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Abstract 

The point-like quasi-steady aerodynamic loading in a turbulent flow is formally expressed as a function of the 

squared relative velocity between the fluid and the investigated structure.  The three major terms governing the 

low-order statistics of the response are known to be related to the average loading, the linear turbulent loading and 

the aerodynamic damping. The three other terms in the loading, namely the quadratic turbulence term, the 

parametric velocity feedback term and the squared velocity term, may significantly affect the higher order 

statistical cumulants of the response. These latter two sources of fluid-structure interaction are usually disregarded, 

by lack of efficient simulation tools, except a Monte Carlo simulation of the nonlinear equation. In this paper, we 

provide a formal analysis of the complete nonlinear model, including thus all six terms, but mainly focusing on 

the importance of the two nonlinear coupling terms of the loading. Closed form solutions of the response are 

derived for a second-order Volterra model of this problem, under the assumption of different timescales in the 

loading and in the structural behaviour. Two major outcomes of the analysis are, on the one hand, that the squared 

structural velocity term has no influence on the cumulants of the response up to order 4 and, on the other hand, 

that the parametric velocity feedback acts as a reduction of the non Gaussianity of the response. 

1 Introduction 

The response of civil engineering structures to the wind turbulence is a multiple timescale process. 

Indeed, in a linear context, the structural response to very low frequency turbulence excitation may be 

approached by a sum of two components, a background component associated with the slow dynamics 

of the excitation and a fast resonant component associated with the structural timescale (Davenport, 

1961). 

The stochastic structural analysis of a linear structure subject to a stationary excitation, such as the 

wind turbulence, is usually performed with a spectral approach. While offering a clear understanding of 

the structural behaviour and the dispatching of energy in the different timescales, this approach also 

sidesteps the heavy generation of the wind velocity or pressure time histories. The stochastic approach 

is a useful tool to determine the Gaussian, but also non-Gaussian, response of a linear system. One 

drawback perhaps is that the evaluation of high-order statistics requires a multi-dimensional integration 

of spectral densities in spaces whose dimension increases with the order of the cumulants of the response 

under investigation. The application of the method in the context of non-Gaussian responses thus turns 

out to be challenging, from a computational viewpoint. This drawback is partly circumvented by 

considering the existence of the different timescales in the response. Doing so, the multiplicity of the 

integrals to be computed is decreased by one, which substantially speeds up the computation (Denoël, 

2014). 

In this paper, the concept described above is extended to the study of a linear oscillator whose 

excitation is defined as a quadratic function of the wind-structure relative velocity. The analysis still 

relies on a spectral approach and the structural system is modelled as a Volterra system (e.g. Schetzen, 

1980). Developments are limited to the second-order Volterra operator which is shown to be accurate 

enough for the statistics up to order 4. The efficiency of the method is discussed with the determination 
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of the first four cumulants of the response. The quality of the result is assessed in terms of accuracy with 

respect to a reference solution obtained through Monte Carlo simulation. Under the quasi-steady 

assumption, the response of a point-like single degree-of-freedom structure subject to a 1-dimensional 

wind turbulence is governed by the nonlinear second order differential equation 

  
21

2
dmx cx kx C A U u x       (1) 

where x(t) is the structural displacement, m, c and k are mass, viscosity and stiffness, respectively, U is 

the mean wind velocity and u(t) a Gaussian zero-mean random process representing the wind velocity 

fluctuation; , A and Cd are, respectively, the air density, the area of the structure exposed to the wind 

and the aerodynamic drag coefficient. The overhead dot denotes differentiation with respect to time t. 

The nonlinearity of this equation results from the squared structural velocity 2 ( )x t  and the parametric 

excitation 2 ( ) ( )x t u t  terms obtained in the right-hand side after expansion. 

The zero-mean Gaussian turbulence process u(t) is fully described by its power spectral density Su(). 

Following Kolmogorov’s energy cascade, typical models for the turbulence decrease as -5/3 in the high-

frequency range. This non Markovian behaviour makes any stochastic method based on the FPK 

equation and moment equation rather intricate since a proper approximation with a Markovian process 

has to be formulated. This argument drove the solution procedure of the considered problem toward 

spectral methods. It is thus possible to handle realistic power spectral densities of the wind turbulence 

such as 

 
2

5/3

0.546

;

1 1.64

u u

L

L US
U L

U

 
  
   

  
 

 (2) 

in which L represents the integral length scale and u the standard deviation of the turbulence velocity. 

This problem might be formulated in a dimensionless manner leading to the governing equation 
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where the following dimensionless quantities are used 
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and where a prime  denotes differentiation with respect to the nondimensional time t . The power 

spectral density ( ; )uS    of the dimensionless turbulence velocity u  is a function of the dimensionless 

frequency   and of the small parameter , which is the ratio of the characteristic turbulence frequency 

U/L and the structural natural frequency 0. The two coefficients s and a represent the structural and 

aerodynamic damping coefficients. 

This formulation indicates that the solution of the problem at hand may evolve in different regimes, 

depending on the relative smallness of s, a and . These three numbers are typically in the range [103; 

10-1]. A fourth small parameter of the problem is the turbulence intensity Iu, usually in the range [10%; 

30%], which scales the quadratic turbulence term and the nonlinear feedback terms on the right hand 

side of Eq. (3). The dimensionless version of the governing equation readily shows that the quadratic 

velocity term x² is one order of magnitude smaller than its left neighbour ux, the parametric excitation 
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term, which presumably indicates that the former one would yield negligible contribution to the response. 

This is to be proved with a more formal derivation. Although the dimensionless version of the governing 

equation is definitely more convenient to identify the leading physics and its limiting cases, the paper is 

mainly developed with physical quantities, so as to provide a simpler understanding.  

2 Second order Volterra model 

2.1 The Volterra Frequency Response Functions 

Inspired by former works (Carassale & Kareem, 2010), it is chosen to model the response of this 

nonlinear problem with a second order Volterra model. This choice is validated in Section 5, with the 

typical orders of magnitude of the parameters encountered in wind engineering applications. 

In this framework, the response x(t) is approximated as  

    1 2( ) ox t x x t x t   (5) 

where x1(t), respectively x2(t), is defined as the first (resp. second) order convolution of the zero-mean 

Gaussian input u(t) with the Volterra kernel h1(t), respectively h2(t). In a stationary setting, this definition 

is advantageously translated into the frequency domain with the symmetrical Volterra frequency 

response functions (VFRF) H1() and H2(). 

These functions need to be established for the specific nonlinearity of the problem under 

consideration. This may be achieved with the harmonic probing technique (Bedrosian & Rice, 1971) or 

with the systematic procedure presented in Carassale & Kareem (2010). The same procedure as that 

developed in the later one has been used to derive the VFRFs as: 
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where   2D m j c k       is the inverse of the FRF defining the mechanical part of the system. 

These frequency response functions are sketched in Figure 1. The first one corresponds to the 

classical frequency response function of a linear oscillator, with additional aerodynamic damping. The 

second represents the interaction between the different harmonics in the response, especially the filtering 

of pairs of harmonics (1, 2) that fall out of the band 1 2 o   . 

2.2 Cumulants of the stationary response 

In a second-order Volterra model, the total response is expressed as the sum in Eq. (5) involving the 0th-

order constant term x0, together with the fluctuating terms x1(t) and x2(t). When the input u(t) is a 

stationary random process, the statistical properties of the total response x(t) may be expressed in terms 

of its cumulants, which in turn can be written as functions of the cumulants of x1(t) and x2(t). Using 

some classical developments in the theory of probability (e.g. Papoulis, 1965) under the hypothesis that 

u(t) is Gaussian distributed, we obtain 
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where [ ]k   (when used with a single argument) represents the kth-order cumulant of its argument and 

[ ,..., ]k     represents the kth-order cross-cumulant associated with the product of the arguments. 
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(a) (b) 

(c) (d) 

Figure 2. Second-order frequency response function (s = a = 5%). 

An analysis of the orders of magnitude of the two terms that compose each cumulant of the response 

reveals that the second terms in the expressions given in (7) are negligible in front of the first terms, at 

least for the small realistic values of the aerodynamic damping a encountered in typical wind 

engineering applications. The formal demonstration of this statement goes beyond the scope of this 

paper, but is available in Denoël and Carassale (2014) together with a deeper investigation of this 

problem. 

Intuitively however, the second order response x2(t) is one or several orders of magnitude smaller 

than the first order response x1(t). The ratio of these two actually scales with the aerodynamic damping 

a. As a consequence, in Eq. (7), the cross-cumulant, involving more factors in x1(t) than the unilateral 

cumulants of x2(t) are expected to be leading. 

2.3 Power spectral density and higher order spectra of the response 

The power spectral density of the total response x(t) of a second-order Volterra model reads 

            
2 2

1 2 1 1 1 1 12 , dx u u uS H S H S S





           (8) 

where Su() is the power spectral density of the turbulence, while H1 and H2 represent the Volterra 

frequency response functions, as given in (6). 

The integration of the power spectral density Sx() provides the second cumulant of the total response 
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Substitution of (8) into (9) indicates that the cumulant of the response is composed of two terms, as 

hinted by (7) anyway. The first one, involving |H1()|, is responsible for the linear counterpart of the 

response 2[x1], while the second term, involving the second-order frequency response function 

|H2(1,2)| provides the second contribution 2[x2] to the total cumulant, after integration along the real 

axis. Following the former observation that the second terms in (7) are negligible, the second term in 

the power spectral density of the total response is dropped. 

It finally turns out that the second order response is that of a linear system whose total damping is 

represented by the sum of the structural and aerodynamic damping. In this context, there exists a 

classical way to bypass the numerical integration of Sx() in (9). It is based on the background/resonant 

decomposition of the response, a two-timescale approximation of the response usually attributed to the 

pioneering works of Davenport (1961). In this method, the variance of the response is simply expressed 

as the sum of a background and a resonant component as 

      2 2 1 2,1 Bx x r     (10) 

where 
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are readily interpreted as the background response and the resonant-to-background ratio. 

One major advantage of this two-timescale method is that it sidesteps any integration and offers an 

approximate solution of the problem at no computational costs. Extension of this method to higher-order 

statistics was the key motivation for the consideration of this problem as a Volterra model. 

Similarly to the power spectral density, the bispectrum of the total response x(t) is composed of two 

terms, among which only the first one is retained in the analysis, as it is responsible for the contribution 

33[x1, x1, x2] to the third cumulant. The bispectrum of the response is thus approximated as  
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and the third cumulant of the response is approximated by 
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Similarly again, the trispectrum of the total response x(t) is composed of two terms, among which 

only the first one is considered. In this simplified version, it reads 
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where the summation is performed on all six possible permutations of the indexes , ,  = 1, 2, 3. The 

fourth cumulant of the response is thus approximated by  
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               (15) 

The purpose of the rest of the paper is to provide simple expressions for the integrals in (13) and (15). 

3 Multiple Scale Spectral Analysis & Analysis of the Model 

3.1 Cumulants of the response 

The multiple timescale spectral analysis is a recent technique that allows decreasing by one (at least) the 

order of integration in the determination of the cumulants of the response. It hinges on the timescales 

separation between the loading and the structure and is able to deal with linear/nonlinear structures, 

stationary/evolutionary problems, SDOF/MDOF problems, and is fundamentally not limited regarding 

the statistical order (Denoël, 2014). The method is elaborated in the frequency domain and is not 

contingent upon the markovianity of the loading process; it thus deals with any complex analytical 

expression of the power spectral density of the loading –such as those that characterize the wind 

turbulence– without any artefact. The technique actually generalizes the background/resonant 

decomposition of the variance (Davenport, 1961) and the background/biresonant decomposition of the 

third cumulant (Denoël, 2011) of the response of a single degree-of-freedom linear system subject to 

slow stochastic loading. 

Application of the general method requires the identification, in the response spectra, of the different 

components to the response. Among them the background component is easily identified. Its trivial 

subtraction from the initial response spectra leaves us with resonant and mixed background/resonant 

terms. Examples of applications in (Denoël, 2014) give some hints on how to determine and approximate 

these components. 

 

Figure 2. Sketch of the bispectrum of the response, (12). 

At third order, the bispectrum of the response is expressed by (12) at leading order. This function is 

represented in Figure 2 which illustrates the background component as a central peak of the frequency 

space as well as six peaks, coined as biresonance peaks as they correspond to resonance in two factors 

out of three in the each term of Bx(1,2). These peaks are located at (1,2)= (±o), (0,±o) and 

(±oo). 

The background contribution to the integral in (13) is obtained by replacing the frequency response 

functions H1 and H2 by their local behaviour in Eq. (12), i.e. H1()=CdAU/k  and H2(1,2)=CdA/2k, 

which yields 
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Applying the procedure recommended in the multiple timescale spectral analysis, the additional 

contribution of the biresonance peaks is obtained as 
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with r the second-order resonant-to-background ratio introduced in (11) and 
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and where the shorter notation  = s + a is used. The total cumulant of the response is finally written 

as the sum of the background and biresonant components, 3,B + 3,R. 

The appreciable outcome of the method is that the order of integration to determine the third cumulant 

of the response has dropped from 2, in Eq. (13), to 1 in Eq. (17), as a result of the timescale separation. 

A graphical representation of the trispectrum of the response (14) is a bit more involved as it concerns 

a function of three parameters. However the generic procedure developed at the third order may be 

replicated. It reveals the existence of four types of peaks, namely (i) a background peak located at the 

origin, as usual, (ii) four A-type mixed background-resonant peaks located in (1,2,3)=±() 

and (1,2,3)=(,±), (iii) two B-type mixed background-resonant peaks located at 

(1,2,3)=±(0,and (iv) four (purely) resonant peaks located at (1,2,3)=±(and 

(1,2,3)=±(. 

The natures of these peaks are different because they each maximize different factors in the 

expression of the trispectrum. To keep it simple, the background peak corresponds to the only possible 

value of (1, 2, 3) that maximizes the factors in Su, while the four resonant peaks correspond to the 

four possible combinations of (1, 2, 3) that maximize three out of the four factors in H1 or H2. Mixed 

A- and B-type peaks maximize one (or two) factors in H1 or H2 and two (resp. one) factors in Su. 

Resorting again to the basic principles of the multiple timescale spectral analysis (Denoël, 2014), the 

integral in Eq. (15) can be approximated by the sum of the four terms: 
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with 2 ( ( ); ; )u oS     and 3( ( ); ; )u oS     are defined as 
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In our formulation, integrals are hidden in the coefficients 1, 2 and 3, but the dimensionality of 

the integrals is limited to 2, or even to 1 when mixed background-resonant components are dropped 

(which unfortunately degrades the quality of the result, see Denoël, 2012).  

3.2 Skewness and Excess Coefficients 

The skewness and excess coefficients of the response are readily obtained from the corresponding 

cumulant. With the multiple timescale approximation, they read 
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What this model offers is a simple and attractive procedure for the computation of the skewness and 

excess coefficients of the nonlinear response of the considered problem. These coefficients are simply 

expressed as a function of the resonant-to-background ratio denoted by r, the damping coefficients, 

structural and aerodynamic, as well as the coefficients 1, 2 and 3 which holds the remaining 

computational issues. 

Interestingly enough, these latter coefficients have closed-form asymptotic expressions, for large and 

small values of the total damping coefficient. The relative smallness has to be assessed by comparison 

with the ratio of the characteristic frequency of the wind velocity turbulence and that natural frequency 

of the structure,  introduced in (2).  For instance, one may observe that all three factors tend to 1 when 

≫. This makes the estimation of the skewness and excess coefficients of the response promptly 

accessible. 

The amplitude of the nonlinearity scales with the magnitude of the aerodynamic damping, see (2). 

For small values of that parameter, the response is still non-Gaussian as a result of the square 

transformation of the wind velocity turbulence u². In the limit case, the structural behavior is linear and 

the current formulation degenerates into existing approximation based on the multiple timescale spectral 

analysis too (Denoël, 2011). What mainly matters here is that the non-Gaussianity of the response 

(measured by the magnitude of the skewness and excess coefficients) decreases as some nonlinear 

feedback is injected into the structure. This is readily observed by substituting a by 0 in Eqs. (21); the 

coefficients of 1, 2 and 3 are systematically decreased. This validates the following statement. The 

differentiation in the feedback loop acts as a high-pass filter of the structural response. It is well known 

that the non-Gaussianity of the response mainly results from the low-frequency content while the 

resonant component of the response is simply Gaussian. Consequently the correction to the open-loop 

system is more or less Gaussian and this tends to diminish the non-Gaussianity of the loading. The model 

described in this paper is a simple tool to quantify this return to the Gaussian distribution. 

The few details that were communicated in this paper are not really sufficient to understand that the 

local approximations of the kernel, that allowed the derivation of the low-dimensional integral solutions, 

are actually not affected by the presence of the square velocity feedback. In other words, the squared 

structural velocity )(2 tx  term is definitely negligible in front of the parametric excitation 2 ( ) ( )x t u t  

term, no matter the values and relative smallness of the parameters of this problem. The only limitation 

on this observation is that the timescales remain well separated. 

At last but not least, another interesting case is that of a small dynamic amplification, in the second-

order sense, i.e. r≪. In that case, both the mixed and resonant contributions vanish and the skewness 

and excess coefficients of the response match those of the quadratic transformation of the Gaussian wind 

velocity turbulence, i.e. 3=3Iu and e=12Iu². 

4 Numerical application 

A Monte Carlo simulation of the original nonlinear system (1) and of its 2nd-order Volterra series 

approximation (5) provides realizations of the total response x(t), as well as of the terms x1(t) and x2(t) 
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of the Volterra series approximation. With the help of an online averaging method, the raw moments of 

x(t), x1(t), x2(t) are readily obtained. They are finally translated into cumulants, as they offer a more 

convenient understanding. Figure 3 shows the comparison of the skewness (a) and coefficient of excess 

(b) of the full nonlinear response x(t) (blue surface) and its Volterra series approximation x1(t)+x2(t) (red 

surface). It can observed that, within the considered parameter space, the 2nd-order Volterra system 

provides a perfect representation of the skeness and a slight overestimation of the coefficient of excess. 

Figure 4 shows the comparison, again in terms of skewness (a) and coeffient of excess (b), of the solution 

provided by the numerical integration of the 2nd-order Volterra series (blue surface) and by the proposed 

analytical solution (red surface). The analytical solution provides a good estimation of skewness, while 

tends to overestimate a bit the numerical results. A good agreement is observed in the region of high 

aerodynamic damping and low structural damping, which is the most relevant from a technical point of 

view. 

As far as the computational efficiency is concerned, it should be emphasized that the analytical 

solution is extremely convenient when the two timescales involved in the problem are very different 

from each other, i.e.  is small. In this case, indeed, the Monte Carlo simulation requires the integration 

of very long time series using a small time step. For example, the computation of the results shown in 

Figures 3 and 4 (400 points of the parameters space) required about five minutes for the analytical 

solution and about 2500 hours CPU time for the Monte Carlo simulation (mostly used for the solution 

of the full nonlinear system). 

 

(a)  (b) 

Figure 3. Skewness (a) and coefficient of excess (b) of full nonlinear response (blue) and 2nd-order Volterra 

series approximation (red). 

 (a) (b) 

Figure 4 Skewness (a) and coefficient of excess (b) of 2nd-order Volterra series approximation (blue) and 

analytical solution (red). 
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5 Conclusions 

There are two main contributions in this paper. The first one concerns the derivation of the very general 

solution, expressed as accurate approximations though, of the stochastic response of a second-order 

Volterra model. Equations presented in this paper are rather general and might be applied in other fields 

or problems, as long as the timescales separation hypothesis holds. 

The second contribution concerns the application to a classical problem of wind engineering, namely 

the influence of the nonlinear quadratic velocity and parametric loading terms arising in a quasi-steady 

aerodynamic loading. Although not given with full details, the derivation demonstrates that the 

parametric loading term is mainly responsible for the non-Gaussianity of the response, while the squared 

structural velocity term has very few influence. As an interesting outcome too, it is demonstrated that 

the nonlinear quadratic velocity feedback systematically reduces the skewness and excess coefficients 

of the loading. 
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