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Abstract
Background: Intestinal mucus production by hyperplasic goblet cells is a striking pathological
feature of many parasitic helminth infections and is related to intestinal protection and worm
expulsion. Induction of goblet cell hyperplasia is associated with TH2 immune responses, which in
helminth infections are controlled primarily by IL-13, and also IL-4. In the study presented here we
examine the goblet cell hyperplasic response to three experimental parasitic helminth infections;
namely Nippostrongylus brasiliensis, Syphacia obvelata and Schistosoma mansoni.

Results: As expected N. brasiliensis infection induced a strong goblet cell hyperplasia dependent on
IL-4/IL-13/IL-4Rα expression. In contrast, and despite previously published transiently elevated IL-
4/IL-13 levels, S. obvelata infections did not increase goblet cell hyperplasia in the colon.
Furthermore, induction of goblet cell hyperplasia in response to S. mansoni eggs traversing the
intestine was equivalent between BALB/c, IL-4/IL-13-/- and IL-4Rα-/- mice.

Conclusion: Together these data demonstrate that intestinal goblet cell hyperplasia can be
independent of TH2 immune responses associated with parasitic helminth infections.

Background
Interleukin (IL)-4 and IL-13 are related cytokines and the
dominant mediators of TH2 immune responses [1-3]. Sig-
nalling by both cytokines is dependent on binding to het-
erodimeric receptors containing the IL-4 receptor α chain
(IL-4Rα). Ligand binding results in intracellular signalling
pathways activating the TH2 defining transcription factors
STAT-6 and/or GATA-3 [4,5]. This polarisation to a TH2

immune response is essential for the successful resolution
of a number of helminth infections [6-10].

Actual worm expulsion, in nematode infections, is associ-
ated with increased IL-13/IL-4Rα/STAT-6 dependent
intestinal smooth muscle contractions, epithelial cell
turnover and goblet cell hyperplasia [11-13]. Infections of
IL-4-/-, IL-13-/-, IL-4Rα-/- and Stat 6-/- mice with the nema-
todes Trichuris muris, Heligmosomoides polygyrus and Nip-
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postrongylus brasiliensis have demonstrated a positive
relationship between polarisation to a TH2 immune
response, goblet cell hyperplasia and worm expulsion
[14-19]. In support of a role for goblet cell derived mucus
in worm expulsion in vitro experiments have demon-
strated increased viscosity of mileu surrounding N. brasil-
iensis at an equivalent density to intestinal mucus inhibits
worm movement [20]. Moreover, isolation of the goblet
cell secreted protein RELMβ/FIZZ2 and incubation with
parasitic nematodes in vitro results in impaired chemotac-
tic function in the worm [21]. These observations have led
to TH2 induced goblet cell hyperplasia being considered a
key mechanistic factor in resolving gastrointestinal related
nematode infections [22-24]

Intestinal goblet cell hyperplasia in Schistosoma mansoni
(S. mansoni) infections is driven by parasite eggs traversing
the intestine [8,25], as opposed to nematode infections
where adult worms residing in the intestine induce the
goblet cell responses [8,9,26]. S. mansoni eggs produced
by adults residing in the mesenteric venules move from
the blood vessels through the intestine passing to the
lumen. This movement of eggs generates considerable tis-
sue damage as well as inducing a strong mucosal response
in the intestine [8,27]. As with nematode infections, S.
mansoni induced mucus production has been considered
to be TH2 dependant [22,28-30].

In this study we examined goblet cell hyperplasia in
response to infection with the nematodes N. brasiliensis
and Syphacia obvelata and the trematode S. mansoni. As
already published N. brasiliensis infection induced a gob-
let cell hyperplasic response dependent on IL-4/IL-13/IL-
4Rα expression [9]. However, infection with the nema-
tode S. obvelata did not increase goblet cell hyperplasia in
the host colon, irrespective of IL-4Rα expression. Such
data demonstrates that IL-4Rα driven goblet cell hyperpla-
sia may not be essential for the clearance of all gastro-
intestinal nematode infections. Furthermore, we also
show S. mansoni induced goblet cell hyperplasia to be
independent of IL-4/IL-13 responsiveness. This data rep-
resents the first demonstration of goblet cell hyperplasia
and mucus production in response to helminth infections
being independent of IL-4/IL-13.

Results
N. brasiliensis infection induces IL-4/IL-13 dependent 
goblet cell hyperplasia while S. obvelata infection does 
not induce goblet cell hyperplasia
Examination of IL-4/IL-13 dependent goblet cell hyper-
plasic responses in the intestinal niches utilised by the
nematodes N. brasiliensis and S. obvelata infections was
carried out in BALB/c, IL-4/IL-13-/-, IL-4-/- and IL-4Rα-/-

mice.

N. brasiliensis infected BALB/c mice demonstrated signifi-
cantly higher levels of goblet cell hyperplasia in the small
intestine at both days 7 and 10 post infection (PI) when
compared to naïve mice (Figure 1A). However, no signifi-
cant increase in the number of goblet cells in the intestine
could be detected in infected and naïve IL-4/IL-13-/- or
IL4Rα-/- mice when compared to naïve controls (Figure
1A). Examination of intestinal worm burdens in BALB/c
mice showed resolution of infection by day 10 PI. Both IL-
4/IL-13-/- and IL-4Rα-/- mice failed to expel adult worms by
day 10 PI (Figure 1B). These data confirm N. brasiliensis
clearance to be associated with an IL-4/13/IL-4Rα
dependent goblet cell hyperplasia.

S. obvelata adult worm burdens in infected wild type mice
are only detectable by day 28 PI (approx. 1.25 worms/cae-
cum), this burden peaks by day 35 PI to approximately 21
worms/caecum. Infection of IL-4Rα-/- mice results in con-
siderably higher worm burdens (approx. 251 worms/cae-
cum at day 28 PI and 400 worms/caecum at day 35 PI)
when compared to wild type mice [10]. In contrast to N.
brasiliensis infected mice, no induction of goblet cell
hyperplasia in the colon of S. obvelata infected BALB/c, IL-
4Rα-/- and IL-4-/- mice was seen (Figure 2A and 2B). This
lack of a goblet cell response was irrespective of height-
ened levels of the TH2 cytokine IL-4 at day 7 PI (p < 0.01)
in BALB/c restimulated splenocytes isolated from infected
mice (Figure 2C) BALB/c IL-4 levels declined to that found
in naïve mice at day 14 PI. IL-4Rα-/- mice failed to demon-
strate any significant increase in IL-4 production when
compared to naïve mice.

Together these data demonstrate that S. obvelata infections
do not induce a colonic mucus response even though lev-
els of IL-4 and other TH2 cytokines are significantly
increased [10]

Schistosoma mansoni induces goblet cell hyperplasia in 
the intestine in an IL-4/IL-13 independent manner
S. mansoni infection induces a strong TH2 immune
response and goblet cell hyperplasia related to parasite
egg production [25,31] In order to confirm the role of par-
asite eggs in induction of goblet cell hyperplasia, we ana-
lysed the hyperplasic response at 5 weeks PI (before the
peak of egg production) and at the peak of parasite egg
production; 8 weeks PI. While no difference in the
number of goblet cells could be detected in the intestine
of naïve or infected BALB/c at 5 weeks PI (data not
shown), a strong induction of goblet cell hyperplasia was
detected at 8 weeks PI (Figure 3B and 3C). To establish
whether this hyperplasic response was dependent on IL-4/
IL-13/IL-4Rα responsiveness we examined the intestines
of infected IL-4/IL-13-/- and IL-4Rα-/- mice at 8 weeks PI.
Here we found no difference in the numbers of eggs accu-
mulating in the small intestine and large intestine
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between BALB/c, IL-4/IL-13-/- and IL-4Rα-/- mice (Figure
3A and 4A). Goblet cell hyperplasia in the small intestine
of all infected mouse groups was significantly elevated
above naïve controls (Figures 3B, C(i) and 3C(ii)). Fur-
thermore, equivalent levels of goblet cell hyperplasia were
found in the intestine of all infected mice groups (Figures
3B and 3C). To demonstrate if IL-4/IL-13/IL-4Rα inde-
pendent goblet cell hyperplasia occurred throughout the
intestine we also examined the colon of both naïve and
infected mice. As with the small intestine goblet cell
hyperplasia was elevated above naïve controls in all
mouse groups and no differences were found between
infected groups (Figure 4B and 4C). Together these results
demonstrate IL-4/IL-13/IL-4Rα independent goblet cell
hyperplasia in the intestine of mice infected with S. man-
soni.

Discussion
Our data demonstrates that (i) goblet cell hyperplasia is
dependent on helminth species and (ii) IL-4/IL-13
responsiveness is not required for induction of S. mansoni
egg induced goblet cell hyperplasia.

It has previously been demonstrated that N. brasiliensis [9]
and S. obvelata [10] infected IL-4-/-, IL-13-/- and IL-4Rα-/-

mice have impaired worm expulsion, while in S. mansoni
infections IL-4/IL-13 signalling is essential for host sur-

vival [8]. A common feature of both N. brasiliensis and S.
mansoni infections is the hosts' goblet cell hyperplasic
response to the parasite. Such responses have previously
been considered to be dependent, in part at least, on the
hosts TH2 polarised immune response [9,32]. From the
data presented here and in other studies this does indeed
appear to be the case in N. brasiliensis infections[6,8,9].
Work on other parasitic nematode models such a T. muris
also show a TH2 dependent worm expulsion and goblet
cell response [16]. However, in this study we have demon-
strated that this may not be the case for all intestinal nem-
atode infections.

Following oral infection with S. obvelata eggs, larvae
emerge in the hosts small intestine at 7 day PI [33]. From
here the larvae migrate, mature and establish the defini-
tive infection in the hosts cecum and colon. We found the
hosts TH2 immune response to peak at day 7 PI and then
decreases from at least day 14 PI. Previous work has
shown that by day 35 PI this response is undetectable
[10]. Together, these data demonstrate a transient TH2
response to this infection. TH2 responses in other intesti-
nal nematode infections result in strong goblet cell hyper-
plasic responses [14,17-19]. However, mice infected with
S. obvelata failed to generate hyperplasic goblet cell
responses, suggesting that TH2 induction of intestinal
mucus responses is not a common feature of intestinal

Goblet cell hyperplasia in N. brasiliensis infectionFigure 1
Goblet cell hyperplasia in N. brasiliensis infection. A) Goblet cell quantification naïve mice and N. brasiliensis infected 
BALB/c (solid bar), IL-4Rα-/- (open bar) and IL-4/IL-13-/- (gray bar) mice 7 days and 10 days PI in small intestine sections. B) 
Intestinal adult worm burden 7 and 10 days post infection. Data representative of two experiments are shown. Data are means 
of four mice per group ± SEM. * P < 0.05; *** P < 0.001 (significantly different from naïve mice).
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nematode infections, or that the TH2 response needs to be
sustained. Other factors such as prostaglandins [34],
cholinergic [13] and non-cholinergic [13] agonist may
also play a role. Additionally, the different niches occu-
pied by various species of parasitic nematodes could effect
the host response to them [35]. S. obvelata infections do
not cause major pathology in the intestine [36] as
opposed to N. brasiliensis and T. muris which cause consid-
erable histological damage to the hosts intestinal architec-
ture [9,22]. Such differences in worm pathogenicity may
explain the lack of a goblet cell response in S. obvelata
infections, irrespective of the hosts TH2 polarisation [10].

S. mansoni infection induces a strong TH2 response initi-
ated by worm egg production at week 4 PI and persists
throughout the infection [37]. Associated with this are sig-
nificant levels of goblet cell hyperplasia in the intestine
[25,31]. S. mansoni egg antigens have previously been
shown to also induce goblet cell hyperplasia in the lung in
a IL-4Rα dependent manner [32]. However the role of IL-
4Rα in goblet cell hyperplasia in the intestine during the
live infection has not been shown. An explanation for the
IL-4Rα independent hyperplasia described here could be
the mode of S. mansoni infection and its interaction with
the hosts' tissue. S. mansoni eggs cause pathology from the
adventitial surface of the intestine, as opposed to nema-
todes driving the pathology from the lumen. We propose 

Goblet cell hyperplasia in S. obvelata infectionFigure 2
Goblet cell hyperplasia in S. obvelata infection. (A) Photomicrograph of colon from BALB/c, IL-4Rα-/- and IL-4-/-. Repre-
sentative pictures of colon sections are shown from both naïve (i) and pinworm infected mice at 7 (ii) and 14 days PI (iii). Sec-
tions were stained with PAS to identify goblet cells. 100× magnification. (B) Quantification of goblet cells per crypt in colon 7 
and 14 days PI in BALB/c (solid bar), IL-4Rα-/- (open bar) and IL-4/IL-13-/- (gray bar). Data representative of two experiments 
are shown. Data are means of four mice per group ± SEM. (C) S. obvelata dependent IL-4 secretion from anti-CD3 restimulated 
splenocytes. BALB/c (solid bar), IL-4Rα-/- (open bar). **, P < 0.01 (significantly different from naive mice). Data representative 
of two experiments showing means for four mice/group ± SD.
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Goblet cell hyperplasia in ileum during S. mansoni infectionFigure 3
Goblet cell hyperplasia in ileum during S. mansoni infection. (A) S. mansoni egg content in the ileum of BALB/c (solid 
bar), IL-4Rα-/- (open bar) and IL-4/IL-13-/- (gray bar) mice at 8 weeks PI. Data are pooled from 2 to 4 individual experiments. 
Data are means of these experiments ± SEM. (B) Quantification of goblet cells per villus in ileum of naïve mice and 8 weeks PI 
from BALB/c (black bars), IL-4Rα-/- (open bar) and IL-4/IL-13-/- (gray bar). Data representative of three experiments are shown. 
* P < 0.05 (significantly different from naïve mice). (C) Photomicrograph of ileum from BALB/c, IL-4Rα-/- and IL-4/IL-13-/-. Repre-
sentative pictures of ileum sections are shown from both naïve (i) and S. mansoni infected mice at 8 weeks PI (ii). Sections were 
stained with PAS to identify goblet cells. 100× magnification.
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Goblet cell hyperplasia in the colon during S. mansoni infectionFigure 4
Goblet cell hyperplasia in the colon during S. mansoni infection. (A) Tissue egg content of the colon from S. mansoni 
infected BALB/c (solid bar), IL-4Rα-/- (open bar) and IL-4/IL-13-/- (gray bar) mice at 8 weeks PI. Data are pooled from 2 to 4 
individual experiments. Data are means of these experiments ± SEM. (B) Quantification of goblet cell number per villus in colon 
of naïve mice and 8 weeks PI from BALB/c (solid bar), IL-4Rα-/- (open bar) and IL-4/IL-13-/- (gray bar) mice. Data representative 
of three experiments are shown. * P < 0.05 (significantly different from naïve mice). (C) Photomicrograph of colon from BALB/
c, IL-4Rα-/- and IL-4/IL-13-/-. Representative pictures of colon sections are shown from both naïve (i) and S. mansoni infected 
mice at 8 weeks PI (ii). Sections were stained with PAS to identify goblet cells. 100× magnification
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that the severe tissue damage resulting from the eggs
migration from the adventitial surface to the lumen is
capable of initiating a goblet cell response, independently
of IL-4 and IL-13 signalling during S. mansoni infection.

In addition to IL-4/IL-13 other cytokines may act to
induce goblet cells hyperplasia. IL-9 and IL-5 have previ-
ously been shown to play a role in directly inducing IL-4/
IL-13 independent goblet cell hyperplasia in lung models
[38,39]. IL-9 overexpressing transgenic mice infected with
S. mansoni do have increased goblet cell hyperplasia [40].
However IL-9 transgenic mice also had increased IL-4 and
IL-13 compared to wild type mice, and therefore it cannot
be concluded that IL-9 directly increases goblet cell hyper-
plasia. Furthermore IL-9 levels are decreased in N. brasil-
iensis infected IL-4Rα-/- mice [9]. As such IL-4/IL-13
independent intestinal goblet cell hyperplasia may not be
due to increased IL-9. No clear reports linking IL-5 to gob-
let cell hyperplasia during S. mansoni infection have
reported. As IL-4Rα-/- mice have decreased IL-5 expression
it is also unlikely that IL-5 induces intestinal goblet cell
hyperplasia in S. mansoni infections [8].

Conclusion
Our results demonstrate for the first time that intestinal
goblet cell hyperplasia in response to parasitic helminth
infections can occur independently of IL-4/IL-13 signal-
ling and that intestinal nematode infections may not
always induce a goblet cell response.

Methods
Mouse strains
IL-4-/- [41] IL-4/13-/-[2] and IL-4Rα-/- [3] mice were gener-
ated on a BALB/c background. BALB/c mice were used as
controls in all experiments. All mice were age and sex
matched. Mice were kept in the Health Science Faculty
animal unit of the University of Cape Town (UCT), in
individually ventilated cages under specific-pathogen-free
(SPF) conditions. All experiments were performed in
accordance with guidelines laid down by the Animal Eth-
ics Research Board of UCT (Cape Town, South Africa).

Parasites and infection
Syphacia obvelata
Infection and recovery of S. obvelata were performed as
previously described [33]. Briefly, eggs of S. obvelata used
for infection were collected from the caeca of naturally
infected mice (IL-4/13-/-, and IL-4Rα-/-) maintained in
barrier facilities. The caeca were collected in 0.65% NaCl,
cut open, and submerged in a gauze mesh at the mouth of
a conical flask for 1 to 2 h at 37°C to allow the worms to
migrate out. Worm burdens were assessed on various days
post infection. After being washed in 0.65% NaCl, worms
were crushed and their eggs were isolated by passage
through 70 μm nylon cell strainers (BD Falcon, BD Bio-

sciences, Belgium). Each mouse was inoculated orally
with 500 eggs using oral dosing cannulae (VetTech,
Cheshire, United Kingdom).

Nippostrongylus brasiliensis
N. brasiliensis nematodes were kindly provided by Klaus
Erb, (Wurzberg, Germany). Mice were subcutaneously
injected with 750 L3 larvae of N. brasiliensis. Analysis of
numbers of adult worm numbers in the intestine was
determined as previously described [9].

Schistosoma mansoni
Naïve sex-matched mice from 6 to 10 weeks of age were
percutaneously infected with 70 to 80 live cercariae of a
Puerto Rican strain of S. mansoni obtained from infected
Biomphalaria glabrata snails. Eight weeks post infection the
intestine was surgically removed. Ileum and colon were
removed 2 cm proximal and 0.5 cm distal to the caecum,
respectively [42]. Approximately 2 cm of tissue was
weighed and digested in 5 ml of 5% potassium hydroxide
overnight at 37°C. The digests were vortexed and centri-
fuged at 100 g for 5 min to pellet eggs. The supernatant
was aspirated until 1–2 mls remained. The eggs were vor-
texed and counted in 50 μl in triplicate. The counts were
presented as eggs per gram of tissue as previously
described [43,44]

Histology
Tissue samples were fixed in a neutral buffered formalin
solution. Following embedding in paraffin, samples were
cut into 5–7 μm sections. Sections were stained with peri-
odic acid Schiff reagent (PAS). The number of positively
stained cells per five villi or crypts was counted by light
microscopy for small intestine or colon, respectively. All
samples were randomized and counted in a blinded man-
ner. Photomicrographs were captured using a Nikon 5.0
Mega Pixels Color Digital Camera (Digital SIGHT DS-
SMc).

Splenocyte restimulation and IL-4 cytokine ELISA
Single cell splenocyte suspensions were prepared from
spleens removed from infected (days 7 and 14 PI) and
uninfected mice. 1 × 106 splenocytes per ml were cultured
in IMDM (Gibco) media supplemented with 10% fetal
calf serum (Gibco) for 72 h at 37°C in 96 well plates pre-
coated with either PBS or 20 mg/ml anti-CD3 (clone 145-
2C11). Cells were then centrifuged at 1200 rpm for 5 min
and the supernatants collected. Supernatent IL-4 concen-
trations were then determined by ELISA as described pre-
viously [3].

Statistics
Data are presented as means ± standard error of the mean
(SEM), and the significant differences were determined
using Student's t test (Prism software [45]).
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