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An identifying code C is a subset of vertices such that
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@ A variable x, for each vertex u
o Goal: minimize Y, -\ Xu
@ Constraints: domination and separation

Minimize Z Xy
ueV

such that > xw >1 Yu e V  (domination)
weN[u]

Z Xxw >1 Yuz#veV (separation)
weN[u]AN][v]

xy €{0,1} YueV
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This problem is NP-complete... but its fractional relaxation is not !



Minimize Z Xy
ueV
such that Z Xy >1 YueV
weN[u]
Z Xy >1 Yu#veV
weN[u]AN][v]
xy € [0,1] VueV

(.

(domination)

(separation)

Let 7/°(G) be the optimal solution of this problem.

1(G) <+"°(6)
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an automorphism sending v to v.
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A graph is vertex-transitive if for any two vertices u and v, there is
an automorphism sending v to v.

Examples :

OB R X

Properties:
@ All vertices have the same degree, denoted by k.

@ There is an optimal solution to the fractional program with all
the variables equal.



There is an optimal solution with x, = A for all u € V.
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There is an optimal solution with x, = A for all u € V.

Minimize Y x,
ueV

such that Z xw >1 YueV (domination)
weN[u]

=A>1/(k+1)
Z xw =21 Yu#veV (separation)

weN[u]AN[v]
= A>1/d
Xy € [0,1] VueV
where d is the smallest size of sets N[u]AN|[v]
V]

If G is vertex-transitive, v/°(G) = \ - |V| = (kL)
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[ If G is vertex-transitive, v/°(G) = X\ - |V| = %. ]

Cycle Cp,

ID
k=2d=2 = 3PE,) =

How big can be the gap between 'y,’cD and 7/P?

For any graph G, 1< 'Y:Z(G) <1+2In|V]|
v (G)

The upperbound is good if fy,’,D is small, i.e. if k and d are large.



A generalized quadrangle GQ(s, t) is an incidence structure of
points and lines such that:

@ each line contains s + 1 points,
@ each point is on t + 1 lines,

@ if a point P is not on a line L, there is a unique line trough P
intersecting L.
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A generalized quadrangle GQ(s, t) is an incidence structure of
points and lines such that:

@ each line contains s + 1 points,
@ each point is on t + 1 lines,

@ if a point P is not on a line L, there is a unique line trough P
intersecting L.

Adjacency graph: points are vertices, lines are clique.

Example:

The square grid n x n or as
a graph, the cartesian product o |0
KnOK,, isa GQ(n—1,1).
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e A GQ(s,t) is a strongly regular graph with parameters

srg((st+1)(s+1),s(t+1),s—1,t+1).
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Assume s > 1,t > 1
e A GQ(s,t) is a strongly regular graph with parameters

srg((st+1)(s+1),s(t+1),s—1,t+1).

o If it is vertex-transitive,
s2t

ID
6= —>f
()= o

+1=0(s).

@ We have s < t2 and t < s2. Therefore

a| VIV <yP(6) < o|VH®

@ The only known values of (s, t) for which there is GQ(s, t) are

(a-1,9+1),(a+1,9-1),(q,9),(a,9°),(a*q), (¢* ¢*),(a* ¢°)
where g is a prime power.
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Step 1: construction of a hyperconic in the projective plane on Fy.

Projective plane on Fq, (X1, X2, X3)

N
Nucleus
All the lines through N
intersect C in one point
Conic of equation X3 X3 — X22 =0 Hyperconic: O = C U {N}
contains g + 1 points q + 2 points

no 3 collinear points
a line intersects O in 0 or 2 points




Step 2: Construction of GQ.

Projective space of dim. 3 on Fg, (Xo, X1, X2, X3)
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Step 2: Construction of GQ.

Projective space of dim. 3 on Fg, (Xo, X1, X2, X3)

7

H.o: projective plane
Xo=0

Points: all except Hyo
Lines: the ones trough O = C U {N}

@ ¢° points
@ g points by line

@ g+ 2 lines by
point

@ unique projection
J
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[ Three non coplanar lines through N form an identifying code. ]

@ Domination: using projection
@ Separation:
e pointson L; ? \/

o adjacent points ? \/
3 e non adj. points P; and P, ?

>

Sy

PO
Assume

P10
Q N[Pi]NC = N[P]NC = {@, Q, @}

L L L3




[ Three non coplanar lines through N form an identifying code. ]

@ Domination: using projection
@ Separation:

e pointson L; ? \/

o adjacent points ? \/

>

Sy

3 e non adj. points P; and P, ?
P0
Assume
P10 Q
N[P ] N C = N[P]NC ={Q1, @, Qs}
Q
L L L3 = Q1, @, Q3 in a plane containing N

= L3, Ly, L3 are coplanar.
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[ Three non coplanar lines through N form an identifying code. ]

Hence
7P(6Q(g—1,9+1)) <3q-3

Lower bound ?
@ Using the fractional value
3
ID q
G -1,9+1)> —"——
V(60— L +1) = T
e With discharging methods (for g > 32)

YP(GQR(g—1,q+1))>3qg—7

Finally,
7"P(6Q(g—1,q+1)) =~ 3q ~ 3|V|'/.



4 A

Let g be a prime power.

@ There exists a GQ(q, q) with identifying code of size
5q = O(|V['/3).
o There exists a GQ(q, g%) with identifying code of size
5q+5=O(|V|'/%).
o There exists a GQ(g?, g) with identifying code of size

5¢° +3 = O(|V|*®).




For a srg(n, k, A, 1), we have

d=min(2(k —1—X),2(k+1—p)).

Let G be a primitive strongly regular graph srg(n, k, A, ),

then
k>+vn—1and d>+/n-3.

As a consequence:

n(1+2Inn)

7(6) < =3

= O(v/nlnn).



A resolving set of a graph is a set of vertices S such that the
distances to this set uniquely determine the vertices.



A resolving set of a graph is a set of vertices S such that the
distances to this set uniquely determine the vertices.

e N

Let G be a graph of diameter 2. Let dim(G) be the size of a
smallest resolving set of G.

dim(G) < ~'°(G) < 2dim(G) + 1

Strongly regular graphs have diameter 2.
— Our constructions give bounds for resolving sets in strongly
regular graphs.

Example : For G a GQ(s, t), c'|V[Y/* < dim(G) < | V[*/®



[ For any graph G, v/°(G) < +/P(G) < (1 +2In|V])-~v/P(G) ]

o New families with /2 and 4/ of the same order |V/|* with
ac{l/3,1/4,2/5}

@ There exists graphs with v/° and 'y,’cD not of the same order
(Paley graphs)..

o ... but /P is constant for them !

@ Existence of graphs with W}D not constant and /P not of the
same order ?

e Existence of graphs with order v/P strictly between fy)’cD and
v - In|V[?



