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1Structural Engineering Division, Faculty of Applied Sciences, University of Liège, Liège, Belgium.
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1 Introduction

A horizontal line-like structure is exposed to a random stationary 1-direction wind flow with mean ve-
locity U(ξ) and a fluctuating gaussian turbulence component u(ξ, t) with standard deviation σ(ξ), see
Fig. 1. The wind velocities are assumed to be perfectly correlated in the vertical direction d(ξ) of the
line-like structure. Turbulence intensity is defined as Iu(ξ) = σ(ξ)/U(ξ).

Figure 1. A line-like structure immersed in a wind velocity field. The dimensionless curvilinear abscissa is ξ.

The covariance between two wind velocities at two positions is defined by

κ2u(ξi, ξj) = σ(ξi)σ(ξj)ρ (sij) (1)

where the correlation function ρ (sij) is assumed to be a function of only the absolute value of the spatial
distance sij = |ξi − ξj | between the two positions. Vertical line-like structures, such as buildings, do not
meet this assumption because the correlation function is also function of the two distinct positions, i.e.
ρ (ξi, ξj , sij).

Assuming quasi-steady aerodynamics, neglecting aerodynamic damping and assuming that the veloc-
ity of the structural displacement aligned with the wind is low compared to the wind velocity, the total
non-gaussian aerodynamic pressure p(ξ, t) on the structure is expressed by

p = a+ bu+ cu2 (2)

where a(ξ) = γ(ξ)U(ξ)2; b(ξ) = 2γ(ξ)U(ξ); c(ξ) = γ(ξ) with γ(ξ) = 1
2ρ(ξ)d(ξ)C(ξ) where ρ(ξ) is

the air density and C(ξ) is the aerodynamic coefficient. The cross cumulants of order 2 κ2p(ξi, ξj) and
order 3 κ3p(ξi, ξj , ξk) between aerodynamic pressures are respectively given by

κ2pij = bibjρijσiσj + 2cicjρ
2
ijσ

2
i σ

2
j (3)

and

κ3pijk = 2σiσjσk (cibjbkρijρikσi + bicjbkρijρjkσj + bibjckρikρjkσk)+8cicjckρijρikρjkσ
2
i σ

2
jσ

2
k. (4)
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2 Background turbulent response

In its continuous form, the background structural response, R(t), is derived from integration of the
aerodynamic pressures field p(ξ, t) multiplied by its response-influence function I(ξ) over the line-like
structure

R(t) =

∫ 1

0
I(ξ)p(ξ, t)dξ (5)

and its second cumulant is obtained as

κ2R =

∫∫ 1

0
I(ξi)I(ξj)κ2p(|ξi − ξj |)dξidξj ≃

∫∫ 1

0
g1(ξi)g1(ξj)ρ (|ξi − ξj |) dξidξj (6)

where g1(ξ) = b(ξ)σu(ξ)I(ξ) and neglecting the second term in Eq. (3), which is marginal. Closed-
form expressions of the double integrals in Eq. (6) are attractive in order to avoid numerical integrations
and the consideration of numerical admittance (Denoël and Maquoi, 2012). This has been achieved
by (Dyrbye and Hansen, 1988) who simplified this double integral thanks to the change of variable
sij = |ξi − ξj | and interchange of the order of integration, which finally yields

κ2R =

∫ 1

0
k(s)ρ (s) ds (7)

with an influence function defined as

k(s) = 2

∫ 1−s

0
g1(ξ)g1(ξ + s)dξ. (8)

In the case of integrable expressions for g1(ξ), analytical formulations for the influence function k(s)
are derived and even if Eq. (6) has no analytical solution, Eq. (7) has the advantage to reduce the double
integration to a single one which is also easier to treat numerically if it had to. Nonetheless, for specific
ρ(s) such as a decaying exponential function

ρ(s) = e−ϕs (9)

with parameter ϕ, analytical solutions of Eq. (7) can be derived. We must also emphasize that analytical
expressions for g1(ξ) and ρ(s) may not be available and even with analytical expressions, the double
integrals may be awkward (or even impossible) to compute analytically. For simple cases, one may
consider fitting those functions with simple polynomial functions which ensures integrability.

The third cumulant of the structural response is obtained as

κ3R =

∫∫∫ 1

0
I(ξi)I(ξj)I(ξk)κ3p (sij , sik) dξidξjdξk

≃ 6

∫∫∫ 1

0
g2(ξi)g1(ξj)g1(ξk)ρ (sij) ρ (sik) dξidξjdξk (10)

where g2(ξ) = c(ξ)σ2
u(ξ)I(ξ) and neglecting the fourth term in Eq. (4), which is marginal. Following the

same strategy as discussed hereinbefore, this paper aims at extending the work of (Dyrbye and Hansen,
1988) to a third order analysis, i.e. simplifying triple integrals of Eq. (10) to double integrals as

κ3R = 2

∫ 1

0

∫ s1

0
[(k1(s1, s2) + k2(s1, s2))ρ(s1)ρ(s2)] ds2ds1

+2

∫ 1

0

∫ 1−s1

0
k3(s1, s2)ρ(s1)ρ(s2)ds2ds1 (11)
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where we define the third order influence functions as

k1(s1, s2) =

∫ 1

s1

g2(ξ)g1(ξ − s1)g1(ξ − s2)dξ (12)

k2(s1, s2) =

∫ 1−s1

0
g2(ξ)g1(ξ + s1)g1(ξ + s2)dξ (13)

k3(s1, s2) =

∫ 1−s1

s2

g2(ξ)g1(ξ + s1)g1(ξ − s2)dξ. (14)

One could want to apply the same procedure for the fourth cumulant of the structural response, obtained
as

κ4R =

∫∫∫∫ 1

0
I(ξi)I(ξj)I(ξk)I(ξl)κ4pijkldξidξjdξkdξl (15)

where κ4pijkl is the cross cumulants of order 4 between the aerodynamic pressures. However it comes
out that this is quite challenging as interchange of the order of integration is tricky for a four-dimensional
domain.

Notice that if analytical expressions are derived for the cumulants of order 2, thanks to Eq. (7),
order 3, thanks to Eq. (11), and order 4, thanks to Eq. (15), one could obtain analytical expressions for
the skewness coefficient defined as γ3R = κ3R/κ

3/2
2R and for the excess coefficient defined as γeR =

κ4R/κ
2
2R. These two coefficients are of paramount importance to assess the non-gaussianity of the

structural response and the impact on its extreme values through non-gaussian peak factors (Gurley et
al., 1997).

3 Illustration

A beam with constant section and length l is considered. The mean velocity U , standard deviation σu
and coefficient γ are assumed to be constant along the beam. Table 1 collects the influence functions for
uniform and linear response influence functions.

Uniform Linear

k(s)/
(
b2σ2

)
2(1− s) 1

3

(
s3 − 3s+ 2

)
k1(s1, s2)/

(
b2cσ4

)
(1− s1)

1
12 (s1 − 1) 2

(
s21 + 2s1 − 2 (s1 + 2) s2 + 3

)
k2(s1, s2)/

(
b2cσ4

)
(1− s1)

1
12 (s1 − 1) 2 (4s2 − s1 (s1 − 2s2 + 2) + 3)

k3(s1, s2)/
(
b2cσ4

)
(1−s1−s2) − 1

12 (s1 + s2 − 1) 2 (s1 (s1 + 2)− s2 (s2 + 2)− 3)

Table 1. Second order and third order influence functions for uniform and linear response influence functions.

In the calculation of the cumulants, the correlation function is considered as a decaying exponential
function (Holmes, 2007), see Eq. (9). The parameter ϕ = l/Lx

u is the ratio between the length of the
structure and Lx

u, the integral length scale for the longitudinal turbulence u in direction x(= ξl). The
integral length scale Lx

u is a measurement of the averaged size of the vortices in the wind. In this case,
the cross cumulants of order 4 between aerodynamic pressures is given by

κ4pijkl = 4b2c2σ6 (12ρijρikρjl) + 16c4σ8 (3ρijρikρjlρkl) (16)

and neglecting the second term in Eq. (16), which is marginal, leading to
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κ4pijkl ≃ 48b2c2σ6

∫∫∫∫ 1

0
I(ξi)I(ξj)I(ξk)I(ξl)ρ (sij) ρ (sik) ρ (sjl) dξidξjdξkdξl. (17)

Table 2 collects the analytical results for γ3R and γeR for uniform and linear response influence functions.

Uniform Linear

γ3R
3Iu

e−2ϕ(2eϕ(ϕ+4)+e2ϕ(4ϕ−7)−1)

2
√
2ϕ3

(
ϕ+e−ϕ−1

ϕ2

)3/2

3
√
3e−2ϕ(−4eϕ(ϕ+5)+e2ϕ(2ϕ(2ϕ−7)+19)+1)

4ϕ4
(

(2ϕ−3)ϕ2+6(ϕ+1) sinh(ϕ)−6(ϕ+1) cosh(ϕ)+6

ϕ4

)3/2

γeR
12I2u

e−3ϕ(eϕ(eϕ(2ϕ(ϕ+9)+2eϕ(8ϕ−19)+47)−2(2ϕ+5))+1)
8(ϕ+e−ϕ−1)

2 too long formula.

Table 2. Skewness and excess coefficients for uniform and linear response influence functions.

Figure 1 depicts the cumulants, γ3R and γeR for ϕ ranging [10−3; 102]. Notice for the limit case
of quasi-full correlation, i.e. ϕ ≪ 1; ρ(s) ≃ 1, skewness and excess coefficients approach the values
associated to an aerodynamic pressure (resp. 3Iu and 12I2u) while in the limit case of no correlation, i.e.
ϕ ≫ 1; ρ(s) ≃ 0, their values approach asymptotically the gaussian ones (i.e. zeros) explained by the
central limit theorem (Papoulis, 1965) and the well-known scale effect.
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Figure 2. Cumulants and coefficients as function of ϕ for uniform and linear response influence functions.
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