A semi-analytical sensitivity analysis for multibody systems described using Level Sets

E. Tromme1, O. Brüls1, P. Duysinx1, G. Virlez1, D. Tortorelli2

1Aerospace and Mechanical Engineering Department
University of Liège, Belgium

2Department of Mechanical Science and Engineering
University of Illinois at Urbana-Champaign, USA
Introduction – Optimization of a connecting rod

- A component based approach

- Multibody system based approach

 - Experience - Empirical load case - Standard
 - Dynamic factor amplification for safety ➔ Not optimal

Geometrical modeling
Multibody system dynamics
Different levels of coupling

- **Weak coupling**
 - Coupling with pre / post processing
 - Define equivalent static load cases \(\text{(Kang, Park and Arora, 2005)}\)
 - Optimization of isolated components

- **Strong coupling**
 - Deals with time response
 - Functions may depend on time
 - Engineering approach

→ A **global-local** approach:
 - The optimization problem can account for global criteria while optimizing local components.

Example: Mass minimization of a vehicle suspension arm while a criteria on the comfort of the driver has to be fulfilled.
Level Set description of the geometry

- Fixed mesh grid
- LSF Parameterization:
 - Combination of parameterized geometric shapes (Van Mieghem and Duysinx 2007)
 - A LSF for each geometric features (global basis function).
 - Signed-distance function or analytical function
- The mapping:
 - Eulerian approach (density-based approach)
 - Association of a pseudo-density to each finite element as in TO
 - The element densities are defined based on the value of LSF at nodes
- Example: Square plate with a hole

Smooth transition
Goals of the work and motivations

- Intermediate type of optimization between shape optimization and topology optimization.
 - Fixed mesh grid: No mesh distortion (No velocity field for SA)
 - The geometry is based on CAD entities: can easily be manufactured.
 - Remove, separate, merge entities: Modification of the topology
 - Design variables: parameters of the level sets (rather small number)

- Not the most accurate mapping but... The method presented aims at determining the optimal layout of components when the dynamics of the system is accounted for i.e.:
 - Inertia effects
 - Coupled vibrations
 - Interaction between components...

The MBS problem is already highly non-linear ➔ Keep the optimization problem simple but efficient as a pre-design tool.
Other methods (EQSL) can then be used for more detailed optimization.
General form of the optimization problem

- Design problem casted in a mathematical programming problem
 \[
 \begin{align*}
 \text{minimize} & \quad \varphi(\mathbf{x}) \\
 \text{subject to} & \quad \text{Equilibrium equation} \\
 & \quad c_j(\mathbf{x}) \leq \bar{c}_j, \quad j = 1, \ldots, n_c, \\
 & \quad \underline{x}_v \leq x_v \leq \bar{x}_v, \quad v = 1, \ldots, n_v,
 \end{align*}
 \]

- Provides a general and robust framework to the solution procedure
- Various efficient solvers can be used (ConLin, MMA, IpOpt,...)

- Formulation using the strong coupling:
 \[
 \begin{align*}
 \text{minimize} & \quad \varphi(\mathbf{x}, \mathbf{s}) \\
 \text{subject to} & \quad M(\mathbf{q})\ddot{\mathbf{q}} + \Phi_q^T(\mathbf{q}, t)\lambda = g(\dot{\mathbf{q}}, \mathbf{q}, t), \\
 & \quad \Phi(\mathbf{q}, t) = 0, \\
 & \quad c_j(\mathbf{x}, \mathbf{s}, t) \leq \bar{c}_j, \quad j = 1, \ldots, n_c, \\
 & \quad \underline{x}_v \leq x_v \leq \bar{x}_v, \quad v = 1, \ldots, n_v.
 \end{align*}
 \]

\[
\mathbf{s} = [\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}, \lambda]
\]
The optimization problem formulation

- The formulation is a key point for this type of problems:
 - Highly non-linear behavior
- Impact on the design space: Extremely important for gradient-based algo.

\[\text{Local formulation} \]
\[
\begin{align*}
\text{minimize} & \quad m(x) \\
\text{subject to} & \quad \Delta l(x, t_n) \leq \Delta l_{max}
\end{align*}
\]

\[\text{Global formulation} \]
\[
\begin{align*}
\text{minimize} & \quad m(x) \\
\text{subject to} & \quad \frac{1}{t_{end}} \sum_{n=1}^{t_{end}} \Delta l(x, t_n) \leq \Delta l_{max}
\end{align*}
\]

- Tight control vs number of constraints
- Genetic algorithms
 - Do not necessarily give better results
 - Computation time much more important
Equation of FEM-MBS dynamics

- Approach based on the non-linear finite element method (Flexibility is naturally taken into account)

- Motion of the flexible bodies is represented by **absolute nodal coordinates** \(\mathbf{q} \) (Geradin & Cardona, 2001)

- Dynamic equations of multibody system

 \[
 \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} = \mathbf{g}(\dot{\mathbf{q}}, \mathbf{q}, t) = \mathbf{g}^{\text{ext}} - \mathbf{g}^{\text{int}} - \mathbf{g}^{\text{gyr}}
 \]

- Subject to kinematic constraints of the motion

 \[
 \Phi(\mathbf{q}, t) = 0
 \]

- The solution is based on a Lagrange multiplier method

 \[
 \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \Phi^T(\mathbf{q}, t)\lambda = \mathbf{g}(\dot{\mathbf{q}}, \mathbf{q}, t)
 \]

 \[
 \Phi(\mathbf{q}, t) = 0,
 \]

 with the initial conditions

 \[
 \mathbf{q}(0) = \mathbf{q}_0 \text{ and } \dot{\mathbf{q}}(0) = \dot{\mathbf{q}}_0.
 \]
Time integration solver

- **Generalized-α**
 - Introduction of a vector \(\mathbf{a} \) of acceleration-like variables
 \[
 (1 - \alpha_m) \mathbf{a}_{n+1} + \alpha_m \mathbf{a}_n = (1 - \alpha_f) \mathbf{\ddot{q}}_{n+1} + \alpha_f \mathbf{\ddot{q}}_n
 \]
 - Why?
 - Accurate and reliable results with a small amount of numerical damping (second-order accuracy and linear unconditional stability)
 - Larger range of numerical damping than HHT.

- **Newmark integration formulae with \(\mathbf{a} \)**
 \[
 \mathbf{q}_{n+1} = \mathbf{q}_n + h\mathbf{\dot{q}}_n + h^2 \left(\frac{1}{2} - \beta \right) \mathbf{a}_n + h^2 \beta \mathbf{a}_{n+1}

 \mathbf{\dot{q}}_{n+1} = \mathbf{\dot{q}}_n + h (1 - \gamma) \mathbf{a}_n + h \gamma \mathbf{a}_{n+1},
 \]

- **Solve iteratively the linearized dynamic equation system (Newton-Raphson scheme)**
 \[
 \mathbf{M} \Delta \mathbf{\ddot{q}} + \mathbf{C}_t \Delta \mathbf{\dot{q}} + \mathbf{K}_t \Delta \mathbf{q} + \mathbf{\Phi}_q^T \Delta \mathbf{\lambda} = \Delta \mathbf{r}

 \mathbf{\Phi}_q \Delta \mathbf{q} = \Delta \Phi
 \]
 where \(\mathbf{r} = \mathbf{M} \mathbf{\ddot{q}} + \mathbf{\Phi}_q^T \mathbf{\lambda} - \mathbf{g} \)
Sensitivity analysis

- **General function**
 \[
 \Phi(q(p), \dot{q}(p), \ddot{q}(p), p) \rightarrow \frac{\partial q}{\partial p}, \frac{\partial \dot{q}}{\partial p}, \frac{\partial \ddot{q}}{\partial p} ?
 \]

- Implicitely defined through the analysis

- **Finite difference? → MBS cpu-time consuming**

- **Direct or Adjoint Method?** Here [direct method](#) (fct>dv)

- **At a converged time step \(t \), the residual is equal to 0:**
 \[
 R(q(p), \dot{q}(p), \ddot{q}(p), p, t) = 0
 \]

- **The total derivative of the residual is**
 \[
 \frac{dR}{dp} = \frac{\partial R}{\partial q} \frac{dq}{dp} + \frac{\partial R}{\partial \dot{q}} \frac{d\dot{q}}{dp} + \frac{\partial R}{\partial \ddot{q}} \frac{d\ddot{q}}{dp} + \frac{\partial R}{\partial p}
 \]
Sensitivity analysis

- A semi-analytical method has been developed by O. Brüls and P. Eberhard (2008) which can be integrated in the generalized-α scheme.

\[
\begin{align*}
M \frac{d\ddot{q}}{dp_u} + C_t \frac{dq}{dp_u} + K_t \frac{dq}{dp_u} + \Phi_q^T \frac{d\lambda}{dp_u} &= - \frac{\partial r}{\partial p_u} \\
\Phi_q \frac{dq}{dp_u} &= - \frac{\partial}{\partial p_u} \Phi
\end{align*}
\]

- Sensitivity equations are linear with respect to $\frac{dq}{dp_u}$ and $\frac{d\lambda}{dp_u}$.

- The computation of the pseudo loads is quite an issue.
 - It requires in general a lot of effort because the matrices of the mechanical system must be computed for many different values.

- In the simulation code, M, C_t and K_t are not computed independently but they are aggregated in the tangent iteration matrix (S_t).
Improving the residual derivative computation

- Rewriting the residual as follows:

\[
\frac{dR}{dp} = \frac{\partial R}{\partial q} \frac{dq}{dp} + \frac{\partial R}{\partial \dot{q}} \frac{d\dot{q}}{dp} + \frac{\partial R}{\partial \ddot{q}} \frac{d\ddot{q}}{dp} + \frac{\partial R}{\partial p} = 0
\]

Derivative of the residual wrt \(p \) holding \(q \) fixed.

- Using the definition of the derivative

\[
\lim_{\Delta p \to 0} = \frac{R(q(p), \dot{q}(p + \Delta p), \ddot{q}(p + \Delta p), p + \Delta p, t) - R(q, \dot{q}, \ddot{q}, p, t)}{\Delta p} = 0
\]

- Furthermore, we have

\[
\dot{q}(p + \Delta p) \approx \dot{q}(p) + \frac{d\dot{q}}{dp} \Delta p,
\]

\[
\ddot{q}(p + \Delta p) \approx \ddot{q}(p) + \frac{d\ddot{q}}{dp} \Delta p.
\]

- The terms \(\frac{d\dot{q}}{dp} \) and \(\frac{d\ddot{q}}{dp} \) are obtained from the Newmark integration formulae.
More efficient sensitivity analysis

- Gathering the previous developments, one get

\[- \frac{\partial R}{\partial q} \frac{dq}{dp} \approx \frac{1}{\Delta p} R(q(p), \dot{q}(p) + \frac{dq}{dp} \Delta p, \ddot{q}(p) + \frac{d\ddot{q}}{dp} \Delta p, t)\]

- And after development, we end up with

\[-S_t \frac{dq}{dp} = \frac{1}{\Delta p} R(q(p), \dot{q}(p) + \frac{dq}{dp_{pred}} \Delta p, \ddot{q}(p) + \frac{d\ddot{q}}{dp_{pred}} \Delta p, t)\]

- Only the tangent iteration matrix is needed

- The computation of the perturbed residual is suitable as the level set description of the geometry is not treated at the element level in the solver.

 « Perturb the design variable + Call to the residual function »

- Very fast evaluation
Numerical Applications
Connecting rod optimization

- Minimization of the connecting rod mass in a real combustion engine (Diesel).

- Elongation of the connecting rod during the exhaust phase → Collision between the piston and the valves.

- Consideration of one single complete cycle as the behavior is cyclic (720°) for the optimization

- Constraints imposed on the elongation

![Graph showing elongation of the connecting rod with respect to angle of rotation of the crankshaft]
Local formulation

$$\min_{\mathbf{x}} m(\mathbf{x})$$

subject to

$$\Delta l(\mathbf{x}, t_i) \leq \Delta l_{max}$$

with $$i = 1, \ldots, \text{nbr time step}$$

- The elongation constraints $$\Delta l(\mathbf{x}, t_i)$$ are considered at each time step.
 - As many constraints as the number of time steps (134)
First application – 1 level set

- The level set is defined in order to have an ellipse as interface.
- 5 candidate design variables: a, b, c_x, c_y and d. Here only d is chosen.

$$\Phi(x, y) = \frac{(x - c_x)^2}{a^2} + \frac{(y - c_y)^2}{b^2} - d = 0$$
Results

- Convergence obtained after 12 iterations
- Monotonous behavior of the optimization process

![Graph showing mass and elongation over iterations.](image-url)
Results – Optimal design

- As the boundary is defined by a CAD entity, the connecting rod can be directly manufactured without any post processing.
Second application – 3 level sets

- 3 ellipses are defined. \[\Phi(x, y) = \frac{(x-c_x)^2}{a^2} + \frac{(y-c_y)^2}{b^2} - d = 0 \]
Results

- Convergence obtained after 18 iterations
- The non-linearities of the design space are larger
 ➔ Oscillations
Results – Optimal design

- Modification of the topology during the evolution of the optimization process
2-dof robot: trajectory tracking constraint

- Heavy, Stiff \Rightarrow No vibration
- Improve productivity \Rightarrow Speed up
- Faster \Rightarrow Energy consumption increase
- Reduce mass \Rightarrow Vibration appear

Design variables:
5 Level Sets not independent

\[
\Phi(x, y) = \frac{(x - c_x)^2}{a^2} + \frac{(y - c_y)^2}{b^2} - d = 0
\]

\[
\begin{align*}
\text{minimize} & \quad m(x) \\
\text{subject to} & \quad \frac{1}{t_{\text{end}}} \sum_{n=1}^{t_{\text{end}}} \Delta l(x, t_n) \leq \Delta l_{\text{max}}
\end{align*}
\]
2-dof robot: trajectory tracking constraint

![Diagram of a 2-dof robot with trajectory tracking constraint]

Upper bound 1 mm
Opt. value 0.99 mm
Conclusions and perspectives

- Optimization of flexible components carried out in the framework of flexible dynamic multibody system simulation
 - Deals with the time response coming directly from the simulation
 - Enables a formulation of the optimization problem based on the task executed by the system
 - Allows a global-local approach
 - More general than the EQSL

- Determine the optimal layout of mechanical system components under dynamic loading

- The Level Set description of the geometry enables to solve optimization problems while limiting the introduction of new non-linearities.

- The simple examples show encouraging results

- The proposed sensitivity analysis enables to reduce the computation time

- Introduce other geometrical features (Nurbs with Fast Marching method)

- Extend the method to 3D
Thank You Very Much For Your Attention

I acknowledge the Lightcar project sponsored by the Walloon Region of Belgium for its support.
Contact

Emmanuel TROMME

Automotive Engineering
- Aerospace and Mechanical Engineering Department
 University of Liège

Chemin des Chevreuils, 1 building B52
4000 Liège Belgium

Email: emmanuel.tromme@ulg.ac.be

Tel: +32 4 366 91 73
Fax: +32 4 366 91 59