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Formal definition

An identifying code C is a subset of vertices such that

∀u ∈ V , N[u] ∩ C 6= ∅ (domination)

∀u, v ∈ V , N[u] ∩ C 6= N[v ] ∩ C (separation)
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Given a graph G , what is the minimum size γID(G ) of an
identifying code of G ?
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Linear programming formulation

A variable xu for each vertex u

Goal: minimize
∑

u∈V xu
Constraints: domination and separation

Minimize
∑
u∈V

xu

such that
∑

w∈N[u]

xw ≥ 1 ∀u ∈ V (domination)

∑
w∈N[u]∆N[v ]

xw ≥ 1 ∀u 6= v ∈ V (separation)

xu ∈ {0, 1} ∀u ∈ V

This problem is NP-complete... but its fractional relaxation is not !
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Fractional relaxation

Minimize
∑
u∈V

xu

such that
∑

w∈N[u]

xw ≥ 1 ∀u ∈ V (domination)

∑
w∈N[u]∆N[v ]

xw ≥ 1 ∀u 6= v ∈ V (separation)

xu ∈ [0, 1] ∀u ∈ V

Let γIDf (G ) be the optimal solution of this problem.

γIDf (G ) ≤ γID(G )



Vertex-transitive graphs

A graph is vertex-transitive if for any two vertices u and v , there is
an automorphism sending u to v .

Examples :

Properties:

All vertices have the same degree, denoted by k .

There is an optimal solution to the fractional program with all
the variables equal.
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Fractional value for VT-graphs

There is an optimal solution with xu = λ for all u ∈ V .

Minimize
∑
u∈V

xu

such that
∑

w∈N[u]

xw ≥ 1 ∀u ∈ V (domination)

⇒ λ ≥ 1/(k + 1)

∑
w∈N[u]∆N[v ]

xw ≥ 1 ∀u 6= v ∈ V (separation)

⇒ λ ≥ 1/d

xu ∈ [0, 1] ∀u ∈ V

where d is the smallest size of sets N[u]∆N[v ]

If G is vertex-transitive, γIDf (G ) = λ · |V | = |V |
min(k+1,d) .
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Example

If G is vertex-transitive, γIDf (G ) = λ · |V | = |V |
min(k+1,d) .

Cycle Cn

k = 2, d = 2

γIDf (Cn) = n
2

γID(Cn) ≤ n+3
2

1 ≤ γID(Cn)

γIDf (Cn)
≤ 1 + 3

n

How big can be the gap between γIDf and γID?

For any graph G , 1 ≤ γID(G)

γIDf (G)
≤ 1 + 2 ln |V |

The upperbound is good if γIDf is small, i.e. if k and d are large.
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Generalized quadrangles

A generalized quadrangle GQ(s, t) is an incidence structure of
points and lines such that:

each line contains s + 1 points,

each point is on t + 1 lines,

if a point P is not on a line L, there is a unique line trough P
intersecting L.

Adjacency graph: points are vertices, lines are clique.

Example:

The square grid n × n or as
a graph, the cartesian product
Kn�Kn, is a GQ(n − 1, 1).
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Some facts on GQ

Assume s > 1, t > 1

A GQ(s, t) is a strongly regular graph with parameters

srg((st + 1)(s + 1), s(t + 1), s − 1, t + 1).

If it is vertex-transitive,

γIDf (G ) =
s2t

st + s + 1
+ 1 = Θ(s).

We have s ≤ t2 and t ≤ s2. Therefore

c1|V |1/4 ≤ γIDf (G ) ≤ c2|V |2/5

The only known values of (s, t) for which there is GQ(s, t) are
(q − 1, q + 1), (q + 1, q − 1), (q, q), (q, q2), (q2, q), (q2, q3), (q3, q2)
where q is a prime power.
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A construction of GQ(q − 1, q + 1) for q = 2`

Step 1: construction of a hyperconic in the projective plane on Fq.

Projective plane on Fq, (X1,X2,X3)

C

Conic of equation X1X3 − X 2
2 = 0

contains q + 1 points

N

Nucleus
All the lines through N
intersect C in one point

Hyperconic: O = C ∪ {N}
q + 2 points

no 3 collinear points
a line intersects O in 0 or 2 points
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A construction of GQ(q − 1, q + 1) for q = 2`

Step 2: Construction of GQ.

Projective space of dim. 3 on Fq, (X0,X1,X2,X3)

C N H∞: projective plane
X0 = 0

Points: all except H∞

Lines: the ones trough O = C ∪ {N}

q3 points

q points by line

q + 2 lines by
point

unique projection
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An identifying code of GQ(q − 1, q + 1)

Three non coplanar lines through N form an identifying code.

C N

L3L2L1

P1

P2

Q3

Q2

Q1

Domination: using projection

Separation:

points on Li ?

adjacent points ?
non adj. points P1 and P2 ?

Assume

N[P1] ∩ C = N[P2] ∩ C = {Q1,Q2,Q3}

⇒ Q1,Q2,Q3 in a plane containing N

⇒ L1, L2, L3 are coplanar.
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Bounds for γID(GQ(q − 1, q + 1))

Three non coplanar lines through N form an identifying code.

Hence
γID(GQ(q − 1, q + 1)) ≤ 3q

− 3

Lower bound ?

Using the fractional value

γID(GQ(q − 1, q + 1)) ≥ q3

q2 + q − 1

With discharging methods (for q ≥ 32)

γID(GQ(q − 1, q + 1)) ≥ 3q − 7

Finally,
γID(GQ(q − 1, q + 1)) ' 3q ' 3|V |1/3.
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Other results

Let q be a prime power.

There exists a GQ(q, q) with identifying code of size

5q = Θ(|V |1/3).

There exists a GQ(q, q2) with identifying code of size

5q + 5 = Θ(|V |1/4).

There exists a GQ(q2, q) with identifying code of size

5q2 + 3 = Θ(|V |2/5).



Identifying codes in strongly regular graphs

For a srg(n, k, λ, µ), we have

d = min(2(k − 1− λ), 2(k + 1− µ)).

Let G be a primitive strongly regular graph srg(n, k , λ, µ),
then

k ≥
√

n − 1 and d ≥
√

n − 3.

As a consequence:

γID(G ) ≤ n(1 + 2 ln n)√
n − 3

= Θ(
√

n ln n).



Another interest of strongly regular graphs

A resolving set of a graph is a set of vertices S such that the
distances to this set uniquely determine the vertices.

Let G be a graph of diameter 2. Let dim(G ) be the size of a
smallest resolving set of G .

dim(G ) ≤ γID(G ) ≤ 2dim(G ) + 1

Strongly regular graphs have diameter 2.
→ Our constructions give bounds for resolving sets in strongly
regular graphs.
Example : For G a GQ(s, t), c ′|V |1/4 ≤ dim(G ) ≤ c2|V |2/5
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Conclusion

For any graph G , γIDf (G ) ≤ γID(G ) ≤ (1 + 2 ln |V |) · γIDf (G )

New families with γID and γIDf of the same order |V |α with
α ∈ {1/3, 1/4, 2/5}
There exists graphs with γID and γIDf not of the same order
(Paley graphs)..

... but γIDf is constant for them !

Existence of graphs with γIDf not constant and γID not of the
same order ?

Existence of graphs with order γID strictly between γIDf and
γIDf · ln |V |?


