
 

 
 
 

Abstract— The acceptance of Electric and Hybrid Electric 
Vehicle is related to their eco-efficiency, i.e. their ability to 
both reduce environmental impact while also providing a 
sufficient user satisfaction. The objective of this study is to 
provide a rationale design tool based on a multidisciplinary 
optimization approach to support the design of hybrid 
electric powertrain to simultaneously maximize user 
satisfaction complex criteria and minimize the Eco-score. In 
order to carry out the optimization problem efficiently the 
approach makes use of metamodeling techniques in order to 
save computation time in the optimization process that is 
driven by a Genetic Algorithm. The approach is applied to 
highlight the effect of different energy storage systems 
(batteries v.s. ultra capacitors) upon the optimized HEV 
design taking care of both Eco-score and User satisfaction. 
In the selected application that is a heavy urban bus with a 
mild hydrid electric powertrain, the ultra capacitors are 
slightly superior to NiMH batteries when emphasizing the 
Ecoscore criterion. 

I. INTRODUCTION 

Hybrid Electric Vehicle (HEV) is expected to be one of 
key technologies for future cleaner and fuel efficiency 
vehicles [1]. Typically, the hybrid architecture includes 
an internal combustion engine (ICE) associated with an 
electric motor and its energy storage system (Battery or 
Ultra Capacitors). A successful HEV design requires an 
optimal sizing of its key mechanical and electrical 
components combined to an optimal energy management 
(control strategy). Therefore, in the design process of a 
HEV, engineers are faced with a large variety of design 
variable choices including HEV configuration, key 
mechanical and electrical components sizes and control 
parameters while satisfying several conflicting design 
constraints and objectives aiming at increasing 
performances and comfort while minimizing 
environmental impact. Conversely to the importance of 
this practical issue, the number of works dealing with the 
application of the structural and multidisciplinary 
optimization to HEV design (se for instance Ref. [2-5]) is 
rather limited.  

Most of the works focus on a single objective function 
and emissions are restricted to fuel emissions. In this 
study, HEV design problem is considered as a multi 
objective and multidisciplinary optimization problem. 
This approach is able to provide a rationale framework in 
order to handle efficiently the design problem that 
consists in minimizing the vehicle environmental impacts 
while simultaneously maximizing User satisfaction 
criteria (US). The multi objective approach is able to 
consider naturally the conflicting criteria of different 
natures and circumvents the difficulties of most 
Ecoefficiency approaches that have to define aggregate 
indices for US & Ecoscore, and that are sensitive to the 
weighting of the two criteria.  

The multidisciplinary optimization framework provides 
a tool to carry out different coupled analysis problems. 
The environmental impact is assessed on the basis of the 
Ecoscore [6,7] whereas the User Satisfaction that requires 
evaluating several criteria related to vehicle 
characteristics i.e. performances, daily cost, reliability, 
safety, etc. Thus at first the EV or HEV model is 
simulated using ADVISOR (advanced vehicle simulator) 
[8,9]. Then emissions can be determined for several 
driving scenarios and the ECOSCORE indicator can be 
calculated. The User Satisfaction can be estimated based 
on performances criteria evaluated from ADVISOR 
simulations and from simple safety, reliability and daily 
cost scores, which are computed from simple evaluation 
tools and data bases relying on state-of-the-art of 
technological information.  

Then the design problem is stated as the following 
optimization problem: select mechanical and electric 
components (like engine, motor and battery sizes) to 
minimize the ECOSCORE indicator and to maximize the 
user satisfaction criteria subject to discrete valued sizes of 
components chosen from catalogues.  

Our work is based on multidisciplinary optimization 
approach using genetic algorithms (GA) and response 
surface methods. As response functions may be noisy 
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and/or discontinuous, meta-heuristic algorithms like GA 
are preferred to gradient-based optimization algorithms to 
solve the problems. Multiobjective versions of Genetic 
Algorithms are available to handle the eco-efficiency 
design problem. On the other hand, a surrogate model or 
metamodel approach is necessary to carry out the 
optimization work with a moderate computational cost. 
The numerous direct evaluations of response functions 
required by optimization process are replaced by 
metamodel evaluations. For practical implementation, we 
have selected the software tool BOSS QUATTRO from 
SAMTECH [12]. BOSS QUATTRO handles the optimization 
problem definition and the results visualization, the 
design variable updates, the optimization and the task 
management tasks of the chain of simulation tools. Thus 
the following solution flowchart is used: 

• Use a parametric study in BOSS QUATTRO to 
construct some response surface approximations 
(polynomial) of US and Ecoscore from 
ADVISOR simulation models. 

• Formulate a multi objective optimisation 
problem to minimize the Ecoscore and maximize 
the US.  

• Solve the eco efficiency design optimization 
problem using a multi objective genetic 
algorithm (MOGA) available in BOSS 
QUATTRO. 

II.  MODELING AND SIMULATION 

A. HEV configurations 

The basic two architectures of HEV powertrains are the 
series and parallel configurations [1]. However, complex 
types are also considered to combine the features of both 
series and parallel hybrids (i.e. Toyota Prius) as stressed 
by Ref. [1]. The series HEV configuration includes a fuel 
converter (ICE), a generator, a battery and an electric 
motor. In this case, the engine does not drive the vehicle 
shaft directly, but the mechanical power is converted into 
the electrical energy using a generator. Then, the torque 
required to drive the vehicle is supplied by the electric 
motor. Sometimes, electric energy is also saved in the 
energy storage system (i.e. battery). In parallel HEV, both 
electric motor and IC engine can deliver power to wheels. 
The electric motor can also be used as a generator to 
charge the battery by either the regenerative braking or by 
absorbing the excess power produced by the engine when 
its output is greater than that required to drive the wheels. 
In the combined series-parallel hybrid, the configuration 
involves an additional mechanical link compared with the 
parallel hybrid and also an additional generator compared 
with the series hybrid, which makes the series-parallel 
HEV a relatively more complicated and costly version. 

B. Simulation 

Simulation tools: ADVISOR (advanced vehicle 
simulator) is used for simulating the fuel consumption, the 
emissions and the performances of the vehicles. 
ADVISOR was initially developed by the National 
Renewable Energy Laboratory [8, 9] from 1994 to 2002. 
ADVISOR combines forward / backward facing approach 
for the vehicle performances simulation (see Ref. [8]). In 
addition, it offers graphical user interface to select the 
component modules required to construct the vehicle 
system. Among several components of a HEV, the IC 
engine, electric motor and energy storage system are 
considered as the most critical components. Proper 
selection of these components mainly affects the vehicle 
characteristics and performance. 
Design model parametrization in ADVISOR: To consider 
the effect of component sizes in the optimization of HEV 
design, ADVISOR approach is to consider a baseline 
configuration made of selected for the engine and electric 
motor. The baseline configuration can then scaled up 
during the design process. For instance for the energy 
storage system, a battery pack is selected and then the 
number of battery modules is modified. The baseline 
scaling factor will later be naturally considered as our 
design variables during optimization process. For 
example the baseline configuration of the hybrid electric 
buses that will be considered in the numerical 
applications is summarized in Table I.  
 
Drive cycles: drive cycles that have been chosen to 
simulate and compare the different bus power train 
configurations are the three SORT (standardized on-road 
test) drive cycles developed by the UITP (International 
association of public transport) in collaboration with 
several bus manufacturers. These drive cycles has been 
developed in order to provide representative and 
repeatable tests for European transport public vehicle 
operators. The results are related to the SORT2 cycle (see 
Fig. 1). 
 

 
Fig.1.  SORT 2 drive cycle for urban bus 

 

 



 

III.  USER SATISFACTION CRITERIA 

User satisfaction is based on several criteria i.e. 
security, daily cost, reliability, performances, etc. Some 
criteria like performances may be easily quantifiable but 
other ones like comfort are such qualitative that they can 
only be estimated by fuzzy description. In this study we 
will consider only quantitative criteria: cost, performances 
and security. 

 
Performances: Performances include maximal vehicle 
velocity, acceleration performances and gradeability. 
They can be evaluated by simulation in ADVISOR by 
following standard approaches described in classical 
vehicle theory (see Ref. [11,12] for instance). 
Maximum speed is evaluated by solving the equilibrium 
between the propulsion power and dissipated power by 
resistance forces (rolling resistance, aerodynamic drag…) 

tan 0 1 2( ) ( ) ² ³propulsion resis ceP P v c v c v c vη ω = = + +    (1) 

Where ω is engine speed while v is the vehicle ground 
speed, η is the transmission efficiency, c0, c1, c2 
coefficients of a general expression of the driving 
resistance forces. 
Acceleration time (from V1 to V2 kph) can be evaluated 
by solving integration of equation of the vehicle motion: 
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Where meff is the effective mass and Fnet is the net force 
between propulsion force and driving resistance forces. 
Gradeability: is estimated by solving the equation limiting 
the propulsion force that can be transmitted to the ground 
while taking care of mass transfer during climbing in 
steady sate motion 

tan /propulsion resis ce f rF F Wµ= ≤   (3) 

fW and rW  are respectively the front and rear weight 

under front or rear wheels.  
 

Security: It is the capability of the vehicle to assure both 
the passengers and the safety of the other road users. 
Safety can be based on several criteria like security 
equipment available on the vehicle, crash test results (e.g. 
Euro NCAP [13]), static stability factor estimating 
rollover resistance [13], etc. However as the security 
systems of the vehicle are supposed to remain unchanged 
while modifying its propulsion system, the vehicle mass is 
the main factor for road security, especially for security of 
collision partners. Based upon the FARS (Fatal Analysis 
Reporting System) database, Joksch et al. [16] have 
estimated the relationship between the mass ratio of 
collision partners, and the fatality ratio of collision 
partners to be: 
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where m1 and m2 are the mass of vehicle 1 and 2, F1 and 
F2 are the fatalities in vehicle 1 and 2. As an example, for 
a mass ratio of 2:1, the Eq. (4) predicts a fatality ratio of 
16:1 between the lighter car and the heavier one in a 
vehicle-to-vehicle collision. Thus in this study we decided 
to base the security index on Eq. (4) solely. 
 
Cost: A simple cost model is introduced to estimate the 
total vehicle cost which is devised into two costs: an 
operating cost, Coperating and an investment cost, Cinv. The 
investment cost is given by: 

inv engine engine elec elec bat bat fixeC c P c P c N C= + + +      (5) 

where cengine, celec are respectively the cost per kW of the 
IC engine and the electrical components and Pengine, Pelec 
are the maximum rated power output in kW. In order to 
account for parallel hybrid designs that have no generator 
(since the electric machine works reversibly as a motor or 
a generator), the Pelec is defined as: 

elec motor generatorP P P= +              (6) 

The term cbat is the cost per unit module of battery and 
Nbat the modules number. The cfixe accounts for the 
bodywork and all the accessory components, which is 
assumed to be fixed and the same for a hybrid or a 
conventional vehicle. In reality it is clear that this is a 

TABLE I.  BASE CONFIGURATION OF A HYBRID ELECTRIC VEHICLE 

 
CONV-BUS 

 Hybrid Bus_Battery Hybrid Bus_Ultracapacitor 

Fuel 
Converter 

Geo 7.2 litre CI 205 kW 
engine, peak efficiency: 0.44 

Geo 7.2 litre CI 205 kW 
engine, peak efficiency: 0.44 

Geo 7.2 litre CI 205 kW 
engine, peak efficiency: 0.44 

Motor _ 75 kW Westinghouse AC 
induction motor/inverter 

75 kW Westinghouse AC 
induction motor/inverter 

Component 
 
 

Battery/ 
SC 

_ NiMH6,  cap=6.5 Ah 
and 7.2 V per module 

Maxwell BMOD0018-390V 
 

S 7.24m2 7.24m2 7.24m2 
Aerodynamics 

Cx 7.9 7.9 7.9 

Rolling 
resistance 0.00938 0.00938 

 
0.00938 

Tires 
Rolling 
radius 

0.5m 0.5m 0.5m 

 



 

greatly simplified costing, since as engine power varies so 
does the cost of many associated components such as 
braking systems, suspension systems and tires. 
 
Operating cost: It is calculated as: 

intop fuel fuel ma enanceC c M c= +           (7) 

Where cfuel is the cost per liter of fuel and Mfuel is the 
volume of fuel used over the assumed life of the vehicle. 
In this study we have assumed a life time of 5 years with 
100,000 km which is rather small. The maintenance costs 
have been neglected because we assume that the 
maintenance cost is more or less similar for the hybrid 
and conventional vehicles, which is again a rough 
approximation. 
 
Aggregate performances criteria: When working with 
several metaheuristic algorithms such as Genetic 
Algorithms, one major issue is concerned with 
considering design constraints. Therefore one strategy to 
circumvent the problem consists in defining aggregate 
objective functions or constraints. In order to introduce 
the performance criteria into the multiobjective approach 
later, we define here a global performance criterion 
aggregating the previously defined performance criteria 
(vehicle maximum velocity, gradability and the 
acceleration performance). User satisfaction can therefore 
be estimated using a linear combination of different 
criteria weighted by appropriate targets values related to a 
reference vehicle.  

max max23 20000 500000

100 6acc

V p
SB

t m C
= + + + +
ɶ ɶ

ɶ
ɶɶ ɶ

     (8) 

Where: �maxV  is the estimated maximum vehicle speed (to 

be maximized), acctɶ  is the estimated acceleration time 

(from 0 to 60 kph) (to be minimized), �maxp  is the 

estimated gradability (to be maximized), �m  is the vehicle 

mass (to minimized), and �C  is the total cost estimate (to 
be minimized). 

Making use of reference car target criteria also insures 
the consistency of metric units in the aggregated function. 
For maximum accuracy, it is a standard procedure in 
multidisciplinary optimization to estimate each criteria 
using response surface approximations and then, in a 
second step, to calculate the user satisfaction from the 
linear combination of the values coming from the 
surrogate models. 

IV.  ECOSCORE MODEL 

Eco-score [7,8] is a single environmental indicator 
which integrates different aspects of the environmental 
impacts of the road vehicles such as global warming, air 
quality, energy depletion and noise pollution. The 
emissions pollutants considered by Eco-score are related 
to the direct and indirect emissions. Direct emissions are 
linked to the use of the vehicle itself (tank-to-wheel) 
whereas indirect emissions are those related to the 
extraction and transportation of the raw materials for the 

fuel production, together with the emissions linked to 
refining and distributing the carburant (well-to-tank). In 
this study the direct emissions are obtained by the vehicle 
simulation in ADVISOR and the indirect emissions are 
based on the fuel consumption and the indirect emissions 
factors. The air pollutants cause various damages divided 
into different categories like global warming, human 
health impairing effects, harmful effects on ecosystems 
and building dirtiness. The partial damage of each 
pollutant is calculated as: 

,ij ij j totald Eβ=                (9) 

Where ijd  is the partial damage of pollutant j to 

category I, ijβ is the impact factor of pollutant j to the 

category I, and ,j totalE  is the total contributing emissions 

of pollutant j to the category i 
The damages are explained in common units by 

category so the total damage of each damage category can 
be obtained summing up the partial damages for the 
different damage categories: 

,i i j
j

D d=∑                 (10) 

In order to quantify the relative severity of the evaluated 
damages of each damage category, a normalisation step 
based on a specific reference value is performed. The 
damage associated to the emissions norms EURO IV 
(directive 98/69/EC) is taken as the reference point. 

,

i
i

i ref

D
Q

D
=                (11) 

Where iQ is the normalised damage on category I, iD is 

the total damage of the assessed vehicle on category i; 
and ,i refD is the total damage of the reference vehicle on 

category i 
The different damages are weighted before being 

aggregated to obtain the global damage. 

i iE W Q=∑                (12) 

where Wi is the weight of damage i. 

V. RESPONSE SURFACE METHOD 

Because of the larger number of function evaluations 
that can be necessary to carry out optimization process, 
especially when using meta heuristic algorithms like GA, 
a standard approach in structural and multidisciplinary 
optimization consists in resorting to global or local 
approximation models (see for instance [15,16,17]) 
Approximations will replace direct simulation runs during 
optimization iterations and will be updated during a 
limited number of steps ([18]). They provide explicit 
relations that enable a fast and small cost evaluation of 
the considered response functions. This approach will 
avoid dramatic increase of simulation time related to 
iterative solution procedure. 

The basic idea of global approximation that will be 
used here is to construct an approximate model using 
function values (from simulation runs or closed-form  
computations of analytical model) at some sampling 
points, which are typically determined using experimental 



 

design methods. Model fitness is subsequently checked 
using various statistical methods. In this section, we give 
a brief overview of the response surface methodology. 
 
Design of Experiment (DoE): Design of Experiments 
addresses the problem of distributing the experimental 
points in the design space. The difficulty lies in 
minimizing the number of points, and, at the same time, in 
obtaining an approximation with good quality, i.e. 
minimizing errors. The definition of the location of 
sampled points can influence the precision of the model 
because a correct plan of points can reduce the 
uncertainty of the approximated model. The sampling 
points are typically determined using experimental design 
methods such as a factorial design, a central composite 
design, or a Taguchi orthogonal array. In a DoE each 
variable or factor, is assigned within a range, defined with 
a minimum (low bound: LB) and a maximum (upper 
bound: UB) value. For the problem of the hybrid 
powertrain that will be considered in the application one 
can see at Table II the different design variables and their 
bounds. The DoE table then defines the points that should 
be used to create the response surface. 
 
Metamodeling approach: There are various response 
surface approximation methods available in the literature 
[15, 16, 17]. The polynomial-based approximations are 
the most popular. In this study, we typically use first or 
second-order models and their inverse in the form of 
linear or quadratic polynomial functions to develop an 
approximate model providing an explicit relationship 
between design variables and the response of interest. The 
unknown coefficients in the model are determined with a 
least squares method.  

Statistical analysis techniques such as ANOVA 
(analyse of variance) are used to check the fitness of the 
response surface model. An appropriate order polynomial 
is fitted to a set of data points, such that the adjusted root 
mean square error σa is minimized. The adjusted root 
mean square error σa is defined as following: Lets Np be 
the number of data points and Nc be the number of 
coefficients and error ei at any design point i being 
defined as:  

ˆi i ie y y= −                  (13) 

where iy  is the actual value of the function at the design 

points and ɵ iy  is the predicted value.  

 
TABLE II:  DESIGN VARIABLES AND ASSIGNED BOUNDS 

Design 
Variable 

Description baseline LB UB 

PICE  

(kW) 
Fuel converter 
maximum power 

150 150  200 

Pmotor 
(kW) 

Motor maximum 
power 

75  50 100 

Nbat 
 

Battery number of 
modules 

568 150 800 

 

Hence on gets: 
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If tN is the number of additional test data that are used to 

test the quality of the approximation, the root mean 

square error aσ  is given as: 
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The prediction capability of the response surface is given 
by the coefficient of multiple determinations Radj² defined 
as: 
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For a good fit, Radj² should be close to 1.  
In this study, the response surface method is employed 

to generate simulation-based models surrogate models of 
performance criteria. Table III indicates the multiple 
determination coefficients for six response functions and 
their meta-models. As shown in the table III, the second 
order inverse polynomial model is the best efficient for all 
functions. The Fig. 4 shows two of those responses: the 
accelerate time (from 0 to 60 kph) and the vehicle 
maximum velocity.  

Remind also the reader that meta-models are built for 
single performance criteria and then the aggregate user 
satisfaction function is calculated, leading to a better 
precision. Once the surrogate models are available, any 
optimization method can be used to solve multi-objective 
optimization problems with a reduced computational 
effort. 
 

TABLE III:  
2
adjR FOR DIFFERENT MODELS 

 1st order 
polynomial 

Quadratic 
polynomial 

1st order 
inverse 

2nd order 
inverse 

Ecoscore 0.8154 0.9714 0.77641 0.9714 

Vmax 
0.89686 0.9534 0.9033 0.9572 

tacc 
0.9025 0.9840 0.9228 0.9867 

pmax 
0.9297 0.9818 0.9241 0.9824 

M 1.0000 1.0000 0.9720 1.0000 

C 0.9505 0.9918 0.96232 0.9959 

VI.  OPTIMIZATION  

A. Multi-objective optimization 

Multi-objective optimization problem consists in 
finding a vector of design variables which simultaneously 
satisfies the constraints and minimizes / maximizes a 
vector of objective functions. These functions are usually 
antagonistic and conflicting with each other. Formally, 
multi-objective optimization problem is formulated as: 



 

 

 
Fig. 4.  Response Surfaces of Parallel HEV  

 
Minimize ( )F X , 

Where { } : 1, ; : 1,i iF f j M X x i N= ∀ = = ∀ =  

Subject to:  

( ) 0C X ≤ , where { } : 1,pC C p P= ∀ =     (18) 

 
All objective functions can not be simultaneously 

optimized. In others words, there is not a unique solution 
which simultaneously provides the optimal value for all 
objectives. This introduces the Pareto optimality or the 
non-dominated solutions set concept.  

B. Pareto optimality 

When two design points are compared, they are non-
dominated with respect to each other if no design 
dominates the other. In other words, a design X Є D (D is 
the set of all feasible designs) is non-dominated with 
respect to a set A D⊆ , if :a A a X∃ ∈ < . In addition, 

any design X is Pareto optimal if X is non-dominated 
with respect to D that is to say that there is no feasible 
design point which would improve any objective function 
without worsening at least another one.  
 

 
Fig. 5.  Pareto-optimal front  

All non-dominated design points in set D sweep the 
Pareto optimal set. The objective functions representation 
of the Pareto optimal set is the Pareto optimal front 
(POF). Figures 5 represents the Pareto optimal set for a 
two objectives problem. 

Generally it is not easy to find an analytical expression 
of the Pareto optimal front. Therefore, the multi-objective 
solutions consist in a discretization of the Pareto front and 
the algorithm aims at finding several non-dominated 
solutions by applying appropriate techniques. There are 
many methods to solve multi-objective optimization 
problems. They can be divided into two categories. In the 
first category, the user explains his/her priorities before 
optimization (a priori methods). In this category, the 
initial multi-objective problem is transformed into a 
mono-objective problem by aggregating all objectives 
(weighted sum) or considering one objective as the main 
objective and other ones as constraints (i.e e-constraint 
method). The problem can then be optimized using a 
standard gradient based algorithm if derivatives are 
available or derivative-free algorithm. The common 
drawback of these methods is that a single solution is 
obtained after optimization. To find another solution (for 
Pareto front), the user has again to restart an optimization 
run with a new problem formulation by modifying the 
weight coefficients or by expressing other priorities. In 
addition the Pareto front is in general not homogeneous, 
convex or even continuous and the non dominated 
solutions may be grouped in the same region so that the 
designer choice is limited. On the contrary, the a 
posteriori search techniques work without priorities 
information about the set of optimal solutions. Afterwards 
the designer can choose his/her most preferred solution 
from the pareto set after optimization. Genetic algorithm 
is one of these a posteriori techniques, because it yields a 
set of non-dominated solutions. In addition, the use of the 
sharing operator makes the Pareto front homogeneous. In 
its basic form, GA operates on a population of individuals 
(potential solutions), each of them being an encoded 
string (chromosome), containing the decision variables 
(genes). The GA is an iterative procedure based on the 
following five main steps: 

1 Creating an initial population P0; 
2 Evaluation of the performance of each individual 

pi of the population, by means of a fitness 
function; 

3 Selection of individuals and reproduction of a 
new population; 

4 Application of genetic operators: crossover and 
mutation; 

5 Iteration of steps 2–4 until a termination 
criterion is fulfilled. 

To apply GA to the optimization of HEV, a fitness 
function is required to evaluate the performance of each 
solution. In this study, the fitness function is the objective 
function. To account for the multi-objective aspects, 



 

several GA have been drawn up [19]. The most popular 
are MOGA (Multi objective genetic algorithm), NSGA 
(Non-dominated Sorting Genetic Algorithm) and NPGA 
(Niched-Pareto Genetic Algorithm). 

C. Problem statement of HEV design 

The objective is to optimize a Hybrid Electric Vehicle 
component to increase user satisfaction and decrease the 
Eco-score on the basis of a European normative driving 
cycle. The mathematical problem of the multi-objective 
design problem of a HEV vehicle can be stated is as 
follows: 

Minimize 
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The optimization is initially limited to three design 
variables, two of them defining the power ratings of the 
fuel converter and the motor controller. The third variable 
defines the number of battery modules. As seen in Eq. 
(19), we have a two objective function optimization 
problem. Multi-objective genetic algorithms, MOGA and 
NSGA are available in BOSS-QUATTRO tools [19] and 
the MOGA one is selected in this study. This algorithm 
accounts for multi-objective aspects by a selection step. 

VII.  NUMERICAL APPLICATION 

The method is illustrated with the example of parallel 
hybrid electric buses. The simulated buses are based on 
the VAN HOOL bus, which is a classically bus used by 
public transportation company in Belgium. Taking 
advantage of ADVISOR library, the buses are modelled 
using pre-existing components for buses or other heavy 
vehicles with only minor changes. The most important 
bus parameters are given in the table I. 

We compare the conventional bus and the parallel 
hybrid electric bus using on one hand, NIMH batteries as 
energy storage system, and Maxwell BMOD0018-390V 
super capacity model, on the other hand.  

The parallel architecture is the best configuration to 
take advantage mild hybrid electric vehicles [1] with 
energy accumulators having a low specific energy such as 
the ultra capacitors.  

 
TABLE IV:  OPTIMIZED COMPONENT SIZING 

 

Component 
PICE 

 (kW) 
Pm 

(kW) 
Nbat 

CONV_BUS 205  -   - 

HEV_BUS_NiMH 150 95 660 

HEV_BUS_SCaps 164 60 319 

 

 
The multiobjective optimization is carried out using the 

MOGA approach. The initial population of the GA is set 
to 20 individuals. After 50 generations the objective 
functions of the population spans the Pareto front as 
illustrated in Fig. 6. 

According to the set of points representing the possible 
pareto optimal solutions for the two technologies, it is 
noted that user satisfaction and ECOSCORE are close to 
each other in both cases. But when emphasizing the 
ECOSCORE, the super capacities (pink points) are 
slightly better than the batteries (purple points). When 
focussing on the satisfaction of the user on the other hand, 
the batteries offer better possibilities.  

The optimum configurations that yield to a minimum 
ECOSCORE, respectively for the conventional bus, the 
HEV bus respectively with NiMH batteries and with ultra 
capacitors are given in Table V. At Table V, one provides 
the comparison the related performances of the optimized 
hybrid buses and the conventional one. For both HEV, the 
engine size is reduced compared to the conventional bus. 
The fuel consumption and NOX emissions are also 
reduced in both cases and one can notice subsequently an 
ECOSCORE improvement. More surprisingly, the 
performances of HEV are also improved compared to the 
conventional bus. Ultimately, in this case, the hybrid 
electric buses using the batteries have slightly better 
performances than those one using super capacitors. 

In the present application considering a mild hybrid 
electric bus, the better choice would go towards super 
capacitors because they have other appreciable properties 

TABLE V: OPTIMIZED HEV PERFORMANCE COMPARISON 
 

 CONV_Bus HE_Bus 
NiMH 

HE_Bus_S
Caps 

Fuel 
consumption 

(l/100km) 
62 45 47 

Tacc (from 0 to 
60kph) 

20 13 14 

Vmax (km/h) 106 105 98 
Pmax @ 

60km/h (%) 
6.5 11 6 

NOX (g/km) 132 49 50 
CO2 (g/km) 1 618 1 174.5 1 226.7 

M (kg) 16 242 16 805 16 507 
C (€) 370 000 390 969 377 294 

Eco score 1.2684 1.0542 1.03304 
US 6.0 7.9 7.0 



 

compared to the batteries: the very high lifetime, the 
higher efficiency of charge and discharge and the lower 
polluting recyclability. 

 

 
Fig. 6.  Pareto optimality front for Eco-score et 1/SB functions  

VIII.  CONCLUSION 

We have carried out a comparison between a 
conventional bus and a parallel hybrid electric bus using 
on the one hand, NIMH batteries as energy storage 
system, and, on the other hand, Maxwell BMOD0018-
390V super capacitor model. The eco efficiency 
comparison is based on a multidisciplinary multiobjective 
optimization approach of HEV powertrains accounting 
for both ECOSCORE for environmental impacts and for 
an aggregate User satisfaction. The design problem 
formulation has to optimize the design scaling factors 
based on the conflicting objective functions of 
minimizing the environmental impact (ECOSCORE) and 
maximizing the performance of the vehicle.  

In this study meta heuristic algorithms such as Genetic 
Algorithms have been selected in order to cope with noisy 
and non-smooth response functions. Performance criteria 
and emissions of vehicles are simulated using the 
ADVISOR software tool, while the optimization iterative 
process is carried out in Boss Quattro. In order to reduce 
the computational cost, one major contribution consists in 
developing approximations of performance and 
environmental criteria based on response surface 
methods. 

Optimization results show that the hybrid electric bus 
using super capacity has almost the same performances as 
the HEV using NiMH batteries. In the present case of 
figure, preferred choice would go towards super 
capacitors because they have other appreciable properties 
compared to the batteries such as higher lifetime, higher 
efficiency of charge and discharge and no polluting 
recyclability. 

In on-going developments, our approach should be 
extended to account for more parameters such as the HEV 
control strategy for further improvement.  

In addition, precision of response surfaces strategy will 
be further improved to be more robust in cases that 
optimums are difficult to determine. For instance it will 
be interesting to couple genetic algorithms with local 
search algorithms. 
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