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Because accurate characterization of health state is important for managing dairy herds, we propose to validate the use of a linear
state-space model (LSSM) for evaluating monthly somatic cell scores (SCSs). To do so, we retrieved SCS from a dairy database and
collected reports on clinical mastitis collected in 20 farms, during the period from January 2008 to December 2011 in the Walloon
region of Belgium. The dependent variable was the SCS, and the independent variables were the number of days from calving,
year of calving and parity. The LSSM also incorporated an error-free underlying variable that described the trend across time as a
function of previous clinical and subclinical status. We computed the mean sum of squared differences between observed SCS and
median values of the posterior SCS distribution and constructed the receiver operating characteristic (ROC) curve for SCS thresholds
going from 0 to 6. Our results show SCS estimates are close to observed SCS and area under the ROC curve is higher than 90%.
We discuss the meaning of the parameters in light of our current knowledge of the disease and propose methods to incorporate,
in LSSM, this knowledge often expressed in the form of ordinary differential equations.
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Implications

To decrease mastitis frequency, it is necessary to have ade-
quate measures of the biological mechanisms underlying the
disease. Here, we applied a simple linear state-space model
on monthly milk somatic cell scores collected routinely in
dairy databases. We show the model is highly accurate,
very flexible and relatively easy to implement. It allows
the identification of disease sub-phenotypes corrected for
measurement errors and accounts for the dynamics of the
response to the infection. As such, it may shorten the gap
between genotype and phenotype expression and help
design personalized treatment.

Introduction

Bovine mastitis is a frequently occurring disease with great
economic consequences. To find tools that will decrease its
frequency, it is necessary to have adequate measures of
the biological mechanisms underlying the disease, which is
not easy to obtain in field conditions. Here, we propose to
combine clinical and subclinical information (obtained in a
field study) in a state-space model to obtain measures

representative of the defence mechanisms used by the
mammary gland to fight infection.
Information on clinical cases is valuable because cows that

experienced a case previously have a greater probability of
developing a subsequent one (Steeneveld et al., 2008). In
addition, records on clinical cases provide continuous infor-
mation not limited to recording at fixed intervals. However,
in practice, data collection on clinical cases depends heavily
on the willingness of the observers to collect and report the
information so that data may be sparse and subjective.
Information on subclinical cases is also important because

defence mechanisms operate before the apparition of clinical
signs. To detect subclinical mastitis, owners of automatic
milking systems have access to in-line milk-sensing measures
such as milk electrical conductivity, yield or temperature,
but the frequent occurrence of false-positive alerts has
thwarted their widespread use (Hovinen and Pyorala, 2011).
Researchers have also looked for biomarkers such as milk
lactoferrin, haptoglobin or NGase (Soyeurt et al., 2012), but
their measurements are often costly on a routine basis. The
most frequent method used to detect subclinical mastitis is
based on the measurement of patterns of monthly milk
somatic cell counts (SCC). Indeed, SCCs are typically elevated
in the presence of intramammary infection and are com-
monly recorded at (usually) monthly milk recording visits.† E-mail: jdetilleux@ulg.ac.be
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Many models have been proposed to analyze SCC patterns.
Some are based on logistic regression (Kristula et al., 1992)
or alternative traits (de Haas et al., 2004). Others draw
on mixture (Detilleux and Leroy, 2000; Jamrozik and
Schaeffer 2010) and hidden Markov models (Detilleux, 2011;
Robertson et al., 2011). Advantages of mixture and hidden
Markov models include their flexibility associated with
their ability to represent observed and hidden states, and
their capacity to cope with missing observations. However,
they are limited by the finite number of possible hidden
states (e.g. infected or not).
State-space models are based, like hidden Markov models,

on the assumption that an unobserved variable explains the
observed variation and evolves with Markovian dynamics.
The main difference is that hidden Markov models use
a discrete hidden state variable with arbitrary dynamics,
whereas state-space models use a continuous state variable
with parametric forms for the transition dynamics (Roweis
and Ghahramani, 1999). In the context of bovine mastitis,
hidden variables may represent defence mechanisms against
mastitis pathogens that cannot be observed accurately under
field conditions. For example, SCCs are a mix of leukocytes
and epithelial cells (Bradley and Green, 2005). Of both cell
types, leukocytes serve as a major defense mechanism to
fight disease infection (even if the role of epithelial cells
should not be disregarded). If hidden variables are more
accurate as indicators of cell dynamics during infection, they
will be useful in the search for personalized treatment or for
genes and gene pathways that are altered in response to the
presence of pathogenic bacteria (Pighetti and Elliott, 2011).
State-space models are also particularly well suited for

Bayesian model-fitting approaches and this permits a great
degree of flexibility including, for example, nonlinear, non-
Gaussian or multivariate processes. Moreover, time steps do
not have to correspond to a fixed unit of real time or to
follow equally spaced time intervals.
Therefore, the goal of this paper is to validate the use of a

linear state-space model (LSSM) for evaluating monthly
somatic cell scores (SCSs).

Material and methods

Data description
Data came from a survey on 20 commercial dairy farms (mean
of 81 cows per herd) conducted between January 2008 and
January 2012, in the Walloon region of Belgium. Herd size,
housing systems, milk production and SCCs are described
elsewhere (Detilleux et al., 2012). Herds were enrolled in the
national dairy herds recording system from which SCC data
were obtained. We asked participants to record all clinical
mastitis events on a web-based interface (Reding et al., 2012).
We combined data on SCC and clinical mastitis, and considered
SCC recorded within 10 days before or after a reported clinical
event was associated with the clinical case. We gathered
information on year of calving (YVEL), parity (PAR), days in milk
measured from the previous calving (DIM) and number of days
between successive events (LAG).

Clinical mastitis was diagnosed if milk from one or more
glands was abnormal in color, viscosity or consistency, with
or without accompanying heat, pain or redness. The SCC
records greater than 150 000 SCC/ml in first parity and 250 000
SCC/ml in later lactations were considered as being from
subclinical mastitis (Schepers et al., 1997). We created a
variable, called ‘CM’, that combined information on SCC and
clinical events: CM= 0 when SCC was below the threshold and
no case was reported (no mastitis); CM= 1 if a case was
reported regardless of the SCC value (clinical mastitis); CM= 2
if no case was reported and SCC was above the threshold
(subclinical mastitis).
For the statistical analyses, we limited records to the first

three lactations and the first 300 days in lactation (or less if
the lactation is terminated before the 300th day; DIM⩽ 300)
because few animals had extended lactations. We trans-
formed SCC into linear SCS more normally distributed than
SCC (Ali and Shook, 1980): SCS= 3+ log2(SCC/100 000),
where SCC was the number of somatic cells per milliliter.

Statistical analyses
We developed below a LSSM to analyze SCS (Chen and
Brown, 2013). The first equation (called ‘measurement
equation’) in the LSSM defines how a hidden health variable,
called ‘HID’, affected observed SCS. The next four equations
(called ‘transition equations’) in the LSSM are first-order
Markov processes that describe the trend across time in the
unobserved HID as a function of previous HID and CM. The
model is specified by the distributions of SCS and HID as

SCSti � Normal μti ; σ
2
i

� �

HIDt
i � Normal δti ; 1

� �

with

μti ¼ a0 +a1DIMt
i + a2 ln DIMt

i

� �
+ a3 YVELti + a4 δ

t
i

δti ¼ h0HSCt�1
i +h1 δ

t�1
i =LAGt�1

i +h4PARt
i

if CMt�1
i ¼ 0

δti ¼ h0HSCt�1
i +h2δ

t�1
i =LAGt�1

i +h4PARt
i

if CMt�1
i ¼ 1

δti ¼ h0HSCt�1
i +h3δ

t�1
i =LAGt�1

i +h4PARt
i

if CMt�1
i ¼ 2

δ1i ¼ hx +h4PAR1
i

where the index i is for the cow, and t is for the
control number within the lactation (t= 1, 2, …, Ti).
The dependent variables are SCSs and hidden variable (HID).
We regarded HID as error-free indicators of cell dynamics
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because they are corrected for errors in the measurement
equation for SCS. Otherwise, we would have had,
for CMt�1

i ¼ 0; μti ¼ a0 +a1DIMt
i + a2 lnðDIMt

i Þ + a3
YVELti +h0HSCt�1

i +h1μt�1
i =LAGt�1

i +h4PARt
i when we

have μti ¼ a0 + a1DIMt
i + a2 lnðDIMt

i Þ + a3YVELti + a4h0
HSCt�1

i + a4h1δ
t�1
i =LAGt�1

i + a4h4PARt
i . The HIDs are

also standardized with a variance set to 1. The herd score
(HSC) is the arithmetic mean of individual cow SCS for each
milk recording date (Lievaart et al., 2007). Days in milk (DIM)
and year of calving (YVEL) are fixed effects potentially
affecting SCS (Harmon, 1994), whereas parity (PAR) and HSC
may act indirectly on SCS through their effects on HID.
Although we assumed the same coefficients h0 and h4 for all
states, and therefore considered previous values for PAR
and HSC had the same effects on SCS regardless of the state,
we put PAR and HSC on the transition equations because we
believe, at least conceptually, they acted more directly on
HID than on SCS. Indeed, among others, Laevens et al.
(1997) were unable to find a significant effect of parity on
SCS in bacteriologically negative cows, and Faye et al. (1994)
showed frequency of clinical mastitis is higher in herds with
high bulk tank SCC. Transition between successive HID
depends on the HID and CM observed at the previous record
(one-period lagged value) weighted by the number of days
between successive records (LAG). We assumed error terms
to be independent and time invariant.
We chose inverse-gamma priors, IG(0.001, 0.001), for

the variance component parameters ðσ2i Þ and normal priors
for the coefficients a0 to a4, hx, and h0 to h4. Initial values
for the mean and precision of all normal priors were set at
0 and 10− 5, respectively. We implemented the model in
Openbugs (Lunn et al., 2009) for each herd separately. For
two herds (results not shown), we ran multiple chains of
50 000 iterations (5000 burn in and 45 000 sampling itera-
tions) with different starting values, checked the Gelman and
Rubin statistics (1996) and visually inspected the trace plots.
The Gelman and Rubin statistics were close to 1 and chains
had a tendency to converge much earlier than 5000 iterations.
This is likely because of the large sample sizes with a large
amount of information in the data for the parameters.
However, the computing time was long (around 6 h on PC

per herd), and therefore we ran unique chains of 50 000 runs
for each of the remaining herds.

Comparisons between estimated and observed values
Median ðSĈSti Þ values of the posterior SCS distribution were
compared with the corresponding observed values ðSCSti Þ
and the mean sum of squared residuals was calculated
for each herd: MSEh ¼ P�

SĈSti�SCSti Þ2=nh for t= 1 to
Ti and i= 1 to nh, where nh is the number of cows recorded in
the hth herd. Next, we constructed the receiver operating
characteristic (ROC) curves for SCS values above thresholds
going from 0 to 6. Thresholds 0 to 6 span a wide range of SCS
values observed in healthy and infected cows and correspond
to SCC from 0 to 800 000 cells/ml. A ROC curve is the plot of
true-positive rates against false-positive rates for the differ-
ent threshold values. Thus, a model with high discriminating
power has a ROC curve close to the upper left-hand corner of
the plot (Uhler, 2009). We also computed the area under the
ROC curve using the trapezoid rule (Metz et al., 1998).

Results and discussion

Description of the data set
Descriptive data are in Table 1. A total of 29 858 records
were collected from 2729 lactations. The incidence of
reported cases varied from 0 to 20 cases per 100 cow-years
at risk, which is lower than some estimates found in the
literature. Indeed, Bradley et al. (2007) and Miltenburg et al.
(1996) reported mean incidence of clinical mastitis ranging
from 47% to 71% in England and Wales, and from 13% to
30% in the Netherlands, respectively. In five Holstein herds in
the Czech Republic, the overall incidence was 0.68 clinical
cases per cow per year, varying from 0.35 to 1.45 cases
between farms (Wolfova et al., 2006). Other estimates were
nearer to ours with 14.4 cases per 100 cow-years at risk in
Uruguay (Gianneechini et al., 2002) and 14.8 in Norway
(Osteras et al., 2007). Such differences between countries
may be associated with factors such as climate, detection
and reporting methods, breed, level of production and
management. Another possibility is that not all clinical cases

Table 1 Descriptive statistics for each herd: number of lactations, number of records, mean for SCS and their standard deviation in parentheses, and
incidence (%) of reported clinical case per cow-year at risk

Herds n lactations n records SCS Incidence Herds n lactations n records SCS Incidence

1 315 3047 1.53 (1.64) 9.17 11 159 2127 1.75 (1.48) 3.33
2 65 542 2.37 (1.90) 20.10 12 81 1174 2.46 (1.67) 5.74
3 141 1738 2.80 (1.46) 2.45 13 61 733 2.25 (1.55) 0.00
4 116 1523 3.16 (1.59) 2.16 14 86 1281 2.11 (1.81) 1.72
5 96 937 2.45 (1.52) 20.36 15 86 1028 2.35 (1.77) 3.06
6 142 1361 1.73 (1.78) 8.69 16 129 1572 2.25 (1.82) 3.49
7 96 937 1.89 (1.66) 7.19 17 143 1212 1.69 (1.71) 0.00
8 201 1971 2.55 (1.86) 6.64 18 54 613 2.79 (1.60) 20.53
9 113 1141 2.08 (1.79) 3.88 19 221 1877 2.47 (1.95) 15.03
10 253 3067 2.51 (1.77) 1.06 20 171 1977 2.86 (1.63) 18.66

SCS= somatic cell scores.
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were reported in our study, as suggested by the observation
that SCSs were higher in subclinical than clinical mastitis
cases. If all clinical cases had been included in the group
CM= 1 and all subclincal cases in the group CM= 2, we
would have expected to have an SCS means lower in the
group CM= 2 than in the group CM= 1, assuming that SCS
is higher for clinical than subclinical cases.
Means and standard deviations (s.d.) of SCS (averaged

over all records) were 1.56 (s.d.= 1.10), 4.47 (s.d.= 2.43)
and 4.78 (s.d.= 1.26) for healthy, clinical and subclinical
records, respectively. This corresponds roughly to SCC values
of 60 000 in healthy, 280 000 in clinical and 340 000 cells/ml
in subclinical cases. Underreporting of clinical mastitis has
been evidenced, for example, in countries where clinical

mastitis cases are routinely registered by farmers, such as
Denmark (Klaas et al., 2004) and Sweden (Mork et al., 2009).
Differences may also be because of the bacterial species
responsible for clinical and subclinical cases. Indeed, de Haas
et al. (2004) showed coliform infections have tendency to
be severe with the presence of a short peak in SCC, Staphy-
lococcus aureus infections are less severe (subclinical) and
associated with long increased SCC, whereas Streptococcus
dysgalactiae and uberis seem not strongly associated with
any specific patterns of peaks in SCC.

Comparison between estimated and observed values
Figure 1 shows observed and estimated SCS lactation curves
for several cows taken at random in the data set. One can see
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Figure 1 Observed and estimated somatic cell score per days in milk since the start of the first parity.
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that median values of posterior distributions are quite close
to observed SCS. Correspondingly, MSEh was very low with a
mean of 1.39 over all herds.
Figure 2 is a ROC plot evaluating the discriminating ability

of LSSM in estimating SCS values above thresholds from
0 to 6. The area under the ROC curve is 94.01%, which
indicates that LSSM is particularly accurate in correctly
classifying records.

Although it is accurate, the model is very simple
and it could be made more realistic by allowing for factors
known to have an effect on SCS, being at the cow or
herd levels. One such set of factors would be the genetic
background of the animals as numerous experiments have
identified different genomic regions associated with resis-
tance or susceptibility to mastitis (Pighetti and Elliott, 2011).
Management practices (e.g. milking techniques, drying
procedures, quality of feed) also influence the prevalence of
specific mastitis pathogens and SCS. We could also combine
SCS with measurements of biomarkers associated with the
disease (Hojsgaard and Friggens, 2010).

Parameters of the model
Posterior medians and credibility intervals for all esti-
mated parameters are shown in Figure 3 for each herd,
separately. Values for h2 are shown only for herds in which
more than 2.5% of clinical cases were recorded because
intervals are quite large in herds where few clinical cases
were reported.
When comparing figures for the transition parameters

(h0 to h3), one may note that h3 estimates are slightly higher
than h1 estimates and most credibility intervals do not
overlap. These estimates (divided by time interval between
successive records) may be interpreted as auto-correlations
between successive HID (because the transition equations
correspond approximately to first-order auto-regressive
processes). In our study, correlation between successive HID
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Figure 3 Posterior median and corresponding credibility intervals for the estimated model parameters.
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was higher for a subclinical previous record (h3) than a
healthy previous record (h1). Stated otherwise, this suggests HID
values were linked over time when mastitis was subclinical.
The parameters may also be interpreted in light of our

knowledge of the mechanisms of immune/inflammatory
response to infection. Therefore, a4 makes the link between
HID and SCS and may represent our uncertainty in measuring
HID (as an indicator of defence mechanisms against mastitis
pathogens) with SCS. The parameters h1 to h3 are linked to
the rates of change in leukocyte number under health and
infection. In the absence of infection (and if all other factors
of HID variation are kept constant), there is an equilibrium
where cells enter and leave the udder. In that case, δit= δi
for all values of t. Then, from the transition equations, we
have δi ¼ h0HSCt�1

i +h4PARt
i

� �
= 1� h1=LAGt�1

i

� �� �
and

h1 ¼
ffiffiffi
L

p
AGt�1

i because varðHIDiÞ ¼ 1 ¼ ðh1=LAGt�1
i Þ2

var(HIDi). When pathogens are present, an extra concentra-
tion of leukocytes is recruited in the udder and cells are
removed after phagocytosis and killing of pathogens. In such
a situation, we may link parameters of the LSSM to para-
meters of ordinary differential equations (Quach et al., 2007),
describing the rates at which the cells enter and leave the
udder. For example, if cell dynamics is modeled according to
a system of equations that reproduce persistent infections
(e.g. White et al., 2010), then a simplified version of the
system would be

δti ¼ δ0i e
�h3 t;

with h3= (g–r), g= rate of influx of cells into the milk in the
presence of infection and r= rate of removal. (We chose
persistent equations so that the time frame of the LSSM
is similar to the timeframe of the ordinary differential
equation). This procedure, that is, the formal combination of
expert knowledge in the form of dynamic modeling with
LSSM on real data, is actually used for estimating disease
burden based on surveillance data, often complicated by a
tendency for underreporting (e.g. Hooker et al., 2011).
In this paper, we propose a simple LSSM to analyze trends in

SCS. The model is flexible, it corrects for measurement errors
and is relatively easy to implement. It may be extended to
account for the dynamics of the response to the infection.
Through its hidden variable, it could help in the identification of
sub-phenotypes characterized by the same level of expressed
genes and decrease the gap between gene and phenotype
(Wiggs, 2010). It could also lead to the identification of disease
markers (Morris et al., 2010) and the development of treatment
to specific disease symptoms (Hall, 2013).
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