Application Of Multiple-Point Geostatistics On Groundwater Flow And Transport In Media With Complex Geological Heterogeneity

Lessons Learnt And Remaining Challenges

Marijke Huysmans & Alain Dassargues

Applications of multiple-point geostatistics on groundwater problems

Le Coz et al., 2011

Project overview

2750 air permeability measurements

Groundwater modelling

Permeability simulations

Field work

Training image

Project overview: Validation and applications

• Pumping test

Groundwater tracer test

• Aquifer thermal energy storage

Possemiers et al., in prep

Lessons learnt

Lesson 1

Be careful when using multiple-point geostatistics if you're a perfectionist

Multiple-point geostatistics

- Elegant
- Smart
- Simple
- Incorporate geological heterogeneity in a realistic way
- Way of communicating with geologists

The "perfect" 3D training image

The "perfect" model

Vrije Universiteit Brussel

Lesson 1: Be careful when using multiple-point geostatistics if you're a perfectionist

Vrije Universiteit Brussel

Lesson 2: Showing a training image is dangerous

Showing a training image is dangerous

Vrije Universiteit Brussel Explicit = easy to criticize

How good should my training image be?

- Compare to geological reality or to variogram based/uniform approaches?
- What is the effect of having a "slightly off" training image?
- Sensitivity to selection of training image?
- Verification of training images by data
- Groundwater problems: data scarcity, no seismic campaigns

The effect of training image and secondary data integration with multiple-point geostatistics in groundwater modeling

X. He¹, T. O. Sonnenborg², F. Jørgensen², and K. H. Jensen¹

Verifying the High-order consistency of training images with data for multiple-point Geostatistics

Cristian Pérez^{a, b,} 📥 🔤, Gregoire Mariethoz^{c, d}, Julián M. Ortiz^{a, b}

Lesson 3: Real-world field cases ≠ synthetic cases

Real-world field cases ≠ synthetic cases

- Many synthetic and semi-synthetic applications of multiplepoint geostatistics
 - Promising technique
 - Convincing results

- Real-world field case
 - Frustration
 - Disappointment

Real-world field cases ≠ synthetic cases

- Other features than fine-scale heterogeneity play an important role
 - Variations of pumping discharge rates
 - Wells screened in more than one geological layer
 - Boundary conditions, e.g. interaction with surface water features
 - Sampling issues
 - Various uncertain factors

Real-world field cases ≠ synthetic cases

- Validation using in situ measured groundwater levels and concentrations
- Encouragement of real world applications
- Is it worth incorporating fine scale geological heterogeneity in groundwater problems or are other features (boundary conditions, data quality, ...) more important for correct predictions?

Conclusions

- Training images don't need to be perfect
 - How good should it be?
 - Sensitivity of groundwater models to TI?
 - Validation of TI?
- Encouragement of real-world applications
 - Realistic idea of potential of MPS in practical groundwater applications

Thank you

Marijke Huysmans and Alain Dassargues Marijke.Huysmans@vub.ac.be

