21st century high-resolution downscaling of Antarctic surface mass balance from global circulation models

Cécile AGOSTA

Vincent Favier, Christophe Genthon, Gerhard Krinner, Hubert Gallée
Antarctic Surface Mass Balance

- Coastal areas: snowy and windy
- Antarctic Plateau: cold and dry

(van de Berg et al., 2006)
Antarctic Surface Mass Balance

- Coastal areas: snowy and windy
- Antarctic Plateau: cold and dry

(van de Berg et al., 2006)

Climate models: major SMB changes expected in coastal areas
SMB Downscaling: Why?

SMB estimation
Precipitation, Sublimation, Melting, Refreezing, Blowing snow

Spatial extent
Antarctica (5600 km x 5600 km)

Time extent
~800 yrs (1980-2200 * 2 Scenarios * 2 Boundary conditions)

GCM resolution: ~ 60 km → Required resolution: ≤ 15 km

→ Reduced computation time needed
The HiDEP model
High-Resolution Downscaling of surface Energy balance and Precipitation

Inputs (~50 km resolution)

- GCM Outputs: P, T, Q_v, U, V, W
- 3D Fields
 - Time step: 6H
- Surface Fields
 - Time step: 3H

Outputs (15 km res.)

- Rain$_{HiDEP}$
- Snow$_{HiDEP}$
- Sublimation$_{HiDEP}$
- Melting$_{HiDEP}$
- Refreezing$_{HiDEP}$
Precipitation downscaling: an orographic precipitation model

Upward wind \rightarrow Adiabatic cooling \rightarrow ρ_{sat} ↓

Integration of the Clausius-Clapeyron equation at saturation:

Precipitation rate $= \frac{\Delta \rho_{sat}}{\Delta t} = F(\rho_{sat}, T, P) \times W$

when $\rho \geq \rho_{sat}$ and W upward
Orographic precipitation: Determination of the vertical wind W

At the surface: the wind is tangent to the topography
→ new vertical wind at the surface

→ Computation for W: resolution of mountain gravity wave
Total precipitation: \(\text{Orographic} + \text{Non-Orographic} \)

Low-res. \textit{NON-Orographic Precipitation}

- Low-res. Total Precip. \textit{(Interpolated from GCM)}
- Low-resolution Orographic Precip.

+ High-resolution Orographic Precip.

High-resolution Total Precip.
Total precipitation: Orographic + Non-Orographic

GCM Grid (~50 km res.)

- GCM Topography
- Interpolation

HiDEP Grid (15 km res.)

- GCM Interpolated Topography
Total precipitation: Orographic + Non-Orographic

GCM Grid (~50 km res.)

HiDEP Grid (15 km res.)

GCM Precipitation

GCM Topography

Interpolation

Interpolated Topography

Total precipitation: Orographic + Non-Orographic

GCM Grid (~50 km res.)

- GCM Topography
- GCM Precipitation

HiDEP Grid (15 km res.)

- GCM Interpolated Topography
- High-res. Topography
- Low-res. Total Precip. (Oro. + Non-Oro.)

Interpolation
Surface Energy Balance

Extrapolation of GCM surface fields against the topography

Surface Scheme

Sublimation
Melting
Refreezing
Application to LMDZ4: 1980-2007

Arthern et al, 2006

van de Berg et al, 2006

LMDZ4

HiDEP-LMDZ4

SMB (mm w.e. a⁻¹)

4000

2000

1000

700

500

300

200

100

50

20

0

-400

mm w.e. a⁻¹

van de Berg et al, 2006

HiDEP-LMDZ4

LMDZ4

Arthern et al, 2006
Validation with a quality-controlled SMB data-set (Magand et al., 2007) : 90° – 180°E

R2 weighted by the number of observation in LMDZ4 grid boxes

Elevation range of Observations (m)

R2

LMDZ4 vs. Obs
HiDEP-LMDZ4 vs. Obs

Nb. of Obs.

Validation with a quality-controlled SMB data-set (Magand et al., 2007) : 90° – 180°E

Extension of the data quality-control to the rest of Antarctica :
Work in progress at LGGE
(In charge : Soazig Parouty, Vincent Favier)
Grounded SMB 1980-2007

Present SMB (1950-2000):

- Range: 4.1 to 6.4 mm a\(^{-1}\) sea level equivalent
 (Monaghan et al., 2006)

LMDZ4
P-E
\[175.2 \text{ mm w.e. a}^{-1} = \text{kg m}^{-2} \text{ a}^{-1}\]
\[\Leftrightarrow 6.0 \text{ mm a}^{-1} \text{ sea level equivalent}\]

HiDEP-LMDZ4
SMB
\[208.6 \text{ mm w.e. a}^{-1} = \text{kg m}^{-2} \text{ a}^{-1}\]
\[\Leftrightarrow 6.7 \text{ mm a}^{-1} \text{ sea level equivalent}\]
Projection for the 21st century (A1B)
First results

Grounded ice-sheet

mm w.e. a⁻¹

SMB | Snow | Rain | Melt | Sublim.

LMDZ4
HiDEP-LMDZ4

1980-2007
2071-2099
Projection for the 21st century (A1B)
First results

Melt HiDEP

1980-2007

2070-2099

More melt on the shelves
Conclusion

• High-resolution SMB (15 km) obtained from LMDZ4 downscaling
 Partial validation for present:
 • Increased performance Downscaled SMB close to LMDZ4 SMB
 BUT lack of field data in (crucial) coastal areas
Conclusion

- High-resolution SMB (15 km) obtained from LMDZ4 downscaling

Partial validation for present:
 - Increased performance: Downscaled SMB close to LMDZ4 SMB

BUT lack of field data in (crucial) coastal areas

Further validation:
 - Extended quality-controlled data set over all Antarctica

Model development in progress:
 - More detailed Surface Scheme
Thank you