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1. Introduction

Bias correction approaches can be separated into offline and online methods [1].
In offline methods, the bias is estimated from the model mean and the clima-
tology (based on observations), using a preliminary model run. It is a rather
basic estimation, but it has a small computational cost. In online methods,
bias is updated during the data assimilation step, resulting in an analyzed bias.
Several online bias correction approaches use a two-stage estimation technique
[2,3,4]. They augment the model statevector with an estimate of the bias, and
assume that the bias can be isolated from the other state-vector variables. This
allows the successive yet separated estimation of the bias estimation and model
estimation. It is assumed that the covariance distribution of the biased and
unbiased error are identical except for a proportionality factor [2,5,6]. Literature
shows that the performance of the assimilation system can be greatly enhanced
when different covariance models are used for the unbiased and systematic errors
[3,7]. However, the existing methods only allow to correct the model output.
They do not help correcting the source of the bias, which generally originates
from unresolved processes or bias in the surface forcing fields.

The main objective of this work is to develop an innovative and general method
of bias correction using data assimilation. First developed with a twin experi-
ment on a Lorenz ’95 model [8], this new method is currently being applied and
tested on the sea-ice ocean NEMO-LIM model, which is used in the PredAntar
project.

2. Method Principle

This method aims at correcting the source of bias directly into the model’s equa-
tions. Therefore, a good knowledge of the model is necessary, as well as a clear
idea of the origin of the bias. The entire procedure can be summarized with the
following steps:

• Estimate the model’s bias and its source in the model’s equations.

• Create an ensemble of stochastic forcing directly added into the model’s equa-
tions.

•Run the model for each forcing field separately.

• Consider this stochastic forcing as a control variable for data assimilation.

• Estimate bias and correct the forcing field with data assimilation.

• Correct the source of the bias with the stochastic forcing.

• Interpret bias in terms of unresolved physical processes, bad parametrization,
...

•Validate the bias correction with external and independent data.

Data assimilation is thus used here as a tool in order to estimate and find the
best forcing term to add into the model’s equations. Previous bias correction
methods with data assimilation only account for bias during the assimilation
procedure. However, after the assimilation, the model tends towards its biased
state again (Fig. 1). Here, with this new method, we aim at a continuous
correction of the bias while the models is running.

Figure 1: Example of bias effect on the RMS of temperature around
the Antartic(PredAntar Scientific report, 2012)

3.1 Application on the Lorenz

’95 model

The Lorenz ’95 model is a chaotic model which we used here with k = 40 vari-
ables based on the following equation [8]. In order to have a realistic bias, we
complicated the model, by using a different but spatially correlated forcing for
each variable: Fk, thus inducing a bias on the model.

dXk

dt
= −Xk−2Xk−1 +Xk−1Xk+1 −Xk + Fk (1)

We used the general procedure presented in paragraph 1, with a twin experi-
ment. We only considered the mean over time of each variable k of the model,
since there is a linear relationship between this mean, and Fk. For each run
(ensemble and reference), we used 15 different random initial conditions.

An initial run was considered as the reference state, with a random but
spatially correlated forcing. Noise was added to create pseudo-observations:
Fkref = Fk + noise.

We then created an ensemble of 100 different Fk and ran the model of each
member, with 15 initial conditions. Using an extended state vector containing
the model’s variable mean over time, and the forcing terms Fk, we assimilated
the observations and corrected the ensemble of Fk. We were able to improve
the ensemble’s model’s mean and its bias (Fig. 2):
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Figure 2: Comparison of the model’s variable mean between the bi-
ased ensemble, and the corrected ensemble through data assimilation.

3.1 Multiple assimilation on the

Lorenz ’95 model

Since the Lorenz ’95 model is non-linear, we tried to improve the data as-
similation procedure by making smaller, but multiple corrections. Indeed, by
changing the error covariance matrix of the observations accordingly [9], we can
make multiple assimilation with smaller data batches:
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Figure 3: Comparison of the model’s variable mean between the bi-
ased enesmelbe, and the corrected ensemble through single and multiple
data assimilation.

The standard error deviation for the runs without assimilation, with a single
assimilation and a multiple assimilation are respectively 0.2531, 0.0909 and
0.0626.

4.1 Application on the

NEMO-LIM model

This method is currently being applied on a twin experiment, on the NEMO-LIM
model from the PredAntar project (Belspo). NEMO-LIM is a global and low
resolution (2 degrees) coupled model with long time steps allowing simulations
over several decades. It is used in the PredAntar project (Belspo), which aims
at understanding and predicting the Antartic sea ice variability at the decadal
timescale. Because of this low resolution, ocean currents are badly represented
and have been identified as a possible source of bias. They have a direct impact
on heat transportation in the ocean, thus also on the sea surface temperature
bias. Therefore, the forcing term (Fu and Fv) will be applied directly into the
momentum equations of the ocean’s dynamic equations of NEMO (Eq. 2,3).

du

dt
= −

1

ρ

∂p

∂x
+ fv +

1

ρ

∂τx

∂z
+ Fu (2)

dv
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= −

1

ρ

∂p

∂y
− fu +

1

ρ

∂τy

∂z
+ Fv (3)

4.2 NEMO-LIM model:

Creating the forcing term

The forcing in paragraph 2 has as only constraint that it is spatially correlated.
However, since we are working with a realistic physical model, we need to add
some conditions when forcing NEMO-LIM. Indeed, we do not want to add spu-
rious gravitational waves, so we need the divergence of the velocity fields to
be zero. We also want to dampen our forcing when going to higher depths,
were currents are usually smaller. Finally, we can construct a forcing field by
using higher resolution models and observations, instead of only using a random
function. Here is how the forcing is built:

•Make a free run of the model.

•Compare this free run with a higher resolution model (Hycom) and subtract
the difference between the two current fields.

•Generate a random, spatially correlated field, using Diva-nd [10], and use it
as stream function.

•Derive zonal and meridional velocity fields.

• From the free run, extract a mean turbocline depth.

•Dampen the derived velocity fields with the mean turbocline depth.

• Finally, combine the field from the higher resolution comparison, and the
randomly generated stream function.

Forcing = (Hycom−Nemo)− expdepth-turbocline ∗Random(Diva) (4)

This way, we now have a forcing field which is based on a better resolution
model, and completely random part, to create an ensemble of forcings. Dif-
ferent parameters have been tested concerning the correlation length of the
random forcing (2000km), the amplitude ratio between the random forcing and
the difference with the higher resolution model, ...

4.2 Assimilation with

NEMO-LIM model

Now that we have a way to build a forcing term with physical constraints,
we are currently proceeding with a twin experiment. Using the relationship
between sea surface height and ocean currents, the assimilation procedure uses
perturbed observations of the sea surface height to correct the forcing on the
ocean currents. The twin experiment procedure is similar to the Lorenz ’95 case
test described in paragraph 2.

A reference run with a random forcing with noise is used for the observations.
An ensemble of runs with random forcings is created, perturbed observations
are assimilated, and the corrected forcing is compared to the reference forcing.
However, some parameters still need to be improved.
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