Identifying codes in vertex-transitive graphs

Sylvain Gravier, Aline Parreau, Sara Rottey, Leo Storme and Élise Vandomme

$$
\text { ICGT } 2014 \text { - Grenoble }
$$

Identification in a finite set

How to choose the attributes to efficiently distinguish the individuals?

Identification in a finite set

How to choose the attributes to efficiently distinguish the individuals?

Identification in a finite set

How to choose the attributes to efficiently distinguish the individuals?

Identification in a graph

- Individuals are vertices of a graph
- Attributes are closed neighbourhoods of the vertices

Identification in a graph

- Individuals are vertices of a graph
- Attributes are closed neighbourhoods of the vertices

How many neighbourhoods/vertices to identify these points?

Identification in a graph

- Individuals are vertices of a graph
- Attributes are closed neighbourhoods of the vertices

How many neighbourhoods/vertices to identify these points?

Formal definition

An identifying code C is a subset of vertices such that

- $\forall u \in V$,
$N[u] \cap C \neq \emptyset$
(domination)
- $\forall u, v \in V, \quad N[u] \cap C \neq N[v] \cap C$
(separation)

$\mathrm{V} \backslash \mathrm{C}$	a	b	c	d
1	\bullet	\bullet	-	-
2	-	\bullet	-	-
3	-	\bullet	\bullet	-
4	-	-	\bullet	\bullet
5	\bullet	\bullet	\bullet	-
6	-	\bullet	\bullet	\bullet

Given a graph G, what is the minimum size $\gamma^{I D}(G)$ of an identifying code of G ?

Formal definition

An identifying code C is a subset of vertices such that

$$
\begin{array}{lll}
\text { - } \forall u \in V, & N[u] \cap C \neq \emptyset & \text { (domination) } \\
\text { - } \forall u, v \in V, & N[u] \cap C \neq N[v] \cap C & \text { (separation) }
\end{array}
$$

$\mathrm{V} \backslash \mathrm{C}$	a	b	c	d
1	\bullet	\bullet	-	-
2	-	\bullet	-	-
3	-	\bullet	\bullet	-
4	-	-	\bullet	\bullet
5	\bullet	\bullet	\bullet	-
6	-	\bullet	\bullet	\bullet

Given a graph G, what is the minimum size $\gamma^{I D}(G)$ of an identifying code of G ?

Formal definition

An identifying code C is a subset of vertices such that

$$
\begin{array}{lll}
\text { - } \forall u \in V, & N[u] \cap C \neq \emptyset & \text { (domination) } \\
\text { - } \forall u, v \in V, & N[u] \cap C \neq N[v] \cap C & \text { (separation) }
\end{array}
$$

$\mathrm{V} \backslash \mathrm{C}$	a	b	c	d
1	\bullet	\bullet	-	-
2	-	\bullet	-	-
3	-	\bullet	\bullet	-
4	-	-	\bullet	\bullet
5	\bullet	\bullet	\bullet	-
6	-	\bullet	\bullet	\bullet

Given a graph G, what is the minimum size $\gamma^{I D}(G)$ of an identifying code of G ?

Formal definition

An identifying code C is a subset of vertices such that

- $\forall u \in V$,
$N[u] \cap C \neq \emptyset$
(domination)
- $\forall u, v \in V, \quad N[u] \cap C \neq N[v] \cap C$
(separation)

Given a graph G, what is the minimum size $\gamma^{I D}(G)$ of an identifying code of G ?

Linear programming formulation

- A variable x_{u} for each vertex u

$$
x_{u} \in\{0,1\} \quad \forall u \in V
$$

Linear programming formulation

- A variable x_{u} for each vertex u
- Goal: minimize $\sum_{u \in V} x_{u}$

Minimize

$$
\begin{aligned}
& \sum_{u \in V} x_{u} \\
& \\
& x_{u} \in\{0,1\} \quad \forall u \in V
\end{aligned}
$$

Linear programming formulation

- A variable x_{u} for each vertex u
- Goal: minimize $\sum_{u \in V} x_{u}$
- Constraints: domination and separation

$$
\begin{array}{llll}
\text { Minimize } & \sum_{u \in V} x_{u} & \\
\text { such that } & \sum_{w \in N[u]} x_{w} \geq 1 \quad \forall u \in V & \text { (domination) } \\
& \sum_{w \in N[u] \Delta N[v]} x_{w} \geq 1 \quad \forall u \neq v \in V & \text { (separation) } \\
& x_{u} \in\{0,1\} & \forall u \in V &
\end{array}
$$

This problem is NP-complete... but its fractional relaxation is not !

Fractional relaxation

Minimize

$$
\sum_{u \in V} x_{u}
$$

such that

$$
\begin{array}{ccc}
\sum_{w \in N[u]} x_{w} \geq 1 \quad \forall u \in V & \text { (domination) } \\
\sum_{w \in N[u] \Delta N[v]} x_{w} \geq 1 & \forall u \neq v \in V & \text { (separation) } \\
x_{u} \in[0,1] & \forall u \in V &
\end{array}
$$

Let $\gamma_{f}^{I D}(G)$ be the optimal solution of this problem.

$$
\gamma_{f}^{I D}(G) \leq \gamma^{I D}(G)
$$

Vertex-transitive graphs

A graph is vertex-transitive if for any two vertices u and v, there is an automorphism sending u to v.

Examples:

Vertex-transitive graphs

A graph is vertex-transitive if for any two vertices u and v, there is an automorphism sending u to v.

Examples:

Vertex-transitive graphs

A graph is vertex-transitive if for any two vertices u and v, there is an automorphism sending u to v.

Examples:

$\checkmark \quad \times$

Properties:

- All vertices have the same degree, denoted by k.
- There is an optimal solution to the fractional program with all the variables equal.

Fractional value for VT-graphs

There is an optimal solution with $x_{u}=\lambda$ for all $u \in V$.

$$
\begin{array}{lll}
\text { Minimize } & \sum_{u \in V} x_{u} & \\
\text { such that } & \sum_{w \in N[u]} x_{w} \geq 1 \quad \forall u \in V & \text { (domination) } \\
& \sum_{w \in N[u] \Delta N[v]} x_{w} \geq 1 \quad \forall u \neq v \in V & \text { (separation) } \\
& x_{u} \in[0,1] & \forall u \in V
\end{array}
$$

Fractional value for VT-graphs

There is an optimal solution with $x_{u}=\lambda$ for all $u \in V$.

$$
\begin{aligned}
& \text { Minimize } \\
& \sum_{u \in V} x_{u} \\
& \sum_{w \in N[u]} x_{w} \geq 1 \quad \forall u \in V \quad \text { (domination) } \\
& \Rightarrow \lambda \geq 1 /(k+1) \\
& \text { (separation) } \\
& x_{u} \in[0,1] \\
& \forall u \in V
\end{aligned}
$$

Fractional value for VT-graphs

There is an optimal solution with $x_{u}=\lambda$ for all $u \in V$.

$$
\begin{array}{lll}
\text { Minimize } & \sum_{u \in V} x_{u} & \\
\text { such that } & \sum_{w \in N[u]} x_{w} \geq 1 & \forall u \in V
\end{array} \quad \begin{gathered}
\text { (domination) } \\
\\
\\
\\
\\
\\
\\
\sum_{w \in N[u] \Delta N[v]} x_{w} \geq 1
\end{gathered} \quad \forall u \neq v \in V \quad \begin{aligned}
& \text { (separation) } \\
& x_{u} \in[0,1]
\end{aligned} \quad \forall u \in V \quad \begin{aligned}
& \\
&
\end{aligned}
$$

where d is the smallest size of sets $N[u] \Delta N[v]$

Fractional value for VT-graphs

There is an optimal solution with $x_{u}=\lambda$ for all $u \in V$.

$$
\left.\begin{array}{lll}
\text { Minimize } & \sum_{u \in V} x_{u} & \\
\text { such that } & \sum_{w \in N[u]} x_{w} \geq 1 \quad \forall u \in V & \text { (domination) } \\
& \sum_{w \in N[u] \Delta N[v]} x_{w} \geq 1 \quad \forall u \neq v \in V & \begin{array}{l}
\lambda \geq 1 /(k+1) \\
\text { (separation) }
\end{array} \\
& x_{u} \in[0,1] & \forall u \in V
\end{array} \quad \Rightarrow \lambda \geq 1 / d\right)
$$

where d is the smallest size of sets $N[u] \Delta N[v]$

If G is vertex-transitive, $\gamma_{f}^{I D}(G)=\lambda \cdot|V|=\frac{|V|}{\min (k+1, d)}$.

Example

$$
\text { If } G \text { is vertex-transitive, } \gamma_{f}^{I D}(G)=\lambda \cdot|V|=\frac{|V|}{\min (k+1, d)}
$$

Cycle \mathcal{C}_{n}

$$
k=2, d=2
$$

- $\gamma_{f}^{I D}\left(\mathcal{C}_{n}\right)=\frac{n}{2}$
- $\gamma^{I D}\left(\mathcal{C}_{n}\right) \leq \frac{n+3}{2}$
- $1 \leq \frac{\gamma^{I D}\left(\mathcal{C}_{n}\right)}{\gamma_{f}^{\prime D}\left(\mathcal{C}_{n}\right)} \leq 1+\frac{3}{n}$

Example

$$
\text { If } G \text { is vertex-transitive, } \gamma_{f}^{I D}(G)=\lambda \cdot|V|=\frac{|V|}{\min (k+1, d)}
$$

Cycle \mathcal{C}_{n}

- $\gamma_{f}^{I D}\left(\mathcal{C}_{n}\right)=\frac{n}{2}$
- $\gamma^{I D}\left(\mathcal{C}_{n}\right) \leq \frac{n+3}{2}$

$$
k=2, d=2
$$

$$
\text { - } 1 \leq \frac{\gamma^{I D}\left(\mathcal{C}_{n}\right)}{\gamma_{f}^{\gamma_{n}}\left(\mathcal{C}_{n}\right)} \leq 1+\frac{3}{n}
$$

How big can be the gap between $\gamma_{f}^{I D}$ and $\gamma^{I D}$?
For any graph $G, 1 \leq \frac{\gamma^{I D}(G)}{\gamma_{f}^{I D}(G)} \leq 1+2 \ln |V|$

Example

$$
\text { If } G \text { is vertex-transitive, } \gamma_{f}^{I D}(G)=\lambda \cdot|V|=\frac{|V|}{\min (k+1, d)}
$$

Cycle \mathcal{C}_{n}

- $\gamma_{f}^{I D}\left(\mathcal{C}_{n}\right)=\frac{n}{2}$
- $\gamma^{I D}\left(\mathcal{C}_{n}\right) \leq \frac{n+3}{2}$

$$
k=2, d=2
$$

How big can be the gap between $\gamma_{f}^{I D}$ and $\gamma^{I D}$?
For any graph $G, 1 \leq \frac{\gamma^{I D}(G)}{\gamma_{f}^{I D}(G)} \leq 1+2 \ln |V|$

The upperbound is good if $\gamma_{f}^{I D}$ is small, i.e. if k and d are large.

Generalized quadrangles

A generalized quadrangle $G Q(s, t)$ is an incidence structure of points and lines such that:

- each line contains $s+1$ points,
- each point is on $t+1$ lines,
- if a point P is not on a line L, there is a unique line trough P intersecting L.

Generalized quadrangles

A generalized quadrangle $G Q(s, t)$ is an incidence structure of points and lines such that:

- each line contains $s+1$ points,
- each point is on $t+1$ lines,
- if a point P is not on a line L, there is a unique line trough P intersecting L.
Adjacency graph: points are vertices, lines are clique.

Generalized quadrangles

A generalized quadrangle $G Q(s, t)$ is an incidence structure of points and lines such that:

- each line contains $s+1$ points,
- each point is on $t+1$ lines,
- if a point P is not on a line L, there is a unique line trough P intersecting L.
Adjacency graph: points are vertices, lines are clique.
Example:
The square grid $n \times n$ or as a graph, the cartesian product $K_{n} \square K_{n}$, is a $G Q(n-1,1)$.

Some facts on GQ

Assume $s>1, t>1$

- A $G Q(s, t)$ is a strongly regular graph with parameters

$$
\operatorname{srg}((s t+1)(s+1), s(t+1), s-1, t+1) .
$$

Some facts on GQ

Assume $s>1, t>1$

- A $G Q(s, t)$ is a strongly regular graph with parameters

$$
\operatorname{srg}((s t+1)(s+1), s(t+1), s-1, t+1) .
$$

- If it is vertex-transitive,

$$
\gamma_{f}^{I D}(G)=\frac{s^{2} t}{s t+s+1}+1=\Theta(s)
$$

- We have $s \leq t^{2}$ and $t \leq s^{2}$. Therefore

$$
c_{1}|V|^{1 / 4} \leq \gamma_{f}^{I D}(G) \leq c_{2}|V|^{2 / 5}
$$

Some facts on GQ

Assume $s>1, t>1$

- A $G Q(s, t)$ is a strongly regular graph with parameters

$$
\operatorname{srg}((s t+1)(s+1), s(t+1), s-1, t+1)
$$

- If it is vertex-transitive,

$$
\gamma_{f}^{I D}(G)=\frac{s^{2} t}{s t+s+1}+1=\Theta(s)
$$

- We have $s \leq t^{2}$ and $t \leq s^{2}$. Therefore

$$
c_{1}|V|^{1 / 4} \leq \gamma_{f}^{I D}(G) \leq c_{2}|V|^{2 / 5}
$$

- The only known values of (s, t) for which there is $G Q(s, t)$ are $(q-1, q+1),(q+1, q-1),(q, q),\left(q, q^{2}\right),\left(q^{2}, q\right),\left(q^{2}, q^{3}\right),\left(q^{3}, q^{2}\right)$ where q is a prime power.

A construction of $G Q(q-1, q+1)$ for $q=2^{\ell}$

Step 1: construction of a hyperconic in the projective plane on \mathbb{F}_{q}.

Projective plane on $\mathbb{F}_{q},\left(X_{1}, X_{2}, X_{3}\right)$

A construction of $G Q(q-1, q+1)$ for $q=2^{\ell}$

Step 1: construction of a hyperconic in the projective plane on \mathbb{F}_{q}.

Projective plane on $\mathbb{F}_{q},\left(X_{1}, X_{2}, X_{3}\right)$

Conic of equation $X_{1} X_{3}-X_{2}^{2}=0$ contains $q+1$ points

A construction of $G Q(q-1, q+1)$ for $q=2^{\ell}$

Step 1: construction of a hyperconic in the projective plane on \mathbb{F}_{q}.

Projective plane on $\mathbb{F}_{q},\left(X_{1}, X_{2}, X_{3}\right)$

Conic of equation $X_{1} X_{3}-X_{2}^{2}=0$ contains $q+1$ points

A construction of $G Q(q-1, q+1)$ for $q=2^{\ell}$

Step 1: construction of a hyperconic in the projective plane on \mathbb{F}_{q}.

Projective plane on $\mathbb{F}_{q},\left(X_{1}, X_{2}, X_{3}\right)$

Nucleus
All the lines through N intersect \mathcal{C} in one point

Conic of equation $X_{1} X_{3}-X_{2}^{2}=0$ contains $q+1$ points

Hyperconic: $\mathcal{O}=\mathcal{C} \cup\{N\}$ $q+2$ points
no 3 collinear points
a line intersects \mathcal{O} in 0 or 2 points

A construction of $G Q(q-1, q+1)$ for $q=2^{\ell}$

Step 2: Construction of GQ.

Projective space of dim. 3 on $\mathbb{F}_{q},\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$

H_{∞} : projective plane $X_{0}=0$

A construction of $G Q(q-1, q+1)$ for $q=2^{\ell}$

Step 2: Construction of GQ.
Projective space of dim. 3 on $\mathbb{F}_{q},\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$

A construction of $G Q(q-1, q+1)$ for $q=2^{\ell}$

Step 2: Construction of GQ.
Projective space of dim. 3 on $\mathbb{F}_{q},\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$

H_{∞} : projective plane

$$
X_{0}=0
$$

Points: all except H_{∞}
Lines: the ones trough $\mathcal{O}=\mathcal{C} \cup\{N\}$

A construction of $G Q(q-1, q+1)$ for $q=2^{\ell}$

Step 2: Construction of GQ.
Projective space of dim. 3 on $\mathbb{F}_{q},\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$

H_{∞} : projective plane

$$
x_{0}=0
$$

Points: all except H_{∞}
Lines: the ones trough $\mathcal{O}=\mathcal{C} \cup\{N\}$

- q^{3} points
- q points by line
- $q+2$ lines by point
- unique projection

An identifying code of $G Q(q-1, q+1)$

Three non coplanar lines through N form an identifying code.

- Domination: using projection

An identifying code of $G Q(q-1, q+1)$

Three non coplanar lines through N form an identifying code.

- Domination: using projection
- Separation:

An identifying code of $G Q(q-1, q+1)$

Three non coplanar lines through N form an identifying code.

- Domination: using projection
- Separation:
- points on L_{i} ?

An identifying code of $G Q(q-1, q+1)$

Three non coplanar lines through N form an identifying code.

- Domination: using projection
- Separation:
- points on L_{i} ?
- adjacent points ?

An identifying code of $G Q(q-1, q+1)$

Three non coplanar lines through N form an identifying code.

- Domination: using projection
- Separation:
- points on L_{i} ?
- adjacent points ?

An identifying code of $G Q(q-1, q+1)$

Three non coplanar lines through N form an identifying code.

- Domination: using projection
- Separation:
- points on L_{i} ?
- adjacent points ?
- non adj. points P_{1} and P_{2} ?

Assume

$$
N\left[P_{1}\right] \cap C=N\left[P_{2}\right] \cap C=\left\{Q_{1}, Q_{2}, Q_{3}\right\}
$$

An identifying code of $G Q(q-1, q+1)$

Three non coplanar lines through N form an identifying code.

- Domination: using projection
- Separation:
- points on L_{i} ?
- adjacent points ?
- non adj. points P_{1} and P_{2} ?

Assume

$$
\begin{aligned}
& N\left[P_{1}\right] \cap C=N\left[P_{2}\right] \cap C=\left\{Q_{1}, Q_{2}, Q_{3}\right\} \\
& \Rightarrow Q_{1}, Q_{2}, Q_{3} \text { in a plane containing } N \\
& \Rightarrow L_{1}, L_{2}, L_{3} \text { are coplanar. }
\end{aligned}
$$

Bounds for $\gamma^{I D}(G Q(q-1, q+1))$

Three non coplanar lines through N form an identifying code.

Hence

$$
\gamma^{I D}(G Q(q-1, q+1)) \leq 3 q
$$

Bounds for $\gamma^{I D}(G Q(q-1, q+1))$

Three non coplanar lines through N form an identifying code.

Hence

$$
\gamma^{I D}(G Q(q-1, q+1)) \leq 3 q-3
$$

Bounds for $\gamma^{I D}(G Q(q-1, q+1))$

Three non coplanar lines through N form an identifying code.

Hence

$$
\gamma^{I D}(G Q(q-1, q+1)) \leq 3 q-3
$$

Lower bound ?

- Using the fractional value

$$
\gamma^{I D}(G Q(q-1, q+1)) \geq \frac{q^{3}}{q^{2}+q-1}
$$

Bounds for $\gamma^{I D}(G Q(q-1, q+1))$

Three non coplanar lines through N form an identifying code.

Hence

$$
\gamma^{I D}(G Q(q-1, q+1)) \leq 3 q-3
$$

Lower bound ?

- Using the fractional value

$$
\gamma^{I D}(G Q(q-1, q+1)) \geq \frac{q^{3}}{q^{2}+q-1}
$$

- With discharging methods (for $q \geq 32$)

$$
\gamma^{I D}(G Q(q-1, q+1)) \geq 3 q-7
$$

Finally,

$$
\gamma^{I D}(G Q(q-1, q+1)) \simeq 3 q \simeq 3|V|^{1 / 3}
$$

Other results

Let q be a prime power.

- There exists a $G Q(q, q)$ with identifying code of size

$$
5 q=\Theta\left(|V|^{1 / 3}\right)
$$

- There exists a $G Q\left(q, q^{2}\right)$ with identifying code of size

$$
5 q+5=\Theta\left(|V|^{1 / 4}\right)
$$

- There exists a $G Q\left(q^{2}, q\right)$ with identifying code of size

$$
5 q^{2}+3=\Theta\left(|V|^{2 / 5}\right)
$$

Identifying codes in strongly regular graphs

For a $\operatorname{srg}(n, k, \lambda, \mu)$, we have

$$
d=\min (2(k-1-\lambda), 2(k+1-\mu)) .
$$

Let G be a primitive strongly regular $\operatorname{graph} \operatorname{srg}(n, k, \lambda, \mu)$, then

$$
k \geq \sqrt{n-1} \text { and } d \geq \sqrt{n}-3
$$

As a consequence:

$$
\gamma^{I D}(G) \leq \frac{n(1+2 \ln n)}{\sqrt{n}-3}=\Theta(\sqrt{n} \ln n)
$$

Another interest of strongly regular graphs

A resolving set of a graph is a set of vertices S such that the distances to this set uniquely determine the vertices.

Another interest of strongly regular graphs

A resolving set of a graph is a set of vertices S such that the distances to this set uniquely determine the vertices.

Let G be a graph of diameter 2. Let $\operatorname{dim}(G)$ be the size of a smallest resolving set of G.

$$
\operatorname{dim}(G) \leq \gamma^{I D}(G) \leq 2 \operatorname{dim}(G)+1
$$

Strongly regular graphs have diameter 2.
\rightarrow Our constructions give bounds for resolving sets in strongly regular graphs.
Example: For G a $G Q(s, t), c^{\prime}|V|^{1 / 4} \leq \operatorname{dim}(G) \leq c_{2}|V|^{2 / 5}$

Conclusion

For any graph $G, \gamma_{f}^{I D}(G) \leq \gamma^{I D}(G) \leq(1+2 \ln |V|) \cdot \gamma_{f}^{I D}(G)$

- New families with $\gamma^{I D}$ and $\gamma_{f}^{I D}$ of the same order $|V|^{\alpha}$ with $\alpha \in\{1 / 3,1 / 4,2 / 5\}$
- There exists graphs with $\gamma^{I D}$ and $\gamma_{f}^{I D}$ not of the same order (Paley graphs)..
- ... but $\gamma_{f}^{I D}$ is constant for them !
- Existence of graphs with $\gamma_{f}^{I D}$ not constant and $\gamma^{I D}$ not of the same order ?
- Existence of graphs with order $\gamma^{I D}$ strictly between $\gamma_{f}^{I D}$ and $\gamma_{f}^{I D} \cdot \ln |V|$?

