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Abstract

Estimation of immunological and microbiological diversity is vital to our understanding of infection and the immune
response. For instance, what is the diversity of the T cell repertoire? These questions are partially addressed by high-
throughput sequencing techniques that enable identification of immunological and microbiological ‘‘species’’ in a sample.
Estimators of the number of unseen species are needed to estimate population diversity from sample diversity. Here we test
five widely used non-parametric estimators, and develop and validate a novel method, DivE, to estimate species richness
and distribution. We used three independent datasets: (i) viral populations from subjects infected with human T-
lymphotropic virus type 1; (ii) T cell antigen receptor clonotype repertoires; and (iii) microbial data from infant faecal
samples. When applied to datasets with rarefaction curves that did not plateau, existing estimators systematically increased
with sample size. In contrast, DivE consistently and accurately estimated diversity for all datasets. We identify conditions that
limit the application of DivE. We also show that DivE can be used to accurately estimate the underlying population
frequency distribution. We have developed a novel method that is significantly more accurate than commonly used
biodiversity estimators in microbiological and immunological populations.
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Introduction

How can we estimate diversity from a population sample? In

viral infections, the number of viral variants and their population

structure inform our understanding of disease pathogenesis, and

can suggest treatment strategies [1,2]. In immunology, the

repertoire and population structure of B cell and T cell receptor

clonotypes vary with age [3–7], and are intimately linked to

antimicrobial protective efficacy. In the human microbiome,

decreased diversity of the gastrointestinal microbiota is associated

with atopy [8], Crohn’s disease and ulcerative colitis [9,10].

A complete census is usually impossible and so estimators of the

number of unseen ‘‘species’’ are required. Here we use the word

‘‘individual’’ to refer to a single T cell sequence read, microbial

sequence read, or virus- infected cell. We use ‘‘species’’ to denote a

class of individuals, such a T cell clonotype, bacterial operational

taxonomic unit (OTU) or viral clone. The term ‘‘species richness’’

denotes the number of species in the population under consider-

ation.

Immunological and microbiological data differ in important

respects from ecological data. First, in many immunological

and microbiological populations, it may be reasonable to assume

that ‘‘species’’ are taxonomically similar, that the spatial distribu-

tion of individuals is homogeneous, and that individuals are

sampled randomly, independently and with equal probabilities. If

made, these simplifying assumptions allow the extrapolation of

individual-based rarefaction curves, which depict the expected

number of species against the number of individuals sampled

[11–14]. However, the above assumptions are frequently violated

in ecological populations [14–18], where unobserved individuals

may differ from observed individuals in their colour, physical size,

geographical distribution, movement, variety of habitats and

relationship to other species [15], and thus remain unobserved

despite substantial subsequent sampling. Second, many common

assumptions about population structure are inappropriate for

immunological and microbiological populations, for example that

all species have equal frequencies [19–21], or that the functional

form of the population distribution is known [22–26]. We

therefore consider non-parametric estimators.

Non-parametric estimators, such as Chao1 [27], and the

abundance-based coverage estimator (ACE) [28], have been

proposed. ACE has been suggested to be the best current

approach [14,22,29] and is widely applied in microbiology and

immunology; for example to estimate the diversity of the human

gastrointestinal flora [30], human gut metagenome [31], mouse

TCR repertoire [32,33], fungi [34], and the number of HTLV-1

infected cell clones [35]. Although they were originally intended as

methods to estimate lower bounds, the Chao1 estimator, and the

modified, bias-corrected form Chao1bc [36], have been used to

make a point estimate of the number of TCR clonotypes [37,38],
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the number of OTUs in hepatitis C virus infection [1], parasite

diversity in malaria infection [39] metagenome size [40], the

number of integration sites of therapeutic gene therapy vectors

[41], soil diversity [42], and again the number of HTLV-1 infected

cell clones [35,43]. In addition to the ACE and the Chao

estimator, we also consider two additional non-parametric

estimators: the Bootstrap [44] and Good-Turing estimators [45].

Most diversity estimators aim to estimate the species richness in

one of two populations of interest: either in the population from

which the sample was drawn (e.g. number of microbial species in

the gut, given a sample from the gut) or the value where the

rarefaction curve saturates (e.g. number of species at the point

when further sampling does not yield any new species). These

definitions of the population of interest lack flexibility and may be

inappropriate or poorly defined for the question in hand. Indeed,

if some species are represented by a single individual, the

rarefaction curve will not saturate. For many microbiological

and immunological questions, an estimator that allows the user to

specify the size of the population of interest is desirable. For

instance, we may wish to know the T cell repertoire diversity of

both the blood and the whole body.

The aim of this study was to identify a suitable method for

estimating species richness in immunological and microbiological

populations. We tested widely-used estimators on samples of

microbiological and immunological populations. We found these

estimators performed poorly. We therefore developed and

validated a new method to estimate species richness and species

frequencies.

We used data from three independent sources: (i) viral

populations from human T-lymphotropic virus type-1 (HTLV-

1)–infected subjects; (ii) T cell antigen receptor (TCR) clonotype

repertoires; and, (iii) infant faecal microbial samples.

HTLV-1 is a retrovirus that mainly infects CD4+ T lympho-

cytes. HTLV-1 spreads within hosts via two routes: de novo

infection of uninfected cells, and proliferation of infected cells [46].

When an infected cell proliferates, the integrated provirus is

replicated with the host genome and a clone of infected cells is

generated, each cell carrying a provirus in the same genomic site.

Consequently, in each host, HTLV-1 persists in many distinct

infected cell clones. We used high-throughput data on the

abundance of HTLV-1 infected cell clones in 14 HTLV-1

seropositive subjects [43].

The human gastrointestinal tract contains a densely populated

ecosystem of microbes that performs a variety of functions [47].

We obtained high-throughput 16S rRNA sequence data from

infant faecal samples. In this study we used observed frequencies of

different bacterial operational taxonomic units (OTUs) [48].

T cells are vital to adaptive immunity. The T cell population

comprises a diverse repertoire of TCR clonotypes, each defined by

the DNA sequence of the expressed TCR. In humans, there are a

potential 1015–1020 different TCR clonotypes [49], but the actual

number of clonotypes in one person is estimated to be between 106

and 108 [50]. In this study we used RACE-based data on TCR

clonotype abundance. We studied circulating central and effector

memory, naı̈ve and total CD4+ and CD8+ T cells.

Materials and Methods

Ethics Statement
Blood samples were donated by HTLV-1+ subjects attending

the HTLV-1 clinic at the National Centre for Human Retrovi-

rology (Imperial College Healthcare NHS trust) at St. Mary’s

Hospital, London UK, with fully informed written consent.

This study was approved by the UK National Research Ethics

Service (NRES reference 09/H0606/106). Parents gave full

written informed consent for infant faecal sample collection, and

all protocols and procedures were approved by the National

Research Ethics Service Committee, U.K. (Southampton and

South West Hampshire) (ref: 05/Q1702/119). For the TCR data,

leukaphereses were performed on healthy donors who provided

written informed consent at the National Institutes of Health,

USA. The protocol and use of these samples for immunological

investigation were approved by the National Institute of Allergy

and Infectious Diseases Institutional Review Board.

HTLV-1 Data Collection
Previously reported [43] and new high-throughput data on

HTLV-1 clonality were analysed. Each HTLV-1 dataset quanti-

fies the abundance of HTLV-1-infected T cell clones. There were

105 datasets, comprising nine samples from each of 11 subjects

(three independent samples at each of three time points), and 15

samples from four subjects. All had either HTLV-1-associated

myelopathy/tropical spastic paraparesis or were asymptomatic

carriers of HTLV-1.

Microbial Data Collection
The microbial data were derived from faecal samples obtained

from 10 infants. DNA was amplified with two sets of PCR primers,

generating 20 datasets [48]. Amplicons of the V3-V5 regions of

the 16S rRNA gene were generated by PCR using two sets of

universal primers. Sequencing data were generated using the

Roche 454 GS Junior platform. Analysis was performed using the

QIIME pipeline as described previously [48].

TCR Data Collection
A total of 16 datasets were collected from two subjects,

comprising TCR sequences from four phenotypically defined

subsets of CD4+ and CD8+ T-cells: naı̈ve, central memory (CM),

effector memory (EM) and total. After flow cytometric sorting and

cell lysis, mRNA was extracted and subjected to a non-nested,

template-switch anchored RT-PCR using a 39 TCRB constant

region primer as described previously [51]. This approach allows

Author Summary

The ‘‘unseen species problem’’ is ubiquitous in biology and
is frequently encountered outside its original setting in
population ecology. For example, the human retrovirus
HTLV-1 persists within hosts in multiple, genetically
identical clones of infected cells. However, the number
of clones in one host is unknown; this knowledge is
required for an understanding of how the virus survives
despite a strong host immune response. The problem
arises again in estimating the diversity of the T-cell
repertoire, which influences adaptive immunity. For
example, the T-cell diversity may influence the outcome
of viral challenge. While there have been numerous
attempts to address the unseen species problem, there is
currently no consensus on how to do so in immunology
and microbiology. The aim of this study was to identify a
suitable method to estimate the number of species in
immunological and microbiological populations. We found
that five existing estimators we tested performed poorly
across three data sources (HTLV-1 clonality, T cell receptor,
and microbial data). We therefore developed a new
estimator, DivE, which significantly outperformed the other
estimators. Accurate diversity quantification allows better
evaluation of the impact on immunity from factors such as
ageing and infection.

Quantifying HTLV-1 Clonality and TCR Diversity
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linear and unbiased amplification of all TCRs irrespective of

TRBV or TRBJ gene usage. Paired-end sequencing reactions (each

150 bp) were performed using an Illumina HiSeq 2000 sequencer.

Raw FASTQ files were annotated using reference TCRB

sequences from the ImMunoGeneTics (IMGT) website (http://

www.imgt.org) and a custom-written Java application. Following

annotation, the data were filtered to eliminate potential sequenc-

ing and PCR errors.

Prochlorococcus Data Collection
Prochlorococci are vital to energy and nutrient cycling in the

oceanic ecosystem, and the genus contains a highly diverse and

abundant population of clades. We analysed publicly available

metagenomic data describing clades Prochlorococcus. The data were

obtained by the Global Ocean Sampling Expedition and contains

the frequency of distinct sequence reads of genes of Prochlorococcus

clades.[52] Sampling sites, sample collection, library construction,

fragment recruitment, and determination of Prochlorococcus abun-

dances are detailed in [52,53].

DivE Species Richness Estimator
We developed a heuristic approach to estimate species richness,

which we named DivE (Diversity Estimator) (Figure 1). To

calculate the DivE estimator, many mathematical models are

fitted to multiple nested subsamples of individual-based rarefaction

curves. Each model is fitted to all nested subsamples, and is scored

on a set of four criteria. The five best-performing models are

extrapolated and their respective estimates are aggregated to

produce the DivE species richness estimate. DivE requires an

estimate of population size. If the species richness of a wider

population is desired, the same models are used but extrapolated

to a different population size; this is only justified if the two

populations are similar in their spatial distribution of individuals.

The criteria against which each model fit is scored are:

1) Discrepancy – the mean percentage error between data

points and model prediction.

2) Accuracy – the percentage error between the full sample

species richness, and the estimate of full sample species

richness from a given subsample.

3) Similarity – the area between the curve fitted to a subsample

and the curve fitted to the full sample, normalized to the area

under the curve from the full data, on the interval [0, Nobs],

where Nobs is the size of the full data.

4) Plausibility – the predicted number of species must either

increase monotonically or plateau and the predicted rate of

species accumulation must either decrease or plateau (i.e. for

S(x) and x$1, where x is the number of individuals, S9(x) $0,

and S"(x) #0).

The rationale behind each criterion is as follows:

1) Discrepancy - the model must describe the data to which it

was fitted.

2) Accuracy - from a subsample, the model should predict the

full sample species richness.

3) Similarity - an ideal model will produce identical fits from

all subsamples. The smaller the area between the model fits,

the better the model.

4) Plausibility - this criterion requires that, as the observed

number of individuals increases, the observed number of

species does not decrease and the rate of species-accumulation

does not increase; the former is impossible and the latter is

implausible (Figure 1).

Criteria 2), 3) and 4) are independent of the fitting process. That

is, they are not constraints by which models are fitted; instead they

are tests of model performance.

Each model fit is scored on all four criteria. For criteria 1–3, we

scored a fit in multiples of empirically chosen precision levels. The

precision level for criterion 1 was 0.01%: a score of 1 denotes a

model fit where the mean percentage error of the residuals, e, was

less than 0.01%; a score of 2 denotes 0.01%,e#0.02% and so on.

Criteria 2 and 3 were similarly scored in multiples of 0.5%.

Criterion 4 was implemented by giving a score of 500 to model

fits that violated either of its conditions; this value was chosen to

exceed the score of any model fit that satisfied this criterion.

The final score for each model is an aggregate of the scores of

all model fits across subsamples and criteria, and is calculated as

follows. First, the score for each criterion is defined as the mean of

the scores of all subsample fits for that criterion. The final score for

each model is the mean of all criteria scores. The DivE species

richness estimate is the geometric mean of the estimates provided

by the five best-performing (i.e. lowest-scoring) models.

Figure 1. Outline of DivE species richness estimator. DivE fits many models to rarefaction curves (black) and subsamples thereof (orange). Data
is denoted by circles; fits by solid lines. Models are scored according to the following criteria: i) Discrepancy – mean percentage error between data
points and model prediction; ii) Accuracy – error between full sample species richness (purple cross) and estimated species richness from subsample;
iii) Similarity – area between subsample fit (orange) and full data fit (black); and iv) Plausibility – we require that S’(x) $0 and S"(x) #0. The best
performing models are aggregated and extrapolated to estimate species richness. Model A performs poorly as criteria ii) and iii) are not satisfied.
Model B performs well as all criteria are satisfied.
doi:10.1371/journal.pcbi.1003646.g001
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A list of 58 candidate models (Text S1) was chosen from an

online repository [54]. Many of these (e.g. logistic, logarithmic,

hyperbolic) are widely used in population ecology [11,55]. Models

were fitted by least squares regression using R version 2.14.2 [56]

with the package FME [57]. Global fitting was performed using

Price’s algorithm [58] followed by local fitting using the

Levenberg-Marquardt algorithm [59].

Study Design
We evaluated DivE and five non-parametric estimators: the

Chao1 bias-corrected estimator (Chao1bc) [36], the abundance-

based coverage estimator (ACE) [28], the Bootstrap estimator

[44], the Good-Turing estimator [45,60,61] and the widely-

used negative exponential model [11,12,36,62,63]. ACE and

Chao1 [27], have been suggested as best practice [12,14,22,29,64]

and are widely applied in microbiology and immunology

[1,30,32,34,35,37,39–43]. For ACE, ‘‘abundant’’ species were

defined as those with an observed frequency of greater than 10, as

recommended in [64].

Due to differences between estimators and between datasets, we

conducted multiple, distinct evaluations and validations. We first

evaluated, for each estimator, the relationship between estimated

diversity and sample size, using the estimates produced from a

series of successively smaller, randomly generated in silico

subsamples of observed data. For the microbial and TCR data

respectively, five and six equidistant subsample sizes were chosen

from each observed dataset. For the HTLV-1 data, subsample

sizes were chosen to be approximately equidistant; however some

were removed due to runtime constraints. See Table S1 for further

details. Second, we measured the accuracy of DivE by comparing

the estimated species richness Ŝobs at the size of the full dataset Nobs

from each subsample to the (known) species richness Sobs in the full

data. Using the same method, we compared DivE to the second

order bias-corrected Akaike Information Criterion (AICc) [65,66].

Third, the TCR data have rarefaction curves which plateau. Using

smaller subsamples of this data and making the assumption that

the species richness of the full data is equal to that of the entire

population, we were able to evaluate the accuracies of all

estimators together. Finally for 11 of the 14 HTLV-1 patients

detailed in Table S1, three samples were taken at a single time

point. For each time point, the three samples were pooled and

used as a practical test of DivE’s ability to predict species richness

in larger samples.

DivE Frequency Distribution Generation Algorithm
In addition to species richness, we wanted to estimate the

population frequency distribution. Because of the considerable

structural variation between and within immunological and

microbiological populations, we developed a general method

which does not assume the analytical form of the population

structure. This algorithm uses the DivE estimator combined with

observed abundances (Figure 2). See Text S1 for details. The

algorithm was applied to multiple random subsamples of observed

data. The estimated distributions were then compared to the full

data frequency distribution using two measurements: (i) error,

defined as the sum of discrepancies in species frequencies between

Figure 2. Outline of DivE distribution generation algorithm. A Truncated species frequency distribution with x individuals distributed among
y species. The frequency of species Si after sampling x individuals is denoted Fx(Si). B Species accumulation data generated from frequency
distribution. C An aggregate of the best performing models as returned by DivE is used to extrapolate to point (x+a, y+1), where the next species is
predicted. D Species Sy+1 is assigned a frequency of (1 - pmax)(x+a), where pmax is the maximum-likelihood proportion of individuals occupied by the y
previously observed species. The remaining pmax(x+a) individuals are distributed among species S1, …, Sy in proportion to their observed relative
frequencies at x. Steps C and D are repeated until the predicted species richness is reached. See Text S1 for further details.
doi:10.1371/journal.pcbi.1003646.g002
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estimated and observed (full) distributions, divided by the number

of individuals in the observed distribution, i.e. error

=
P
i~1

Sobs
^

Esti{Obsij j P
i~1

Sobs
^

Obsi

,
and (ii) percentage error between the

Gini coefficients of the estimated and observed distributions. The

Gini coefficient is an index of dispersion used widely in

epidemiology, sociology, biology, and ecology [43,67].

Results

Comparison of Estimators: Relationship between Sample
Size and Estimated Diversity

Each species richness estimator (Chao1bc [36], Bootstrap [44],

ACE [28], Good-Turing [45], the negative-exponential model

[12] and DivE) was applied to random subsamples of observed

data. We used linear regression to calculate the average

proportional increase in estimated diversity as a function of the

proportional increase in sample size. Sample size and diversity

were normalized respectively to the smallest sample and the

estimated diversity at the smallest sample. For example, a

‘‘normalized gradient’’ of 0.5 would mean that, on average, an

increase of 10% in sample size would produce a 5% increase in

estimated diversity. A value of zero would signify no bias with

sample size.

The existing estimators performed poorly when applied to the

HTLV-1 and microbial data: estimates systematically increased

with sample size. In contrast, DivE produced consistent estimates

that showed no obvious relationship with sample size (Figures 3

and 4). Across subjects and for all methods except DivE, estimates

showed significant positive normalized gradients (p,0.01 for every

estimator, n = 14; two-tailed binomial test) ranging between 0.17

and 0.52 for the HTLV-1 data and 0.3 to 0.45 for the microbial

data (Figure 4). Conversely, the normalized gradients produced by

DivE did not differ significantly from zero (p = 0.18, n = 14; two-

tailed binomial test), and were much smaller (0.0081 and 0.022 for

the HTLV-1 and microbial data respectively) (Figure 4). In any

specified population there is only one value of species richness, and

an accurate estimator will arrive at this value regardless of sample

size. An increase in estimate magnitude with sample size implies

that estimates of a population’s species richness would increase if

e.g. greater blood volumes were drawn or technique sensitivity was

improved.

The existing estimators were less biased when applied to the

TCR data, and estimates were largely consistent. Although the

normalized gradients were still significantly positive (p,0.0001 for

each estimator except DivE, n = 16), their magnitudes were

substantially lower than for the HTLV-1 and microbial data.

However, existing estimators again increased with sample size for

the effector memory (EM) CD8+ T cell population from the same

subject. These observations can be explained with reference to the

TCR rarefaction curves (Figure 3). With the exception of the

CD8+ EM dataset (for which the subsample sizes were consider-

ably smaller), each TCR rarefaction curve reached a plateau,

implying that the vast majority of observed clonotypes were

encountered early. In contrast, the CD8+ EM rarefaction curve

did not plateau, suggesting that further sampling would reveal

more CD8+ EM clonotypes. In common with the microbial and

the HTLV-1 datasets, DivE performed well for all TCR datasets,

producing consistent results from all subsample sizes. To make sure

that the smallest subsamples did not disproportionately contribute

to the observed gradients, we repeated the above analysis using only

estimates from the largest three subsamples in each patient dataset,

which showed almost identical results (Figure S1).

Comparison of DivE and Second Order Bias-Corrected
Akaike Information Criterion (AICc)

The best-performing models were largely consistent within

patients and between subsamples for the microbial and TCR

data, although less so for the HTLV-1 data. Ideally, model

selection would be consistent across all subsamples. Deviation

from this will result in a discrepancy between Sobs and Ŝobs. This

discrepancy is quantified in Figure 3 (middle column) and in Table

S2. To ensure the four criteria provide a useful metric of model

performance, we compared DivE to the second order bias-

corrected Akaike Information Criterion(AICc) [65,66]. DivE’s

mean errors (between the species richness of the full data Sobs and

Ŝobs) were 3.3%, 1.0%, and 4.0% for the HTLV-1, TCR and

microbial data respectively. These were lower than the corre-

sponding errors of 6.7%, 1.1%, and 7.5%, produced when models

were scored by the AICc. This effect was more marked when we

considered estimates from small subsamples, defined as those

comprising at most 50% of the observed data (Table S2).

However, the differences between errors were smaller for the

TCR data, perhaps also due to the saturating rarefaction curves in

these samples.

Comparison of Estimators: Accuracy of Diversity Estimate
When rarefaction curves reach a plateau, we can assume that

the value of the plateau is approximately equal to the species

richness of the entire population, which the existing estimators aim

to estimate. Thus it is appropriate to evaluate DivE and the existing

estimators together using TCR rarefaction curves which plateau.

We took random subsamples of 0.5%, 1%, 2%, 5%, and 10% of

the total CD4+ and CD8+ cells for subjects C and E. We then

applied each estimator to each subsample and measured its error

( = |Sobs - Ŝobs| /Sobs) (Table 1, Figure S2). DivE’s median error

was 6.7%, substantially lower than respective median errors of

43.8%, 42.8%, 65.3%, 61.7%, and 50.7% for the Chao1bc,

ACE, Bootstrap, Good-Turing and negative exponential estima-

tors (p,0.0005 for each estimator comparison with DivE, n = 20;

two-tailed binomial test)

As neither the HTLV-1 nor the microbial data exhibit

rarefaction curves that plateau, we cannot apply the same analysis

to these datasets. Instead we took advantage of the fact that, for 11

of the 14 HTLV-1 subjects, the data comprised three time

points,with three samples drawn at each time point in immediate

succession from the subject. For a given subject and a single time

point, the three samples were combined in silico to produce a single

pooled sample. We compared the observed species richness of the

pooled sample to each estimator’s estimates from a subsample

(Figure 5, Figure S3). The total blood diversity must be at least as

great as that observed by pooling the samples. However, all

existing estimators estimate the total diversity to be less than that

observed. Based on a single subsample, the Chao1bc, ACE,

Bootstrap, Good-Turing and negative exponential estimators

respectively estimate medians of 27.0%, 12.7%, 71.1%, 65.5%,

and 47.6% fewer clones than observed in the pooled samples

(n = 11). Since the pooled samples do not saturate, and since

the blood contains approximately 105 times more infected cells

than the pooled sample, the diversity observed in the pooled

sample is likely to be a small fraction of the total diversity. Since

the existing estimators produce estimates lower than the

pooled sample diversity, let alone total blood diversity, this

represents a considerable error. We used DivE to produce two

estimates: the pooled sample diversity and blood diversity. From

the subsamples DivE estimated a median of 2.66103 clones in the

pooled samples, a median error of 2.5% (n = 11) (Figure 5, Figure

S3). Additionally, DivE estimated 2.86104 clones in the blood,

Quantifying HTLV-1 Clonality and TCR Diversity
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Figure 3. Comparison of species richness estimators. A–D The Chao1bc (blue), ACE (grey), Bootstrap (green), Good-Turing (black), and
negative-exponential estimators (orange) are applied to in silico random subsamples of observed data. Examples for HTLV-1, microbial, and TCR data
are shown. Estimates systematically increase with sample size in datasets where rarefaction curves do not plateau (e.g. in I, J, K). Where rarefaction
curves do plateau (e.g. in L), estimates are consistent. E–H DivE (red) is applied to same subsamples as the other estimators. Performance of DivE was
evaluated by comparing the error of estimates (Ŝobs), to the (known) number of species Sobs in the full observed data (purple line), i.e. error = |Sobs -
Ŝobs| /Sobs. In all datasets, DivE accurately estimates the species richness of the full observed data from subsamples of that data. I–L Corresponding
HTLV-1, microbial and TCR rarefaction curves: arrows denote the size of the subsample to which each estimator was applied.
doi:10.1371/journal.pcbi.1003646.g003
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approximately one log higher than the observed pooled sample

diversity. Whilst we cannot determine whether or not this is

accurate it is at least plausible, considering that it is not less than

the diversity of the pooled sample, that the sampling fraction is

very small, and that the rarefaction curve has not reached a

plateau.

Figure 4. Comparison of estimators: Effect of sample size on estimated diversity. Normalized gradients measuring proportional increase in
estimated diversity against proportional increase in sample size. Normalized gradients (shown for each estimator and each patient data set in Table
S1) were calculated by linear regression. For the HTLV-1 and microbial data, all estimators except DivE show large normalized gradients that are
significantly positive. The TCR normalized gradients, though significantly positive, are small and do not show a substantial bias with sample size.
*, **, and *** signify p,0.01, p,0.001, and p,0.0001 respectively; two-tailed binomial test (n = 14, 16, 20 for the HTLV-1, TCR and microbial data
respectively).
doi:10.1371/journal.pcbi.1003646.g004
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Estimate Error as a Function of Data Curvature
Next we sought to identify conditions under which DivE would

be prone to error and should not be applied. When the observed

rarefaction curve is linear, the data imply a constant rate of species

accumulation, and so provide little information on how quickly

the rate of species accumulation will decrease. This is usually

indicative of severe under-sampling. We predicted that DivE will

fail to give accurate estimates given such a near linear rarefaction

curve. We tested this prediction by calculating the error in the

DivE estimates as a function of rarefaction data curvature.

The curvature Cp was quantified by the area between the

observed rarefaction curve and a linear rarefaction curve, as a

fraction of the maximum possible area, which occurs when

the rarefaction curve saturates immediately. Cp can take values

between 0 and 1, where 1 reflects perfect saturation and 0 reflects

a constant rate of species accumulation (Figure S4). We took

additional samples of 0.1% of the total CD4+ and CD8+ cells for

subjects C and E to obtain lower curvature values.

As expected, at very low curvatures (0.016#Cp#0.101), DivE

was prone to overestimation and performed poorly (Figure 6), with

median error 0.23. However, for under-sampled populations of

intermediate curvature (0.11#Cp#0.62) DivE improved markedly

(median error = 0.06), and typically outperformed the other

estimators (Figure 6, Table S3). Finally, all estimators perform well

when the curvature is high and most of the diversity has been

observed (Figure 3D, 3H and 3L).

We next tested DivE using the Prochlorococcus data [52], with

multiple subsamples of increasing curvature (as for the TCR data).

At low curvatures DivE again performed poorly, but it became

more accurate as the curvature increased. For under-sampled

populations of intermediate curvature, DivE again outperformed

the other estimators, although the differences between the

estimator errors were not as dramatic as with the TCR data

(Figure S5).

Very low curvatures suggest severe under-sampling and

researchers should exercise caution with such data. It is unlikely

that any species richness estimator will be accurate or informative

in such cases.

Example Application: Estimated Number of HTLV-1
Infected Cell Clones

In both HTLV-1 infection and infection with the related bovine

leukaemia virus (BLV), accurate determination of the number of

infected cell clones in the host is critical to understanding retroviral

dynamics and pathogenesis [68-71]. Here we make two different

estimates of the number of HTLV-1 infected cell clones: (i) in the

circulation; and, (ii) in the whole body. See Text S1 for details of

HTLV-1 population size estimation.

The mean estimated number of clones in the circulation in a

single host was 2.96104. It is unknown whether the population

structure of HTLV-1 clones in the blood reflects that in solid

lymphoid tissue and the spleen. If we assume that these two

populations have similar structures, and thus that it is justified to

extrapolate to the whole body, we obtain an average of 6.26104

clones, i.e. approximately only twice as many clones, although

there are .300 times as many infected cells in the body as

the blood. These new estimates in the blood and body are

approximately 1 and 1.3 logs higher respectively than those

calculated using ACE and Chao1bc (p,0.0001, two-tailed paired

Mann-Whitney U-test), and .2 logs higher than previously

published estimates (Figure S6) [35,43,69,72].

DivE Uncertainty
Because of its heuristic nature, DivE lacks formal statistical

confidence intervals. Uncertainty in the estimates produced by

DivE has two sources: parameter values in each respective model

(within-model variation), and the choice of model (between-model

variation). Using standard errors of parameter estimates to

calculate confidence intervals ignores uncertainty from model

selection. Information theoretic approaches that take account of

model selection uncertainty have become increasingly common in

ecology [73,74] and elsewhere. There are broadly two approaches:

i) computing AIC weights, and ii) repeated resampling and model

ranking to determine bootstrap model selection probabilities [66].

However, neither approach is appropriate in our case. We do not

rank models using AIC since this produces less accurate estimates

Table 1. Comparison of estimator performance for TCR data.

Estimator Median Error* (%) P-value{

Chao1bc 43.8 0.0004

ACE 42.8 0.0004

Bootstrap 65.3 ,0.0001

Negative-exponential 50.7 ,0.0001

Good-Turing 61.7 ,0.0001

DivE 6.7 NA

*Median absolute percentage error between Sobs and Ŝobs.
{p-value of the significance of the differences between the errors of each
estimator and DivE (n = 24; two-tailed binomial test).
doi:10.1371/journal.pcbi.1003646.t001

Figure 5. Existing estimators underestimate diversity in HTLV-
1 infection. For HTLV-1 Patient D, three samples are pooled.
Rarefaction curves from the pooled sample (black circles) and a
subsample (red circles) are shown. Chao1bc, ACE, Bootstrap, Good-
Turing and negative exponential estimates (blue, grey, green, black, and
orange lines respectively) from the subsample, and DivE estimates (red
cross) from the same subsample are plotted. Existing estimators
produce a single estimate of diversity, and so their estimates are shown
as lines. The diversity in the blood must be at least as great as that
observed by pooling the samples. All existing estimators estimate the
total diversity to be less than that observed. Given that the observed
diversity is likely to be a small fraction of the total diversity this
represents a considerable error. We used DivE to produce two
estimates: the diversity in the pooled sample (i.e. in 15000 cells, red
cross) and the total diversity of the blood. DivE accurately estimates the
pooled sample species richness from the subsample, but also predicts
higher values of species richness in the blood, consistent with the
unseen clones implied by the pooled rarefaction curve. See Figure S3
for further examples.
doi:10.1371/journal.pcbi.1003646.g005
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than DivE (Table S2), and so we cannot use AIC weights to derive

confidence intervals. Further, since there is a systematic bias

towards lower species richness in bootstrap samples (Figure S7), a

similar bias may be introduced in the estimation of bootstrap

model selection probabilities, leading in turn to a bias in species

richness estimation. Systematic underestimation in bootstrap

samples is particular to species richness estimation: this does not

highlight a general problem with resampling to quantify model

selection uncertainty. As a pragmatic indicator of estimate

variability, we use the range of estimates produced by the five

best-performing models; the geometric mean of these five models

is taken as the point estimate (Table S4).

Distribution Generation Algorithm
The distribution generation algorithm was reasonably accurate

for the HTLV-1 data, and considerably more accurate for the

TCR and microbial data. The mean error between the estimated

and true distributions was 32.1%, 2.9%, and 4.9% for the HTLV-

1, TCR and microbial data respectively. The mean error between

the estimated and true Gini coefficients was 7.5%, 0.9%, and 2.2%

for the HTLV-1, TCR and microbial data respectively (Table 2).

For the HTLV-1 data, the algorithm underestimated the

abundance of the largest clones, but we did not observe this effect

in the TCR and microbial data (Figure 7).

Discussion

We wished to estimate species richness in three microbiological

and immunological datasets. Initially we used estimators that

are reported to perform well in ecology [12,34,36,60,61,75]. In

the datasets with rarefaction curves that did not plateau,

these estimators were biased by sample size. For datasets with

rarefaction curves that did plateau, estimates were consistent,

but in such cases estimators contribute little information because

approximate species richness is already known. Comparable

results have been reported elsewhere [12,16,62]. By combining

data from multiple independent HTLV-1 samples, we showed that

these estimators substantially underestimated species richness.

We then developed a new approach, DivE, to estimate species

richness and frequency distribution. In our first validation, DivE

consistently and accurately estimated the diversity of the observed

data from incomplete subsamples of that data. We subsequently

determined conditions where DivE would fail and should not be

applied. When the rarefaction curvature was low and the data

implied a near-constant species-accumulation rate, DivE was

prone to overestimation. However, in under-sampled populations

of intermediate curvature, DivE substantially improved. The DivE

distribution generation algorithm performed with reasonable

accuracy (Table 2, Figure 7).

Figure 6. Test of species richness estimators at different values of curvature parameter (Cp) using TCR data. The curvature parameter
Cp is plotted against the relative error (|Sobs - Ŝobs| /Sobs) of each estimator. Four patient data sets are shown: A total CD4+ from patient C; B total CD4+

from patient E; C total CD8+ from patient C; D total CD8+ from patient E. Each point represents an estimate from a subsample of data. Note the plots
have different y-axis scales and the y-axes in C and D are segmented. Broadly, the accuracy of all estimators improves as Cp increases, and this
increase is more pronounced for DivE. From Cp.0.1, DivE generally outperforms the existing estimators, but is prone to error at very low values of Cp.,
when the rarefaction curve implies a near-constant rate of species accumulation.
doi:10.1371/journal.pcbi.1003646.g006
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We argue that biologically meaningful and useful estimators

should be able to estimate species richness in a specified

population. This is not the case with the existing estimators

we tested. In contrast, DivE can estimate diversity in any given

population size. However, population size estimation can be

nontrivial [76–78]. In spatially homogeneous populations with

equiprobable detection of individuals, estimating population size

through scaling by area or volume is justifiable e.g. scaling from

cells in 50 ml of blood to cells in the total blood volume. When

population size estimates are unavailable, it is still usually possible

to provide meaningful diversity estimates, e.g. the number of

microbes per gram of faeces. DivE may also be useful in deciding

the depth of sampling required for an adequate census. Deeper

sampling may require more DNA sequencing or a larger tissue

sample from a patient, and so minimizing sampling depth has

financial and ethical benefits. This is not possible with the other

estimators we tested.

The HTLV-1 data consisted of absolute species counts, and so

we could estimate HTLV-1 diversity. Microbial and TCR datasets

were used only for validation as these data consisted of sequence

reads and not absolute counts. To the extent that read abundances

differ from absolute counts, such data cannot be used to estimate

species richness with any abundance-based estimator (e.g. DivE,

Chao1bc, and ACE). Over-amplification by PCR may generate a

saturating rarefaction curve that is not due to sampling depth,

falsely implying that the majority of species have been observed.

This can be seen in our TCR data: plateaus were far lower than

previously reported diversity estimates [50,79]. However, absolute

counts can often be obtained (e.g. by spiking a sample with a

known quantity of identifiable individuals or by barcoding to

identify PCR duplicates).

It is unlikely that sequencing error influenced our HTLV-1

diversity estimates, because sequencing error cannot systematically

alter proviral integration site mapping. However, species richness

estimates from TCR or microbial data are likely to be susceptible

to sequencing error. Sequencing error can falsely increase

diversity, and this will influence species richness estimates using

any estimator; researchers must therefore exercise caution when

analysing such data; ideally by preprocessing the data to remove

error prior to further analysis. Caution must also be exercised

when assuming that the spatial distribution of individuals is

uniform. We believe that these assumptions are reasonable for the

blood, but skin tissue for example may be more clustered.

DivE is conceptually simple but can be computationally

intensive to implement. When applying DivE to a new type of

data it is necessary to ascertain which models perform best. This

requires that many models be fitted to multiple subsamples. If, for

a particular data type, a given set of models performs consistently

well, application becomes much quicker because only these models

need to be fitted, and it is no longer necessary to fit all models to all

subsamples. In our analysis we found that five models performed

consistently well, and so we have used the aggregate of the

five best-performing models in our estimates. Since the optimal

number of models may differ between datasets, we advocate

careful analysis of model scores to decide how many models should

be aggregated. The DivE estimator has been provided as an R

package, available at http://cran.r-project.org/web/packages/

DivE/index.html.

In summary, we have developed and validated a new approach

to estimate species richness and distribution that significantly

outperformed existing estimators of biodiversity in the datasets we

examined.

Figure 7. Validation of DivE distribution generation algorithm. The DivE distribution generation algorithm (Figure 2) was applied to random
samples (red dashed) of observed data (black solid). Accuracy was evaluated by comparing the estimated distribution (orange dashed) to the true
distribution of the full observed data (black). Examples for HTLV-1 A, TCR B and microbial datasets C are shown.
doi:10.1371/journal.pcbi.1003646.g007

Table 2. Performance of DivE frequency distribution
generation algorithm.

Data Source Mean Error (%)* Mean Gini Error (%){

HTLV-1 32.1 7.5

TCR 3.7 1.2

Microbial 6.0 1.1

*Mean error across all subjects and all small subsamples, for each data source.
Small subsamples were defined as those #50% of the size of the observed
each patient data set. Error defined as the sum of absolute discrepancies between
true and estimated frequency distributions, divided by area under true
distribution.
{Mean percentage error across all subjects and all small subsamples in the Gini
coefficients of the true and estimated distributions.
doi:10.1371/journal.pcbi.1003646.t002
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Supporting Information

Figure S1 Estimator bias with sample size not due to
subsamples. As for Figure 4, except that normalized gradients

calculated using only largest three subsamples. For the HTLV-1

and microbial data, all estimators except DivE again show large

normalized gradients that are significantly positive. The TCR

normalized gradients, show no bias with sample size. *, **, and

*** signify p,0.05, p,0.01, and p,0.001 respectively; two-tailed

binomial test (n = 14, 16, 20 for the HTLV-1, TCR and microbial

data respectively).

(TIF)

Figure S2 Comparison of estimators: Accuracy of
diversity estimates using TCR data. Random subsamples

of 0.5%, 1%, 2%, 5%, and 10% of the total CD4+ and CD8+ cells

for subjects C and E were taken, and each estimator was applied to

each subsample. These populations have rarefaction curves that

plateau, so making the assumption that the value of the plateau Sobs

is the diversity of the whole population, the distribution of errors

for each estimator ( = |Sobs - Ŝobs| /Sobs) is shown.

(TIF)

Figure S3 Existing estimators underestimate diversity
in HTLV-1 infection. As for Figure 5. For each patient, three

independent samples are pooled. Rarefaction curves from the

pooled sample (black circles) and a subsample (red circles) are

shown. Chao1bc, ACE, Bootstrap, Good-Turing and negative

exponential estimates (blue, grey, green, black, and orange lines

respectively) from the subsample, and DivE estimates (red cross)

from the same subsample are plotted. All estimators except DivE

typically estimate fewer clones than observed in pooled sample. In

contrast, DivE accurately estimates the pooled sample species

richness from the subsample.

(TIF)

Figure S4 Rarefaction curvature parameter Cp. Rarefac-

tion curves (dashed) and lines of constant rate of species-accumulation

and perfect saturation (solid) are shown. Areas between the line of

constant rate of species-accumulation and the rarefaction curve (A),

and between the rarefaction curve and the line of perfect saturation

(B) are indicated. Note Cp = 0 when the rarefaction curve is linear.

(TIF)

Figure S5 Performance of species richness estimators
in metagenomic data. The curvature parameter Cp is plotted

against the relative error (|Sobs - Ŝobs| /Sobs) of each estimator. Each

point represents an estimate from a sample from the Prochlorococcus

data. As with the TCR data, DivE typically outperforms the other

estimators from Cp<0.1 onwards. As predicted, DivE is prone to error

at lower values of Cp, but becomes more accurate as Cp increases.

(TIF)

Figure S6 Diversity estimates in HTLV-1 infection by
estimator. Each estimator was applied to 105 patient datasets,

from 14 different HTLV-1+ subjects. All subjects either had

HTLV-1-associated myelopathy/tropical spastic paraparesis or

were asymptomatic.

(TIF)

Figure S7 Rarefaction plots from bootstrap samples of
HTLV-1, TCR, and microbial data. Rarefaction plots from

100 bootstrap samples (grey) for each of A HTLV-1, B TCR, and

C microbial data. The species richness of the bootstrap samples is

at most the species richness of the original data (black), and is

substantially less in the majority of cases, although this effect is less

noticeable with the TCR data.

(TIF)

Table S1 Subsamples used in analysis of relationship
between sample size and estimated diversity, and in
comparison of DivE with AICc. 1 Where there were multiple

samples at multiple time points in a given HTLV-1-infected

subject, a single sample at a single time point was chosen at

random.

(PDF)

Table S2 Comparison of estimates produced by DivE
and by weighted, second order Akaike’s Information
Criterion (AICc). 1 Average percentage error between Sobs and

Ŝobs for small subsamples for each data source. Small subsamples

were defined as those #50% of the size of each patient data set. 2

Large subsamples defined as those .50% of the size of each

patient data set. 3 Average percentage error between Sobs and Ŝobs

across all patient datasets and subsamples for each data source

error.

(PDF)

Table S3 Estimator error variation with curvature in
TCR data. * Median absolute percentage error between Sobs and

Ŝobs. { Low curvatures Cp in range 0.016#Cp#0.101, interme-

diate curvatures in range 0.11#Cp#0.62. { p-value of the

significance of the differences between the errors of DivE and

each other estimator, for each curvature range.

(PDF)

Table S4 DivE species richness estimates for HTLV-1
data.

(PDF)

Text S1 Additional supporting information.

(PDF)
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