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Summary

� A fundamental challenge to our understanding of biodiversity is to explain why some

groups of species diversify, whereas others do not. On islands, the gradual evolution of a new

species from a founder event has been called ‘anagenetic speciation’. This process does not

lead to rapid and extensive speciation within lineages and has received little attention.
� Based on a survey of the endemic bryophyte, pteridophyte and spermatophyte floras of

nine oceanic archipelagos, we show that anagenesis, as measured by the proportion of genera

with single endemic species within a genus, is much higher in bryophytes (73%) and pterido-

phytes (65%) than in spermatophytes (55%).
� Anagenesis contributed 49% of bryophyte and 40% of endemic pteridophyte species, but

only 17% of spermatophytes. The vast majority of endemic bryophytes and pteridophytes are

restricted to subtropical evergreen laurel forests and failed to diversify in more open environ-

ments, in contrast with the pattern exhibited by spermatophytes.
� We propose that the dominance of anagenesis in island bryophytes and pteridophytes is a

result of a mixture of intrinsic factors, notably their strong preference for (sub)tropical forest

environments, and extrinsic factors, including the long-term macro-ecological stability of

these habitats and the associated strong phylogenetic niche conservatism of their floras.

Introduction

A fundamental challenge to our understanding of biodiversity is
to explain why some groups of species diversify, whereas others
do not (Emerson & Kolm, 2005; Wagner et al., 2012). The the-
ory of ‘punctuated equilibrium’ (Gould & Eldredge, 1993) pro-
poses that species change suddenly during short bursts associated
with speciation (‘cladogenetic change’; for a review, see Bokma,
2008). It is best exemplified on oceanic islands, where adaptive
radiations have led to spectacular cases of endemic speciation (for
reviews, see Losos & Ricklefs, 2009; Givnish, 2010). By contrast,
speciation may also arise through the spatial isolation and pro-
gressive divergence of populations along the periphery of a species
range (‘budding’ or ‘peripheral speciation’; for a review, see Funk
& Omland, 2003). On islands, the gradual evolution of a new
species from a founder event has been called ‘anagenetic specia-
tion’ (Stuessy et al., 2006; Gehrke & Linder, 2011). This process
does not lead to rapid and extensive speciation within lineages, as
adaptive radiation may do, and has consequently received little
attention. Nevertheless, anagenesis is much more important than
previously thought, accounting for 7–88% of endemic seed
plants on oceanic islands (Stuessy et al., 2006).

High levels of anagenesis are promoted by extrinsic environ-
mental conditions, including a low elevation range and low

habitat heterogeneity (Stuessy et al., 2006), and an intermediate
distance from the mainland, as a result of the trade-off between
the number of events potentially fostering anagenesis and the
intensity of migration preventing speciation through undisrupted
gene flow (Rosindell & Phillimore, 2011). Bryophytes and pteri-
dophytes produce spores, which are much smaller than seeds
and are hence likely to be wind dispersed over long distances
(Wilkinson et al., 2012). Spore-producing plants therefore appear
to be even better candidates for anagenetic speciation than seed
plants. Indeed, their high long-distance dispersal capacity might
explain their failure to speciate on islands that are close to
potential continental sources as a result of intense gene flow
(Barrington, 1993; Vanderpoorten et al., 2011). On more remote
islands, multiple colonization events may promote anagenetic
speciation as multiple island colonizations by congeneric species
are thought to lead to non-radiating lineages, possibly as a result
of the fast occupancy of all potential niches by the colonizers,
which hampers the chances of subsequent radiation (‘niche pre-
emption’ hypothesis; Silvertown, 2004).

Two additional features of bryophytes and pteridophytes sug-
gest that they might exhibit unparalleled levels of anagenetic spe-
ciation. First, in contrast with the vast majority of seed plants,
bryophytes and pteridophytes do not tend to develop ecotypes,
but rather display an inherent broad ability to cope with
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environmental variation. In pteridophytes, photosynthetic
performance and ecological breadth have been shown to be asso-
ciated with ecophysiological plasticity (Salda~na et al., 2005;
Huang et al., 2011). In the fern Athyrium filix-femina (L) Roth.,
the absence of correlation between genetic and morphological
variation along an elevational gradient points to phenotypic plas-
ticity rather than genetic specialization (Schneller & Liebst,
2007). In the moss Bryum argenteum Hedw., plants from clean
and heavily polluted environments exhibit indistinguishable
growth responses to media supplemented with heavy metals
(Shaw et al., 1989; Shaw & Albright, 1990). In the desert moss
Syntrichia caninervis Mitt., morphological variation of popula-
tions from extreme micro-habitats results from plasticity
(Reynolds & McLetchie, 2011). This suggests that ‘general pur-
pose’ genotypes (sensu Baker, 1965) confer on bryophytes an
inherent high level of tolerance, making the evolution of special-
ized races unnecessary. Physiological and morphological plasticity
therefore appears to be much more important than genetic spe-
cialization for bryophytes and pteridophytes (Shaw, 1992;
Schneller & Liebst, 2007; Reynolds & McLetchie, 2011; but see
Hutsem�ekers et al., 2010; Richter et al., 2012), potentially ham-
pering the chances of adaptive radiation in response to habitat
heterogeneity.

Second, sexual selection, one of the key drivers of rapid radia-
tions in angiosperms (Givnish, 2010), may be less important as a
result of the predominance of clonal reproduction in bryophytes
(Longton & Schuster, 1983), which culminates on oceanic
islands (Hutsem�ekers et al., 2011; Karlin et al., 2011; Pati~no
et al., 2013a). This, together with the high rates of selfing in
bisexual species (Eppley et al., 2007; Hutsem�ekers et al., 2013),
decreases the chances of hybridization, and hence of the rapid
increase in genetic variation and response to ecological selection
that characterize many young adaptive radiations (‘hybrid swarm
hypothesis’; Seehausen, 2004).

Based on a survey of the endemic bryophyte, pteridophyte and
seed plant floras of nine oceanic archipelagos, we report
extremely high rates of anagenesis among the spore-producing
land plant floras on oceanic islands, and discuss the reasons why,
in contrast with seed plants, they largely failed to diversify.

Materials and Methods

Following Emerson & Kolm (2005), we used levels of endemism
as a proxy for rates of speciation. A potential problem with this
approach is that it assumes that endemic species evolved in situ
(neoendemics). This is not necessarily the case as endemics may
be the result of extinction in all other parts of a formerly more
widespread range (palaeoendemics), inflating our index of diver-
sification. However, this is likely to be balanced by species that
evolved on islands, but became extinct or subsequently migrated
to other areas, and therefore are not included in our calculations.
In line with the high dispersal capacity of spore-producing plants,
available phylogenetic information suggests that the proportion
of palaeoendemics in oceanic island endemic floras is much lower
than the proportion of neoendemics (Vanderpoorten et al.,
2011). Furthermore, although recurrent migrations between

islands and mainland have been reported in several instances
(Hutsem�ekers et al., 2011; Laenen et al., 2011), phylogenetic
evidence for the evolution of species on islands with subsequent
continental back-colonization is currently lacking in spore-
producing plants, so that this mechanism is not expected to
substantially bias the calculated speciation rate.

Total numbers of endemic species were partitioned into two
groups depending on speciation mode. Anagenesis was inferred
when a single endemic species within a genus (single-species
endemic; hereafter SSE) was recognized (Stuessy et al., 2006).
Cladogenesis was inferred when there were at least two conge-
neric endemic species (multiple-species endemic; hereafter MSE).
Although islands have often been used as geographical units for
counting the numbers of SSEs and MSEs (Whittaker &
Fern�andez-Palacios, 2007), bryophytes and pteridophytes exhibit
extremely low numbers of species endemic to a single island
(Ranker et al., 2000; Vanderpoorten et al., 2011), even though
they display speciation rates that are comparable with those
reported in seed plants (Wall, 2005; Devos & Vanderpoorten,
2009; Schuettpelz & Pryer, 2009). For practical reasons, we
therefore calculated the number of SSEs and MSEs at the archi-
pelago scale. Nine oceanic archipelagos, for which critical and/or
updated checklists for the three study plant groups are available,
were investigated (Supporting Information Table S1).

Our rates of cladogenesis might be underestimates if cladoge-
netic endemic species go extinct or migrate to other areas. We are
unable to quantify the effect of these two events, as information
on extinctions is lacking, mainly because of the extremely poor
fossil record in bryophytes, and there is so far no evidence for the
migration of neoendemic island species to other areas (as
described previously). However, two factors suggest that our rates
of anagenesis represent minimum estimates. First, endemic con-
generic species are not necessarily the result of cladogenesis fol-
lowing a single colonization event as they could each represent
independent colonization events (Stuessy et al., 2006). Second,
cladogenesis at the archipelago level may reflect anagenetic speci-
ation at a more restricted level as a radiation could be the result
of allopatric speciation, with each species the result of anagenetic
speciation on a different island.

Schaefer et al. (2011a) questioned the use of taxonomic check-
lists in biogeographical inferences and suggested that actual
endemic diversification might be overlooked as a result of taxo-
nomic shortcomings (‘Linnean shortfall’; Brown & Lomolino,
1998). It is evident that the bryophyte floras are still much less
well known than their angiosperm counterparts and that, as a
result of their reduced morphologies, they are particularly prone
to ‘cryptic’ speciation (e.g. Heinrichs et al., 2011; Carter, 2012;
Dong et al., 2012; Medina et al., 2012). However, the increase
in the number of species resulting from molecular systematic
studies is likely to be counter-balanced by mounting phyloge-
netic evidence refuting the circumscription of many bryo-
phyte species and suggesting broader species circumscriptions
(Vanderpoorten & Shaw, 2010). Population-level analyses in
bryophyte species also revealed that the genetic diversity
observed on islands mostly results from recurrent migra-
tion events from continental areas rather than by in situ
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diversification (Vanderpoorten et al., 2008; Hutsem�ekers et al.,
2011; Laenen et al., 2011), further weakening the hypothesis of
an overlooked diversification of in situ origin.

Information on habitat preferences in the endemic flora was
retrieved for three archipelagos, namely the Canary Islands,
Madeira and Azores, which form a biogeographical region
referred to as Macaronesia (sensu Engler, 1879). Based on a litera-
ture review (Table S1), endemic species were assigned to one of
six main ecosystem types defined by Dom�ınguez Lozano et al.
(2010): coastal vegetation, thermophilous woodlands, laurel
forests, pine forests, summit scrublands and open areas (including
rocky habitats and anthropogenic disturbed environments). Spe-
cies and genera occurring in two or more ecosystems were scored
as widespread.

Results

In the nine study archipelagos, the proportion of land plant gen-
era exhibiting SSEs reaches 60%, but the overall proportion of
species that are SSEs among archipelago endemic floras is sub-
stantially lower (21%). In bryophytes and pteridophytes, the pre-
dominance of anagenesis was evidenced by the higher proportion
of genera with SSEs in bryophytes (73%) and pteridophytes
(65%) than in seed plants (55%) (Fig. 1). Anagenesis contributed
49% of bryophyte and 40% of endemic pteridophyte species, but
only 17% of seed plant species (Fig. 1).

Anagenesis was largely unrelated to distance from the main-
land in bryophytes and pteridophytes (Fig. 2). For instance, high

rates of anagenesis (70–80%) were observed in both archipelagos
that are close to the nearest continent (e.g. Canaries) and in those
located at > 2500 km from the nearest coasts (e.g. Hawaii,
Tristan da Cunha) (Fig. 2; Table S2).

The partitioning of bryophyte, pteridophyte and seed plant
endemic species across the main vegetation zones in Macaronesia
reveals that the vast majority of endemic bryophyte and pterido-
phyte species are restricted to the subtropical evergreen laurel for-
est and apparently failed to diversify in more open environments,
in contrast with the pattern exhibited by seed plants (Figs 3, S1).
Thus, c. 80% of Madeiran SSEs in bryophytes and pteridophytes,
and 80% of Azorean SSEs in bryophytes are laurel forest special-
ists (Fig. S1). These values are much lower in Madeiran (28%)
and Azorean (22%) SSE seed plants. The trend is even more
apparent when considering taxa that are endemic to the entire
Macaronesian region (Fig. 3). Among SSE bryophytes and SSE
pteridophytes endemic to Macaronesia, 87% and 50%, respec-
tively, are restricted to the laurel forest in the Canaries, 92% and
75%, respectively, in Madeira, and 83% and 50%, respectively,
in the Azores. Laurel forest lineages also account for a significant
proportion of endemic seed plant SSE lineages (68% in the
Canaries and 44% in Madeira; Fig. 3). Lineages of bryophytes,
pteridophytes and, especially, seed plants that are restricted to
laurel forests exhibit rates of cladogenesis which, in general, are
substantially lower than those of anagenesis (Figs 3, S1). By con-
trast, the highest rates of cladogenesis in seed plants are observed
in lineages that are found in more open environments or that are
distributed across a number of ecological zones (Figs 3, S1).

Discussion

The 60% of land plant genera that exhibit SSEs and the substan-
tially lower (21%) overall proportion of species that are SSEs sug-
gest that anagenesis is the most common speciation pathway for
lineages, but that a few genera contribute the bulk of endemic
species richness in oceanic island floras by cladogenesis. In bryo-
phytes and pteridophytes, the predominance of anagenesis was
evidenced by the much higher proportion of genera with SSEs in
bryophytes (73%) and the slightly higher percentage in pterido-
phytes (65%) than in seed plants (55%). Anagenesis contributed
49% of bryophyte and 40% of endemic pteridophyte species, but
only 17% of seed plant species. Overall, therefore, anagenesis has
played a much more substantial role in the evolution of endemic
bryophyte and pteridophyte diversity on oceanic islands than in
seed plants.

The extremely small numbers of total endemic species, and of
endemics restricted to a single island in particular (Pati~no et al.,
2013b), suggest that anagenetic patterns in bryophytes are driven
by their high dispersal capacity, in line with the gene flow
intensity (Rosindell & Phillimore, 2011) and niche pre-emption
(Silvertown, 2004) hypotheses. However, this interpretation is
not consistent with the fact that archipelagos located both close
to and remotely distant from the mainland similarly exhibit high
rates of anagenesis. The lack of relationship between rates of ana-
genesis and distance from the source is at first sight consistent
with the hypothesis that spore dispersal patterns are better

(a)

(b)

Fig. 1 (a) Proportion of genera holding endemics, and (b) the proportion
of endemic species in the bryophyte, pteridophyte and seed plant floras of
nine oceanic archipelagos. Patterns of anagenesis (number of single-
species endemics (SSEs) per archipelago, red) and cladogenesis (number of
multiple-species endemics (MSEs) per archipelago, pink) are distinguished.
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(a) (b)

Fig. 2 (a) Proportion of genera holding
endemics, and (b) the proportion of endemic
species in the bryophyte, pteridophyte and
seed plant floras of nine oceanic archi-
pelagos. Patterns of anagenesis (number of
single-species endemics (SSEs) per
archipelago, red) and cladogenesis (number
of multiple-species endemics (MSEs) per
archipelago, pink) are distinguished. The
actual numbers of genera and species for
SSEs and MSEs are provided.

(a)

(b)

(c)
Fig. 3 Habitat partitioning by vegetation
zones of single-species endemics (SSEs) per
archipelago and multiple-species endemics
(MSEs), with at least two endemic species,
per archipelago in the bryophyte, pteri-
dophyte and seed plant floras endemic to at
least two Macaronesian archipelagos.
Coastal v, coastal vegetation; Thermo w,
thermophilous woodlands; Summit s, summit
scrublands. The proportions and actual
species numbers for the Azores (a), Canaries
(b) and Madeira (c) are shown.
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explained by wind connectivity than by geographical distance
(Mu~noz et al., 2004). It is also consistent with the idea that, once
airborne, spores travel randomly across various distances
(Sz€ov�enyi et al., 2012). Although these hypotheses cannot be
rejected, the idea that cladogenesis is impeded by intense gene
flow is, however, weakened by mounting evidence indicating that
many bryophyte species exhibit a moderate to strong geographi-
cal structure in their local patterns of genetic variation
(Hutsem�ekers et al., 2010, 2013; Korpelainen et al., 2011, 2013;
Wang et al., 2012; Leonard�ıa et al., 2013; Pati~no et al., 2013b).

From partitioning the occurrence of bryophyte, pteridophyte
and seed plant endemic species across the main vegetation zones
in Macaronesia, it is apparent that, in contrast with seed plants
(Dom�ınguez Lozano et al., 2010), the vast majority of endemic
bryophyte and pteridophyte species are restricted to the subtropi-
cal evergreen laurel forest and failed to diversify in more open
environments. Although bryophytes are physiologically plastic,
they are ecologically constrained by their poikilohydric condi-
tion, which prevents them from thriving in dry environments
(Proctor, 2009). Pteridophytes similarly favour shady and humid
environments because of their drought strategy (Hietz, 2010; but
see Anthelme et al., 2011). Both groups further evolved the
ability to photosynthesize in low light environments (Kawai
et al., 2003; Proctor, 2009), where they can avoid competitive
exclusion by seed plants.

The failure of most laurel forest species and, by extension, of
evergreen (sub)tropical forest biota to diversify could be
explained by the stability of their habitat over their palaeoclimatic
history (for a review, see Hughes et al., 2013). Typically, rapidly
changing environments exhibit more rapid diversification than
stable ones (Pennington et al., 2010; but see Kozak & Wiens,
2010). In pteridophytes, radiations have been reported in
drought-adapted lineages of highly diversified open environments
(Eiserhardt et al., 2011) or coinciding with major environmental
changes, such as the radiation of angiosperm-dominated vegeta-
tion (Schneider et al., 2004; Schuettpelz & Pryer, 2009) or
climate change (Janssen et al., 2008). Although explosive specia-
tion episodes have been reported in some tropical rainforest gen-
era (Richardson et al., 2001), early theories (Stebbins, 1974),
supported by recent phylogenetic evidence (Angulo et al., 2012;
S€arkinen et al., 2012), point to gradual diversification patterns
through time in stable tropical forest communities (Crisp et al.,
2009; Wiens et al., 2010). In bryophytes and pteridophytes,
although epiphytic communities provide a classical example of
niche differentiation (Barkman, 1958), adaptive radiations may
in fact not take place in a species-saturated tropical forest envi-
ronment characterized by an extremely high epiphytic biomass
(Freiberg & Freiberg, 2000). The strong niche conservatism
reported in tropical biomes (Crisp et al., 2009; Crisp & Cook,
2012) would further account for the failure of tropical species to
colonize and diversify in habitats that are more prone to trigger
radiations. In line with similar observations of steady speciation
rates in tropical forest bryophytes (Wilson et al., 2007), we there-
fore propose that the dominance of anagenesis in oceanic island
bryophytes and pteridophytes is a result of a mixture of intrinsic
factors, notably their strong preference for (sub)tropical forest

environments, and extrinsic factors, that is, the long-term macro-
ecological stability of these habitats and the associated strong
phylogenetic niche conservatism of their floras. This hypothesis
could be tested with phylogenetic comparative methods (Cooper
et al., 2010), given the increasing availability of phylogenies for
whole groups at the scale of entire archipelagos (Schaefer et al.,
2011b).
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