

Infrared Holography : A Combination of Thermography and Holography

Marc GEORGES

Head of Laser & Nondestructive Testing Lab Centre Spatial de Liège – Université de Liège Angleur, Belgium

1

Outline

- The Space Center of Liege
- The lab Background
- Infrared Holography : Combination with thermography
 - Basic Principles
 - Motivations
 - The FANTOM project
 - Development Results and Applications
- Infrared Holography : Other projects
- Other activities
- Future projects

The Space Center of Liege

- Research Center of Liege University
- 100 people
 - Engineers/Scientists (2/3)
 - Technicians
 - Administratives
- Excellence Center of Optics of the European Space Agency (ESA)

Optics for Space

Simulated space environment testing Large chambers with optical benches

Mivim, Université Laval, Québec, April 11, 2014

Development of optical Space instrumentation

Development of Advanced Technologies

- Vacuum-Cryogeny
- Quality insurance
- Thermal Design
- Signal Processing
- Spaceborne Electronics
- Smart sensors
- Surface processing
- Optical Design
- Optical Metrology
- Non Destructive Testing

The Laser and NDT Lab

The Laser & NDT Lab

Research in laser and optical metrology and NDT for aerospace

Dimensional measurement

- Fringe projection
- Digital Image Correlation

Deformation measurement

- Holography
- Speckle interferometry
- Shearography

Thermography

Pulsed + Lock-in

Combined Speckle-Thermography

Laser Ultrasonics

The Laser & NDT Lab

Early developments in holography with photorefractive crystals

- Self-recording in situ
- Erasable
- Reusable indefinitely

Userfriendly

The Laser & NDT Lab

Applications

Infrared Holography:

Combination Holography-Thermography

Basic Principles

 Electronic Speckle Pattern Interferometry (ESPI) aka : Electronic Holography – TV Holography

 $\Delta \varphi(x, y) = \frac{2\pi}{\lambda} d(x, y)$

d(x,y): displacement field

Basic Principles

Phase-shifting principle

$$I_{1}(x, y) = I_{R}(x, y) + I_{O}(x, y) + 2\sqrt{I_{R}(x, y)I_{O}(x, y)} \cos[\varphi(x, y)]$$

$$I_{2}(x, y) = I_{R}(x, y) + I_{O}(x, y) + 2\sqrt{I_{R}(x, y)I_{O}(x, y)} \cos[\varphi(x, y) + \frac{\pi}{2}]$$

$$I_{3}(x, y) = I_{R}(x, y) + I_{O}(x, y) + 2\sqrt{I_{R}(x, y)I_{O}(x, y)} \cos[\varphi(x, y) + \frac{2\pi}{2}]$$

$$I_{4}(x, y) = I_{R}(x, y) + I_{O}(x, y) + 2\sqrt{I_{R}(x, y)I_{O}(x, y)} \cos[\varphi(x, y) + \frac{3\pi}{2}]$$

$$\{I_{k}(x, y)\}_{k=1,2,3,4} \longrightarrow \varphi(x, y)$$

$$\{I'_{k}(x, y)\}_{k=1,2,3,4} \longrightarrow \varphi'(x, y)$$

$$Phase Map \ \Delta\varphi(x, y)$$

Motivation of using LWIR

LWIR Speckle Interferometry

LWIR Speckle Interferometry

New concept = FANTOM project

Single sensor Simultaneous measurement of

- Temperature variation
- Deformation

FANTON*

Grant : ACP7-GA-2008-213457 Start 2009 – End 2012

FANTOM : <u>Full-Field</u> <u>A</u>dvanced <u>N</u>on-Destructive Technique for <u>O</u>nline Thermo-Mechanical <u>M</u>easurement on Aeronautical Structures

Partner	Country	Profile
Centre Spatial de Liège Université de Liège		Coordinator – University Research Centre Development/application of non destructive testing techniques
Institut für Technische Optik Universität Stuttgart		University Research Centre Specialist of Holography
InfraTec GmbH InfraTec		SME – Development of Thermography system and applications
Centro de Tecnologias Aeronauticas	- AR	Research Centre Specialist of Non Destructive Testing – Structural Tests
Optrion S.A.		SME – Development of Holography system and applications
Innov Support		SME – Servicing partner

Potential applications

Thermo-mechanical deformation of aeronautics composite structures

Thermography : Temperature Measurement

Fringe Projection method : Global deformation

Defect detection in aeronautics composite structures

Thermography : Local Temperature change

Speckle interferometry -Shearography : Local deformation

FANTOM sensor development

Beam combiner characteristics

Transmittance

FANTOM sensor development

Laboratory set-up

Laboratory compact prototype

Transportable field prototype

Proof of Concept

Decoupling temperature and deformation

Processing

Phase-shifting principle

$$\begin{bmatrix} I_1 = I_{Therm} + I_R + I_O + 2\sqrt{I_R I_O} \cos[\phi] \\ I_2 = I_{Therm} + I_R + I_O + 2\sqrt{I_R I_O} \cos[\phi + \frac{\pi}{2}] \\ I_3 = I_{Therm} + I_R + I_O + 2\sqrt{I_R I_O} \cos[\phi + 2\frac{\pi}{2}] \\ I_4 = I_{Therm} + I_R + I_O + 2\sqrt{I_R I_O} \cos[\phi + 3\frac{\pi}{2}] \end{bmatrix}$$

$$\{I_k\}_{k=1,2,3,4}$$

$$\{I'_k\}_{k=1,2,3,4}$$

$$I_{Therm} = \frac{I_1 + I_2 + I_3 + I_4}{4} - I_R - I_O$$

$$Deformation (phase map)$$

$$\phi = \tan^{-1} \left[\frac{I_4 - I_2}{I_1 - I_3} \right]$$

$$Temperature variation$$

$$I_{Therm} \qquad \Delta \phi = \phi - \phi'$$

$$Temperature variation$$

$$\Delta I = I_{Therm} - I'_{Therm}$$

Defect detection ullet

(e) FANTOM thermogram

Thermo-mechanical analysis

Thermo-mechanical analysis

• On-site measurements : CTA plant, Vitoria (Spain)

Tensile Test

• On-site measurements : Airbus D41 plant, Toulouse

On-site measurements

Infrared Holography :

Other Projects

Current project : A.O.C.

Vibration measurements with FANTOM

$$I(x, y, t) = I_{R}(x, y) + I_{O}(x, y) + 2\sqrt{I_{R}(x, y)I_{O}(x, y)} \cos[\varphi(x, y) + \Delta\varphi(x, y, t)]$$

$$\Delta \varphi(x, y, t) = \frac{2\pi}{\lambda} d(x, y, t) = \frac{2\pi}{\lambda} \varphi_A(x, y) \sin(\omega t)$$

Averaged intensity:

$$\left\langle I(x, y, t) \right\rangle = I_R(x, y) + I_O(x, y) + 2\sqrt{I_R(x, y)I_O(x, y)} \cos[\varphi(x, y)] J_O(\varphi_A)$$

Real-time Speckle Interferometry

$$I = I_{rest}(t_0) - \langle I(x, y, t) \rangle = 2\sqrt{I_R(x, y)I_O(x, y)} \cos[\varphi(x, y)][1 - J_0(\varphi_A)]$$

Past project : HOLODIR

- Infrared digital holography for space structures
- ESA and other space agencies need:
 - Full-field deformations of reflectors in vacuum-thermal testing
 - Large reflectors: up to 4 m diameter
 - Range of deformations: 1 µm 250 µm

Past project : HOLODIR

Infrared digital holography for space structures

Herschel demo reflector Diameter: 1.1 m Focal Length: 1.58 m

In-line Digital Holographic Interferometry

- Higher lateral resolution than Off-Axis DH
- Phase-shifting for removing overlapping orders
- Slow deformation phenomena

Past project : HOLODIR

Application in vacuum-thermal test at CSL

Current project : EUCLID

Other activities

Holography/Speckle Shearography VS. ullet

$$\Delta \varphi(x, y) = \frac{2\pi}{\lambda} d(x, y)$$

d(x,y): displacement field

$$\Delta \varphi(x, y) = \frac{2\pi}{\lambda} \quad \frac{\partial d(x, y)}{\partial x} \Delta x$$

• Post-processing of Shearography Automated defect detections in shearographic images

Post-processing of Shearography

Temporal sequence shows various defects at different instants Heat wave travelling through the sample

Principal Components Analysis provides

- Empirical Orthogonal Functions
- With all defects at once
- Same visibility of defects independent of depth

- Efficient Composite Technologies for Aircraft Components (ECOTAC) – Wallonia DG06 – Marshall plan
- Phase 1: benchmarking (2011-2012)
 - Study emerging laser/optical NDT techniques
 - Complex shape aeronautical structures in CFRP

Techniques considered

- Thermography
- Shearography
- Laser Ultrasound

Mivim, Université Laval, Québec, A

ECOTAC Phase2 : Laser ultrasonics

- TECCOMA (follow up of ECOTAC)
 - Laser ultrasonics : continue ECOTAC
 - Shearography combined with Finite Element Modelling for
 - Improved NDT procedure
 - Reverse Engineering for defect parameters assessment
 - NDT data fusion
 - Laser scanner on measurement arm or robot
 - NDT heads (thermo/shearo/laser ultrasound)
 - Include defect images in CAD images

Thanks for Your Attention !

mgeorges@ulg.ac.be

www.csl.ulg.ac.be

Orbi ULG (publication repository)