations for negative monomials has been provided. In this report we present a proof of this characterization for the case of cubic monomials, which requires a different analysis than the case of higher degree.

1 Introduction

A pseudo-Boolean function is a mapping $f: \{0,1\}^n \to \mathbb{R}$, i.e., a mapping that assigns a real value to each tuple (x_1, \ldots, x_n) of n binary variables. Every pseudo-Boolean function can be represented by a unique multilinear polynomial, that is, for a function f on $\{0,1\}^n$ there exists a unique mapping $a: 2^{[n]} \to \mathbb{R}$, which assings a real value a_S to every subset S of the n variables, such that

$$f(x_1, x_2, \dots, x_n) = \sum_{S \in 2^{[n]}} a_S \prod_{i \in S} x_i.$$
 (1)

Pseudo-Boolean optimization (PBO) problems are of the form

$$\min\{f(x) : x \in \{0, 1\}^n\},\$$

^{*}yves.crama@ulg.ac.be

[†]elisabeth.rodriguezheck@ulg.ac.be

where f(x) is a pseudo-Boolean function. Pseudo-Boolean optimization models arise naturally in diverse areas such as computer science, statistics, economics, finance, operations research or computer vision, among others. A detailed list of applications can be found in [2], [3].

Pseudo-Boolean optimization is \mathcal{NP} -hard, even if the objective function is quadratic. However the quadratic case is particularly interesting; on one hand, because it encompasses relevant problems such as MAX-2-SAT (satisfiability theory) or MAX-CUT (graph theory), and on the other hand, due to much progress that has been done in finding heuristic and exact algorithms for quadratic pseudo-Boolean optimization (QPBO). Therefore, given a pseudo-Boolean function f, we aim to find an equivalent quadratic function g, for which quadratic binary optimization algorithms are applicable.

Definition 1 Given a pseudo-Boolean function $f: \{0, 1\}^n \to \mathbb{R}$, g(x, y) is a quadratization of f if g(x, y) is a quadratic polynomial depending on x and on m auxiliary binary variables y_1, y_2, \ldots, y_m , such that

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\}, \forall x \in \{0, 1\}^n.$$

Using this definition, $\min\{f(x): x \in \{0, 1\}^n\} = \min\{g(x, y): (x, y) \in \{0, 1\}^{n+m}\}$, reducing a general PBO problem to the quadratic case.

Anthony, Boros, Crama and Gruber have initiated a systematic study of quadratizations of pseudo-Boolean functions [1]. Among other results, they provide a precise characterization of quadratizations for negative monomials. The aim of this report is to provide a proof of this characterization for cubic negative monomials, which is different from the proof for the case of monomials of degree ≥ 4 .

2 Negative Monomials

Finding quadratizations for monomials is particularly interesting; if quadratizations for single monomials are known and well-described, it is possible to use *termwise quadratization procedures*, which are based on the following scheme. For a real number c, let sign(c) = +1 (resp., -1) if $c \ge 0$ (resp., c < 0). Then, given f as in (1),

- 1. for each $S \in 2^{[n]}$, let $g_S(x, y_S)$ be a quadratization of the monomial $sign(a_S) \prod_{i \in S} x_i$, where $(y_S, S \in 2^{[n]})$ are disjoint vectors of auxiliary variables, one for each S,
- 2. let $g(x, y) = \sum_{S \in 2^{[n]}} |a_S| g_S(x, y_S)$.

Then g(x, y) is a quadratization of f(x).

Several quadratizations of monomials have been proposed in the literature (see, e.g., [1]). In this report we describe quadratizations for the case where f is a negative monomial. We first introduce the notion of *prime* quadratizations [1], which are interesting because they define "small" quadratizations, and because our objective is to minimize f. Then, we will prove that there are essentially only two prime quadratizations using a single auxiliary variable for negative cubic monomials.

Definition 2 A quadratization g(x,y) of f is prime if there is no quadratization h(x,y) such that $h(x,y) \le g(x,y)$ for all $(x,y) \in \{0,1\}^{n+m}$, and such that $h(x^*,y^*) < g(x^*,y^*)$ for at least one point (x^*,y^*) .

Definition 3 The standard quadratization of a negative monomial $M_n = -\prod_{i=1}^n x_i$ is the quadratic function

$$s_n(x,y) = (n-1)y - \sum_{i=1}^n x_i y.$$
 (2)

The extended standard quadratization of M_n is the function

$$s_n^+(x,y) = (n-2)x_n y - \sum_{i=1}^{n-1} x_i (y - \bar{x}_n), \tag{3}$$

where $\bar{x}_n = 1 - x_n$.

Anthony et al. [1] state the following theorem:

Theorem 1 For $n \ge 3$, assume that g(x,y) is a prime quadratization of M_n involving a single auxiliary variable y. Then, up to an appropriate permutation of the x-variables and up to a possible switch of the y-variable, either $g(x,y) = s_n$ or $g(x,y) = s_n^+$.

The proof in [1] is valid for all $n \ge 4$, but the authors skipped the details of the case n = 3, which requires slightly different arguments. We present next the missing details.

Proof. (case n = 3). The proof consists in a case study on the coefficients of the general form of a quadratization with a single auxiliary variable for the cubic negative monomial. Until Claim 2, the proof is identical to the case $n \ge 4$ presented in [1].

The general form of a quadratization using a single auxiliary variable is

$$g(x,y) = ay + \sum_{i=1}^{3} b_i x_i y + \sum_{i=1}^{3} c_i x_i + \sum_{1 \le i < j \le 3} p_{ij} x_i x_j.$$
 (4)

Notice that there is no constant term because, since we must have $M_3(x) = \min_{y \in \{0,1\}} g(x,y)$ for all binary vectors x, we can assume g(0,0) = 0 after substituting \bar{y} by y if necessary.

For subsets $S \subseteq N = \{1, 2, 3\}$, we write $b(S) = \sum_{i \in S} b_i$, $c(S) = \sum_{i \in S} c_i$, and $p(S) = \sum_{i,j \in S, i < j} p_{ij}$, and we can write

$$q(S, y) = ay + b(S)y + c(S) + p(S).$$
 (5)

The fact that g is a quadratization of M_3 can be written as

$$0 = \min_{y \in \{0,1\}} (a + b(S))y + c(S) + p(S), \forall S \subset N,$$
 (6)

$$-1 = \min_{y \in \{0,1\}} (a + b(N))y + c(N) + p(N). \tag{7}$$

Let us first note that by (6), we have $g(0, 1) \ge 0$, and hence

$$a \ge 0. \tag{8}$$

Furthermore, we must have $g(\{i\}, 0) \ge 0$ for i = 1, 2, 3, implying

$$c_i \ge 0$$
, for $i = 1, 2, 3$. (9)

Based on (9), we can partition the set of indices as $N = N^0 \cup N^+$, where

$$N^0 = \{ u \in N \mid c_u = 0 \}, \tag{10}$$

$$N^{+} = \{ i \in N \mid c_i > 0 \}. \tag{11}$$

Since $g(\{i\}, 0) = c_i$, relation (6) implies

$$q(\{i\}, 1) = a + b_i + c_i = 0, \forall i \in \mathbb{N}^+, \text{ and}$$
 (12)

$$q(\{u\}, 1) = a + b_u \ge 0, \forall u \in \mathbb{N}^0.$$
(13)

Let us next write (6) for subsets of size two. Consider first a pair $u, v \in N^0$, $u \neq v$. Since $c_u = c_v = 0$, we get $g(\{u, v\}, y) = (a + b_u + b_v)y + p_{uv}$, implying

$$\min\{p_{uv}, a + b_u + b_v + p_{uv}\} = 0. \tag{14}$$

Let us consider next $i, j \in N^+$, $i \neq j$. Then, by (12) and by the definitions we get $g(\{i, j\}, 1) = p_{ij} - a \geq 0$. This, together with (8) implies that $p_{ij} \geq a \geq 0$. Thus, $g(\{i, j\}, 0) = c_i + c_j + p_{ij} > 0$ implying that $g(\{i, j\}, 1) = 0$, that is

$$p_{ij} = a \ge 0, \forall i, j \in N^+. \tag{15}$$

This allows us to establish a property of N^0 :

Claim 1 $N^0 \neq \emptyset$.

Proof. If $N^0 = \emptyset$, then we have $g(N, y) = (a + b(N^+))y + c(N^+) + \binom{|N^+|}{2}a$ by (15). Since $|N^+|a + b(N^+) + c(N^+) = 0$, by (12), we get $g(N, 1) = \binom{|N^+|-1}{2}a \ge 0$ by (8), and $g(N, 0) = c(N^+) + \binom{|N^+|}{2}a \ge 0$ by (8) and (9). This contradicts (7) and proves the claim.

The following two claims distinguish two cases: $N^+ = \emptyset$, and $N^+ \neq \emptyset$.

Claim 2 Theorem 1 holds for n = 3 when $N^+ = \emptyset$.

1. Case p_{12} , p_{13} , $p_{23} > 0$. All quadratizations are of the form:

$$g(x,y) = (2 + p_{12} + p_{13} + p_{23})y$$

$$- (1 + p_{12} + p_{13})x_1y - (1 + p_{12} + p_{23})x_2y - (1 + p_{13} + p_{23})x_3y$$

$$+ p_{12}x_1x_2 + p_{13}x_1x_3 + p_{23}x_2x_3,$$

which is never prime because $g(x, y) \ge s_3(x, y), \forall (x, y) \in \{0, 1\}^{3+1}$.

2. Case $p_{12} > 0$, p_{13} , $p_{23} = 0$ (w.l.o.g.). All quadratizations are of the form:

$$g(x,y) = (-b_1 - b_2 - p_{12})y + b_1x_1y + b_2x_2y - x_3y + p_{12}x_1x_2,$$
where
$$(2.1) - b_2 - p_{12} \ge 1,$$

$$(2.2) - b_1 - p_{12} \ge 1,$$

which is never prime because $g(x,y) \ge s_3(x,y), \forall (x,y) \in \{0,1\}^{3+1}$.

3. Case p_{12} , $p_{13} > 0$, $p_{23} = 0$ (w.l.o.g.). All quadratizations are of the form:

$$g(x,y) = (1-b_1)y + b_1x_1y - (1+p_{12})x_2y - (1+p_{13})x_3y + p_{12}x_1x_2 + p_{13}x_1x_3$$
where

$$(3.1) - b_1 - p_{12} \ge 0$$
,

$$(3.2) - b_1 - p_{13} \ge 0$$
,

$$(3.3) - 1 - b_1 - p_{12} - p_{13} \ge 0$$
,

which is never prime because $g(x,y) \ge s_3(x,y), \forall (x,y) \in \{0,1\}^{3+1}$.

4. Case p_{12} , p_{13} , $p_{23} = 0$. All quadratizations are of the form:

$$g(x,y) = (-1 - b_1 - b_2 - b_3)y + b_1x_1y + b_2x_2y + b_3x_3y$$
where
$$(4.1) - 1 - b_1 \ge 0,$$

$$(4.2) - 1 - b_2 \ge 0,$$

$$(4.3) - 1 - b_3 \ge 0,$$

which is never prime because $g(x, y) \ge s_3(x, y), \forall (x, y) \in \{0, 1\}^{3+1}$.

Proof.

Since $N^+ = \emptyset$,

$$g(x,y) = ay + \sum_{i=1}^{3} b_i x_i y + \sum_{1 \le i \le 3} p_{ij} x_i x_j.$$
 (16)

By (14), $g(N, 0) = p_{12} + p_{13} + p_{23} \ge 0$ which implies that g(N, 1) = -1, or

$$q(N, 1) = a + b_1 + b_2 + b_3 + p_{12} + p_{13} + p_{23} = -1.$$
 (17)

1. Case p_{12} , p_{13} , $p_{23} > 0$.

By (14), we have the system of equations

$$a + b_1 + b_2 + p_{12} = 0$$
,
 $a + b_1 + b_3 + p_{13} = 0$,
 $a + b_2 + b_3 + p_{23} = 0$.

Considering this system along with equation (17), and solving it as a function of p_{12} , p_{13} , p_{23} , we obtain that the general form (16) of the quadratization in this case is

$$g(x,y) = (2 + p_{12} + p_{13} + p_{23})y$$

$$- (1 + p_{12} + p_{13})x_1y - (1 + p_{12} + p_{23})x_2y - (1 + p_{13} + p_{23})x_3y$$

$$+ p_{12}x_1x_2 + p_{13}x_1x_3 + p_{23}x_2x_3,$$

where p_{12} , p_{13} , $p_{23} > 0$.

It can be easily checked that $g(x, y) - s_3(x, y) \ge 0$, $\forall (x, y) \in \{0, 1\}^{3+1}$, and therefore g is not prime.

2. Case $p_{12} > 0$, $p_{13} = p_{23} = 0$. By (14), we have the equation

$$a + b_1 + b_2 + p_{12} = 0.$$

Considering this equation along with equation (17), and solving the system as a function of b_1, b_2, p_{12} , we obtain that the general form (16) of the quadratization in this case is

$$g(x,y) = (-b_1 - b_2 - p_{12})y + b_1x_1y + b_2x_2y - x_3y + p_{12}x_1x_2.$$

For q to be a quadratization we also need

$$g(\{1,3\},1) = -b_2 - p_{12} - 1 \ge 0, (18)$$

$$g(\{2,3\},1) = -b_1 - p_{12} - 1 \ge 0.$$
 (19)

Using conditions (18) and (19), it can be easily checked that $g(x, y) - s_3(x, y) \ge 0$, $\forall (x, y) \in \{0, 1\}^{3+1}$, and therefore g is not prime.

3. Case p_{12} , $p_{13} > 0$, $p_{23} = 0$. By (14), we have the system of equations

$$a + b_1 + b_2 + p_{12} = 0,$$

 $a + b_1 + b_3 + p_{13} = 0.$

Considering this system along with equation (17), and solving the system as a function of b_1 , p_{12} , p_{13} , we obtain that the general form (16) of the quadratization in this case is

$$g(x,y) = (1-b_1)y + b_1x_1y - (1+p_{12})x_2y - (1+p_{13})x_3y + p_{12}x_1x_2 + p_{13}x_1x_3.$$

For g to be a quadratization we also need

$$g(\{2,3\},1) = -1 - b_1 - p_{12} - p_{13} \ge 0, (20)$$

$$q(\{2\}, 1) = -b_1 - p_{12} \ge 0, (21)$$

$$g({3}, 1) = -b_1 - p_{13} \ge 0. (22)$$

Using conditions (20), (21), (22) and $a = 1 - b_1 \ge 0$, it can be easily checked that $g(x, y) - s_3(x, y) \ge 0$, $\forall (x, y) \in \{0, 1\}^{3+1}$, and therefore g is not prime.

4. Case $p_{12} = p_{13} = p_{23} = 0$. Equation (17) gives

$$g(N, 1) = a + b_1 + b_2 + b_3 = -1.$$

Using this equation to express a in terms of b_1 , b_2 and b_3 in the general form (16) of the quadratization, we obtain

$$q(x, y) = (-1 - b_1 - b_2 - b_3)y + b_1x_1y + b_2x_2y + b_3x_3y.$$

For g to be a quadratization we also need

$$q(\{1,2\},1) = -1 - b_3 \ge 0, (23)$$

$$g(\{1,3\},1) = -1 - b_2 \ge 0, (24)$$

$$g(\{2,3\},1) = -1 - b_1 \ge 0. (25)$$

Using conditions (23), (24), (25), it can be easily checked that $g(x, y) - s_3(x, y) \ge 0$, $\forall (x, y) \in \{0, 1\}^{3+1}$, and therefore g is not prime.

Claim 3 Theorem 1 holds for n = 3 when $N^+ \neq \emptyset$. Since $N^0 \neq \emptyset$, there are two cases:

1. Case $c_1, c_2 > 0, c_3 = 0$ (w.l.o.g.). All quadratizations are of the form:

$$g(x,y) = ay - (a+c_1)x_1y - (a+c_2)x_2y - (1+p_{13}+p_{23})x_3y + c_1x_1 + c_2x_2$$

$$ax_1x_2 + p_{13}x_1x_3 + p_{23}x_2x_3$$

where

$$(5.1) c_1 + p_{13} \ge 0,$$

$$(5.2) -1 - p_{13} \ge 0,$$

$$(5.3) c_2 + p_{23} \ge 0,$$

$$(5.4) -1 - p_{23} \ge 0,$$

which is never prime because $g(x,y) \ge s_3^+(x,y) \forall (x,y) \in \{0,1\}^{3+1}$

2. Case $c_1 > 0, c_2 = c_3 = 0$ (w.l.o.g.). Then, any quadratization g satisfies $g(x,y) \ge s_3^+(x,\bar{y}), \forall (x,y) \in \{0,1\}^{3+1}$.

Proof.

In this case, the general form of the quadratization is

$$g(x,y) = ay + \sum_{i=1}^{3} b_i x_i y + \sum_{i=1}^{3} c_i x_i + \sum_{1 \le i < j \le 3} p_{ij} x_i x_j,$$
 (26)

where $c_i = 0$ for at least one $i \in \{1, 2, 3\}$.

1. Case $c_1, c_2 > 0, c_3 = 0$. By (12) we obtain equations

$$a + b_1 + c_1 = 0, (27)$$

$$a + b_2 + c_2 = 0. (28)$$

By (15), $p_{12} = a \ge 0$.

For g to be a quadratization we need

$$g(\{1,3\},0) = c_1 + p_{13} \ge 0,$$
 (29)

$$g({2,3},0) = c_2 + p_{23} \ge 0.$$
 (30)

Hence,

$$q(N,0) = c_1 + c_2 + a + p_{13} + p_{23} \ge 0.$$
 (31)

Therefore, for g to be a quadratization we need g(N, 1) = -1, i.e.,

$$g(N, 1) = a + b_1 + b_2 + b_3 + c_1 + c_2 + a + p_{13} + p_{23} = -1.$$
 (32)

Solving the system given by (27), (28) and (32), as a function of p_{13} , p_{23} , a, c_1 and c_2 , the general form (26) of the quadratization becomes

$$g(x,y) = ay - (a+c_1)x_1y - (a+c_2)x_2y - (1+p_{13}+p_{23})x_3y$$
$$+ c_1x_1 + c_2x_2$$
$$+ ax_1x_2 + p_{13}x_1x_3 + p_{23}x_2x_3.$$

For g to be a quadratization, we also need

$$g(\{1,3\},1) = -1 - p_{23} \ge 0, (33)$$

$$g({2,3}, 1) = -1 - p_{13} \ge 0.$$
 (34)

Using conditions (29), (30), (33) and (34), it can be easily checked that $g(x,y) \ge s_3^+(x,y)$, $\forall (x,y)^{\{3+1\}}$, therefore g is not prime.

2. Case $c_1 > 0$, $c_2 = c_3 = 0$. By (12) we obtain equation

$$a + b_1 + c_1 = 0, (35)$$

and by (13),

$$a + b_2 \ge 0,\tag{36}$$

$$a + b_3 \ge 0. \tag{37}$$

Using (35), we obtain the following conditions for g to be a quadratization,

$$g(\{1,2\},0) = c_1 + p_{12} \ge 0, (38)$$

$$q(\{1,3\},0) = c_1 + p_{13} \ge 0,$$
 (39)

and

$$q(\{1,2\},1) = b_2 + p_{12} \ge 0, (40)$$

$$g(\{1,3\},1) = b_3 + p_{13} \ge 0.$$
 (41)

Equations (38) and (40), (39) and (41), respectively imply

$$\min\{c_1 + p_{12}, b_2 + p_{12}\} = 0, (42)$$

$$\min\{c_1 + p_{13}, b_3 + p_{13}\} = 0. \tag{43}$$

For $i \in \{2, 3\}$, we say that

- $i \in B$ if $b_i + p_{1i} = 0$, and
- $i \in C$ if $c_1 + p_{1i} = 0$,

in equations (42)-(43).

We will now show that $p_{23} = 0$.

First, note that by (14),

$$\min\{p_{23}, a + b_2 + b_3 + p_{23}\} = 0. \tag{44}$$

Now, (44), (35) and (42)-(43), imply that

$$g(N,1) = b_2 + b_3 + p_{12} + p_{13} + p_{23} \ge 0. (45)$$

Therefore, for g to be a quadratization we need

$$q(N,0) = c_1 + p_{12} + p_{13} + p_{23} = -1. (46)$$

Assume now that $p_{23} > 0$. Then, (44) implies that $a + b_2 + b_3 + p_{23} = 0$. Together with (36) and (37), this implies $b_2 < 0$ and $b_3 < 0$. From (42), $p_{12} \ge -b_2 > 0$ and from (43), $p_{13} \ge -b_3 > 0$. Since $p_{12}, p_{13}, p_{23}, c_1 > 0$, we have a contradiction with (46).

Therefore, we can assume from now on that $p_{23} = 0$. Then, (46) reduces to

$$g(N,0) = c_1 + p_{12} + p_{13} = -1.$$
 (47)

By (42)-(43), we get $2c_1 + p_{12} + p_{13} \ge 0$ and hence, in view of (47),

$$c_1 \ge 1. \tag{48}$$

We distinguish now among several subcases.

• Case 1. If $C = \{2, 3\}$, then (47) implies $c_1 = 1$ and $p_{12} = p_{13} = -1$. With these values, (35) becomes $b_1 = -1 - a$, and (42)-(43) become $b_2 \ge 1$, $b_3 \ge 1$.

Moreover, the general form (26) of the quadratization becomes

$$g(x,y) = ay + (-1-a)x_1y + b_2x_2y + b_3x_3y + x_1 - x_1x_2 - x_1x_3.$$
 (49)

Compare this expression with

$$s_3^+(x,\bar{y}) = x_1 - x_1y - x_2(x_1 - y) - x_3(x_1 - y),$$

(where x_1 plays the role of x_3).

We obtain

$$g(x,y) - s_3^+(x,\bar{y}) = a\bar{x}_1y + (b_2 - 1)x_2y + (b_3 - 1)x_3y \ge 0,$$

and g is not prime.

• Case 2. If $2 \in B$ and $3 \in C$, then by definition, $p_{12} = -b_2$ and $p_{13} = -c_1$. Then, (47) implies $p_{12} = -b_2 = -1$. Let us substitute the values $p_{12} = -1$, $p_{13} = -c_1$ and $p_{13} = -c_1 = -c_1$ and $p_{14} = -c_1 = -c_1$ and $p_{15} = -c_$

$$g(x,y) = ay + (-c_1 - a)x_1y + x_2y + b_3x_3y + c_1x_1 - x_1x_2 - c_1x_1x_3.$$
 (50)

When y = 0, this yields (taking (48) into account),

$$g(x,0) = c_1 x_1 \bar{x}_3 - x_1 x_2 \ge x_1 \bar{x}_3 - x_1 x_2 = s_3^+(x,1).$$

When y = 1,

$$g(x, 1) = a - ax_1 + x_2 + b_3x_3 - x_1x_2 - c_1x_1x_3$$

= $a\bar{x}_1 + \bar{x}_1x_2 + (b_3 - c_1)x_3 + c_1\bar{x}_1x_3$.

Note that $a \ge 0$, $b_3 + p_{13} = b_3 - c_1 \ge 0$ by (43), and $c_1 \ge 1$ by (48). So,

$$g(x, 1) \ge \bar{x}_1 x_2 + \bar{x}_1 x_3 = s_3^+(x, 0).$$

Obtaining that $g(x, y) \ge s_3^+(x, \bar{y})$, and g is not prime.

• Case 3. Assume finally that $B = \{2, 3\}$, meaning that $p_{12} = -b_2$ and $p_{13} = -b_3$. Substituting in (47) yields $c_1 - b_2 - b_3 = -1$, and equations (42)-(43) imply $c_1 - b_2 \ge 0$ and $c_1 - b_3 \ge 0$. From these relations we deduce

$$b_2 \ge 1, b_3 \ge 1. \tag{51}$$

With $p_{12} = -b_2$, $p_{13} = -b_3$, $c_1 = b_2 + b_3 - 1$ and $b_1 = -a - c_1 = -a - b_2 - b_3 + 1$, the general form (26) of the quadratization becomes

$$g(x,y) = ay + (-a-b_2-b_3+1)x_1y + b_2x_2y + b_3x_3y + (b_2+b_3-1)x_1 - b_2x_1x_2 - b_3x_1x_3.$$

When y = 0, and considering (51),

$$g(x,0) = (b_2 + b_3 - 1)x_1 - b_2x_1x_2 - b_3x_1x_3$$

= $b_2x_1\bar{x}_2 + b_3x_1\bar{x}_3 - x_1$
 $\geq x_1\bar{x}_2 + x_1\bar{x}_3 - x_1 = s_3^+(x, 1).$

When y = 1,

$$g(x, 1) = a - ax_1 + b_2x_2 + b_3x_3 - b_2x_1x_2 - b_3x_1x_3$$

= $a\bar{x}_1 + b_2\bar{x}_1x_2 + b_3\bar{x}_1x_3$
 $\geq \bar{x}_1x_2 + \bar{x}_1x_3 = s_3^+(x, 0).$

Obtaining that $g(x, y) \ge s_3^+(x, \bar{y})$, and g is not prime.

We have covered all cases for $N^+ = \emptyset$ and for $N^+ \neq \emptyset$. As the theorem states, we have seen that the only possibilities for prime quadratizations using one auxiliary variable of the cubic negative monomial are s_3 or s_3^+ .

3 Conclusion

Quadratization techniques are aimed at transforming a general pseudo-Boolean function expressed as a multilinear polynomial into a quadratic function, in order to apply quadratic pseudo-Boolean optimization algorithms which have been well-studied in both exact and heuristic approaches. Quadratizations of negative monomials are particularly interesting because they allow using techniques such as *termwise quadratization*, which can be applied to any pseudo-Boolean function expressed as a multilinear polynomial.

This technical report presented a proof of the theorem of Anthony, Boros, Crama and Gruber [1], characterizing short prime quadratizations for cubic negative monomials. The proof for the cubic case is based on the proof for the general case $n \ge 4$ of the cited article. However the case study is different for n = 3, and requires the exhaustive analysis presented in this report.

Acknowledgements The project leading to these results was funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (grant P7/36).

References

- [1] M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of nonlinear binary optimization problems. 2014. Working paper, University of Liège.
- [2] E. Boros and P. L. Hammer. Pseudo-boolean optimization. *Discrete Applied Mathematics*, 123:155–225, 2002.
- [3] Y. Crama and P. L. Hammer. *Boolean Functions: Theory, Algorithms and Applications*. Cambridge University Press, New York, N. Y., 2011.