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SUMMARY

A mathematical model for the epidemiology of rinderpest was developed,
starting from a simplified descriptive analysis of the disease. A formula for the
caleulation of the probability of infection of a susceptible animal was first
established. A deterministic failure threshold of the infection was then deduced.
Deterministic and stochastic approaches were adopted using iterative methods on
a computer. These allowed a description of the spread and the variability of an
infection process in a population to be made. An illustration of the use of this
model showed that, in some cases, variability effects due to stochastic factors were
very important. In these particular conditions, the use of the deterministic model
alone was not adequate for a good description of the infection. Consequently,
improvements of the model were proposed in order to make it more realistic and
to allow its use for the evaluation of the efficiency of field operations.

INTRODUCTION

Rinderpest is a non-persistent virus infection of cattle, mostly transmissible by
direct contact. This infection still occurs in Africa, the Middle-East and India, and
remains one of the most important diseases of bovine species. It should be
accounted as a major economic problem [1].

The analysis of the spread of rinderpest is complex due to the interactions
between three fundamental factors involved: host population, virus and
environment. An intuitive evaluation of the spread of an epidemic or of the
efficiency of a vaccination protocol is therefore not easy and a more accurate
means of investigation, such as the construction of epidemiological models, seems
essential for a better understanding of the dynamics of the infection.

Rinderpest virus belongs to the family of paramyxoviridae, genus Morbillivirus.
Because measles virus belongs also to this genus and behaves in the same way as
rinderpest in cattle, the work of Anderson and his co-workers on modelling of
infectious diseases in general and on measles epidemics in the United Kingdom
may be relevant |2, 3]. Some authors have emphasized the role of the computer for
developing theoretical mathematical models (4] and recently a computer model
for rinderpest was presented [5, 6].

The discrete-time model proposed here begins with a description of the main
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characteristics of rinderpest in cattle. A mathematical formulation for the
calculation of the probability of infection of a susceptible animal is then
elaborated, starting from a simplified view of the phenomenon. A deterministic
failure threshold of the infection is then deduced. Deterministic and stochastic
computer simulations allow a practical representation of the spread of an infection
in a population as a function of the characteristics of the virus strain, host animal
and environment. Use of the model shows that, under particular conditions,
variability in the progress of the infection can be so important that the
deterministic approach alone is not adequate.

This model of rinderpest could be used for the evaluation of the efficiency of ficld
operations or for the study of diseases epidemiologically similar to rinderpest.

DEVELOPMENT OF THE MODEL
Descriptive model

In some respects rinderpest conforms to a simple model. Although there are
differences in the pathogenicity of virus strains, only one serotype exists and an
efficient vaccine is available |1, 7]. Further, from knowledge of the epidemiology
of rinderpest, the following assumptions can reasonably be made [1, 7-11] to
claborate a simplified model: transmission occurs only by dircct contaet; an
alternative virus reservoir does not exist, neither does transmission by biological
vectors; immunity is lifelong after vaccination or recovery from discase; there is
neither asymptomatic carriage, nor recurrence of disease, and silent excretion if it
occurs is extremely rare. These factors imply that epidemics which oceur in
previously rinderpest-free zones are caused by the introduction of living infected
animals.

A simplified descriptive model, which summarizes the essential characteristics
of the problem, is presented here. Natural mortality, i.e. depending on other
causes than rinderpest, and the introduction of new animals by calving were not
accounted for. The five possible states of the animals at time ¢, with respect to
rinderpest, can be considered as follows: susceptible (S,), infected but not yet
infectious (L,), infectious (/,), immune (R,) and dead (D,). The relation between the
different states is summarized in Fig. 1. Susceptible animals are those which
belong to a susceptible breed and which are neither infected nor immune. The
virus is practically non-resistant in the environment. Consequently, susceptible
animals are normally infected via the oronasal route when they come into close
contact with one or more infectious animals within the herd. After infection,
animals do not excrete virus during a period referred to hereafter as the non-
infectious period. At the end of the non-infectious period, the infectious period
begins, during which animals excrete virus and may infect susceptible animals.
Virus excretion may begin 1 or 2 days before the onset of the first clinical signs
[12]. In this case, the infectious period begins before the end of the incubation
period. At the end of the infectious period, animals become immune or die. Only
susceptible animals can be protected from rinderpest by vaccination.

Differences exist in the pathogenicity of different strains of rinderpest virus as
well as in the susceptibility of breeds of cattle [8]. The average lengths of the non-
infectious and infectious periods and the death rate vary according to the
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Fig. . Simplified descriptive model of rinderpest.

virulence of the virus strain and the resistance of the breed of cattle. Also, the
lengths of non-infectious and infectious periods differ among individual animals.
These factors affect the speed with which the disease spreads and the model must
account for this. In addition, the model must be useful in conditions where the
death rate is high and when the number of living individuals in the population
varies during the course of the epidemic; it should also take account of the effect
of vaccination programmes.

Mathematical model

The step for which a mathematical treatment is to be found is the initiation of
infection. As soon as an animal is infected, it will then follow the normal course of
the discase, owing to the lengths of non-infectious and infectious periods and the
death rate.

Notations

ti = time of introduction of infected animals; ni = number of infected animals
introduced into the herd; Lmin = minimum length of the non-infectious period;
Lmax = maximum length of the non-infectious period; /min = minimum length
of the infectious period; Imax = maximum length of the infectious period; K =
number of contacts an animal undergoes per unit of time; b = rinderpest-related
death rate; @ = probability of one contact between a susceptible and an infectious
animal causing infection.

At time t: S, = number of susceptible animals; L, = total number of infected but
non-infectious animals; L(j), = number of animals ending their jth day of non-
infectious status; [, = total number of infectious animals; I(j), = number of
animals ending their jth day of infectious status; R, = number of immune
animals; ), = number of dead animals; N, = total number of living animals.

Spread of infection within a herd

Jonsider a herd composed of a mixture of susceptible and immune animals into
which ni¢ infected animals are introduced at time ti. Suppose that all the animals
are randomly distributed.
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An important parameter is the number of contacts (K) which an animal,
whatever its state, makes with its neighbours during a unit of time. Consider a
single susceptible animal taken at random amongst 8, susceptible animals in the
herd at time ¢{. During a given time, this susceptible animal will not necessarily
have contact with all the other animals of the herd, but will contact K animals
which are closest to it. K will be lower than V,—1 for large herds or greater than
N,—1 for small herds. The value of K depends on herd characteristics (size, area
occupied, age structure), breeding system and climate; this last will affect the
density of animals in the vicinity of watering places in the dry season. We note
that a model with K random has been developed by Lefevre and Picard [13].

The contacts between animals are not necessarily contagious even when these
contacts involve infectious animals because the required close contact may not
always occur. For the present, it may be assumed that, on each contact with an
infectious animal, a susceptible animal has a constant probability ‘e’ of becoming
infected. In fact, the contact must be intimate enough so that the virus dose
transmitted reaches at least the minimum infection dose. The probability ‘a’
depends on the virulence of the virus strain and on the resistance to disease of the
breed of cattle. In what follows, the herd size will always be supposed to be large
enough to replace N,—1 by N,. Also, K will be considered as a constant.

Basic formulae
At time ¢, a susceptible animal will meet an infectious one with the probability
1,/N,. Thus, the probability that a susceptible animal, after K contacts, undergoes
7 contacts with infectious animals and K —¢ contacts with non-infectious animals
is given by the binomial distribution
K

’ . .
([{_—W(lt/;vt)l(l—It/i\‘vt)KAl. (1)

For this susceptible animal which has ¢ contacts with infectious animals, the
probability that one at least of these contacts will result in infection is equal to
t—(1—a). (2)
The product of equations (1) and (2) gives the probability P(i), of a susceptible
animal being infected after ¢ contacts with infectious animals.
The probability of infection P, of a susceptible animal being infected at time ¢,
is given by the sum of P(i),, i =0, ..., K. It follows directly after simplification:
P, = 1—(1—al,/N)¥. (3)

The probability @, of a susceptible animal remaining uninfected at time ¢ will be
given by the complementary probability
Q= (1—al,/N)¥. (4)

Approximate formulae

If it can be supposed that the quantity (a/,/N,) remains small enough, equation
(3) can be simplified by keeping only the two first terms in the development of the
Newton binomial. This leads to the following approximate expression:

P, = aKI,/N,. (5)
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The approximate probability of a susceptible animal being infected depends on
the product ‘aK’ and on the proportion of infectious animals in the herd. This
term ‘aK’ may be understood as being the number of contacts intimate enough for
the transmission of the disease, that an animal undergoes per unit time.

Stochastic model

Let L(1),., be the random variable which represents the number of susceptible
animals that will be infected at time ¢+ 1, given S, and P,. The distribution of
L(1),,, is binomial with parameters

L(1),,, = BIN(S,. ). (6)

This means that the probability of j individuals becoming infected at time {41,
given 8, and P’,, can be computed by

LY ’ : v .

PIL(1),, =j]1= [(—S%] Pi(1—P )5
Determanistic model

The deterministic model is constructed on the basis of the mathematical
expectation of the binomial distribution (eqn 6). The random variables S,, L, 1,,
R, and N, are replaced by the mathematical variables s,, [, 1,, r, and n,. Let [(1),,,
be the mathematical variable which represents the average number of susceptible
animals that will be infected at time t+1, given s, and p,. Clearly,

D)y = 8 pp = s[1—(1—ai,/n)"]. (7)
For this deterministic model, some interesting properties can be derived rather
casily:
(1) If the probability of infection p, is replaced by its approximate expression
(formula 5) in equation (7): then

(1), = aKs,i,/n,. (8)

Equation (8) is similar to the continuous-time formulation [14, p. 304] which
suggests that susceptible individuals at time ¢ will produce new infected cases at
the rate fx,y,/n, where z, and y, are the numbers of susceptible and infectious
individuals at time £, respectively, 7, is the total population size at time ¢, and the
parameter [ represents the rate of infection.

In the particular case when the population size remains roughly constant during
infection, the value of n, can be included into the parameter § and the rate of
production of new infected individuals becomes fx, y,, the formula used by Bailey
[14] and referred to as a conventional hypothesis [2]. This relationship, viewed
here as a particular case of equation (7), is valid providing that the quantity
(ai,/n,) is small and the population size remains stable during the progress of the
infection. Also, an interpretation can be given for the rate of infection § which can
be split up into a ‘population effect” represented by the parameter *K’ and a * virus
strain effect’ characterized by ‘a’.

(2) For a population of susceptible animals with a number of infectious
individuals ¢, introduced at time ¢, the ratio

Yoor = UD)r /7 = 8,24/ % 9)
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can be considered as the average infecting capacity of an infectious animal at time
{+1. As the value of s, is n,—i,, equation (9) can be rewritten as

Yerr = (ne/i,— D) [1 = (1 —ai,/n)¥]. (10)

When the proportion ¢,/n, is increasing (or decreasing), the value of y,
decreases (or increases) slightly. If many infectious animals are introduced
simultaneously into a disease-free herd, the infecting capacity of a particular
infectious individual is lowered because several of the infectious animals may
contact the same susceptible animals.

(3) If in equation (10), ¢,/n, is small enough, the corresponding limit value of y,,
reduces to i

Yo = ak.
Thus, in a very large herd, the experimental determination of the average
infecting capacity (i.e. the average number of animals which are infected at time
t+ 1 per infectious animal introduced at time ¢ in a susceptible population) can
therefore be taken as an estimation for the product aK, the rate of infection.

(4) In order to study the conditions required to prevent the infection from
persisting in the herd, let animals, just beginning their first day of infectious
status, be introduced at time t = 0 into a disease-free population. As suggested by
Anderson and May |2], a necessary criterion to prevent the disease becoming
established is the non-renewal, at the end of the infectious period, of the number
of infectious individuals initially present.

Jonsider the approximate expression (eqn 8), which is adequate in the beginning
of the infection, and suppose that the infectious individuals initially present
remain infectious during an average period of ip days, ¢p = (Imin+Imazx)/2. Then,
aKs; 1, /n;_, new infected individuals will appear at time j, 1 <j < ip.

Let us make the additional assumption that during these ¢p days, infection is
not transmitted by the new infected animals to secondary cases, which means that
tp < Lmin+ 1. This implies that the number of infectious individuals is constant
during these ip days.

Now, a rate of infection, g, can be defined as the average number of new infected
animals per infectious animal during the average length of its infectious period.
Under the conditions above, g becomes

ip
g =akK X (s;1/n;,4).
i=1
So, if g < 1, the renewal of infectious individuals by newly infected individuals
cannot take place. In this case and denoting by s,,/n, the arithmetic mean of
8j-1/M;_y, then

S/ P < 1/(aKip). (11)
Moreover, if s, /n,, can be approximated by s,/n,, equation (11) becomes
8,/n, < 1/(aKip). (12)

This approximation is valid when the infection starts, provided that the virus
strain is not too virulent.

Observe here that s, is equal to the initial population size %, minus the number
of immune animals initially present r,. Thus, equation (12) is equivalent to

r,/n, > 1—1/(aKip). (13)
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Equation (13), defined here as the deterministic ‘failure threshold density’, shows
how to compute, from the initial conditions, the minimum proportion of
individuals that must be vaccinated in order to prevent the renewal, after the
average length of the infectious period, of the infectious individuals initially
present.

Computer program

A computer program is used to simulate the spread of infection in host
populations, after entering in the following parameters: initial size of herd, time
of introduction and number of infected animals introduced, initial number of
immune animals, minimum and maximum lengths of both non-infectious and
infectious periods, number of contacts an animal makes per unit of time, death
rate of rinderpest and probability of one contact between a susceptible and an
infectious animal causing infection.

For a given virus strain, it is supposed that non-infectious and infectious periods
vary according to the individuals and are distributed between two limits
(minimum and maximum) with constant probability functions. Algorithms used
for the state transitions are different depending on the considered version.

Deterministic version

The deterministic model makes use of the following relationships:

S = 8= ULy and  U(1),, =5, p,.

If Lmin < j < Lmaz, infected individuals ending their jth day of non-infectious
status may still remain in the same status during a maximum of Lmax—j days.
Therefore, we suppose that a proportion of 1/(Lmax+1—j) of these individuals
will become infectious, so that:

W+ 1), =1(), if 1<j<Lmin
=Nl —1/Lmax+1—73)] if Lmin <j< Lmax

Lmax

i)y = X () 1/ (Lmax+1—j).

j=Lmin
Similarly for infectious animals
W+ =iy, it 1<j<Imin
=) l1—1/Umax+1—j)] if Imin <j<Imax

Imax

T = 2 1(j)(1—b)/(Imax+1—7)

j=Imin

Imaz
dipy= X)) b/Imax+1—j).

j=Imin

Stochastic version

The binomial distribution (eqn 6) of the random variable representing the
number of susceptible animals that will be infected at time {4 1 can be simulated
in the following way. For each susceptible animal present at time ¢, a random
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Fig. 2. Infection of a disease-free cattle population by three virus strains of different
virutence (H: high, M: moderate. L: low). Characteristics of the virus strains are
presented in Table 1. No vaccination has taken place. Characteristics of the population
are: N, = 1000.ti = 0, ni = 2. K = 20. B, = 0. U.1: upper and inferior limits of the zone
where 90% of the stochastic observations are taking place; D: deterministic
simulation.

number is selected with value in the range 0 to 1 and its value is compared to the
probability of infection P,. If this random number is lower or equal to P,, the
susceptible animal becomes infected; otherwise the animal remains susceptible.
The total number of infected animals at time £+ 1 is obtained by the summation
of all these state transitions.

Consider now an infected animal ending its jth day of non-infectious status. If
J < Lmin, the animal remains non-infectious. Otherwise, for each non-infectious
animal, a random number is selected with value in the range 0 to 1, and if this
number is lower than 1/(Lmax+1—j), the animal becomes infectious.

In the same way, for an animal ending its jth day of infectious status, if j <
Iman, this animal remains infectious. Otherwise, for each infectious animal, a
random number is selected with value in the range 0 to 1. If this number is lower
than 1/(Imax+1-j), this animal undergoes a state transition; it dies if another
random number is lower or equal to the death rate or becomes immune in the
opposite case.

Use of the model

For illustration, and in order to emphasize the effecct of variability in the
virulence of virus strains and the consequence of vaccination programmes, two
typical cases were selected, results of which are presented in Figs. 2 and 3. These
examples allow illustration of to what extent the spread of infection can be
properly represented by the deterministic model.

Intensity of the epidemic at time {(/NT),). can be defined, in the sense of Bailey
[14], as being the proportion of susceptible animals initially present which have
contracted the disease at time {.

INT, = 100(S,~8,)/8,. (14)

In a herd containing 1000 animals, 2 infectious animals ending their second day
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Fig. 3. Same conditions as in Fig. 2 except that vaccination has taken place, 40 %
of animals being immune when the epidemic starts (R, = 400).

Table 1. Characteristics of virus strains used to prepare models of rinderpest
tlustrated in Figs. 2 and 3

Virulence

Al

i{igh (H) Moderate (M) Low (Ij)
Lmin, Lmax (days)* 3.8 5,10 6,12
Imin, Imax (days)t 4.6 5.7 6.8
Rinderpest-related death 09 05 01
rate
Probability of one contact 004 0-02 0-01
causing infectiont
Failure threshold 750 583 286

density (%)§

* Lmin, Lmax: minimum and maximum length of the non-infectious period.

T Imin, Imax: minimum and maximum length of the infectious period.

I Probability of one contact between a susceptible and an infectious animal causing infection.

§ Failure threshold density (%) (eqn 13): minimum proportion of individuals that must be
vaccinated in order to prevent the infection from persisting in the herd.

of non-infectious status are introduced. The number of contacts an animal
undergoes per day is constant and equal to 20. Figs. 2 and 3 represent the
evolution, during 1 year, of the above defined intensity in the herd, for three virus
strains of different virulence. Characteristics of these virus strains are given in
Table 1. These parameters have been chosen from published data on the
cpidemiology of rinderpest [12, 15-17]. When the virulence of the virus strain
increases, it was supposed that the lengths of non-infectious and infectious periods
decrease, because disease progresses more quickly. In Fig. 2, no previous
vaccination has taken place and in Fig. 3, 40% of the animals are immune by
vaccination when the epidemic starts.

Simulations of infection were achieved on an IBM PS/2 computer. After
introduction of the characteristics of the virus strain and the cattle population,
the program computes a first deterministic simulation giving the average herd
composition as a function of time. One hundred stochastic simulations then follow.
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For each virus strain, the deterministic curve is surrounded by two curves which
define a zone where 90% of the stochastic observations take place. These two
curves display the variability existing in the stochastic process.

Fig. 2 shows how a decrease in virulence of the virus strain is accompanied by
a decrease in intensity of the epidemic, but that virus persists longer in the
population and the variability of the process increases considerably. For the
highly virulent strain, all susceptible animals are infected during the first 2
months. Deterministic simulation gives a satisfactory description of such an
infection process. The moderately virulent strain remains for more than 4 months
in the herd, reaching an average final intensity of 95%. Variability of stochastic
simulations increases slightly but the deterministic simulation remains sufficiently
valuable to represent the global process. Strains of low virulence can subsist in the
population for 1 year. The hundred stochastic simulations cover a large field and
final intensities of the infections vary between 0 and 60 %. In these conditions, the
use of the deterministic model alone is not adequate for a good description of the
infection.

Fig. 3 shows some effects of vaccination. With the virus strain of moderate
virulence, the epidemic variability increases strongly compared to the case with no
vaccination. In the case of the strain of low virulence, the percentage of immune
animals in the herd (R,/N, = 40%) is greater than the failure threshold density
(eqn 13) which specifies that at least 29 % of the population must be immune when
the epidemic starts in order to prevent the infection persisting in the herd (Table
1). Nevertheless, some infected individuals appear because reaching the determin-
istic failure threshold density would only prevent the renewal of infectious
individuals initially present but does not give any information about the average
number of individuals that will be infected at the end of the epidemic.

A decrease in the virulence of the virus strain or an increase in the number of
immune animals initially present in the herd has a similar effect; it becomes more
difficult to forecast the spread of the infection because the variability in the
progress of the infection increases but also to diagnose the disease in the herd
because prevalence and mortality decrease.

DISCUSSION

To be realistic an epidemiological model of rinderpest has to take into account
important and variable non-infectious and infectious periods as well as an
occasionally high death rate. Because of the complexity of the corresponding
equations, iterative methods with simulation on a computer appeared to be the
most adequate. A preliminary but essential step in the construction of the model
was the description, involving some simplifying assumptions, of the main
characteristics of the spread process of rinderpest and the derivation of an
equation for the calculation of the probability of infection of a susceptible animal.
The main originality was the use of two parameters defining independently the
characteristics of the population and the characteristics of the virus strain. The
equation established here can be simplified, in certain particular conditions, to
give the form commonly used in the papers devoted to epidemiology [2, 14].

The opportunity for joint use of both deterministic and stochastic approaches



Mathematical model of rinderpest 451

allows a comparison between the two procedures. The deterministic method
provides an average display of the infection process by means of quite simple
relationships; these may also be used to compute a failure threshold density for
epidemic spread. The stochastic method, more complex from a computational
standpoint, gives more realistic results which take into account random effects
which are naturally present in biological processes. These random effects are
important at the beginning of the infection, because of the low disease prevalence
in the population, and mostly when few infectious animals are introduced in the
herd, a large number of animals are vaccinated, contacts between them are
reduced and the virulence of the virus strain is lowered. Indeed, when the expected
number of infected animals is small, random effects will be dominant to determine
if the disease persists or not.

The stochastic approach shows that the great variability which may appear in
the process will make a forecast for the development of the infection difficult. The
study of the spread of the disease by reference to the deterministic approach only
is consequently insufficient. Because of this limitation of the deterministic results,
further developments remain to be made for the derivation of an accurate
stochastic threshold. These would quantify the problem with probabilities to take
into account the random character of the process, i.e. of the type: ‘there is a level
of 90 % probability that the infection will be limited to less than 2% of susceptible
animals of the herd’.

In order to perform simulations over a time period of several years, it would be
necessary to take into account the natural and neonatal mortalities as well as
calving. Other improvements of the model would require research in cattle
ethology and climatic conditions. Further, it would be necessary to consider a
possible reduction in the number of contacts occurring between infected animals
and the remainder of the herd, and to consider several subsets of the population
in order to study the effect of cattle gathering around watering-places in dry
seasons. Parameter ‘K’, here taken as constant, could vary according to some
probability laws or could depend on a periodical term, function of the breeding
system and local climate conditions, a maximum number of contacts being
observed during the watering of animals, mainly during the dry season.
Furthermore, adequate field experiments need to be done in order to obtain a
correct evaluation of the basic parameters used in the model.

This model should then be validated to ensure that it adequately fits real
infection data. Different levels of complexity might be tested to choose the more
adequate in the different conditions (epidemic or endemic situations). Indeed, if a
simple model does provide an adequate fit to some epidemic data, it better
summarizes the important characteristics of the disease and is more likely to yield
to mathematical analysis.

A final purpose of the present study would be the derivation of necessary
conditions for the spread of rinderpest virus in a population. A realistic model
would allow the evaluation, from the standpoint of relative costs, of the efficiency
of different control methods (vaccination programmes and sanitary control, such
as lowering in number of contacts between animals). The model would therefore
provide an objective tool for the choice of a strategy in control operations.
Moreover, the epidemiological model described here for rinderpest could further be



452 A. TILLE AND OTHERS

used to study other diseases similar to rinderpest from an epidemiological point of
view.
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