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The intercalation and de-intercalation of lithium cations in electrochromic tungsten oxide thin 

films are significantly influenced by their structural and surface characteristics.  

In this study, we prepared two types of amorphous films via the sol-gel technique: one dense and 

one mesoporous in order to compare their response upon lithium intercalation and de-

intercalation.   

According to chronoamperometric measurements, Li+ intercalates/de-intercalates faster in the 

mesoporous film (24s/6s) than in the dense film (48s/10s). The electrochemical measurements 

(cyclic voltammetry and chronoamperometry) also showed worse reversibility for the dense film 

compared to the mesoporous film, giving rise to important Li+ trapping and remaining coloration 

of the film. Raman analysis showed that the mesoporous film provides more accessible and 

various W-O surface bonds for Li+ intercalation. On the contrary, in the first electrochemical 

insertion and de-insertion in the dense film, Li+ selectively reacts with a few surface W-O bonds 

and preferentially intercalates into pre-existing crystallites to form stable irreversible LixWO3 

bronze. 

 

 

 

 

 

 

 



Page 3 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

1. Introduction  

Tungsten oxide thin films have been the object of research in numerous recent publications due 

to their promising properties in gas sensing [1], photocatalysis [2, 3] and electrochromic devices 

[4-6]. In the latter case, because of their superior coloration efficiency, chemical stability, 

electronic and ionic conductivity [7], tungsten oxide thin films expanded the horizons from the 

experimental level to the commercialization in the area of �smart windows’’[6].  

Tungsten oxide (WO3 or WO3.xH2O or WOy) consists of clusters with corner and edge sharing 

WO6 octahedra, linked together with W-O-W bonds or water bridges [8-10] and presenting 

lattice channels. Depending on the tilting angles of WO6, the material can adopt monoclinic, 

triclinic, orthorhombic, tetragonal and cubic crystalline structure (ReO3) [8] or it can be 

amorphous with the same but randomly oriented building units (WO6) [9].  

The electrochromic effect generally involves the simultaneous insertion of electrons (provided 

by an external potential) and cations (such as lithium or proton cations) and the subsequent 

formation of coloring centers (W5+) [11]. The inserted cations [10] could either reside into the 

structural channels created by the linkage of WO6 building units  or react with the host’s bridging 

oxygens [8,9]  by breaking network’s W-O-W chains and creating new W=O bonds [12-17] 

according to the equation:                                                     

 

 

Contrarily, Ohtsuka et al. [18] based on their Raman and infrared findings, claim that coloration 

originates from the reaction of W=O bonds with the cations (H+) and the subsequent formation 

of colored W5+-OH, but this hypothesis was ruled out in later publications [14]. Others [11, 19] 
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suggested that cations react with the bridging oxygens at low intercalated charge but at higher 

amounts they react with W=O as well.  

In this study, we highlight the role of film’s structure and surface chemistry on the chemical 

‘’pathways’’ of lithium cations inside the material. For this purpose, we prepared two types of 

amorphous films by sol-gel technique: one dense and one mesoporous (with much higher surface 

to bulk ratio). We investigated their response upon lithium intercalation and de-intercalation by 

electrochemistry and Raman spectroscopy. Based on this, we show the different intercalation 

sites existing in the two films. We describe the nature of cations’ trapping sites observed in the 

dense film and explain the superior switching properties of the mesoporous film.      

 

2. Experimental   

2.1 Synthesis of the acetylated peroxotungstic acid precursor (APTA)  

We prepared precursor’s powder according to N. Sharma et al. [20]. In detail, a 150mL flask 

containing 40mL of hydrogen peroxide (29.0-31.0%, Merck) and 4mL of milliQ water was 

placed in an ice-bath and 6.5g of W powder (particle size 12μm, 99.9%, Aldrich) were added in 

small lots. The mixture was stirred at low temperature for about 30 min. After the ice-bath was 

removed, a condenser was placed at the top of the flask and the mixture was allowed to stir 

overnight at room temperature until all W was dissolved. Then, 40mL of glacial acetic acid were 

added (Mobi-lab & Labotec) and the solution was heated at 55oC for 3h. The yellowish powder 

(~7g) was recovered by evaporating the solvents in the rotary evaporator at a temperature of 55-

60oC.     
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2.2 Deposition of mesoporous and dense WO3 thin films  

We prepared WO3 thin films following the experimental procedure of W. Wang et al. [21]. 

Typically, 1g of tungsten precursor APTA was dissolved in 2g of milliQ water and 1g of 

absolute ethanol (Fischer Scientific). The solution was stirred at room temperature for 2h. The 

surfactant’s solution was prepared by dissolving 0.2g Brij-C10 (Mn~683, Aldrich) in 2.5g of 

milliQ water and 1.25g of absolute ethanol and the mixture was stirred in a water-bath at 40oC 

for 2h. After mixing both solutions (APTA and surfactant), the final solution was stirred for 1h at 

room temperature before using. For the dense films, the same procedure was followed, without 

the addition of the surfactant. However it was observed that the adherence of the film was 

seriously reduced without the surfactant and thus a very small amount of Brij-C10 was added.  

The WO3 thin films were deposited on pre-cleaned glass substrates (SnO2:F coated glass 

substrates, TEC15, 3.2x23x19mm, Dyesol) and silicon wafers. The substrates were cleaned by 

consecutive immersion under sonication in milliQ water (5min), acetone (15 min) and ethanol 

(15 min). Then, the substrates were dip-coated in the aforementioned final solution at a constant 

dipping speed (2.5mm/s) and controlled relative humidity (50%). After deposition, the films are 

left in the chamber for 5 min before being thermally stabilized in an oven at 170oC for 1h in 

order to evaporate the remaining solvents and initiate the polymerization of the film. Finally the 

films were calcined at a high temperature under air (heating ramp 1°C/min, natural cooling down 

in the furnace) to induce the formation of the oxide.  The dense films were calcined at 300oC for 

1h to avoid crystallization [22]. The mesoporous films were calcined at 350oC for 2h. Indeed, the 

presence of surfactant in the material was reported to delay the crystallization of tungsten oxide 
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[23]. Moreover, such a higher temperature for a longer period of time is required to ensure the 

total elimination of the surfactant.  

We prepared thicker dense films for Raman spectroscopy purpose, in order to reach a detectable 

signal. The deposition process was repeated 3 times with intermediate stabilization at 170°C for 

1h, before final calcination. 

After calcination, dense films are transparent while mesoporous film possesses a pale yellow-

brown color.     

2.3 Characterization techniques  

2.3.1 Structural and microstructural characterizations 

We performed X-ray diffraction on a Bruker D8 diffractometer (CuKalpha radiation) in grazing 

incidence configuration with an incident angle of 1o, a 2-theta range from 10o to 30o, a step size 

of 0.02o and a scan speed of 1s/step. 

TEM micrographs were acquired at an acceleration voltage of 200kV in bright field (BF) and 

dark field (DF) modes (Tecnai, G2, Twin, FEI). Films were scratched from the substrates, 

sonicated in ethanol and then deposited on a carbon-coated grid.  

Thickness of WO3 films was determined by mechanical profilometry (Dektak 150, VEECO) on 

FTO/glass substrates. The thickness of dense films was found between 30-50nm and the 

thickness of mesoporous films was between 60-80nm.  

The amount of WO3 in dense and mesoporous films was compared from their X-ray emission 

spectrum under electron beam in a SEM microscope (FEG- ESEM XL30, 15kV, FEI and EDS 

spectrometer, Bruker). We recorded the intensity of W Lα peak and compared to a pure W 
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standard to calculate the so-called k-ratio of tungsten atom in the films. We used this k-ratio 

value to normalize the quantitative data in electrochemical experiments. 

2.3.2 Cyclic voltammetry and chronoamperometry 

The electrochemical properties were determined using a three electrode configuration (see Figure 

S.1, Supplementary information) in which the working electrode consisted of the dip-coated 

WO3 films deposited on FTO/glass substrates in contact with a 0.5M LiClO4 (≥95.0%, Aldrich) 

in anhydrous propylene carbonate (99.7% , Aldrich) solution. The reference electrode was an 

Ag/AgCl/KCl (3.5M) and the counter electrode was a platinum foil. The experiments were 

carried out on an SP-200 BioLogic potensiostat with an EC-Lab express software for collection 

and analysis of data. Prior to each electrochemical measurement, the electrolyte solution was 

bubbled for 10 min with purified N2 gas in order to purge dissolved moisture and oxygen. 

Afterwards the cell was let in an open circuit voltage for 1 min in order to reach equilibrium 

conditions. Two kinds of electrochemical measurements were conducted, cyclic voltammetry 

and chronoamperometry. In cyclic voltammetry, current was measured against the applied 

voltage in the range of ±1V at a constant voltage scan rate. Different scan rates were tested 

between 3-20mV s-1.  In chronoamperometric measurements, current was measured with respect 

to time at constant voltage steps (-1V for 120s, +1V for 120s, 0V for 10s).  

 

2.3.3 Raman and IR spectra 

Raman measurements were performed directly on films deposited on FTO/glass substrates using 

a Horiba- Jobin Yvon LabRam 300 spectrometer equipped with a microscope (x100 Olympus 

objective). The excitation laser was a He-Ne (Melles Griot) emitting at 632.8 nm and the power 
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at the sample was 0.6 mW. For each sample, the Raman spectrum of the glass was recorded on a 

film-free area and quantitatively subtracted (until disappearance of the silicate 1100 cm-1 band). 

For the coloration process, the sample was subjected to -1V for 120s and for the bleaching 

process the film was subjected to -1V for 120s and then at +1V for 120s. Before acquisition, the 

electrochemically modified films were rinsed with pure acetonitrile in order to remove any 

propylene carbonate’s residues.  

IR spectra were recorded in transmission mode from films deposited on silicon wafers using a 

Bruker Equinox 55 FTIR instrument. The reference was a bare silicon wafer.  

 

3. Results and discussion   

3.1 Structural characterization before the electrochemical insertion of Li+  

Figure 1 presents the TEM micrographs of the two films along with a Fast-Fourier Transform of 

the image. Dense film possesses a compact and smooth surface (Figure 1.a) after calcination, 

while mesoporous film consists of regular pores with diameters of about 2-3nm, pore-to-pore 

distance of about 6nm and wall thickness of about 3-4nm (Figure 1.b).  

 

Figure 1: TEM images of a (a) dense and a (b) mesoporous film. In the inset of b, a Fast-fourier transform 

image depicting pair of spots, corresponding to periodic structures with different orientations 

 

In this study we investigate amorphous materials rather than crystalline ones in order to preserve 

the ordered mesoporosity and to emphasize on its role in the electrochemical performance of 

b) 



Page 9 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

tungsten oxide films (see diffractograms in Figure S.2, Supplementary information). Moreover as 

mentioned in the literature, crystalline materials increase the energy barrier for lithium ions and 

thus their electrochemical capacity is inferior than their amorphous counterparts [22, 24]. 

However, dense film possesses a small number of crystallites, not detectable by the X-Ray 

diffractograms, as inferred by the TEM dark-field micrographs in Figure 2.a (bright patches, 30-

40nm). This evidences that crystallization is already initiated in the dense film unlike the 

mesoporous one which is completely amorphous (Figure 2.b) under the aforementioned 

experimental conditions. This is in accordance with other publications which report that the 

existence of surfactant in mesoporous films delays the initiation of crystallization [20].  

 

Figure 2: Dark-field micrographs of a (a) dense film (b) mesoporous film before Li intercalation  

 

FT-IR spectrum (Figure 3) shows that mesoporous films contain a great number of hydroxyls 

and water molecules physically or chemically absorbed inside the pores of the material [16]. 

Therefore mesoporous films can be described as a WO3-x-yOHx.yH2O material with different 

hydration and hydroxylation modes [16] in the high and medium wavelength regions (2650-3700 

cm-1, 1620 and 1420 cm-1) while dense film is much less hydrated. Apart from this difference, 

the FT-IR spectra of the two films look very much alike (see table 1).    

 

Figure 3: FT-IR spectra of a dense and a mesoporous film 
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3.2 Switching performances 

Figure 4.a/b present the cyclic voltammograms of the two films acquired at a scan rate of 20mV 

s-1. 

At high scan rates (20mV s-1), both films are characterized by a smooth voltammogram as a 

result of their mainly amorphous nature (Figure 4, Figure S.1) [5, 25] and a well-defined anodic 

peak. Mesoporous film possesses an extra anodic shoulder (0.8-0.9V), probably stemming from 

the de-intercalation of lithium cations located at different surface sites [2, 21, 23].  

Dense film (Figure 4.a) undergoes a modification of its CV curve during the first 6 cycles [26]. 

From the 6th cycle, it exhibits good persistence and durability upon lithium insertion and de-

insertion, as concluded from the superimposition of the curves at long cycling. This film has 

been tested up to 1000 cycles (Figure S.3) and it was observed that its activity is not severely 

altered upon consecutive cycling. 

Mesoporous film exhibits partial deterioration with cycling (Figure 4.b), which is attributed to its 

high active surface and to its hydroxylated/hydrated nature (Figure 3) [16, 27]. In such a highly 

hydroxylated film, exchange reactions possibly occur between the protons of hydroxyl groups 

and lithium ions and this phenomenon can accelerate film’s degradation [2, 23, 28].  

       

Table 1:  Peak assignment of the FT-IR spectra for a dense and a mesoporous film 
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Figure 4: Cyclic voltammograms of a) a dense film and  b) a mesoporous film at 20mV.sec-1. The current 

density was normalized according to the W content of the two films . 

 

Figure 5: BF-TEM micrographs of a mesoporous film after subjection to -1V for 120s and then to +1V 

for 120s (20 cycles). Inset: FTT signal depicting a circle, standing for the existence of periodic structure 

(single periodicity but random orientation) in the TEM image.  

 

In order to investigate Li+ insertion/de-insertion kinetics, we plotted the intercalated charge at the 

10th cycle, against the voltage scan rate. As observed in Figure 6.a, in the case of the dense film 

when the scan rate increases, the intercalated charge progressively decreases, while in 

mesoporous film it remains somewhat constant. This is direct evidence that the dense film does 

not have the time to reach equilibrium conditions as the scan rate increases in contrast to the 

mesoporous film. 

Chronoamperometry (Figure 6.b) confirms the above observation. Mesoporous film reaches its 

steady-state condition faster than the dense film when a constant potential is applied. This is also 

quantitatively presented in table 2 (time needed to reach the 90% of film’s maximum current 

density).   

 

Figure 6: a) Plot of the inserted charge (10th cycle) in the dense and the mesoporous film vs. the scan rate 

in cyclic voltammetry b) chronoamperometric measurement (current density vs. time) at the tenth cycle (-

1V for 120s and then +1V for 120s). The charge and current density were normalized according to the W 

content of the films.  

b) 
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After the electrochemical intercalation and de-intercalation of Li+ cations, the films should 

ideally return to their initial transparency. However the dense film retains its blue color after the 

measurement. This is due to the incomplete de-intercalation of inserted Li+ in the first cycles, as 

already detected in the cyclic voltammogram (Figure 4.a). Around 50% of the lithium ions are 

trapped during the first cycle, as confirmed by the reversibility experiments (Table 2 and Figure 

7).  

 

Figure 7: Plots of the fraction of trapped Li+ cations (calculated by the chronoamperometric 

measurements) vs. the number of cycles for the a) dense and b) mesoporous film 

 

 

 

 

3.3 Ex-situ Raman analysis  

In order to specify the origin of the traps evidenced for the dense film and to better understand 

where Li+ cations reside inside the material, we performed Raman measurements. 

Raman spectra show that before Li+ intercalation the two films exhibit mainly two wide peaks in 

the high wavelength region. A broad and multicomponent peak (500-850 cm-1) is attributed to 

the stretching vibrations of W-O (bridging/terminal W-OH) and a single band (around 950 cm-1) 

is attributed to W=O bonds [11, 29-31].  

 

Table 2:  Intercalation/de-intercalation times, charge inserted/de-inserted and reversibility values for the dense and 
mesoporous film.  
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Figure 8: Raman spectra of a dense film before (no Li+), after Li+ intercalation and Li+ de-intercalation 

  

The broadness of the peaks and the presence of W=O bonds (which are absent in crystalline 

materials [11, 13, 30] designate the mainly amorphous nature of the two films. Interestingly, no 

signature of crystalline structure appears in the Raman spectrum of the dense film (narrow peaks 

expected at 720 and 810 cm-1[31]) in contrast to the TEM dark-field image in Figure 2.a. This 

probably stems from the low range of ordering and the small number of crystallites in the film.  

The network linkage looks somewhat different in the two films: the ratio of various W-O bands 

in the range 500-850 cm-1 is different and the mesoporous film exhibits an extra peak at 558 cm-

1. Overall, the different W-O peaks appear more distinctly in the mesoporous film in respect to 

the dense, which we attribute to the high surface to bulk ratio. Those W-O bonds should 

therefore be preferentially located at the surface of the material. 

The peak at 780 cm-1 is attributed to the antisymmetric stetching vibration of W-O-W bonds 

[32]. Different clusters (W2O6 and W3O8  according to [33] presumably exist on the surface of 

the films and their stretching mode of terminal W-O bonds give rise to the peak at 697/692 cm-1. 

The band at 639 cm-1 is attributed to the lattice phonon vibrations of WO3(H2O)x [34]. This band 

is stronger in mesoporous film (633 cm-1), confirming its higher degree of hydration. No 

information was found in the literature regarding the peak at 558 cm-1 in the spectrum of the 

mesoporous film.  We presume that this peak originates from longer W-O bonds (curved surface 

in the pores) associated with water molecules [9]. 

In the low wavelength region (100-500 cm-1) dense film (and to a lesser extend mesoporous film)  

possesses a broad peak centered at around 300 cm-1 related to W4+-O bonds and a small band 
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located at 440 cm-1 assigned to the W5+=O  vibration. This implies that dense film is defined by 

WO3-x formula and thus it contains W atoms at different valence states (W4+,W5+,W6+) [11, 30, 

31, 35].     

 

Figure 9: Raman spectra of a mesoporous film before (no Li+), after Li+ intercalation and Li+ de-

intercalation  

 

Upon Li+ intercalation (Figure 8, 9), in the low wavelength region, Li+ cations induce the 

appearance of distinct peaks (171/164 and 287/278 cm-1) in both films, attributed to the 

stretching (v) and bending vibrations (δ) of O-W-O bonds in MxWO3 materials [10, 11].  

However, a different intercalation behavior of Li cations between the two films appears in the 

high wavelength region (500-850 cm-1).  

In the mesoporous film, Li+ cations highly disrupt the W-O lattice bonds located at the surface of 

the pores, as evidenced by the overall diminution of the broad band in the 500-850 cm-1 region.  

In the dense film, the peaks at 782 cm-1 ( antisymmetric stretching vibration of W-O-W) and 639 

cm-1 (lattice vibrations of the hydrated oxide WO3. xH2O) slightly shift to lower wavelengths 

(772/617 cm-1) but they remain intact upon lithium intercalation. Contrarily, the peak at 697 cm-

1, previously assigned to the terminal oxygens of surface clusters, vanishes after lithium 

intercalation. 
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These observations suggest that the cations react with the accessible bonds and clusters on the 

plane surface of dense film, while the porous surface of mesoporous film provides more paths for 

lithium intercalation, in accordance with the faster kinetics discussed in the previous paragraph. 

Interestingly, W=O bands in our systems do not disappear upon Li+ intercalation as stated by 

others [11, 19]. They only slightly shift to lower wavelengths in both cases (dense film from 947 

to 939 cm-1 and mesoporous film from 952 to 938 cm-1) probably due to the presence of the 

cations which weaken the strength of the double bond. This displacement, is reversible in both 

films after lithium extraction.  

It is worth noting that no peaks attributed to Li-O bonds appear in the spectra of the two films as 

already inferred in the literature [11], even though it is already proposed that the cations affect 

network’s vibrations [10-12, 16] instead of residing only within the lattice channels. Bueno et al. 

[11] support that, at high amounts of lithium insertion, there is a very weak interaction (W5+-O    

Li+) between the lithium ions and the network, which immobilizes the ions inside the film 

(although Li-O bond is not detectable by Raman). Our observation of disappearance of the 

network’s vibrations upon lithium intercalation, corroborates with this suggestion.  

Nevertheless, de-insertion of the Li+ cations should revert the films to their initial state.  

In the case of the mesoporous film (Figure 9) the spectrum after one complete cycle looks very 

much alike to the one before the electrochemical insertion, in accordance with the recovered 

transparency and reversibility values in table 2.  

In the dense film, de-intercalation is not homogeneous and two regions co-exist with different 

structural characteristics (Figure 8). The spectrum acquired in the region 1 looks alike the initial 

one, before any lithium intercalation. However, in the low wavelength region (200-400cm-1) the 
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broad peak around 300cm-1 re-appears with higher intensity, indicating that some reduced 

tungsten atoms remain. This is in accordance with previous observations and the permanent 

coloration of the film after the measurement.  

In the region 2, a new phase is detected (Figure 8). This spectrum resembles to a great extent 

with the ones reported for lithiated tungsten oxide films at the initial steps of crystallization [11, 

36]. From these references, such a spectrum derives from LixWO3 crystallites (see also dark-field 

TEM micrograph S4). Evidently, a fraction of cations (in accordance with our 

chronoamperometric results in Figure 7) remains inside the material and resides in the lattice 

channels of the WO6 octahedra within the pre-existing crystallites. Therefore, we believe that the 

permanent coloration of the dense film stems from the stable LixWO3 crystallites which are 

formed upon Li+ intercalation.  

Finally, the detection of crystallites by Raman after Li+ insertion, suggests that Li+ cations might 

increase the range of order of the pre-existing crystallites, but further investigations should be 

carried out in order to verify this assumption.  

 

 

4. Conclusions   

In this study, mesoporous and dense films of WO3 were prepared by sol-gel and a comparison 

between the two has been made in respect to their structural differences and their electrochemical 

performance upon Li+ intercalation and de-intercalation.  
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Electrochemical measurements revealed that the mesoporous film possesses faster kinetics and 

better reversibility towards Li+ intercalation and de-intercalation compared to the dense film. As 

appeared from Raman spectra, this is probably due to the easily accessible W-O surface bonds in 

the pores, giving numerous and reversible insertion pathways. However, the high content of 

hydroxyl groups associated to the high surface-to-volume ratio of mesoporous films facilitates 

the progressive H-Li exchange upon cycling. This has no consequence on the porous architecture 

of the film. 

In the dense film, Li+ cations selectively react with some terminal W-O bonds leaving unaffected 

inaccessible W-O bonds. Furthermore a fraction of the intercalated cations reside inside pre-

existing crystallites, creating stable LixWO3 bronzes. The latter cations remain inside the film 

even after the completion of the electrochemical reaction. Therefore we believe that these 

crystallites serve as trapping sites for Li+ cations in the dense film during the first several cycles.    
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Highlights 

 

1)  Mesoporous films exhibit better electrochemical kinetics compared to the dense films 

2)  Mesoporous films exhibit better reversibility compared to the dense films 

3)  Li+cations disrupt WO3 network in a reversible way in the mesoporous film 

4)  Li+ irreversibly intercalate in the voids of crystallites in the dense film 
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Figure(s)

http://ees.elsevier.com/electacta/download.aspx?id=1018042&guid=5abec1bc-fe5d-45e7-94b1-7703ccdcb8ff&scheme=1
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Figure(s)
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Figure(s)
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Figure(s)
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Figure(s)
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Figure(s)
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Figure(s)
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Figure(s)
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Table 1: 

* peaks not easily distinguishable from noise  

 

 

Mesoporous film/cm
-1

 Dense film/cm
-1

 Peak assignment [10] 

644 663 v-O-W-O 

1420 NA* δ-ΟΗ 

1642/1623 NA* δ-ΟΗ (structural) 

---- 2345 CO2 (instrument’s artifact) 

2568-3757 ---- Surface H-OH, hydroxylation 

and hydration  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table(s)
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a: Calculated from the chronoamperometric measurements 

 

 

 

 

Table 2: 

Samples 

 

 

 

 

 

Coloration 

time/s 

10
th
/20

th
 

cycles
a
 

 

 

 

 

 

Bleaching 

time/s  

10
th
/20

th
 

cycles
a
 

 

 

 

 

Charge inserted/mC 

cm
2
 

1
st
/20

th
  

cycles
a
 

 

 

 

Charge 

de-inserted/mC cm
-2

 

1
st
/20

th 

cycles
a
 

 

 

 

Reversibility 

(%) 

1
st
/20

th 

cycles
a
 

 

Dense film 48/47 10/10 42.1/27.7 22.4/27.4 53/98 

Mesoporous 

film 

24/21 6/5 35.3/24.1 31.5/23.6 89/98 
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Graphical Abstract (for review)




