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Most papers studying nonlinear panel data models assume that con-
ditional on the unobserved heterogeneity all covariates are exogenous.
We relax this assumption and develop a control function method to han-
dle heterogeneity and endogeneity of covariates. The control functions
are based on “expected a posteriori” values of the correlated random
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proposed method is applied to estimate the causal effects of household
income and wealth on the incidence of child labor, and is contrasted with
the standard binary response model for panel data.

Keywords: Control Functions, Expected a Posteriori, Multidimen-
sional Numerical Integration, Average Partial Effects, Child Labor, Mid-
day Meal Scheme.

JEL Classification: C13, C18, C33, J4

1. INTRODUCTION

Chamberlain (2010) and Arellano and Bonhomme (2011) point out that when panel data
outcomes are discrete, serious identification issues arise when covariates are correlated with
unobserved heterogeneity. Chamberlain (2010) discussing binary choice model shows that,
with fixed T , quantities of interest, such as Average Partial Effect (APE), may not be point
identified or may not possess a

√
N consistent estimator. Notwithstanding this underiden-

tification result, various methods have been proposed to estimate the structural measures
of interest. Weidner (2011) and Arellano and Bonhomme (2011) provide an overview, and
categorize, of some of the methods developed to estimate the quantities of interest.
One of the leading methods in the literature is the fixed effect (FE) approach that

treats individual effects as parameters to be estimated. But as the number of individual
effects grow with the sample size, incidental parameter problem (see Lancaster, 2000, for
a review) usually appears in fixed T estimation of nonlinear panel data models. It has
been argued that the incidental parameter problem can be viewed as time-series finite-
sample bias when T tends to infinity. Following this perspective, several approaches have
been proposed to correct for the time-series bias. Some of the papers that follow the
bias reduction technique for estimating the quantities of interest are Hahn and Newey
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(2004), Arellano and Hahn (2007), Bester and Hansen (2009), Fernandez-Val (2009), and
Hahn and Kuersteiner (2011).
Wooldridge (2009) points out that the FE approach, though promising, suffers from a

number of shortcomings. First, the number of time periods needed for the bias adjustments
to work well is often greater than is available in many applications. Secondly, the recent bias
adjustments methods require the assumptions of stationarity and weak dependence; in some
cases, the very strong assumption of serial independence (conditional on the heterogeneity)
is maintained. However, in empirical work dealing with linear models, it has been found
that idiosyncratic errors exhibit serial dependence. Also, “the requirement of stationarity
is strong and has substantive restrictions as it rules out staples in empirical work such as
including separate year effects, which can be estimated very precisely given a large cross
section.”
There is another class of models that acknowledges the fact that many nonlinear panel

data models are not point identified at fixed T and consequently discuss set identification
(bound analysis) for certain quantiles of interest such as the marginal effects. These pa-
pers show that the bounds become tighter as the number of time periods, T , increases.
Some of the papers that deal with bound analysis are Honore and Tamer (2006) and
Chernozhukov et al. (2013). However, with the exception of Honore and Tamer, the meth-
ods in these papers are still limited to discrete covariates. Moreover, these papers and pa-
pers utilizing FE approach assume that conditional on unobserved heterogeneity all covari-
ates are exogenous or predetermined; this, as argued in Hoderlein and White (2012)(HW),
may not always hold true.
A partial list of papers that study nonparametric control function estimation of non-

separable models are Florens et al. (2008), Imbens and Newey (2009), and Torgovitsky
(2012), where the focus is on estimating heterogeneous effect of endogenous treatment.
However, in these papers all exogenous covariates are assumed to be independent of un-
observed heterogeneity. Besides, these papers do not consider heterogeneity in the reduced
form or the “treatment choice equation” as termed by Florens et al.. Also, with the ex-
ception of Altonji and Matzkin (2005), Papke and Wooldridge (2008)(PW), and HW the
papers employing control function approach for panel data assume all covariates to be
exogenous conditional on the unobserved heterogeneity.
In this paper we relax the assumption of conditional exogeneity to allow for endogenous

covariates that are continuous, and develop a control function method to account for en-
dogeneity of such covariates. Heterogeneity is modeled as correlated random effects (CRE)
and errors are assumed to be additively separable. Though we assume our model to be tri-
angular, in many applications with additively separable errors and single index restriction
the triangular representation can be achieved from a fully simultaneous system. The ap-
proach does entail restriction on the distribution of error components. But as Wooldridge
argues, “estimation using CRE and FE involve trade-offs among assumptions and the type
of quantities that can be estimated, and that no method provides consistent estimates of
either parameters or APE’s under a set of assumptions strictly weaker than the assump-
tions needed for the other procedures.” Some papers that adopt the CRE approach to
account for heterogeneity are Bester and Hansen (2007), PW, and Weidner (2011). While
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Bester and Hansen and Weidner study semiparametric models, and do not specify the con-
ditional distribution of the individual effects, PW assume a parametric form. In terms of
imposed structures, our paper is closest to PW’s.
Typically, in a simultaneous triangular system of equations with additive separability

and without latent heterogeneity in the reduced form equations, the control functions are
the unobserved time-varying errors in the reduced form equations. So that conditional on
reduced form errors, which are proxied by the residuals, the structural parameters can be
consistently estimated. In panel data setting, which allows us to account for unobserved
individual effects, the residuals of the reduced form equations, defined as the observed
value of the endogenous variables minus its expectation conditional on observed regressors
and the unobserved individual effects, remain unidentified. This is plainly because the
individual effects/heterogeneity in the reduced form equations, which are correlated with
individual effects in the structural equation, are unobserved.
The novelty of our approach lies in integrating out the unobserved individual effects

with respect to conditional distribution of the individual effects, which is obtained as the
posterior distribution of the individual effects from the results from the first stage reduced
form estimation. This leaves us with the “expected a Posteriori” (EAP) values of the
individual effects, which can then be used to obtain control functions that are a function of
the observed variables. The EAP values of individual effects are obtained through numerical
integration with respect to distribution of the individual effects.
Our method, while being simple, makes a number of contributions to the literature.

First, unlike most control function approaches that require the presence of continuous in-
struments, often with a large support, our method allows for general instruments. This
is because the control functions, which are based on EAP value of individual effects, are
functions of endogenous and exogenous variables from all time periods. Hence, conditional
on contemporaneous endogenous variable the large, common support of the control func-
tions needed to identify the average structural function (ASF) and APE is provided by
the unrestricted continuous endogenous variables from other time periods. Thus, we find
that once again panel data with multiple observations for each individual, which allows
for accounting of unobserved heterogeneity, aids in identifying quantities of interest. In
our case, as it happens, it allows for the possibility of control functions to employ general
instruments for identification.
Secondly, we account for heterogeneity in the reduced form/ treatment choice equation.

Finally, our model retains the attractive features of the PW, where no assumptions are
made on the serial dependence among the outcome variable. Another interesting feature
of our model is that only two time periods suffice to identify the structural measures of
interest. Our model can be especially useful, see the application in this paper, when (i) only
discrete instruments are available, and (ii) when one is faced with very short panels and
FE and set identification approaches that require large T and fully non-separable models
that require at least as many time periods as the number of regressors cannot be employed
(see also HW).
Using data on India, the proposed estimator is employed to estimate causal effects of

household income and wealth on child labor and their propensity to attend school. We
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find a strong effect of correcting for endogeneity, and show that the standard parametric
models give a misleading picture of the causal effect of income and wealth on child labor
and schooling. To demonstrate that our control function method can accommodate general
instruments, most of the instruments employed in the estimation are discrete. We also look
at how the Government of India’s “Midday Meal Scheme”, through which free cooked lunch
is provided on working days for children in primary and upper primary classes (classes I to
VIII) in Government schools, with the objectives of providing nutrition and encouraging
children of poor and disadvantaged sections to attend school, affects children’s propensity
to participate in work and attend school.
The rest of the paper is organized as follows. In section 2 we introduce the model and

discuss identification and estimation of structural measures of interests for a discrete re-
sponse model. In section 3 we apply the proposed estimator to study income and wealth
effects on work decision outcomes for children in the State of Andhra Pradesh of India,
and finally in section 4 we conclude. Technical proofs are relegated to appendix A. Due
to space constraint, other technical details have been put in a supplementary appendix,
which, among others, includes the derivation of the asymptotic covariance matrix and a
note on multidimensional numerical integration.

2. MODEL SPECIFICATION

For the sake of exposition, we assume a binary choice model,

y∗it = ϕϕϕ(zyit, xit) + θi + ζit, (2.1)

where y∗t
1 is the latent variable underlying the binary response outcome, yt = 1{y∗t > 0};

1{.} is an indicator function that takes value 1 if the argument in the parenthesis holds
true and 0 otherwise. We assume our model to be additively separable in the errors, θ and
ζt, where θ is the unobserved time invariant individual effect and ζt is the idiosyncratic
component. Conditional on θ, zyt is assumed to be independent of ζt for all t; that is, zyt
is a vector of exogenous variables. Above, xt is a vector of endogenous covariates; in other
words, ζt 6⊥ xt|θ. Also, xt is continuous and is of dimension ‘m’. To estimate the structural
parameters in equation (2.1) we develop a two stage control function procedure. In the
first stage, the parameters Θ1 of the system of reduced form equations, equation (2.2), is
estimated.

xit = βββ(zit) +αααi + ǫǫǫit, (2.2)

Equation (2.2) is the system of ‘m’ equations written in a reduced form for the endoge-
nous variables xt. While we refer (2.2) as reduced form equations, it could be thought of as
structural equations in a triangular system. However, with additive separability and single
index restriction, the triangular representation in (2.1) and (2.2) can be derived from a
fully simultaneous system involving xt and y∗t . In (2.2), ααα = (α1, . . . , αm)

′ is a vector of un-
observed individual effects and ǫǫǫt = (ǫ1t, . . . , ǫmt)

′ is the vector of idiosyncratic error terms.

1In the rest of the paper, except when needed, we will drop the individual subscript i.
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βββ(zt) = {βββ1(zt), . . . ,βββm(zt)}′, where zt = (zy′t , z̃
′
t)

′ is the vector of exogenous variables.
The crucial identification requirement is that the dimension of instruments, z̃t, which are
excluded from the structural equation (2.1), be greater than or equal to the dimension
of xt. Such exclusion restrictions have to be justified on economic grounds before z̃t can
be employed as instruments. Finally, define Z = (z′1, . . . , z

′
T )

′, X = {x′
1, . . . , x

′
T}′, and

ǫǫǫ = {ǫǫǫ′1, . . . , ǫǫǫ′T}′.
Before we proceed to discuss the identification and estimation of the quantities of interest,

we first state and discuss some of the model’s assumptions.

Assumption 1 ζt ⊥ Z|θ and ǫǫǫt ⊥ ααα,Z.

The assumption that Z and ααα are both independent of ǫǫǫt is maintained because without
it, in the correlated random effect framework that we employ, it is not possible to recover
the distribution of αααi, which is required to obtain the control functions. When it cannot
be argued that the triangular representation in (2.1) and (2.2) is in fact structural, and
the triangular representation has to be obtained from a fully simultaneous system, then it
would be required that both Z and θ be independent of ζt.
Now, one of the requirements of our control function method is to be able to recover,

among others, the conditional distribution of X and ααα given Z. However, we do not know
of any non or semiparametric estimator where the conditional distribution of endogenous
variables and the random coefficients or effects are recovered when the problem is one that
of estimating a system of regressions as in equation (2.2)2. Given this lack and the necessity
of recovering certain conditional distributions, we assume a parametric specification to
estimate the reduced form equations.
First, we will assume a single index form for βββ(zt) in the reduced form equations, so

that βββ(zt) = diag(zt, . . . , zt)
′βββ, where βββ = (βββ ′

1, . . . ,βββ
′
m)

′. To account for the correlation of
αααi and Zi, we employ the correlated random effects (CRE) formulation in Chamberlain
(1984). We assume that

Assumption 2

E(αααi|Zi) = ̺̺̺(Zi) = diag(z̄, . . . , z̄)′̺̺̺

where ̺̺̺ = (̺̺̺′
1, . . . , ̺̺̺

′
m)

′, and z̄ could be either Chamberlain’s or Mundlak’s specification for
CRE.

This implies that

E(xt|Z) = Z
′
tδδδ,

where ZZZt = diag((z′t, z̄
′)′, . . . , (z′t, z̄

′)′), and δδδ = ((βββ ′
1, ̺̺̺

′
1), . . . , (βββ

′
m, ̺̺̺

′
m))

′. The conditional
distribution of αααi given Zi is assumed as

2For scalar x, Arellano and Bonhomme (2012) have proposed a semiparametric random coefficient model,
where such distributions can be estimated. Presumably, their results can be extended to identify the sort
of control function proposed in this paper. But since their model pertains to scalar x, we will not discuss
or attempt to extend their results here.
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Assumption 3

αααi|Zi ∼ N
[

E(αααi|Zi),Λαα

]

,

so that the tail, α̃ααi = αααi − E(αααi|Zi) = αααi − ̺̺̺(Zi), is distributed normally with conditional
mean zero, variance Λαα, and is also assumed to be independent of Zi. The idiosyncratic
error, ǫǫǫt, is assumed to be distributed as:

Assumption 4

ǫǫǫt ∼ N
[

0,Σǫǫ

]

.

Given the above, equation (2.2) can now be written as

xt = ZZZ ′
tδδδ + α̃αα + ǫǫǫt. (2.2a)

The parameters, Θ1 = {δδδ,Σǫǫ,Λαα}, of the modified equation (2.2a) can be estimated
by a step-wise maximum likelihood method for system of regressions developed by Biørn
(2004). Biørn’s paper, however, does not account for any possible heteroscedasticity in α̃αα

or heteroscedasticity and serial correlation among ǫǫǫt. Also, we are not aware of any test for
testing vector serial correlation in the idiosyncratic term of error component models for a
system of regressions.
If m = 1, one can employ the methodology in Baltagi et al. (2010) to deal with het-

eroscedasticity in α̃αα and serial correlation in the idiosyncratic components. For m = 1
Baltagi et al. (2006) allow for heteroscedasticity in α̃αα and ǫǫǫt but no serial correlation in the
idiosyncratic component. In what follows, for the sake of exposition we will stick to the
maintained assumptions in Biørn’s for the reduced form equations (2.2a)3. In appendix A
of the supplementary appendix we briefly describe the methodology in Biørn (2004).

2.1. Identification and Estimation of Structural Parameters and Average Partial Effect

2.1.1. Identification

The identification strategy that allows us to construct the control variables that correct
for the bias, which arises due to endogeneity of xt and the correlation of xt and zt with the
unobserved heterogeneity, is based on the following conditional distribution restriction:

Assumption 5

θ, ζt|X,Z,ααα ∼ θ, ζt|X− E(X|Z,ααα),Z,ααα

∼ θ, ζt|ǫǫǫ,Z,ααα

∼ θ, ζt|ǫǫǫ,ααα.
3It is possible to modify Biørn’s methodology to allow for limited order vector serial correlation and

heteroscedasticity in error components. However, testing for nonspherical errors when one is dealing with
a system of regressions with random effects might not be straightforward. One way, albeit somewhat
inexact, might be to test for non-sphericity among error components by employing the tests developed
in Baltagi et al. (2010), or in Wooldridge (2002), for each of the regressions separately in the system of
regressions. If the tests confirm for non-sphericity, then the covariance matrices of the error components
in Biørn’s paper can be adjusted to allow for serial dependence and heteroscedasticity.
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According to the above, the dependence of the structural error terms θ and ζt on X, Z,
and ααα is completely characterized by the reduced form error components ǫǫǫ and ααα. This
restriction is weaker than in most control function methods, where it is required that Z be
independent of ζt conditional on ǫǫǫt.
The expectation of θ + ζt given ααα and ǫǫǫ is given by

E(ζt + θ|ααα,ǫǫǫ) = E(ζt|ααα,ǫǫǫt) + E(θ|ααα,ǫǫǫt)

The equality in the above follows from

Assumption 6 θ, ζt|ααα,ǫǫǫ ∼ θ, ζt|ααα,ǫǫǫt,

which states that conditional on ααα and ǫǫǫt, θ and ζt are independent of ǫǫǫ−t. A similar
assumption that conditional on contemporaneous time varying reduced form errors and
individual effects, the structural errors are independent of rest of the time varying reduced
form errors has also been made in PW and Semykina and Wooldridge (2010)4.
As we will see, without assuming a functional form for E(ζt|ααα,ǫǫǫt) and E(θ|ααα,ǫǫǫt), it may

be difficult to estimate the structural parameters of interest. Hence, as is common in
parametric control function approach, we assume that

Assumption 7 E(θ|ααα,ǫǫǫt) and E(ζt|ααα,ǫǫǫt) are linear in ααα and ǫǫǫt.

That is,

E(θ|ααα,ǫǫǫt) + E(ζt|ααα,ǫǫǫt) = (Σθαααα + Σθǫǫǫǫt) + (Σζαααα + Σζǫǫǫǫt) = Σαααα + Σǫǫǫǫt,

where the final expression is obtained by collecting the ααα terms together and the ǫǫǫt terms
together. The two (1×m) matrices Σα and Σǫ respectively are

Σα =
(

ρα1 . . . ραm
)

and Σǫ =
(

ρǫ1 . . . ρǫm
)

.

The elements of Σǫ and Σα, which are estimated in the second stage structural estimation,
give us a test of the exogeneity of xt.
The above restrictions then imply that the conditional expectation of y∗t given X, Z, and

ααα is given by

E(y∗t |X,Z,ααα) = ϕϕϕ(Xt) + Σαααα + Σǫǫǫǫt

= ϕϕϕ(Xt) + Σα(̺̺̺(Z) + α̃αα) + Σǫǫǫǫt = E(y∗t |X,Z, α̃αα), (2.3)

where Xt = {zy′t , x′
t}′. In a triangular setup with additive separability and without un-

observed heterogeneity, residuals from the first stage reduced form regression form the
estimates of ǫǫǫt. In our model, however, the residuals, ǫǫǫt = xt − E(xt|Z, α̃αα) = xt −ZZZ ′

tδδδ − α̃αα,

4This assumption can be relaxed and one can specify the dependence of ζit and ǫǫǫi without adding any
conceptual difficulties.
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and ααα = ̺̺̺(Z) + α̃αα are not identified because the α̃ααi’s are unobserved5. But it may still be
possible to estimate the structural parameters if we could integrate out α̃ααi with respect to
its conditional distribution f(α̃ααi|Xi,Zi). To see this, consider E(y∗it|Xi,Zi, α̃ααi) in (2.3):

∫

E(y∗t |X,Z, α̃αα)f(α̃ααi|X,Z)dα̃ααi

= ϕϕϕ(Xt) + Σα̺̺̺(Z) + Σǫ(xt −ZZZ ′
tδδδ) +

∫

(Σαα̃αα− Σǫα̃αα)f(α̃αα|X,Z)dα̃αα

= ϕϕϕ(Xt) + Σα̺̺̺(Z) + Σǫ(xt −ZZZ ′
tδδδ) + Σα

ˆ̃ααα− Σǫ
ˆ̃ααα

= ϕϕϕ(Xt) + Σα(̺̺̺(Z) + ˆ̃ααα) + Σǫ(xt −ZZZ ′
tδδδ − ˆ̃ααα)

= ϕϕϕ(Xt) + Σαα̂αα + Σǫǫ̂ǫǫt = E(y∗t |X,Z). (2.4)

In the second equality ˆ̃αααi = ˆ̃αααi(Xi,Zi,Θ1) are the “expected a posteriori” (EAP) values
of the time invariant individual effects α̃ααi. In the fourth equality α̂αα = ̺̺̺(Z) + ˆ̃ααα and ǫ̂ǫǫt =
xt −ZZZ ′

tδδδ − ˆ̃ααα.
To obtain (2.4), we use Bayes rule to write f(α̃αα|X,Z) as

f(α̃αα|X,Z) =
f(X,Z|α̃αα)g(α̃αα)

h(X,Z)
=

f(X|Z, α̃αα)p(Z|α̃αα)g(α̃αα)
h(X|Z)p(Z)

,

where g and h are density functions. By our assumption the residual time invariant in-
dividual effects, α̃αα, are independent of the exogenous variables Z, hence p(Z|α̃αα) = p(Z).
That is,

f(α̃αα|X,Z) =
f(X|Z, α̃αα)g(α̃αα)

h(X|Z)
=

f(X|Z, α̃αα)g(α̃αα)
∫

f(X|Z, α̃αα)g(α̃αα)dα̃αα
.

Hence, we have

∫

α̃ααf(α̃αα|X,Z)d(α̃αα) =

∫

α̃ααf(X|Z, α̃αα)g(α̃αα)dα̃αα
∫

f(X|Z, α̃αα)g(α̃αα)dα̃αα
=

∫

α̃ααi

∏T
t=1 f(xt|Z, α̃αα)g(α̃αα)dα̃αα

∫
∏T

t=1 f(xt|Z, α̃αα)g(α̃αα)dα̃αα

= ˆ̃ααα(X,Z,Θ1) (2.5)

where the second equality follow from the fact that conditional on Z and α̃αα, each of the
xt, xt ∈ {x1, . . . , xT} are independent and normally distributed with mean ZZZ ′

tδδδ + α̃αα and

5 To identify ǫǫǫt, HW assume the reduced form as

xt = f0(zt) + f1(zt,ααα)ǫǫǫt,

where ǫǫǫt ⊥ (zt,ααα), and impose the normalizations: E(ǫǫǫt) = 0 and Var(ǫǫǫt) = 1. This permits them to solve
for ǫǫǫt as ǫǫǫt = Var(xt|zt)−1/2[xt − E(xt|zt)]. The estimates of ǫǫǫt are then obtained by estimating E(xt|zt)
and Var(xt|zt). Though HW identify structural quantities semiparametrically, these assumptions imply
that their model does not necessarily nest the model considered here.
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standard deviation Σǫǫ. g(α̃αα) by our assumption is normally distributed with mean zero and
variance Λαα. Let α̌αα(X,Z, Θ̂1) denote the estimated EAP value of α̃αα. α̌αα can be estimated
by employing multidimensional numerical integration techniques with respect to α̃αα at the
estimated values, Θ̂1. In appendix D of the supplementary appendix we provide a note on
the numerical technique employed to estimate α̌αα.

Now, it can be shown that

Lemma 1 α̌ααi(Xi,Zi, Θ̂1) converges almost surly to ˆ̃αααi(Xi,Zi,Θ1), where Θ̂1 = {δ̂̂δ̂δ, Σ̂ǫǫ, Λ̂αα}
is the consistent first stage estimate.

Proof of Lemma 1 Given in appendix A .

Lemma 1 implies that

ϕϕϕ(Xt) + Σα
ˆ̂αααi + Σǫ

ˆ̂ǫǫǫt
a.s→ E(y∗t |X,Z) =

∫

E(y∗t |X,Z, α̃αα)f(α̃αα|X,Z)d(α̃αα), (2.6)

where ˆ̂ααα = ˆ̺̺̺(Z)+ α̌αα and ˆ̂ǫǫǫt = xt−Z′
tδ̂δδ− α̌αα. If population parameters, δδδ, Σǫǫ, and Λαα, were

known, the above implies that we could write the linear predictor of y∗it, given Xi and Zi

in error form as

y∗t = ϕϕϕ(Xt) + Σαα̂αα + Σǫǫ̂ǫǫt + ζ̃t, (2.7)

where ζ̃t is distributed with conditional mean 0.

Had y∗t been continuous and observed, with estimates ˆ̂ααα and ˆ̂ǫǫǫt in place, equation (2.7)
could be estimated by employing GMM. However, when response outcomes are discrete
and we have to deal with nonlinear models, additional assumptions than those made above
may be required. For an individual i, we are interested in the Average Structural Function
(ASF),

E(yt|Xt) = G(Xt) =

∫

H(Xt, θ, ζt)dFθ,ζ, (2.8)

where yt = 1{ϕ(Xt) + θ + ζt > 0} = H(Xt, θ, ζt), and the Average Partial Effect (APE) of
changing a variable, say w, in time period t from wt to wt +∆w,

∆E(yt|Xt)

∆w
=

∆G(Xt)

∆w
=

∫

(

H(Xt−w
, (wt +∆w), θ, ζt)−H(Xt, θ, ζt)

)

dFθ,ζ

∆w
, (2.9)

where the average is taken over the marginal distribution of the error terms θ and ζ .
However, the above could only be possible if the endogeneity of Xt were absent, that is, if
the covariates Xt could be manipulated independently of the errors, θ and ζt.
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To obtain the ASF, G(Xt), consider E(yt|Xt,X,Z) = E(yt|X,Z). For an individual i, we
have

E(yt|X,Z) = E(E(H(Xt, θ, ζt)|X,Z,ααα)|X,Z) = E(E(H(Xt, θ, ζt)|ǫǫǫ,ααα)|X,Z)

= E(E(H(Xt, θ, ζt)|ǫǫǫt,ααα)|X,Z) = E(H̃(Xt,ααα,ǫǫǫt)|X,Z)

= H∗(Xt, α̂αα, ǫ̂ǫǫt) = E(yt|Xt, α̂αα, ǫ̂ǫǫt) ,

(2.10)

where the first equality is obtained by the Law of Iterated Expectation and the second
follows from Assumption 5. The third equality follows from Assumption 6. In the
fourth equality the intermediate regression function, H̃(Xt,ααα,ǫǫǫt), is the conditional CDF
of θ + ζt given ǫǫǫt and ααα, evaluated at ϕϕϕ(Xt). That is

H̃(Xt,ααα,ǫǫǫt) = Fθ+ζt|ǫǫǫt,ααα(ϕϕϕ(Xt)|ǫǫǫt,ααα).

Had we been able to identify ααα and ǫǫǫt separately from one other and been able to provide
estimates of them, we could have estimated H̃(Xt,ααα,ǫǫǫt) as a multiple index model semi-
parametrically as in Blundell and Powell (2004)(BP). Since we do not observe ααα to identify
ααα and ǫǫǫt, we resort to conditioning on the observables. Now, we have shown that

E(θ + ζt|X,Z) = E(E(θ + ζt|ααα,X,Z)|X,Z) = E(E(θ + ζt|ααα,ǫǫǫt)|X,Z) = Σαα̂αα+ Σǫǫ̂ǫǫt.

To obtain the regression function, H∗(Xt, α̂αα, ǫ̂ǫǫt), the conditional CDF of θ+ ζt given X and
Z, we, like Chamberlain (1984), assume that

Assumption 8

θ + ζt|X,Z ∼ N
[

E(θ + ζt|X,Z), σ2
ζ

]

so that the tail, ζ̃t = θ + ζt − E(θ + ζt|X,Z) = θ + ζt −Σαα̂αα− Σǫǫ̂ǫǫt is distributed normally
with conditional mean 0.

Given Assumption 8, we have

yt = 1{X ′
tϕϕϕ+ Σαα̂αα+ Σǫǫ̂ǫǫt + ζ̃t > 0} (2.11)

where X ′
tϕϕϕ is the single index restriction on ϕϕϕ(Xt).

If we do not assume a parametric distribution for the tail, ζ̃t, the structural quantities
of interest, such as APE, could be obtained by nonparametric methods discussed in BP. If
one is interested only in coefficients, ϕϕϕ, the semiparametric maximum likelihood method
developed in Rothe (2009) could be employed. Now, given that the control functions are
generated regressors, employing these semiparametric methods would require that large
sample properties of the estimates be worked out. Since the first stage parameters are
obtained using parametric methods and the generated control functions are constructed
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by using numerical integration technique, the large sample properties will be different from
that developed in their papers.

The above cited two semiparametric control function methods are, however, not robust to
heteroscedasticity and do not account for serial dependence among the response outcomes,
which, when working with panel data, is likely to be an issue. Since these issues can be
addressed in a straightforward manner in parametric models, we continue to resort to
parametric specification.

Now, since in probit models the parameters are identified only up to a scale, we have

E(yt|X,Z) = H∗(Xt, α̂αα, ǫ̂ǫǫt) = Pr(yt = 1|Xt, α̂αα, ǫ̂ǫǫt) = Φ

(

{X ′
tϕϕϕ+ Σαα̂αα+ Σǫǫ̂ǫǫt}σ−1

ζ

)

,

where the σ2
ζ is the variance of ζ̃it, which could be heteroscedastic. Having obtainH∗(Xt, α̂αα, ǫ̂ǫǫt),

the measure ASF, G(Xt), can be obtained by averaging over α̂αα and ǫ̂ǫǫt.

G(Xt) = Pr(yt = 1|Xt) =

∫

H∗(Xt, α̂αα, ǫ̂ǫǫt)dFα̂αα,ǫ̂ǫǫt =

∫

Φ

(X ′
tϕϕϕ+ Σαα̂αα + Σǫǫ̂ǫǫt

σζ

)

dFα̂αα,ǫ̂ǫǫt

(2.12)

Given (2.12), the APE, ∆G(Xt)
∆w

in (2.9), of changing a variable, say wt, from wt to wt+∆w

can be obtained by dividing the difference in the ASF’s at wt and wt +∆w by ∆w. In our
case, since the integrand is a smooth function of its arguments, in the limit when ∆w tends
to zero we can change the order of differentiation and integration in (2.12) to get

∂G(Xt)

∂w
=

∂ Pr(yt = 1|Xt)

∂w
=

∫

ϕw

σζ
φ

(X̄ ′ϕϕϕ+ Σαα̂αα + Σǫǫ̂ǫǫt

σζ

)

dFǫ̂ǫǫt,α̂αα, (2.13)

where φ is the density function of a standard normal and ϕw is the coefficient of w.

Before we proceed, we state Lemma 2, where we show that α̂ααi(Xi,Zi,Θ1) and ǫ̂ǫǫit(Xi,Zi,Θ1)
satisfy the the properties of a control function.

Lemma 2 Conditional on ǫ̂ǫǫt(X,Z, Θ̂1) and α̂αα(X,Z, Θ̂1), θ and ζt are independent of Xt.

Proof of Lemma 2 Given in appendix A

Now, in order for the ASF G(Xt) and APE ∂G(Xt)
∂w

to be identified from the partial
mean formulation in (2.12) and (2.13) for a particular value X̄ of Xt, the support of the
conditional distribution of α̂αα and ǫ̂ǫǫt given X̄ must be the same as the support of the
marginal distribution of α̂αα and ǫ̂ǫǫt (conditionally on the exogenous Z), (see Florens et al.,
2008; Imbens and Newey, 2009). In our approach, because α̂αα is a continuous and monotonic
functions of xt, ∀t (see Lemma 3) and because xs, s 6= t, which is unrestricted and has an
unbounded support, the support of the conditional distribution – conditional on X̄ – of α̂αα
and ǫ̂ǫǫt = xt −ZZZ ′

tδδδ − α̂αα are unbounded too.
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Lemma 3 The support of the conditional distribution of α̂αα(X,Z, Θ̂1) and ǫ̂ǫǫt(X,Z, Θ̂1),
given xt = x̄

6, is the same as the marginal distribution of α̂αα(X,Z, Θ̂1) and ǫ̂ǫǫt(X,Z, Θ̂1)
(conditionally on Z).

Proof of Lemma 3 Given in appendix A

The consequence of Lemma 3 is that

E(y|x̄, α̂αα, ǫ̂ǫǫt) = E(y|x̄, α̂αα(x̄), ǫ̂ǫǫt(x̄)) (2.14)

for all α̂αα and ǫ̂ǫǫt in the unconditional support of α̂αα and ǫ̂ǫǫt and where xt = x̄. That is, we
can replace E(y|x̄, α̂αα(x̄), ǫ̂ǫǫt(x̄)) by E(y|x̄, α̂αα, ǫ̂ǫǫt), which allows us to obtain the ASF G(x̄) =
∫

E(y = 1|x̄, α̂αα, ǫ̂ǫǫt)dFα̂αα,ǫ̂ǫǫt , or for that matter the APE. We can do this because according to
Lemma 3, for any given α̂αα∗ = α̂αα(xt = x̄t, xs = x̄s,X−t,s), we can find an xs = x

∗
s, such that

α̂αα(x∗
t , x

∗
s,X−t,s) = α̂αα∗ for any xt = x

∗
t . The same, by Lemma 3, holds true for any ǫ̂ǫǫt = ǫ̂ǫǫ∗.

Moreover, since the result in (2.14) was obtained conditionally on the exogenous Z, our
method circumvents the need to have continuous instruments, often with large support, as
is required in most semi and nonparametric control function methods in the literature.
Finally, we would like to note that the identification results derived here for binary choice

model are easily extended to identify structural measures of interest for other nonlinear
models such as, to name a few, selection, bivariate probit, and tobit models. Also, the
structural equation (2.1) can allow for limited number of lagged values of exogenous vari-
ables. This would require that the reduced form equations be estimated with lagged values
of zyt . Provided the number of time periods is sufficient, the reduced form equations can
be estimated with lagged values of exogenous variables as described above.

2.1.2. Estimation

We know that in probit model, heteroscedasticity in the latent variable when unaccounted
leads to inconsistent maximum likelihood estimates of the coefficients and of the covariance
matrix. To obtain consistent estimates of the structural parameters, we address this source
of inconsistency by modeling heteroscedasticity as a variation of Harvey’s “multiplicative
heteroscedasticity” approach. We assume that the conditional variance of ζ̃t as σ

2
ζ (Xi,Zi) =

exp(h(Wi))
2, where h is assumed to be linear. To include elements of Xi and Zi, h(Wi) can

be specified with a Mundlak or a Chamberlain type specification, and/or Wi can include
α̂αα and ǫ̂ǫǫt and their squares7. Assuming that Wi includes α̂ααi and ǫ̂ǫǫit, in what follows, we will
denote h(W (α̂αα, ǫ̂ǫǫt)) with h(α̂αα, ǫ̂ǫǫt).

6Since zyt of Xt are also elements of Z, upon which α̂αα is already conditioned, this implies that we consider
the marginal and the conditional only with respect to xt.

7Since

Var(ζt + θ|X,Z) = E((ζt + θ)2|X,Z)− (E(ζt|X,Z) + E(θ|X,Z))2

= E((ζt + θ)2|X,Z)− (Σαα̂αα+Σǫǫ̂ǫǫt)
2,

α̂αα and ǫ̂ǫǫt and their squares can be included in the specification for conditional variance.
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If w belongs to both Xit and Wi then the APE of w on the probability of yt = 1 at
Xt = X̄ is given by

∂G(Xt)

∂w
=

∫

ϕw − h′
w(X̄ ′ϕϕϕ+ Σαα̂αα + Σǫǫ̂ǫǫt)

exp(h(α̂αα, ǫ̂ǫǫt))
φ

(X̄ ′ϕϕϕ+ Σαα̂αα + Σǫǫ̂ǫǫt

exp(h(α̂αα, ǫ̂ǫǫt))

)

dFǫ̂ǫǫt,α̂αα, (2.15)

where h′
w is the derivative of h(α̂αα, ǫ̂ǫǫt) with respect to w.

To obtain the parameters of interest, Θ2 = {ϕϕϕ′,Σ′
α,Σ

′
ǫ,Θ2h}′, where Θ2h is the set of

parameters of h(α̂αα, ǫ̂ǫǫt), one can employ nonlinear least squares by pooling the data. However,
as PW discuss, since Var(yt|X,Z) will most likely be heteroscedastic and since there will
be serial correlation across time in the joint distribution, F (y0, . . . , yT |X,Z), the estimates,
though consistent, will be estimated inefficiently resulting in biased standard errors. PW
argue that modeling F (y0, . . . , yT |X,Z) and applying MLE methods, while possible, is
not trivial. Moreover, if the model for F (y0, . . . , yT |X,Z) is misspecified but E(yt|X,Z) is
correctly specified, the MLE will be inconsistent for Θ2 and the resulting APEs.

To account for heteroscedasticity and serial dependence for the case where all covariates
are exogenous, PW employ multivariate weighted nonlinear least squares (MWNLS) to
obtain efficient estimates of Θ2. To get the correct estimates of the standard errors of the
estimates, what is required is a parametric model of Var(yi|Xi,Zi), where yi is the T × 1
vector of responses. For the conditional variances, Var(yt|X,Z), PW specify

Var(yt|X,Z) = τm(Wt,Θ2)(1−m(Wt,Θ2)), (2.16)

where Wt = {X ′
t , α̂αα

′, ǫ̂ǫǫ′t,W
′}′, m(Wt,Θ2) = Φ

(

X ′

t
ϕϕϕ+Σαα̂αα+Σǫǫ̂ǫǫt
exp(h(α̂αα,ǫ̂ǫǫt))

)

and τ is such that 0 < τ ≤ 1.

For the covariance terms, Cov(yt, ys|X,Z), in Var(y|X,Z) a “working” version, which can
be misspecified, is assumed. This is the approach underlying the generalized estimating
equation (GEE) literature as described in Liang and Zeger (1986). The main advantage of
GEEs lies in the consistent and unbiased estimation of parameters’ standard errors even
when the correlation structure is misspecified. Also, GEE and MWNLS are asymptotically
equivalent whenever they use the same estimates of the T × T positive definite matrix
Var(y|X,Z).

Generally, the conditional correlations, Cov(yt, ys|X,Z), are a function of X and Z. In
the GEE literature the “working correlation matrix” is that which assumes the dependency
structure to be invariant over all observations; that is, the correlations are not a function of
X and Z. Here we will focus on a particular correlation matrix that is suited for panel data
applications with small T . In the GEE literature it is called an “exchangeable” correlation
pattern. Exchangeable correlation assumes constant time dependency, so that all the off-
diagonal elements of the correlation matrix are equal. Though other correlation patterns
such as “autoregressive”, which assumes the correlations to be an exponential function of
the time lag, or “stationary M”, which assumes constant correlations within equal time
intervals could also be assumed.

GEE literature suggests that parameter ρ that characterize Var(y|X,Z) = V(X,Z,Θ2, τ, ρ)
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can be estimated using simple functions of residuals ut

ut = yt − E(yt|X,Z) = yt −m(Wt,Θ2),

where the mean function E(yt|X,Z) is correctly specified. With variance having been
defined in (2.16), we can define standardized errors as

et =
ut

m(Wt,Θ2)(1−m(Wt,Θ2))
.

Then we have Var(et|X,Z) = τ . The exchangeability assumption is that the pairwise
correlations between pairs of standardized errors are constant, say ρ. This, to reiterate, is a
“working” assumption that leads to an estimated variance matrix to be used in MWNLS.
Neither the consistency of the estimator of ρ nor valid inference will rest on exchangeability
being true. To estimate a common correlation parameter, let Θ̃2 be a preliminary, consistent
estimator of Θ2. Θ̃2 could be the pooled ML estimate of the heteroscedastic probit model.
Define the residuals as ũt = yt −m(Wt, Θ̃2) and the standardized residuals as

ẽt =
ũt

m(Wt, Θ̃2)(1−m(Wt, Θ̃2))
.

Then, a natural estimator of a common correlation coefficient is

ρ̃ =
1

NT (T − 1)

N
∑

i=1

T
∑

t=1

∑

s 6=t

ẽitẽis. (2.17)

Under standard regularity conditions, without any substantive restrictions on Corr(et, es|X,Z),
the plim of ρ̃ is

plim(ρ̃) =
1

T (T − 1)

T
∑

t=1

∑

s 6=t

E(eiteis) ≡ ρ∗

If Corr(et, es|X,Z) happens to be the same for all t 6= s, then ρ̃ consistently estimates
this constant correlation. Generally, it consistently estimates the average of these correla-
tions across all (t, s) pairs, which is defined as C(ρ̃). Given the estimated T × T working
correlation matrix, C(ρ̃), which has unity down its diagonal and ρ̃ everywhere else, we can
construct the estimated working variance matrix:

V(X,Z, Θ̃2, ρ̃) = D(X,Z, Θ̃2)
1/2C(ρ̃)D(X,Z, Θ̃2)

1/2 = V(X,Z, Υ̃) (2.18)

where D(X,Z,Θ2) is the T × T diagonal matrix with m(Wt,Θ2)(1 − m(Wt,Θ2)) down
its diagonal. (Note that dropping the variance scale factor, τ , has no effect on estimation
or inference.) We can now proceed to the estimation of by MWNLS, that solves for Θ̂2 by
minimizing the following with respect to Θ2.

min
Θ2

N
∑

i=1

[yi −mi(Xi,Zi,Θ2)]
′[V(Xi,Zi, Υ̃)]−1[yi −mi(Xi,Zi,Θ2)] (2.19)
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where mi(Xi,Zi,Θ2) is the T vector with tth element m(Wit,Θ2).
In their model, PW, however, do not make any assumption about how the expectation

E(yt|xt,Z) would change if they condition the expectation on xs, s 6= t, also. The require-
ment of GEE is that the mean model, E(yt|X,Z), be correctly specified, else the GEE
approach to estimation can give inconsistent results. Hence, when the covariates are en-
dogenous, the model in PW is not suited for GEE estimation. Herein lies the advantage of
our model compared to PW’s. We have, given our identifying assumptions, been able to
show that E(yt|X,Z) = H∗(Xt, α̂αα(X,Z), ǫ̂ǫǫt(X,Z)), and therefore we can employ GEE to
account for serial correlation across time in presence of endogeneity.
Once the consistent estimates of Θ2 are estimated, the sample analog of ASF G(Xt), for

any fixed Xit = X̄ can be computed as

Ĝ(Xt) =
1

NT

N
∑

i=1

T
∑

t=1

Φ

( X̄ ′ϕ̂ϕϕ+ Σ̂α
ˆ̂αααi + Σ̂ǫ

ˆ̂ǫǫǫit

exp(ĥ(ˆ̂αααi, ˆ̂ǫǫǫit))

)

. (2.20)

By applying Lemma 1 it can be also shown that

Φ

(X̄ ′ϕ̂ϕϕ+ Σ̂α
ˆ̂αααi + Σ̂ǫ

ˆ̂ǫǫǫit

exp(ĥ(ˆ̂αααi, ˆ̂ǫǫǫit))

)

a.s.−→ Φ

(X̄ ′ϕϕϕ+ Σαα̂ααi + Σǫǫ̂ǫǫit

exp(h(α̂ααi, ǫ̂ǫǫit))

)

.

This implies that by the weak LLN, Ĝ(Xt) will converge in probability to G(Xt) as NT →
∞. Similarly, for any fixed Xit = X̄ , an estimate of the APE of w can be computed by
taking the sample analog of (2.15). The APE of a dummy variable, w, can be computed
by taking the difference in ASF computed at {0, X̄ ′

−w}′ and {1, X̄ ′
−w}′.

While consistent second stage structural parameters are obtained when first stage esti-
mates of Θ1 are consistent, to obtain correct inference about the structural parameters,
one has to account for the fact that instead of true value of Θ1, we use its estimated value.
In appendix B of the supplementary appendix we derive the asymptotic covariance matrix
of the estimated second stage coefficients; the standard errors of the APE’s are derived in
appendix C.1.

3. AN APPLICATION: IMPLICATIONS OF POVERTY AND MIDDAY MEAL SCHEME ON CHILD
LABOR & SCHOOLING

3.1. Introduction

Child labor is a pressing concern in all developing countries. According to International
Labour Office’s (ILO) current estimates, 168 million children in the 5 to 14 year age group
are working in economic activities throughout the world; 78 million of which are in the
Asia-Pacific region. Conditions of child labor can vary. Many children work in hazardous in-
dustries, risking accident and injury, and there are others working in conditions that take a
toll on their health. Moreover, when children work, they forego educating themselves8, and,

8While school attendance may not be considered as the “inverse” of child labor, it can nevertheless be
argued that whatever promotes school attendance is likely to deter child labor (see Baland and Robinson,
2000). Moreover, empirically there is a negative correlation between child labor and hours dedicated to
schooling. This negative correlation between work and school attendance is also reflected in our data.
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thus, human capital accumulation, with deleterious effect on their future earning potential.
Furthermore, since there is positive externality to human capital accumulation, as argued
by Baland and Robinson (2000) (henceforth BR), the social return to such accumulation,
too, is not realized.
There is a huge literature, both empirical and theoretical, that has sought to under-

stand the mechanism underlying child labor. What has emerged is that poverty (see
Basu and Van, 1998; Baland and Robinson, 2000), along with imperfection in labor and
land market (see Bhalotra and Heady, 2003; Dumas, 2007; Basu et al., 2010) and capital
market (see Baland and Robinson, 2000) are the major causes of child labor. BR show that
child labor increases when endowments of parents are low, and that when capital market
imperfections exist and parents cannot borrow, child labor becomes inefficiently high.
Basu et al. (2010) (BDD) point out that some papers like Bhalotra and Heady (2003)

(BH) and Dumas (2007) show that in some developing countries the amount of work the
children of a household do increases with the amount of land possessed by the household.
Since land is usually strongly correlated with a household’s income, this finding seems to
challenge the presumption that child labor involves the poorest households. They argue
that these perverse findings are a facet of labor and land market imperfections, and that
in developing countries, poor households in order to escape poverty want to send their
children to work but are unable to do so because they have no access to labor markets
close to their home. In such a situation, if the household comes to acquire some wealth, say
land, its children, if only to escape penury, will start working. However, if the household’s
land ownership continues to rise, then beyond a point the household will be well-off enough
and it will not want to make its children work.
BH argue that on one hand there is the negative wealth effect of large landholding on

child labor, whereby large landholding generate higher income and, thereby, makes it easier
for the household to forego the income that child labor would bring. On the other, due
to labor market imperfections, owners of land who are unable to productively hire labor
on their farms have an incentive to employ their children. Since the marginal product of
child labor is increasing in farm size, this incentive is stronger amongst larger landowners.
The value of work experience will also tend to increase in farm size and this is especially
relevant if the child stands to inherit the family farm. Furthermore, they argue that large
landowners who cannot productively hire labor would want to sell their land rather than
employ their children on it, but, because of land market failure, are unable to do so. Thus,
land market failure reinforces labor market failure.
Cockburn and Dostie (2007) (CD) in their analysis of child labor in Ethiopia find that

in presence of labor market imperfections, all assets need not be child labor enhancing.
They find that certain productive assets that enable an increase in the total family income
may not necessarily increase child labor. They point out that in presence of land and labor
market imperfections, ownership of land and livestock generate incentives for child labor,
but assets such as oxen and ploughs that are operated by adults decrease child labor. To
test this hypothesis, in our empirical specification we include the size of landholding, as
well as an index of productive farm assets.
Now, while land and labor market imperfections may exist in developing countries, the
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extent of imperfection may not be uniform across all countries, or regions within a country.
Hence, the relationship between child labor and different kinds of assets, such as landhold-
ing or agrarian assets, is an empirical question. The question is important because policy
implications could be different under different relationships between various kinds of assets
and child labor. For example, if one were to confirm the findings in BH and BDD, then if
monetary transfers are used to increase landholding or land redistribution is done in favor
of the poor, child labor may in fact increase. On the other hand, when monetary trans-
fers are used to increase agrarian assets, then in situations where an inverse relationship
between agrarian assets and child labor hold, such transfers could reduce the incidence of
child labor.

In our data set we find mean non-agricultural income to be much higher than agricultural
income. This suggests that land is not the only source of income as in BDD and BH. BDD
based on the assumption that land is the only source of income, derive a regression equation
where landholding is the only measure of well being. Given that non-agricultural income
constitutes a major portion of total household income, we also control for household income.

We also find that overtime land size distribution has become more unequal. Now, if land
market exists, no matter how imperfect, in the regions from where our data has been col-
lected, then it is unlikely that land owned by household will be exogenous to household
labor supply as in BH and BDD, where land is mainly inherited, but endogenously de-
termined along with household’s, including children’s, labor supply decisions. This would
necessitate accounting for the endogeneity of landholding along with the endogeneity of
productive assets and household income. To solve the endogeneity problem we employ the
method developed in the paper.

BR show that child labor, which hampers human capital accumulation, can be socially
inefficient, and that the family cannot be expected to solve this source of inefficiency on its
own. They show that ban on child labor, or, more generally, government policies that seek
to alleviate child labor could be welfare enhancing. One such program is the Government
of India’s “Midday Meal Scheme”. It involves provision for free lunch on working days for
children in primary classes (classes I to V), which in 2008-9 was extended to include upper
primary classes (classes VI to VIII), in Government and Government aided schools. The
scheme aims to provide cooked meal to children, with the objectives of providing nutrition
to children, encouraging poor children and those belonging to disadvantaged sections to
attend school more regularly, so that enrollment, retention and attendance rates increase9.
Hence, keeping in view the suggested importance of policy interventions, we investigate if
the midday meal scheme affects the incidence of child labor and the propensity of children
to attend school.

9 According to the Government of India, the Midday Meal Scheme is the world’s largest school feeding
programme. To find more about the scheme, visit http://mdm.nic.in.
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3.2. Data and Empirical Model

3.2.1. Data

We conduct our empirical analysis at the level of the child using the two waves, 2006-07
and 2009-2010, of the data from Young Lives Study (YLS), a panel study from six districts
of the state of Andhra Pradesh (henceforth AP) in India. We restrict our sample to children
in the age group of 5 to 14 years in 2007 living in rural areas, and only a balanced panel
is considered. Finally, excluding children for whom information on relevant covariates in
either of the years was missing, we were left with 2458 children, which meant dropping
about 23% children from the balanced panel of rural children.
Table 1 and 2 describes the relevant descriptive statistics for 2007 and 2010.

[Table 1, 2, and 3 about here]
The definition of work10 includes (a) wage labor, (b) non-wage labor and (c) domestic
work. Children were asked how much time they spent in the reference period (a typical
day in the last week) doing wage labor, non-wage labor, or domestic chores11. If the answer
was positive number of hours for any of the respective activities, then the binary variable
DWORK was assigned value 1, 0 otherwise. Similarly, if the child answered that the s/he
spent positive number of hours at school, the binary variable, DSCHOOL, was assigned
value 1 and 0 otherwise.
As can be seen from Table 1, the proportion of children working has increased over

the period of study. The major component of work (not reported here) is due to domestic
chores. But, while both domestic and non-domestic work registered increase over the years,
the increase in the proportion of children doing non-domestic work was higher. As far as
schooling is concerned, we find proportion of older children going to school has dropped,
but the proportion of younger children going to school has increased over the years.
In Table 2 we can see that the mean annual household income (in 2009 rupees) increased

during this period, and that the non-agricultural income constitutes the major portion of
the the household income. However, the increase in the mean agriculture income has been
higher than non-agricultural income. We also find that the size of the mean landholding has
increased over the years, and so has the index of farming related productive assets12. Also,

10 Wage labor involves activities for pay, work done for money outside of household, or work done for
someone not a part the household. Non-wage labor includes tasks on family farm, cattle herding (household
and/or community), other family business, shepherding, piecework or handicrafts done at home (not just
farming), and domestic work includes tasks and chores such as fetching water, firewood, cleaning, cooking,
washing, and shopping.

11For a discussion on whether or not to include domestic work in child labor, see Basu et al. and
Edmonds. It has been argued that domestic work is often light and can entail learning essential skills.
On the other hand, some domestic work such as cooking, cleaning, or taking care of younger siblings can
be exhausting. Further, not including domestic work in child labor creates the false impression that girls
do less work than boys. In fact, if we define work to exclude domestic chores, a major part of child labor is
ignored. Besides, as pointed out by Edmonds, household chores may not be interpreted as non-economic
work since the associated activities are not inelastic with respect to economic factors.

12The Asset Index is constructed by Principal Component Analysis of several variables, each of which
indicate the number of farming related assets of each kind that the household owns. The assets constitute
of agriculture tools, carts, pesticide pumps, ploughs, water pumps, threshers, tractors, and other farm
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it can be evinced from Table 2 that the size of landholding has become more unequal.
Among other variables, we see that the number of boys in the data are slightly higher
compared to number of girls, and that the average number of years of education of fathers
is higher than that of mothers. We also see that the household size has remained more or
less unchanged during this period.

The information on whether midday meal was provided at school or not is available only
for the “Index Children”, who are the ones that have been followed in all YL surveys
and will be followed in the subsequent ones. In Table 3 we present some statistics for the
Index Children. As stated earlier, the midday meal scheme was initially meant only for the
students at the primary level (standard I-V), and it was only in 2008-9, when the second
round of survey was being conducted, that the scheme was extended for students of the
upper primary level (standard VI-VIII) in all regions in India. Consequently, we do not
find older children, aged 14 and 15 years in 2010, being served midday meal at schools.
Nevertheless, in 2010 a higher proportion of young children report that their schools served
midday meal.

3.2.2. Empirical Model

We denote by yt = DWORKt, the binary outcome variable that takes value 1 if the child
decides13 to work and 0 otherwise. We model the decision to work as

yt = 1{y∗t = X ′
tϕϕϕ+ θ + ζt > 0}, (3.1)

where y∗t is amount of time devoted to work. When we study the decision to spend time
at school, yt = DSCHOOLt. Now, a household sends its child to school if present value
of its lifetime utility due to enhanced human capital accumulation from sending the child
to school is higher than present value of its lifetime utility when the child does not attend
school but works (see Gunnarsson et al., 2006). It can be argued that the difference between
the present value of household’s lifetime utility when the child goes to school in time period
t and the same when the child works translates proportionately into the number of hours
spent schooling. So, when yt = DSCHOOLt, the latent y

∗
t can be construed as the number

of hours spent at school.

In (3.1) Xt = {zy′t , x′
t}′, where z

y
t is a set of strictly exogenous variables and xt are

endogenous. Here, xt = {INt, LNt,Wt}′, where INt is income of the household to which
the child i belongs, LNt is the size of the landholding, and Wt is the index of productive
farm assets.

To address the issue of endogeneity, we employ the two-step control function methodology
developed in the paper, where we first estimate reduced form equations for INt, LNt, and

equipments.
13There is a debate in the literature on whether working or attending school can be properly attributed

to a child’s own decision. See Edmonds to read more on the debate. Here we maintain that parents’
decisions regarding their child is that of the child’s.
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Wt given by
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
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



= diag(zit, . . . , zit)
′βββ +αααi + ǫǫǫit, (3.2)

where zt = {zy′t , z̃′t}′ are strictly exogenous. z̃t is the vector of instruments, whose dimension
is greater than or equal to that of xt; and zt is correlated with unobserved heterogeneity,
αααi. With additive separability of errors, the triangular representation in (3.1) and (3.2) can
derived from a fully simultaneous system, where landholding, productive assets and child’s
labor supply, y∗t , determine household income.
In this application we have assumed that ǫǫǫt’s are distributed independently across time

periods14. Given Assumption 2 and Assumption 3 we can write (3.2) as

xt = ZZZ ′
tδδδ + α̃αα + ǫǫǫt, (3.2a)

where the distributions of α̃αα and ǫǫǫt have been specified in section 2. We estimate the
parameters, Θ1, of equation (3.2a) using Biørn stepwise ML method. Having estimated
Θ1, the modified structural equation augmented with control functions, α̂ααi(Θ1) and ǫ̂ǫǫit(Θ1),
that eliminates the bias due to presence of endogenous regressors, is given by

yt = 1{X ′
tϕϕϕ+ Σαα̂αα+ Σǫǫ̂ǫǫt + ζ̃t > 0}, (3.3)

where ζ̃t by our assumption is distributed normally with mean 0 and is allowed to be
heteroscedastic. To estimate the slope coefficients in (3.3), we simply pool the data and
employ ML method. Inference about Σǫ and Σα provides us with a test of exogeneity of
the regressors, x.
To identify the impact of the three endogenous variables income, IN , landholding, LN ,

and asset holding, W , on the decision to participate in work or go to school we employ
the following instruments (z̃t in (3.2)): (1) NREGS, explained in the paragraph following,
is the total NREGS sanctioned amount at the mandal (region) level at the beginning of
financial year (in 2008-09 prices), which Afridi et al. (2013) employ to instrument income
in their paper, (2) CASTE, caste (social group) of the child, and (3) a set of four indi-
cator variables that capture the level of infrastructural development of the households’s
locality/settlement.

14As stated earlier, we have not found any test that can test for vector autocorrelation of the idiosyncratic
component when one is dealing with a system of regressions with individual effects. We also alluded to an
approximate method, where one might test for serial dependence for each of the regressions separately in
the system of regressions (see footnote 3). However, these existing tests require the presence of at least three
waves of data, and we have only two. Hence, without being able to test for serial dependence, assuming
limited order serial dependence among the idiosyncratic component also risks misspecification. Besides,
the two waves in our data are separated by three time periods. Hence, it seems unlikely that the serial
dependence in idiosyncratic term will be strong over the span of three years.
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The National Rural Employment Guarantee Scheme (NREGS) was initiated in 2006 by
the Government of India, whose objective is to alleviate rural poverty. NREGS legally
entitles rural households to 100 days of employment in unskilled manual labor (on public
work projects) at a prefixed wage. Afridi et al. argue that more funds sanctioned at the
mandal level would mean more work opportunity in NREGS, which will have a positive
effect on household income. Now, it can be seen in Table 2 that over the period of our
study, the proportion of children with either parent working in NREGS almost doubled.
This increase in participation was accompanied by a rise in the number of days of work on
NREGS projects as well. Afridi et al., in claiming NREGS to be a valid instrument for
income, argue that since fund sanctioned in any region at the beginning of the financial
year is not affected by current demand for work, the funds sanctioned is exogenous and
more funds imply more work opportunity in NREGS, which can have a positive effect
on household income. The last row in Table 2 suggests that the total fund allocation to
NREGS increased during the period 2007-2010. However, this increase was not uniform
across the 15 mandals15.

Our second instrument is the caste, a system of social stratification, to which the child
belongs. India is beleaguered with a caste system. Within this caste system, historically, the
Scheduled Castes and Scheduled Tribes (SC/ST’s) have been economically backward and
concentrated in low-skill (mostly agricultural) occupations in rural areas. Moreover, they
were also subject to centuries of systematic caste based discrimination, both economically
and socially. The historical tradition of social division through the caste system created a
social stratification along education, occupation, income, and wealth lines that has contin-
ued into modern India16. Fairing better than SC/ST’s are those belonging to the “Other
Backward Class” (OBC)17. Hence, given the fact that income and wealth, both land and
productive assets, vary with caste, we choose CASTE as our second instrument, which is
a discrete variable that takes three values: 1 if the child belongs to SC/ST household, 2
if the child belongs to OBC, and 3 if the child does not belong to SC/ST or OBC group,
which we label as “Others” (OT). The variable CASTE, thus defined, is likely to be a
good predictor of household income and wealth, where the average SC/ST household is
likely to be poor, followed by the OBC’s, and those in the OT group being the wealthiest.

[Table 4 about here]

We claim that CASTE is a valid instrument for landholding because, though average

15Data on the sanctioned funds at the mandal level has been obtained from the Andhra Pradesh Gov-
ernment’s website on NREGS (http://nrega.ap.gov.in/).

16In fact, this stratification was so endemic that the constitution of India aggregated these castes into a
schedule of the constitution and provided them with affirmative action cover in both education and public
sector employment. This constitutional initiative was viewed as a key component of attaining the goal of
raising the social and economic status of the SC/ST group to the levels of the non-SC/ST’s.

17The Government of India classifies, a classification based on social and economic conditions, some of its
citizen as Other Backward Class (OBC). The OBC list is dynamic (castes and communities can be added
or removed), and is supposed to change from time to time depending on social, educational, and economic
conditions of the communities. In the constitution, OBC’s are described as “socially and educationally
backward classes”, and government is enjoined to ensure their social and educational development.
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wealth and income are evidently distributed along caste lines18, we do not find a significant
variation in child labor or school enrollment across caste or social group to which the child
belongs (see Table 4). In other words, no social group is inherently disposed to make their
children work or send them to school19. This could be because rising awareness, overtime,
about returns from education persuades families of all castes to send their children to
school. We find support for the assertion in the literature too. Hnatkovska et al. (2012)
find significant convergence in the education attainment levels, occupation choice, wages
and consumption of SC/ST’s and non-SC/ST’s between 1983 and 2004-2005. Moreover,
the convergence in education level has been highest for the youngest cohort, and that the
overall consumption and wage convergence between the groups has been driven significantly
by convergence in the educational choices of the two groups.
Our assertion that awareness about higher returns to education has been rising among

all section of the society is also supported by the data. In the first wave of the data,
the following question was asked: “Imagine that a family in the village has a 12 year old
son/daughter who is attending school full-time. The family badly needs to increase the
household income. One option is to send the son/daughter to work but the son/daughter
wants to stay in school. What should the family do?” An overwhelming percentage of the
respondents answered that they should let children be at school; moreover, there was little
difference in the response across caste groups – 90% of SC/ST’s, 87% of OBC’s, and 93%
of OT’s wanted that sons of such distressed families be kept at school. For daughters, the
corresponding figures are: 87% of SC/ST’s, 87% of OBC’s, and 91% of OT’s. Also, 96%
of SC/ST households expected their children to complete a minimum of high school. The
corresponding figure for OBC’s and OT’s are 95% and 98% respectively.
Our third set of instruments is the set of four dummy variables, which indicate (1) if

drinkable water is provided in the locality/settlement, (2) if the services of a national bank
are provided in the locality, (3) if private hospitals exist in the locality, and (4) if access to
the locality is via an engineered road. As in BH, these variables, which indicate the level
of infrastructure development, are employed to instrument the index of productive farm
assets.

3.3. Discussion of Results

We begin by discussing the results of the first stage reduced form equations (4.2), which
was estimated using Biørn’s stepwise maximum likelihood method for system of equations.
The results in Table 5 suggest that our instruments are good predictors of the endogenous
variables, income and wealth. First, corroborating the results in Afridi et al., we too find
that an increase in the amount sanctioned for NREGS projects in a mandal increases the
household income. Secondly, as expected, CASTE does, on an average, correctly predict
the economic status of household in the regression of income, land holding, and assets on

18For more on why SC/ST’s and OBC’c continue to lag behind economically, see Iyer et al. (2013) and
Munshi (2011).

19The figures in Tables 4 are based on a slightly larger data set than what was used to obtain the main
results. This is because information on productive assets was not available for every household.
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CASTE. Finally, the dummy variables indicating the level of infrastructure development
are positively correlated with the index of productive farm assets.

[Table 5 about here]
The results of the household income and wealth implication for child labor are illustrated
in Table 6. Here, we would like to state that all the specifications include district dummies,
a time dummy, and the interaction of the two to account for the fact that the districts to
which children belong may have different economic growth trajectories as well as trends
related to work and education. The time dummy allows us to control for changes in de-
mand for and supply of schooling or work over time. Secondly, in Table 6 we also compare
Chamberlain’s method of panel probit with correlated random effects with the one devel-
oped in this paper, termed “Control Function” method. Thirdly, the basis for choosing the
specification for the heteroscedastic variance for the Control Function method was simply
the significance of the variables in the variance specification. Fourthly, all the average par-
tial effects (APE’s) of variables on the decision to work or go to school were computed at
the mean of variables from the second round (2010) of data.

[Table 6 about here]

To begin with, we find that all the control functions – αIN , αLN , αW , ǫIN , ǫLN , ǫW –
are significant. This suggests that income and ownership of wealth, be it land or produc-
tive assets, are endogenously determined along with household’s labor supply, including
that of the child’s, decisions. The coefficient estimate suggest that children of households
that have a higher landholding are more likely to engage in work20. This is in conformity
with the findings in BDD, BH and CD, where, due to presence of land and labor market
imperfections, ownership of large amount land provides incentives for children to work.
However, since the APE of landholding is not significant, it is unlikely that an increase in
the landholding of an “average family” will have any effect the participation decision of
the child.
While it is beyond the scope of this paper to empirically test for land and labor market

imperfections, it can nonetheless be argued that in AP, including the rural areas, there
has been a weakening of imperfections in the two markets. First, the insignificance of
APE of landholding could be because the average family in rural AP, with higher non-
agricultural income compared to agriculture, does not rely solely on land for its income.
Besides, there is evidence that higher levels of non-agricultural development and access to
non-agricultural income, which is brought about by improvement in other factor markets,
make land sales market more perfect. Deininger et al. (2007) report that better access
to technology tends to improve farmers’ ability to acquire land through sales markets.
Moreover, Deininger et al., confirming other studies, find that the land sales market is
much more active in southern India, where our data is from.
Besley and Burgess (2004) (from 1952 to 1992) and Aghion et al. (2008) (from 1980 to

1997) code state level amendments to the Industrial Disputes Act of 1947, a central legis-
lation governing labor market regulation, as pro-worker, neutral or pro-employer to graph

20Though we do not report here, we did not find that nonlinear terms of income, land, and productive
assests to be significant.
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the history of regulatory change across states in India. They find that AP has consistently
amended the Act to institute labor market flexibility, and that trade liberalization bene-
fited those states where reforms to the labor market institutions were carried out to make
labor market more flexible21. Iarossi (2009), who developed a Investment Climate Index
aimed at summarizing the aspects of the business environment that entrepreneurs consider
when deciding whether to invest, finds AP to be among the more favorable state (ranked
4th) as far as private investment is concerned.

Greater reliance of the average family on non-agricultural income and the above facts
concerning weakening of land and labor market imperfection could explain why increase
in the size of landholding does not significantly increase the propensity of child labor for
the average family.

As far as income is concerned, the coefficient estimates suggests that as household income
rises, the probability of the household’s children working decreases. While this does confirm
poverty to be a cause of child labor, the APE of income for an average family is not
significant. We find that ownership of productive farm assets, distinct from land, leads to a
significant reduction in children’s participation in work for the average family. Dumas, BH
and CD argue that an increase in asset holding that increases the marginal productivity
of labor induces two opposite effects on labor. While the income effect of increased wealth
tends to reduce the labor time, the substitution effect, due to the absence of labor market,
provides incentives for work, and tends to increase children’s labor time. Our results suggest
that the wealth effect of farm assets, which are not likely to be operated by children,
dominate to reduce children’s labor time. Secondly, since the prevalence of farm assets is
high in those regions where there has been infrastructure development, it seems that lack
of infrastructure development that impedes access to or does not provide incentives to
acquire productive farm assets may be an important factor determining child labor22.

In other results, we find that older children and boys are more likely to work. Judging
by the APE of household size, it seems that household size does not play any significant
role in determining child labor. This could be because, in our sample, while decisions of
children to work and attend school have changed overtime, household size and the number

21In India, manufacturing is comprised of two sub-sectors: an unregistered (informal) sector of small firms
and a registered (formal) sector of larger firms. Firms in the registered sector are covered by the Industrial
Disputes Act, while firms in the informal sector are not covered by labor regulations. The organized sector,
however, provides employment to only 6% of the total. Virtually all employment in agriculture is within the
unorganized sector. But even if agriculture is excluded, unorganized sector employment is as much as 83%
of all non-farm employment. This is true even when the value generated by manufacturing in 2008 by the
organised sector constituted about 55% of the total. The findings in Besley and Burgess and Aghion et al.
pertain mostly to the organised sector; Kotwal et al. (2011) discuss how the above labor reform measures
could have impacted the informal sector.

22In a separate set of regressions that included only the exogenous variables, we tried to assess if the in-
frastructure variables had independent impacts on work and schooling decisions of children. These variables
turned out to be insignificant, suggesting that the demand for child labor or opportunities for schooling
were not affected by infrastructure development or its lack in rural AP. In other words, infrastructure had
its effect on work and schooling outcomes only through its impact on the economic conditions of certain
households. This also validates using infrastructure variables as instruments for farm assets.
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of children within households have remained more or less the same.

Our result suggests that, while father’s education level does have a significant negative
effect on child labor, children of mothers who are more educated are more likely to work.
Now, what we find in our sample is that 16.3% of mothers who have had no education
were employed in the non-agricultural sector. The corresponding percentages for those
mothers who have had education up to high school and those with education level above
high school are 18.3% and 17.9% respectively23. The others either work at home or in the
agricultural sector. Hence, it seems that in rural AP higher level of education received
does not translate into better work opportunity, and therefore higher income, for women.
While an increase in mothers’ income could improve their children’s outcomes purely due
to an income effect, it is also possible, as pointed out by Afridi et al., that mother’s say
in household resource allocation decisions increases due to her higher earned income. This
allows a greater weight being attached to her preferences, which includes investing more in
their children’s health and education relative to what fathers prefer, in resource allocation
decisions of the household. Since higher education does not help mothers avail better work
opportunity, which could improve children’s well being, the positive effect of mother’s
education on her child’s decision to work seems entirely spurious.

In Table 6 we compare the results obtained using Chamberlain’s method with that devel-
oped in this paper. The results make clear the importance of accounting for endogeneity of
income, landholding, and asset possession. When income and wealth are not instrumented,
land or farm assets, does not significantly affect the incidence of child labor. Moreover, in
the light of the discussion in the paper, the coefficient estimate for household income has
an incorrect sign.

[Table 7 about here]

Finally, in Table 7 we show how availability of midday meal at schools affects the inci-
dence of child labor and school attendance for the “Index Children”, who are those that
are being followed in every YL survey. Baland and Robinson show how a ban on child
labor or subsidizing human capital creation, can be Pareto improving when child labor is
inefficiently high and socially suboptimal. While both coefficient estimates and the APE
of midday meal for school attendance are significant, the APE of midday meal for work is
not. Our analysis, thus, shows that the provision of free midday meal at schools provides a
strong incentive for children to attend school, but the evidence that this provision reduces
the incidence of child labor is weak.

[Table 8 about here]

Also, as can be seen from Table 8, possession of productive farm assets and provision of
midday meal have heterogeneous impact on school attendance. We find that the children
belonging to SC/ST group are more likely than any other social group to attend school if
there is availability of midday meal at schools. Similarly, at their mean level of wealth, an
increase in the wealth level of an SC/ST family increases the likelihood of their children
attending school more than that of children belonging to any other social group. This

23These figures may mask the income differential among educated and uneducated mothers, but we do
not have information on income earned from their primary activity.
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informs us that policy interventions such as the provision of midday meal at schools or
monetary transfers, targeted for acquisition of productive farm assets, can be very effective
in promoting education among children of socially and economically disadvantaged groups,
who face greater obstacles than others in pulling themselves out of poverty.

4. CONCLUDING REMARKS

The primary objective of the paper has been to develop a control function estimation
procedure to account for unobserved heterogeneity and endogeneity in nonlinear panel
data models. Most papers studying nonlinear panel data models assume all covariates to
be exogenous conditional on the unobserved heterogeneity. In this paper we relax this as-
sumption to allow for endogenous covariates . The control functions are based on expected
a Posteriori (EAP) values of correlated random effects. To compute the EAP values, nu-
merical integration with respect to the estimated conditional distribution of unobserved
heterogeneity is performed. The conditional distribution is obtained as the posterior distri-
bution of the unobserved heterogeneity from the estimates of the first stage reduced form
equations.

The proposed method makes a number of interesting contribution to the literature. First,
the method allows for general instruments, a feature not available with most semi or
nonparametric control function estimators in the literature. Second, the method accounts
for heterogeneity in the reduced form/ treatment choice equation. Finally, the methodology
makes no assumption about the serial dependence in the response outcomes and provides
an estimation strategy to account for it.

The estimator was applied to estimate the causal effects of income and wealth – land
and farm assets – on the incidence of child labor and school attendance, where most of the
instruments used to obtain the estimates were discrete. We found that household ownership
of productive farm assets significantly lowers the probability of child labor and significantly
increases their chances of attending school, suggesting a strong income effect of farm assets.
Secondly, we found little evidence that large landholding increases the incidence of child
labor, a phenomenon attributed to land and labor market imperfections. Thirdly, a test of
exogeneity reveled that ownership of land and farm assets are determined simultaneously
with household labor supply decisions, contrary to what most empirical studies on child
labor in developing countries assume. Finally, our results strongly suggest that policy
interventions, such as the provision of free midday meal at school, increases the probability
of school attendance, but found weak evidence that it reduces the incidence of child labor.

There are a number of extensions and generalizations that are desirable. First, allowing
and testing for nonspherical errors component for the reduced form system of regressions
could be a valuable extension. Alternatively, devising estimation strategy that is robust to
misspecification of distributional assumptions in the reduced form equations could also be
an important contribution. Secondly, it would be worthwhile to investigate if the proposed
control functions could be estimated without making distributional assumptions, which
could then lead to semiparametric estimation of the structural quantities of interest.
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APPENDIX A: PROOFS

Lemma 1 α̌ααi(Xi,Zi, Θ̂1) converges a.s. to ˆ̃αααi(Xi,Zi,Θ
∗
1), where Θ̂1 = {δ̂̂δ̂δ′, vech(Σ̂ǫǫ)

′, vech(Λ̂αα)
′}′ is

consistent first stage estimates and Θ∗
1 is the true population parameter.

Proof 1

Now for an individual i

ˆ̃αααi(Xi,Zi,Θ1) =

∫

α̃αα exp(− 1
2

∑T
t=1(rt − α̃αα)′Σ−1

ǫǫ (rt − α̃αα))φ(α̃αα)dα̃αα
∫

exp(− 1
2

∑T
t=1(rt − α̃αα)′Σ−1

ǫǫ (rt − α̃αα))φ(α̃αα)dα̃αα

=

∫

Ca exp(− 1
2

∑T
t=1(rt − Ca)′Σ−1

ǫǫ (rt − Ca))φ(a)da
∫

exp(− 1
2

∑T
t=1(rt − Ca)′Σ−1

ǫǫ (rt − Ca))φ(a)da

=

∫

Σ(Θ1, a) exp(− 1
2r(Θ1, a))φ(a)da

∫

exp(− 1
2r(Θ1, a))φ(a)da

, (A-1)

where α̃αα = Ca, CC′ being the Cholesky decomposition of the covariance matrix Λαα. Hence, dα̃αα = |C|da =

|Λαα|1/2da, Ω(Θ1, a) = Ca, and finally r(Θ1, a) =
∑T

t=1(xt −ZZZ′
tδδδ − Ca)′Σ−1

ǫǫ (xt −ZZZ ′
tδδδ − Ca).

First consider the expression in the numerator
∫

Ω(Θ1, a) exp(− 1
2r(Θ1, a))φ(a)da. Now, Ω(Θ1, a) = Ca

is an m× 1 matrix and continuous in Θ1 and a. Let Ωl(Θ1, a) be the lth element of Ω(Θ1, a). Now, by the
assumptions of MLE we know that Θ1Θ1Θ1 is a compact set, where Θ1 ∈ Θ1Θ1Θ1, and also for a given a, |Ωl(Θ1, a)|,
|.| being the absolute value of its argument, is continuous in Θ1. Therefore |Ωl(Θ1, a)| attains its supremum
on Θ1Θ1Θ1. Let

Θa

l1 = argmax
Θ1∈Θ1Θ1Θ1

|Ωl(Θ1, a)|,

then by an application of the Maximum Theorem we can conclude that |Ωl(Θ
a

l1, a)| is continuous in a.
The above then implies that |Ωl(Θ

a

l1, a)| ≥ Ωl(Θ1, a) exp(− 1
2r(Θ1, a)) ∀Θ1 ∈ Θ1Θ1Θ1. We also know that

Θ̂1
a.s.−→ Θ∗

1, and since each of the Ωl(Θ1, a) exp(− 1
2r(Θ1, a)), l ∈ {1, . . . ,m}, is continuous in Θ1 and

a, Ωl(Θ̂1, a) exp(− 1
2r(Θ̂1, a))

a.s.−→ Σl(Θ
∗
1, a) exp(− 1

2r(Θ
∗
1, a)) for any given a. Thus by an application of

Lebesque Dominated Convergence Theorem we can conclude that
∫

Ωl(Θ̂1, a) exp(− 1
2r(Θ̂1, a))φ(a)da

a.s.−→
∫

Ωl(Θ
∗
1, a) exp(− 1

2r(Θ
∗
1, a))φ(a)da.

Define Ω(Θa

1, a) = {|Ω1(Θ
a

11, a)|, . . . , |Ωm(Θa

m1, a)|}′, then Ω(Θa

1, a) ≥ Ω(Θ1, a) exp(− 1
2r(Θ1, a)) ∀Θ1 ∈

Θ1Θ1Θ1, and Lebesque Dominated Convergence Theorem implies that

∫

Ω(Θ̂1, a) exp(−
1

2
r(Θ̂1, a))φ(a)da

a.s.−→
∫

Ω(Θ∗
1, a) exp(−

1

2
r(Θ∗

1, a))φ(a)da.

Also, since 1 ≥ exp(− 1
2r(Θ1, a)), we can conclude that

∫

exp(−1

2
r(Θ̂1, a))φ(a)da

a.s.−→
∫

exp(−1

2
r(Θ∗

1, a))φ(a)da.

Given that both the numerator and the denominator in (A-1) defined at Θ̂1 converge almost surly to the
same defined at Θ∗

1, it can now be easily shown that

α̌αα(X,Z, Θ̂1)
a.s.−→ ˆ̃ααα(X,Z,Θ∗

1).

Lemma 2 Conditional on ǫ̂ǫǫt(X,Z, Θ̂1) and α̂αα(X,Z, Θ̂1), ζt and θ are independent of Xt.

Proof 2
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Now,

E[ζt|Xt, ǫ̂ǫǫt(X,Z,Θ1), α̂αα(X,Z, Θ̂1)] = E[ζt|Xt,X,Z] = E[ζt|X,Z]

= E[E[ζt|ααα,X,Z]|X,Z] = E[E[ζt|ǫǫǫ,ααα]|X,Z]

= E[Σζαααα+Σζǫǫǫǫt|X,Z]

=

∫

(Σζαααα+Σζǫǫǫǫt)dFα̃αα|X,Z

= Σζαα̂αα(X,Z,Θ1) + Σζǫǫ̂ǫǫt(X,Z,Θ1),

where the second equality follows from the fact that Xt belongs to X,Z and the third from the law of
iterated expectation. The fourth equality follows from Assumption 6, the fifth from Assumption 7, and
the last two from the relationships in equations (2.4) and (2.5). Thus we have shown that conditional on
α̂αα and ǫ̂ǫǫt, ζt is mean independent of Xt.

By Assumption 8 it we know that

ζt|Xt, α̂αα(X,Z,Θ1), ǫ̂ǫǫt(X,Z,Θ1) ∼ ζt|Xt,X,Z ∼ ζt|X,Z ∼ N[Σζαα̂αα+Σζǫǫ̂ǫǫt, σ
2
ζ ].

Similarly, it can be shown that conditional on α̂αα and ǫ̂ǫǫt, θ is independent of Xt.

Lemma 3 The support of the conditional distribution of α̂αα(X,Z, Θ̂1) and ǫ̂ǫǫt(X,Z, Θ̂1), given xt = x̄, is
the same as the marginal distribution of α̂αα(X,Z, Θ̂1) and ǫ̂ǫǫt(X,Z, Θ̂1) (conditionally on Z).

Proof 3

Differentiating α̂αα with respect to xt we get

∂α̂αα

∂x′t
=

∂ ˆ̃ααα

∂x′t
=

[
∫

α̃ααα̃αα′ exp(.)φ(α̃αα)dα̃αα
∫

exp(.)φ(α̃αα)dα̃αα
−

∫

α̃αα exp(.)φ(α̃αα)dα̃αα
∫

exp(.)φ(α̃αα)dα̃αα

∫

α̃αα′ exp(.)φ(α̃αα)dα̃αα
∫

exp(.)φ(α̃αα)dα̃αα

]

Σ−1
ǫǫ = ΣααΣ

−1
ǫǫ ,

where the expression in the square brackets, Σαα, is the second posterior moment of α̃αα, which is a positive

definite matrix. Therefore ∂ ˆ̃ααα(xt)
∂x′

t

= ΣααΣ
−1
ǫǫ is invertible for all xt ∈ R

m, for all t.

Without loss of generality assume that T = 2 and let xt be given, xt = x̄. Now, given that ∂ ˆ̃ααα
∂x′

t

is

invertible for all t, by Inverse Function theorem ˆ̃ααα(x̄, x−t) is one-to-one on the open set U in R
m, where

x−t ∈ U , and there exists the inverse function A such that A(ˆ̃ααα(x̄, x−t)) = x−t.
For the sake of exposition assume that there is one endogenous variable x, so that, given xt = x1 = x̄,

we have

∂α̂(x̄, x−t)

∂x−t
=

1

σ2
ǫ

[
∫

α2 exp(.)φ(α̃)dα̃
∫

exp(.)φ(α̃)dα̃
−
(
∫

α̃ exp(.)φ(α̃)dα̃
∫

exp(.)φ(α̃)dα̃

)2]

> 0

because the expression in the square brackets, which is the second posterior moment of α̃, is always positive.
Therefore α̂(x̄, x−t) is a one-to-one function of x−t, and since x−t has unbounded support, so does α̂(x̄, x−t)
for all x̄ ∈ R.
Since ǫ̂ = xt − ZZZ ′

tδδδ − ˆ̃α, for a given xt = x̄, ǫ̂ is also monotonic in x−t, and hence has an unbounded
support for all x̄ ∈ R.

SUPPLEMENTARY MATERIALS

The supplementary material consists of the following files:

1 A supplementary appendix, attached at the end of the paper, has some additional technical details. Due
to lack of space, these details could not be included in the main text of the paper.

2 A “rar” file, “children.rar”, that contains the folder “children”. The folder has the STATA data set
and the STATA codes that can be used to replicate Table 5 and Table 6 of the paper. The file
children.rar can be found at http://orbi.ulg.ac.be/handle/2268/169169.
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TABLE 1

Work Status by Age Group

Year 2007 Year: 2010
Age Group Not Working Working Total Age Group Not Working Working Total
5 to 7 years 45.25 5.02 50.27 8 to 10 years 31.25 19.03 50.27
8 to 14 years 22.88 26.85 49.73 11 to 17 years 14.98 34.75 49.73
Total 68.13 31.87 100.00 Total 46.23 53.77 100.00

The figures are in percentage. Total number of children in each period: 2458

TABLE 2

Descriptive Statistics

2007 2010
Variable Mean Std. Dev. Mean Std. Dev.

Child characteristics
Sex (Male=1, Female=0) 0.52 0.50 0.52 0.50
Age (yrs.) 8.07 2.97 11.07 2.97

Household characteristics
Parents participated in NREGS (Yes=1 & No=0) 0.33 0.47 0.66 0.47
Total number of days parents worked in NREGS 9.21 21.44 36.00 48.10
Household Size 5.82 2.13 5.83 2.2
Land Owned (acre) 2.32 3.42 3.86 43.53
Asset Index -0.13 0.98 0.22 1.46
Gini Coefficient for Land Owned 0.62 0.74
Total Income of Household (Thousand Rupees) 30.91 34.35 48.88 60.24
Annual non-agricultural income (Rupees) 20787 35813 29013 62225
Annual agricultural income (Rupees) 5060 23319 9936 42746
Does a household own farm assets (Yes=1 & No=0) 0.69 0.46 0.91 0.29
Number of farm assets 4.70 11.06 6.29 9.01

Parents’ characteristics
Mother’s Education (years spent) 2.53 4.35 2.53 4.35
Father’s Education (years spent) 4.35 4.87 4.35 4.87

Community (Mandal) characteristics
Total NREGS amount sanctioned (Rupees in Million) 7.25 8.30 20.19 19.17

Infrastructure Variables
Engineered Road to the Locality (Yes=1 & No=0) 0.32 0.47 0.58 0.49
Drinkable Water in the Locality (Yes=1 & No=0) 0.87 0.34 0.86 0.34
National Bank in the Locality (Yes=1 & No=0) 0.23 0.41 0.08 0.27
Hospital in the Locality (Yes=1 & No=0) 0.37 0.89 0.38 0.48

Total number of children/observations in each period: 2458
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TABLE 3

Availability of Midday Meal and Schooling and Work Status for Index Children

Young Children* Older Children**
Working (Yes=1, No=0) 0.061 0.645

Year: 2007 Attending School (Yes=1, No=0) 0.927 0.872
Midday Meal available at School (Yes=1, No=0) 0.495 0.290
Working (Yes=1, No=0) 0.326 0.781

Year: 2010 Attending School (Yes=1, No=0) 0.988 0.801
Midday Meal available at School (Yes=1, No=0) 0.647 0.0

*Young Children: Aged 5 and 6 years in 2007
**Older Children: Aged 11 and 12 years in 2007
Number of Young Children in each Year: 882
Number of Older Children in each Year: 383

TABLE 4

Descriptive Statistics of some Variables by Caste

Scheduled Caste/Scheduled Tribe Other Backward Class Others
Year: 2007 Household Income 31.22 31.64 43.21

in Thousand Rs. (33.94) (34.29) (48.59)
Land Owned 1.58 2.32 3.08

in acre (2.12) (3.51) (4.53)
Index of Productive -0.22 -0.14 0.04

Farm Asset (0.71) (1.02) (1.17)
School Dummy 0.90 0.89 0.96
DSCHOOL = 1 (0.29) (0.32) (0.19)
Work Dummy 0.33 0.33 0.29
DWORK = 1 (0.47) (0.47) (0.45)

Year: 2010 Household Income 45.99 50.22 64.76
in Thousand Rs. (45.51) (66.35) (70.26)
Land Owned 2.10 2.79 10.90

in acre (1.95) (15.82) (108.71)
Index of productive 0.12 0.29 0.54

Farm Asset (1.16) (1.56) (1.89)
School Dummy 0.89 0.87 0.94
DCHOOL = 1 (0.31) (0.33) (0.23)
Work Dummy 0.52 0.57 0.48
DWORK = 1 (0.50) (0.49) (0.50)

Number of Children/observations
in each period: 906 1269 283

Standard errors in parentheses
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TABLE 5

First Stage Reduced Form Estimates: Joint Estimation of Income, Land, and Wealth
Equation

Income Landholding Farm Asset
Total NREGS amount sanctioned (Rs. in Million) 0.0453∗∗∗ -0.00843 -0.000308

(0.00907) (0.00683) (0.000241)
Caste (SC/ST = 1, OBC = 2, OT = 3) 6.890∗∗∗ 2.177∗∗∗ 0.161∗∗∗

(1.157) (0.743) (0.0301)
Drinkable Water in the Locality (Yes=1 & No=0) 5.091 -1.907 0.339∗∗

(5.658) (4.259) (0.150)
National Bank in the Locality (Yes=1 & No=0) -2.722 4.689∗∗ 0.0466

(3.074) (2.314) (0.0816)
Engineered Road to the Locality (Yes=1 & No=0) -0.0475 2.395 0.180∗∗∗

(2.114) (1.591) (0.0561)
Hospital in the Locality (Yes=1 & No=0) -0.585 -4.134∗∗∗ 0.0563∗

(1.239) (0.932) (0.0329)
Other Exogenous Variables of the Structural Equations: Yes Yes Yes
Age, Sex of the Child, Mother’s Education,
Father’s Education, Household Size

Standard errors in parentheses
Total number of observations : 4916
Biørn’s Stepwise MLE was employed to obtain these estimates. All the specifica-
tions include time dummy, district dummies, and the interaction of time and district
dummies.
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%



34
A
M
A
R
E
S
H

K
T
IW

A
R
I

Table 6.— Household Income and Wealth Effect on Child’s Decision to Work

Panel Probit† Control Function Approach
Coefficients Coefficients APE’s Control Functions

Income 0.00336∗∗∗ -0.0231∗∗∗ -0.001 α̂INCOME 0.0261∗∗∗

(0.000902) (0.00685) (0.0053) (0.00682)
Landholding 0.00785 0.0375∗∗ 0.0017 α̂LAND -0.0350∗∗∗

(0.00922) (0.0163) (0.0051) (0.0133)
Asset Index -0.00970 -0.942∗∗∗ -0.0422∗∗∗ α̂ASSET 2.300∗∗∗

(0.0296) (0.346) (0.0166) (0.361)
Age 2.105∗∗∗ 2.191∗∗∗ 0.0982∗∗∗ ǫ̂INCOME 0.0242∗∗∗

(0.114) (0.310) (0.0068) (0.00720)
Sex 0.747∗∗∗ 1.006∗∗∗ -0.0452∗∗ ǫ̂LAND -0.0402∗∗∗

(0.0537) (0.140) (0.0203) (0.0155)
Mother’s Education 0.0195∗∗∗ 0.0399∗∗∗ 0.0017∗∗∗ ǫ̂ASSET 0.708∗∗

(0.00680) (0.0130) (0.0006) (0.355)
Father’s Education -0.0234∗∗∗ -0.0340∗∗ -0.0014∗∗

(0.00587) (0.0140) (0.0006) Specification for Heteroscedasticity
Household Size -0.0729∗∗ -0.0977∗∗ -0.0044 Mother’s Education -0.0111

(0.0337) (0.0415) (0.006) (0.00692)
ln(σ2

θ)‡ -1.352∗∗∗ Father’s Education 0.0116∗

(0.248) (0.00669)
α̂INCOME -0.00579∗∗∗

(0.00168)
α̂LAND 0.00910∗

(0.00500)
Total number of children: 2456
Total number of observations: 4912. Total number of observations with positive outcome: 2126

†Panel Probit is the Chamberlain’s method with Correlated Random Effects.
‡σ2

θ is the panel-level standard deviation (see STATA command ‘xtprobit’).
All the specifications include time dummy, district dummies, and the interaction of time and district dummies.
Standard errors in parentheses
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
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TABLE 7

Income, Wealth, and Midday Meal Effect on Decision to Work and Attend School for
Index Children

Work (DWORK) School (DSCHOOL)
Coefficients APE’s Coefficients APE’s

Income -0.0589∗∗∗ -0.0017 -0.00155 -0.0004
(0.0240) (0.0071) (0.00720) (0.0631)

Landholding 0.179∗∗∗ 0.0052 0.0531 0.0124
(0.0692) (0.0055) (0.0364) (0.0277)

Farm Asset Index -3.362∗∗ -.0873∗∗∗ 1.124∗∗∗ 0.2932∗∗∗

(1.327) (0.0336) (0.391) (0.0994)
Age 5.739∗∗∗ 0.1494∗∗∗ -1.294∗∗∗ -0.3275

(1.432) (0.0296) (0.285) (0.6855)
Sex 1.851∗∗∗ 0.0533 -0.0940 -0.0246

(0.586) (0.071) (0.103) (0.049)
Mother’s Education 0.0722 -0.0003 0.0530∗∗∗ 0.0138

(0.0440) (0.0019) (0.0192) (0.061)
Father’s Education -0.0511 -0.0015 0.0527∗∗∗ 0.0137

(0.0414) (0.007)1 (0.0167) (0.0616)
Household Size -0.283∗ -0.0149∗∗ -0.0562 -0.0147

(0.172) (0.0065) (0.0432) (0.0696)
Midday Meal -0.816∗ 0.075 2.546∗∗∗ 0.6642∗∗∗

(0.464) (0.0565) (0.639) (0.1922)
α̂INCOME 0.0565∗∗ -0.00529

(0.0240) (0.00735)
α̂LAND -0.0885∗∗ -0.00610

(0.0437) (0.0145)
α̂ASSET 5.839∗∗∗ -1.380∗∗∗

(1.593) (0.335)
ǫ̂INCOME 0.0624∗∗ 0.00166

(0.0254) (0.00771)
ǫ̂LAND -0.185∗∗∗ 0.00358

(0.0678) (0.0152)
ǫ̂ASSET 2.798∗∗ -1.059∗∗∗

(1.277) (0.409)
Total number of Index children: 1264; Total number of observations: 2528
Total number of observations with DWORK = 1: 883
Total number of observations with DSCHOOL = 1: 2348

All the specifications include time dummy, district dummies, and the interaction of time and district dummies.
The heteroscedastic specification for DWORK includes age, household size, asset index, mother’s education, midday meal,
α̂INCOME , α̂LAND, and some district dummies. The heteroscedastic specification for DSCHOOL includes age, landholding,
α̂INCOME , and some district dummies.
Standard errors are in parentheses.
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

TABLE 8

APE’s of Farm Asset & Midday Meal on Child’s Decision to Attend School for different
Social Groups

Scheduled Caste/Tribe Other Backward Class Others
Farm Asset Index 0.34∗∗∗ 0.2924∗∗∗ 0.1447

(0.0925) (0.0906) (0.0968)
Midday Meal 0.7701∗∗∗ 0.6623∗∗∗ 0.3278∗

(0.1698) (0.1695) (0.1845)
Standard errors in parentheses.
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%



Supplementary Appendix for Nonlinear Panel Data

Model with Continuous Endogenous Regressors and

General Instruments

The supplementary appendix is not meant to be included with the main
text of the paper.

APPENDIX A: Maximum Likelihood Estimation of

the Reduced form Equations

In this section we briefly describe stepwise maximum likelihood procedure1 in Biørn (2004)
that we employ to estimate the reduced form system of equation

xit = Z′
itδδδ + α̃ααi + ǫǫǫit. (A.1)

While Biørn deals with unbalanced panel, here we assume that our panel is balanced. Let
N be the total number of individuals. Let xi(T ) = (x′

i1, . . .x
′
ip)

′, Zi(T ) = (Z′
i1, . . .Z

′
iT )

′ and
ǫǫǫi(T ) = (ǫǫǫ′i1, . . . ǫǫǫ

′
iT )

′ and write the model as

xi(T ) = Z′
i(T )δδδ + (ep ⊗ α̃ααi) + ǫǫǫi(T ) = Z′

i(T )δδδ + uuui(T ), (A.2)

E(uuui(T )uuu
′
i(T )) = IT ⊗ Σǫǫ + ET ⊗ Λαα = KT ⊗ Σǫǫ + JT ⊗ Σ(T ) = Ωu(T ) (A.3)

where

Σ(T ) = Σǫǫ + TΛαα, (A.4)

and IT is the T dimensional identity matrix, eT is the (T × 1) vector of ones, ET = eT e
′
T ,

JT = (1/T )ET , and KT = IT −JT . The latter two matrices are symmetric and idempotent
and have orthogonal columns, which facilitates inversion of Ωu(T ).

1The STATA routine “xtsur” implements Biørn’s stepwise MLE for system of regressions.
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A.1 GLS estimation

Before addressing the maximum likelihood problem, consider the GLS problem for esti-
mating δδδ when Λα and Σǫǫ are known. Define Qi(T ) = uuu′i(T )Ω

−1
u(T )uuui(T ), then GLS esti-

mation is the problem of minimizing Q =
∑N

i=1Qi(T ) with respect to δδδ. Since Ω−1
u(T ) =

KT ⊗ Σ−1
ǫǫ + JT ⊗ (Σǫǫ + TΛαα)

−1, we can rewrite Q as

Q =

N
∑

i=1

uuu′i(T )[KT ⊗ Σ−1
ǫǫ ]uuui(T ) +

N
∑

i=1

uuu′i(T )[JT ⊗ (Σǫǫ + TΛαα)
−1]uuui(T ). (A.5)

GLS estimator of δδδ when Λαα and Σǫǫ are known is obtained from ∂Q/∂δδδ = 0, and is given
by

δ̂δδGLS =

[ N
∑

i=1

Z′
i(T )[KT ⊗ Σ−1

ǫǫ + JT ⊗ (Σǫǫ + TΛαα)
−1]Zi(T )

]−1

×

[ N
∑

i=1

Z′
i(T )[KT ⊗ Σ−1

ǫǫ + JT ⊗ (Σǫǫ + TΛαα)
−1]xxxi(T )

]

. (A.6)

A.1.1 Maximum Likelihood Estimation

Now consider ML estimation of δδδ, Σǫǫ, and Λαα. Assuming normality of the individual
effects and the disturbances, i.e., α̃ααi ∼ IIN(0,Λαα) and ǫǫǫit ∼ IIN(0,Σǫǫ), then uuui(T ) =
(eT ⊗ α̃ααi) + ǫǫǫi(T ) ∼ IIN(0mT,1,Ωu(T )). The log-likelihood functions of all x’s conditional on
all Z’s for an individual and for all individuals in the data set then become, respectively,

Li =
−mT
2

ln(2π)− 1

2
ln |Ωu(T )| −

1

2
Qi(T )(δδδ,Σǫǫ,Λαα), (A.7)

L =
N
∑

i=1

Li =
−mNT

2
ln(2π)− 1

2
N ln |Ωu(T )| −

1

2

N
∑

i=1

Qi(T )(δδδ,Σǫǫ,Λαα), (A.8)

where

Qi(T )(δδδ,Σǫǫ,Λαα) = [xi(T ) − Z′
i(T )δδδ]

′[KT ⊗ Σ−1
ǫǫ + JT ⊗ (Σǫǫ + pΛαα)

−1][xi(T ) − Z′
i(T )δδδ],

(A.9)

and |Ωu(T )| = |Σ(T )||Σǫǫ|T−1.
Biørn splits the problem of estimation into: (A) Maximization of L with respect to δδδ

for given Σǫǫ and Λαα and (B) Maximization of L with respect to Σǫǫ and Λαα for given δδδ.
Subproblem (A) is identical with the GLS problem, since maximization of L with respect
to δδδ for given Σǫǫ and Λαα is equivalent to minimization of

∑N
i Qi(T )(δδδ,Σǫǫ,Λαα), which

2



gives (A.6). To solve subproblem(B) Biørn derives expressions for the derivatives of L with
respect to Σǫǫ and Λαα, which, for balanced panel, yields a closed form solution for Σǫǫ and
Λαα. The complete stepwise algorithm for solving jointly subproblems (A) and (B) then
consists in switching between (A.6) and minimizing (A.8) with respect to Σǫǫ and Λαα to
obtain Σǫǫ and Λαα and iterating until convergence.

The first order conditions for an individual i with respect to δδδ, vech(Σǫǫ) and vech(Λαα)
are

∂Li

∂δδδ′
= [xi(T ) − Z′

i(T )δδδ]
′[KT ⊗ Σ−1

ǫǫ + JT ⊗ (Σǫǫ + pΛαα)
−1]Z′

i(T ),

∂Li

∂vec(Λαα)
= −1

2
vec

[

TΣ−1
(T ) − TΣ−1

(T )Bui(T )Σ
−1
(T )

]

,

and

∂Li

∂vec(Σǫǫ)
= −1

2
vec

[

Σ−1
(T ) + (T − 1)Σ−1

ǫǫ − Σ−1
(T )Bui(T )Σ

−1
(T ) − Σ−1

ǫǫ Wui(T )Σ
−1
ǫǫ

]

,

where Wui(T ) and Bui(T ) respectively are

Wui(T ) = Ẽi(T )KT Ẽ
′
i(T ) and Bui(T ) = Ẽi(T )JT Ẽ

′
i(T ),

where Ẽi(T ) = [uuui1, . . . ,uuuiT ] is a (m × T ) matrix and uuui(T ) = vec(Ei(T )), ‘vec’ being the
vectorization operator. That is, the disturbances defined in (A.2) for an individual i has
been arranged in (m× T ) matrix, Ẽi(T ).

The second order conditions are:

∂2Li

∂δδδ∂δδδ′
= −Zi(T )(KT ⊗ Σ−1

ǫǫ + JT ⊗ Σ−1
(T ))Z

′
i(T )

∂2Li

∂δδδ∂vec(Λαα)′
= −T (uuui(T ) ⊗ Zi(T ))(IT ⊗Km,T ⊗ Im)(vec(JT )⊗ Σ−1

(T ) ⊗ Σ−1
(T ))

∂2Li

∂δδδ∂vec(Σǫǫ)′
= −(uuui(T ) ⊗ Zi(T ))(IT ⊗Km,T ⊗ Im)(vec(KT )⊗ Σ−1

ǫǫ ⊗ Σ−1
ǫǫ + vec(JT )⊗ Σ−1

(T ) ⊗ Σ−1
(T ))

∂2Li

∂vec(Λαα)∂δδδ′
=− T

2
(Σ−1

(T ) ⊗ Σ−1
(T ))[(Ẽi(T )JT ⊗ Im) + (Im ⊗ Ẽi(T )JT )KmT ]Z

′
i(T )

∂2Li

∂vec(Λαα)∂vec(Λαα)′
=
T 2

2
[(Σ−1

(T ) ⊗ Σ−1
(T ))− Σ−1

(T )Bui(T )Σ
−1
(T ) ⊗ Σ−1

(T ) − Σ−1
(T ) ⊗ Σ−1

(T )Bui(T )Σ
−1
(T )]

∂2Li

∂vec(Λαα)∂vec(Σǫǫ)′
=
T

2
[(Σ−1

(T ) ⊗ Σ−1
(T ))− Σ−1

(T )Bui(T )Σ
−1
(T ) ⊗ Σ−1

(T ) − Σ−1
(T ) ⊗ Σ−1

(T )Bui(T )Σ
−1
(T )]

3



∂2Li

∂vec(Σǫǫ)∂δδδ′
=− 1

2
(Σ−1

(T ) ⊗ Σ−1
(T ))[(Ẽi(T )JT ⊗ Im) + (Im ⊗ Ẽi(T )JT )KmT ]Z

′
i(T )

− 1

2
(Σ−1

ǫǫ ⊗ Σ−1
ǫǫ )[(Ẽi(T )KT ⊗ Im) + (Im ⊗ Ẽi(T )KT )KmT ]Z

′
i(T )

∂2Li

∂vec(Σǫǫ)∂vec(Λαα)′
=
T

2
[(Σ−1

(T ) ⊗ Σ−1
(T ))− Σ−1

(T )Bui(T )Σ
−1
(T ) ⊗ Σ−1

(T ) − Σ−1
(T ) ⊗ Σ−1

(T )Bui(T )Σ
−1
(T )]

∂2Li

∂vec(Σǫǫ)∂vec(Σǫǫ)′
=
1

2
[Σ−1

(T ) ⊗ Σ−1
(T ) + (T − 1)Σ−1

ǫǫ ⊗ Σ−1
ǫǫ − Σ−1

(T )Bui(T )Σ
−1
(T ) ⊗ Σ−1

(T )

− Σ−1
(T ) ⊗ Σ−1

(T )Bui(T )Σ
−1
(T ) − Σ−1

ǫǫ Wui(T )Σ
−1
ǫǫ ⊗ Σ−1

ǫǫ − Σ−1
ǫǫ ⊗ Σ−1

ǫǫ Wui(T )Σ
−1
(T )].

APPENDIX B: Asymptotic Covariance Matrix for

Structural Parameters

Obtaining second stage structural parameters with first stage consistent estimates Θ̂1 is
asymptotically equivalent to estimating the subsequent stage parameters with the true
value of Θ∗

1. But to obtain correct inference about the structural parameters, one has to
account for the fact that instead of true values of first stage reduced form parameters, we
use their estimated value. In this section we derive the asymptotic covariance matrix of
the coefficients.

Newey (1984) has shown that sequential estimators can be interpreted as members of
a class of Method of Moments (MM) estimators and that this interpretation facilitates
derivation of asymptotic covariance matrices for multi-step estimators. Let Θ = {Θ′

1,Θ
′
2}′,

where Θ1 and Θ2 are respectively the parameters to be estimated in the first and second
step estimation of the sequential estimator. Following Newey we write the first and second
step estimation as an MM estimation based on the following population moment conditions:

E(LiΘ1
) = E

∂ lnLi(Θ1)

∂Θ1
= 0 (B.1)

E(HiΘ2
(Θ1,Θ2)) = 0 (B.2)

and where Li(Θ1) is the likelihood function for individual i for the first step system of
reduced form equations and E(HiΘ2

(Θ1,Θ2)) is the population moment condition for esti-
mating Θ2 given Θ1.

The estimates for Θ1 and Θ2 are obtained by solving the sample analog of the above
population moment conditions. The sample analog of moment conditions for the first step
estimation is given by

1

N
LΘ1

(Θ̂1) =
1

N

N
∑

i=1

∂Li(Θ̂1)

∂Θ1
=

1

N

N
∑

i=1

∂ lnLi(Θ̂1)

∂Θ1
(B.3)
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where Li(Θ1) and the first order conditions with respect to Θ1 are given in appendix A.
Θ1 = {δδδ′, vech(Λαα)

′, vech(Σǫǫ)
′}′ and N is the total number of individuals/firms.

The sample analog of population moment condition for the second step estimation is
given by

1

N
HΘ2

(Θ̂1, Θ̂2) =
1

N

N
∑

i=1

HiΘ2
(Θ̂1, Θ̂2). (B.4)

We have shown that the structural equations augmented with the control functions α̂ααi(Xi,Zi,Θ1)
and ǫ̂ǫǫit(Xi,Zi,Θ1) leads to the identification of Θ2. Let Θ

∗
2 be the true values of Θ2. Under

the assumptions we make, solving 1
N

∑N
i=1HitΘ2

(Θ̂1,Θ2) = 0 is asymptotically equivalent

to solving 1
N

∑N
i=1HitΘ2

(Θ∗
1,Θ2) = 0, where Θ̂1 is a consistent first step estimate of Θ1.

Hence Θ̂2 obtained by solving 1
N
HΘ2

(Θ̂1, Θ̂2) = 0 is a consistent estimate of Θ2. Newey has
derived the asymptotic distribution of the second step estimates of a two step sequential
estimator.

To derive the asymptotic distribution of the second step estimates Θ̂2, consider the
stacked up sample moment conditions:

1

N

[

LΘ1
(Θ̂1)

HΘ2
(Θ̂1, Θ̂2)

]

= 0. (B.5)

A series of Taylor’s expansion of LΘ1
(Θ̂1), HΘ2

(Θ̂1, Θ̂2) and around Θ∗ gives

1

N

[

LΘ1Θ1
0

HΘ2Θ1
HΘ2Θ2

] [
√
N(Θ̂1 −Θ∗

1)√
N(Θ̂2 −Θ∗

2))

]

= − 1√
N

[

LΘ1

HΘ2
.

]

(B.6)

In matrix notation the above can be written as

BΘΘN

√
N(Θ̂−Θ) = − 1√

N
ΛΘN

,

where ΛΘN
is evaluated at Θ∗ and BΘΘN

is evaluated at points somewhere between Θ̂ and
Θ∗. Under the standard regularity conditions for Generalized Method of Moments (GMM)
BΘΘN

converges in probability to the lower block triangular matrix B∗ = limE(BΘΘN
). B∗

is given by

B∗ =

[

LΘ1Θ1
0

HΘ2Θ1
HΘ2Θ2

]

where LΘ1Θ1
= E(LiΘ1Θ1

), HΘ2Θ1
= E(HiΘ2Θ1

). 1√
N
ΛN converges asymptotically in dis-

tribution to a normal random variable with mean zero and a covariance matrix A∗ =
limE 1

N
ΛNΛ

′
N , where A∗ is given by

A∗ =

[

VLL VLH
VHL VHH

]

,

5



and a typical element of A∗, say VLH , is given by VLH = E[LiΘ1
(Θ1)HiΘ2

(Θ1,Θ2)
′]. Un-

der the regularity conditions
√
N(Θ̂ − Θ∗) is asymptotically normal with zero mean and

covariance matrix given by B−1
∗ A∗B

−1′
∗ .

√
N(Θ̂−Θ∗)

a∼ N[(0), (B−1
∗ A∗B

−1′
∗ )] (B.7)

By an application of partitioned inverse formula and some matrix manipulation we get
the asymptotic covariance matrix of

√
N(Θ̂2 −Θ∗

2), V
∗
2 , where

V ∗
2 = H

−1
Θ2Θ2

VHHH
−1′
Θ2Θ2

+H
−1
Θ2Θ2

HΘ2Θ1
{L−1

Θ1Θ1
VLLL

−1′
Θ1Θ1

}H′
Θ2Θ1

H
−1′
Θ2Θ2

−H
−1
Θ2Θ2

{HΘ2Θ1
L
−1
Θ1Θ1

VLH + VHLL
−1′
Θ1Θ1

H
′
Θ2Θ1

}H−1′
Θ2Θ2

. (B.8)

To estimate V ∗
2 , sample analog of the B∗, BN given in (B.6), and sample analog of A∗,

AN = 1
N
ΛNΛ

′
N , have to be computed. A typical element of AN , say VLHN

, is given by

VLHN
= 1

N

∑N
i=1 LiΘ1

(Θ̂1)HiΘ2
(Θ̂1, Θ̂2)

′. The first and the second order conditions for
Biørn’s MLE estimator to estimate Θ1, to compute the sample analog of LΘ1Θ1

, and to
compute AN are provided in appendix A of the supplementary appendix.

In what follows, we assume that the second stage structural estimation involves esti-
mating a binary response model. The results can be straightforwardly adapted to estimate
the covariance matrix for other nonlinear models. For binary response model the score
function pertaining to the minimand in (2.19) of the main text is given by

HiΘ2
(Θ1,Θ2) = −∇Θ2

mi(Xi,Zi,Θ2)
′[V(Xi,Zi, Υ̃)]−1[yi −mi(Xi,Zi,Θ2)]

= −∇Θ2
mi(Θ1,Θ2)

′Ṽ
−1
ui, (B.9)

where mi(Θ1,Θ2) ≡ mi(Xi,Zi,Θ2) is the T vector with tth element m(Wit,Θ2) =

Φ

(

X ′

it
ϕϕϕ+Σαα̂ααi+Σǫǫ̂ǫǫit
exp(h(α̂ααi,ǫ̂ǫǫit))

)

≡ mit(Θ1,Θ2) and Ṽ ≡ V(Xi,Zi, Υ̃). Now

∇Θ2s
mit(Θ1,Θ2) = φ

(

X
′
itΘ2s

exp(h(α̂ααi, ǫ̂ǫǫit))

)

1

exp(h(α̂ααi, ǫ̂ǫǫit))
X

′
it and

∇Θ2h
mit(Θ1,Θ2) = −φ

(

X
′
itΘ2s

exp(h(α̂ααi, ǫ̂ǫǫit))

)

X
′
itΘ2s

exp(h(α̂ααi, ǫ̂ǫǫit))
h′Θ2h

(α̂ααi, ǫ̂ǫǫit),

where Xit = {X ′
it, α̂αα

′
i(Θ1), ǫ̂ǫǫ

′
it(Θ1)}′, Θ2s = {ϕϕϕ′, Σ̄′

θα, Σ̃
′
ζǫ}′, and Θ2h is such that W ′

itΘ2h =
h(α̂ααi, ǫ̂ǫǫit). That is, Θ2 = {Θ′

2s,Θ
′
2h}′ and

∇Θ2
mit(Θ1,Θ2) = φ

(

X
′
itΘ2s

exp(W ′
itΘ2h)

)

1

exp(W ′
itΘ2h)

[

Xit −(X′
itΘ2s)Wit

]′
,

which is a row vector with dimension that of Θ2. Wooldridge (2002) and Wooldridge (2003)
show (see Problem 12.11) that HΘ2Θ2

of B∗ is given by

HΘ2Θ2
= E[HiΘ2Θ2

(Θ1,Θ2)] = E[∇Θ2
mi(Θ1,Θ2)

′Ṽ
−1∇Θ2

mi(Θ1,Θ2)], (B.10)
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which can be approximated as

1

N

N
∑

i=1

∇Θ2
mi(Θ̂1, Θ̂2)

′V̂
−1∇Θ2

mi(Θ̂1, Θ̂2),

where V̂ = V(Xi,Zi, Υ̂) = V(Xi,Zi, Θ̂2, ρ̂).

Computation2 of HΘ2Θ1
=

∑N
i=1HiΘ2Θ1

=
∑N

i=1

∂HiΘ2
(Θ1,Θ2)

∂Θ′

1

needed to obtain sample

analog of HΘ2Θ1
can, however, be challenging because Θ1 enters the second stage of the

sequential estimator through α̂ααi(Θ1) and Σ̃−1
ǫǫ ǫ̂ǫǫit(Θ1). To obtain

∂HiΘ2
(Θ1,Θ2)

∂Θ′

1

consider the

following

∂HiΘ2
(Θ1,Θ2)

∂Θ′
1

= −
[

[u′
iṼ

−1 ⊗ I]
∂vec(∇Θ2

mi(Θ1,Θ2)
′)

∂Θ′
1

+ [ui ⊗∇Θ2
mi(Θ1,Θ2)

′]
∂vec(Ṽ

−1
)

∂Θ′
1

−∇Θ2
mi(Θ1,Θ2)

′Ṽ
−1∇Θ1

mi(Θ1,Θ2)

]

.

Taking expectation of the above we find that the first two terms are zero, hence we have

HΘ2Θ1
= E[HiΘ2Θ1

(Θ1,Θ2)] = E[∇Θ2
mi(Θ1,Θ2)

′Ṽ
−1∇Θ1

mi(Θ1,Θ2)], (B.11)

which can be approximated as

1

N

N
∑

i=1

∇Θ2
mi(Θ̂1, Θ̂2)

′V̂
−1∇Θ1

mi(Θ̂1, Θ̂2).

The constituents ∇Θ1
mit(Θ1,Θ2) of ∇Θ1

mi(Θ1,Θ2) are given by

∇Θ1
mit(Θ1,Θ2) = φ

(

X
′
itΘ2s

exp(h)

)

1

exp(h)

(

Θ′
2s

∂Xit

∂Θ′
1

− X
′
itΘ2s

exp(h)
(Θ′

2h

∂Wit

∂Θ′
1

)

)

, (B.12)

2In the MLE framework,

HiΘ2s
(Θ1,Θ2) =

T
∑

t=1

(yit − Φ(.))φ(.)X′
it

Φ(.)(1 − Φ(.))
and HiΘ2h

(Θ1,Θ2) = −
T
∑

t=1

(yit − Φ(.))φ(.)X′
itΘ2sW

′
it

Φ(.)(1 − Φ(.)) exp(W ′
itΘ2h)

.

Since E(yit − Φ(.)|X,Z) = 0, it can be shown that

E(HiΘ2s,Θ′

1
(Θ1,Θ2)|X,Z) = −

T
∑

t=1

φ(.)2

Φ(.)(1 − Φ(.)) exp(W ′
itΘ2h)

Xit(Θ
′
2s

∂Xit

∂Θ′
1

− X
′
itΘ2sΘ

′
2h

∂Wit

∂Θ′
1

)

and

E(HiΘ2h,Θ′

1
(Θ1,Θ2)|X,Z) =

T
∑

t=1

φ(.)2

Φ(.)(1 − Φ(.))

X
′
itΘ2s

exp(W ′
itΘ2h)

Wit(Θ
′
2s

∂Xit

∂Θ′
1

− X
′
itΘ2sΘ

′
2h

∂Wit

∂Θ′
1

).

7



which is row matrix with dimension that of Θ1, and where

∂Xit

∂Θ′
1

=









∂Xit

∂δδδ′
∂Xit

∂vec(Λαα)′
∂Xit

∂vec(Σǫǫ)′

∂α̂ααi

∂δδδ′
∂α̂ααi

∂vec(Λαα)′
∂α̂ααi

∂vec(Σǫǫ)′

∂ǫ̂ǫǫit
∂δδδ′

∂ǫ̂ǫǫit
∂vec(Λαα)′

∂ǫ̂ǫǫit
∂vec(Σǫǫ)′









.

Since Xit above is not a function of Θ1,
∂Xit

∂Θ′

1

= 0X , where 0X is a null matrix with row

dimension that of column vector Xit and column dimension that of column vector Θ1. In
section C of this supplementary appendix we derive the derivative of α̂ααi(Θ1) and ǫ̂ǫǫit(Θ1)
with respect to Θ1 = {δδδ′, vec(Λαα)

′, vec(Σǫǫ)
′}′. We show that

∂α̂ααi

∂δδδ′
= O

′
Zi −

1

U2
dr

T
∑

t=1

[

UnrU
′
nr − UdrFdr

]

Σ−1
ǫǫ Z

′
it,

∂ǫ̂ǫǫit

∂δδδ′
= −Z′

it +
1

U2
dr

T
∑

t=1

[

UnrU
′
nr − UdrFdr

]

Σ−1
ǫǫ Z

′
it,

∂α̂ααi

∂vec(Λαα)′
=

1

2U2
dr

[UdrFnr − Unrvec(Fdr)
′](Λ−1

αα ⊗ Λ−1
αα),

∂α̂ααi

∂vec(Σǫǫ)′
=

1

2U2
dr

T
∑

t=1

[

Udr(−r′it ⊗ Fdr − Fdr ⊗ r′it + Fnr)

− Unrvec(−Unrr
′
it − ritU

′
nr + Fdr)

′

]

(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ ),

∂ǫ̂ǫǫit

∂vec(Λαα)′
=

−∂α̂ααi

∂vec(Λαα)′
, and

∂ǫ̂ǫǫit

∂vec(Σǫǫ)′
=

−∂α̂ααi

∂vec(Σǫǫ)′
,

where

Unr =
∫

Imα̃αα exp(−1
2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα, Fnr =

∫

Imα̃ααvec(α̃ααα̃αα
′)′ exp(−1

2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα,

Udr =
∫

exp(−1
2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα, Fdr =

∫

α̃ααα̃αα′ exp(−1
2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα,

rit = xit − Ziδδδ, and r(Θ1, α̃αα) =
∑T

t=1(xt − Z′
tδδδ − α̃αα)′Σ−1

ǫǫ (xt − Z′
tδδδ − α̃αα).

OZi = diag((0′z, z̄
′
i)
′, . . . , (0′z, z̄

′
i)
′), where 0′z is a vector of zeros of having the dimension

of zit. Numerical integration technique, discussed in appendix D of this supplementary
appendix, can be used to compute Ûnr, Ûdr, F̂nr, and F̂dr at the estimated value Θ̂1 to
obtain the error adjusted standard errors of the structural estimates.

In Lemma 1 in the main text we showed that Ûnr(Θ̂1) and Ûdr(Θ̂1) converge almost
surely to Unr(Θ

∗
1), Udr(Θ

∗
1). By application of Lemma 1 it can be also shown that F̂nr(Θ̂1),

and F̂dr(Θ̂1) converge almost surely to Fnr(Θ
∗
1), and Fdr(Θ

∗
1) respectively. This would

imply that HiΘ2Θ1
(Θ̂1, Θ̂2) converge almost surly to HiΘ2Θ1

(Θ∗
1,Θ

∗
2), and by the weak LLN

1
N

∑N
i=1HiΘ2Θ1

(Θ̂1, Θ̂2) will converge in probability to E(HiΘ2Θ1
(Θ∗

1,Θ
∗
2)) = HΘ2Θ1

.
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Finally, we would like to state that though we have provided analytical expression for
the covariance matrix, V ∗

2 , and the estimated covariance matrix for the specifications in the
application (Section 3) of the proposed model is based on the analytical expression for V ∗

2 ,
we do not, however, recommend to follow this approach in practice. Since the expressions
for LΘ1Θ1

and HΘ2Θ1
are cumbersome to compute, we suggest that bootstrapping procedure

be employed to approximate the variance of the estimated coefficient. Moreover, these
expressions are likely to be different when a different estimator for the first stage reduced
form is required.

APPENDIX C: Derivative of the Control Functions

with respect to Θ1

First consider the derivative of α̂ααi = diag(z̄i, . . . , z̄i)
′̺̺̺ + ˆ̃αααi = Z̄

′
i̺̺̺ + ˆ̃αααi with respect to

vec(Λαα). We have

∂(Z̄
′
i̺̺̺ +

ˆ̃αααi)

∂vec(Λαα)′
=

∂ ˆ̃αααi

∂vec(Λαα)′

=
∂

∂vec(Λαα)′

[

∫

α̃αα exp(−1
2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα

∫

exp(−1
2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα

]

=
∂

∂vec(Λαα)′

[
∫

fnr(., α̃αα)φ(α̃αα)dα̃αα
∫

fdr(., α̃αα)φ(α̃αα)dα̃αα

]

=
[
∫

fnr(., α̃αα)
∂φ(α̃αα)

∂vec(Λαα)′
dα̃αα][

∫

fdr(., α̃αα)φ(α̃αα)dα̃αα]− [
∫

fnr(., α̃αα)φ(α̃αα)dα̃αα][
∫

fdr(., α̃αα)
∂φ(α̃αα)dα̃αα

∂vec(Λαα)′
]

[
∫

fdr(., α̃αα)φ(α̃αα)dα̃αα]2
,

(C.1)

where r(Θ1, α̃αα) =
∑T

t=1(xt − Z′
tδδδ − α̃αα)′Σ−1

ǫǫ (xt − Z′
tδδδ − α̃αα).

Since φ(α̃αα) = 1
(2π)m/2|Λαα|1/2

exp(−1
2
α̃αα′Λ−1

ααα̃αα) we have

∂φ(α̃αα)

∂vec(Λαα)′
=

− exp(−1
2
α̃αα′Λ−1

ααα̃αα)

2(2π)m/2|Λαα|3/2
∂|Λαα|

∂vec(Λαα)′
+

exp(−1
2
α̃αα′Λ−1

ααα̃αα)

(2π)m/2|Λαα|1/2
∂(−1

2
α̃αα′Λ−1

ααα̃αα)

∂vec(Λαα)′

= −1

2
φ(α̃αα)

(

1

|Λαα|
∂|Λαα|

∂vec(Λαα)′
+
∂(α̃αα′Λ−1

ααα̃αα)

∂vec(Λαα)′

)

= −1

2
φ(α̃αα)

(

vec(Λ−1
αα)

′ + vec(−(Λ−1
αα)

′α̃ααα̃αα′(Λ−1
αα)

′)′
)

∂vec(d(Λαα))

∂vec(Λαα)′

= −1

2
φ(α̃αα)

(

vec(Λ−1
αα)

′ + vec(−(Λ−1
αα)

′α̃ααα̃αα′(Λ−1
αα)

′)′
)

. (C.2)
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Given (C.2), (C.1) can be simplified as

∂(Z̄
′
i̺̺̺ +

ˆ̃αααi)

∂vec(Λαα)′
= − 1

2U2
dr

[

[Unrvec(Λ
−1
αα)

′ − Fnr(Λ
−1
αα ⊗ Λ−1

αα)
′]Udr

− Unr[Udrvec(Λ
−1
αα)

′ − Fdr(Λ
−1
αα ⊗ Λ−1

αα)
′]

]

=
1

2U2
dr

[UdrFnr − Unrvec(Fdr)
′](Λ−1

αα ⊗ Λ−1
αα)

′, (C.3)

where

Unr =

∫

Imα̃αα exp(−1

2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα, Fnr =

∫

Imα̃ααvec(α̃ααα̃αα
′)′ exp(−1

2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα

Udr =

∫

exp(−1

2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα, Fdr =

∫

α̃ααα̃αα′ exp(−1

2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα. (C.4)

Also, from (C.3) we can conclude that

∂ǫ̂ǫǫit

∂vec(Λαα)′
=

−∂ ˆ̃αααi

∂vec(Λαα)′
=

−1

2U2
dr

[UdrFnr − Unrvec(Fdr)
′](Λ−1

αα ⊗ Λ−1
αα)

′. (C.5)

Now consider the derivative of α̂ααi = Z̄
′
i̺̺̺ +

ˆ̃αααi with respect to vec(Σǫǫ). We have

∂(Z̄
′
i̺̺̺ +

ˆ̃αααi)

∂vec(Σǫǫ)′
=

∂ ˆ̃αααi

∂vec(Σǫǫ)′
=

∂

∂vec(Σǫǫ)′

[

∫

α̃αα exp(−1
2

∑T
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α̃αα)dα̃αα

∫

exp(−1
2

∑T
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α̃αα)dα̃αα

]

= −1

2

[

∫

α̃ααψ(α̃αα)
∂
∑

T

t=1
ǫǫǫ′
it
Σ−1

ǫǫ ǫǫǫit
∂vec(Σǫǫ)′

dα̃αα
∫

ψ(α̃αα)dα̃αα−
∫

α̃ααψ(α̃αα)dα̃αα
∫

ψ(α̃αα)
∂
∑

T

t=1
ǫǫǫ′
it
Σ−1

ǫǫ ǫǫǫit
∂vec(Σǫǫ)′

dα̃αα

(
∫

ψ(α̃αα)dα̃αα)2

]

,

where ψ(α̃αα) = exp(−1
2
r(Θ1, α̃αα)φ(α̃αα). With

∂
∑

T

t=1
ǫǫǫ′
it
Σ−1

ǫǫ ǫǫǫit
∂vec(Σǫǫ)′

=
∑T

t=1 vec(−(Σ−1
ǫǫ )

′ǫǫǫitǫǫǫ
′
it(Σ

−1
ǫǫ )

′)′

the above can be written as

∂ ˆ̃αααi

∂vec(Σǫǫ)′
=

1

2(
∫

ψ(α̃αα)dα̃αα)2

T
∑

t=1

[
∫

α̃ααψ(α̃αα)vec((Σ−1
ǫǫ )

′ǫǫǫitǫǫǫ
′
it(Σ

−1
ǫǫ )

′)′dα̃αα

∫

ψ(α̃αα)dα̃αα

−
∫

ψ(α̃αα)vec((Σ−1
ǫǫ )

′ǫǫǫitǫǫǫ
′
it(Σ

−1
ǫǫ )

′)′dα̃αα

∫

α̃ααψ(α̃αα)dα̃αα

]

=
1

2U2
dr

T
∑

t=1

[
∫

α̃ααψ(α̃αα)vec(ǫǫǫitǫǫǫ
′
it)

′(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′dα̃ααUdr

− Unr

∫

ψ(α̃αα)vec(ǫǫǫitǫǫǫ
′
it)

′(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′dα̃αα

]

=
1

2U2
dr

T
∑

t=1

[
∫

(Udrα̃ααvec(ǫǫǫitǫǫǫ
′
it)

′ − Unrvec(ǫǫǫitǫǫǫ
′
it)

′)ψ(α̃αα)dα̃αα

]

(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′ (C.6)

10



To simply (C.6) further, write ǫǫǫit as ǫǫǫit = xit − Z′
itδδδ − α̃αα = rit − α̃αα, where rit = xit − Z′

itδδδ.
Then ǫǫǫitǫǫǫ

′
it = ritr

′
it − α̃ααr′it − ritα̃αα

′ + α̃ααα̃αα′, and (C.6) after some simplification can be written
as

∂ ˆ̃αααi

∂vec(Σǫǫ)′
=

1

2U2
dr

T
∑

t=1

[

Udr(−r′it ⊗ Fdr − Fdr ⊗ r′it + Fnr)

− Unrvec(−Unrr
′
it − ritU

′
nr + Fdr)

′

]

(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′, (C.7)

where Unr, Udr, Fnr, and Fdr have been defined in (C.4).

Also, since ∂ǫ̂ǫǫit
∂vec(Σ̃ǫǫ)′

= −∂ ˆ̃αααi

∂vec(Σ̃ǫǫ)′
, the derivative of ǫ̂ǫǫi(t) with respect to vec(Σ̃ǫǫ) can be

obtained from (C.7). We note here that ∂ ˆ̃αααi

∂vec(Λαα)′
and ∂ ˆ̃αααi

∂vec(Σǫǫ)′
, for an individual i, are

constant for all time periods.
Finally, let us now consider the derivative of Z̄

′
i̺̺̺ + ˆ̃αααi and ǫ̂ǫǫit with respect to δδδ′. We

have

∂(Z̄
′
i̺̺̺ +

ˆ̃αααi)

∂δδδ′
=
∂Z̄

′
i̺̺̺

∂δδδ′
+
∂ ˆ̃αααi

∂δδδ′
= O

′
Zi +

∂

∂δδδ′

[

∫

α̃αα exp(−1
2

∑T
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α̃αα)dα̃αα

∫

exp(−1
2

∑T
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α̃αα)dα̃αα

]

= O
′
Zi +

1

(
∫

exp(.)φ(α̃αα)dα̃αα)2

T
∑

t=1

[
∫

α̃αα exp(.)ǫǫǫ′itΣ
−1
ǫǫ Z

′
itφ(α̃αα)dα̃αα

∫

exp(.)φ(α̃αα)dα̃αα

−
∫

α̃αα exp(.)φ(α̃αα)dα̃αα

∫

exp(.)ǫǫǫ′itΣ
−1
ǫǫ Z

′
itφ(α̃αα)dα̃αα

]

, (C.8)

where OZi = diag((0′z, z̄
′
i)
′, . . . , (0′z, z̄

′
i)
′), and 0′z is a vector of zeros of having the dimension

of zit, which has been defined in Section 2 in the main text. To derive the result in (C.8)
we used the fact that

∂(ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)

∂δδδ′
= 2ǫǫǫ′itΣ

−1
ǫǫ

∂(ǫǫǫit)

∂δδδ′
= −2ǫǫǫ′itΣ

−1
ǫǫ Z

′
it.

With some of the results stated above it can be shown that

∂ ˆ̃αααi

∂δδδ′
=

1

U2
dr

T
∑

t=1

[

UnrU
′
nr − UdrFdr

]

Σ−1
ǫǫ Z

′
it.

Hence, we have

∂(Z̄
′
i̺̺̺ +

ˆ̃αααi)

∂δδδ′
= O

′
Zi −

1

U2
dr

T
∑

t=1

[

UnrU
′
nr − UdrFdr

]

Σ−1
ǫǫ Z

′
it, (C.9)

and

∂ǫ̂ǫǫit

∂δδδ′
=
∂(xit − Z′

itδδδ)

∂δδδ′
− ∂ ˆ̃αααi

∂δδδ′
= −Z′

it +
1

U2
dr

T
∑

t=1

[

UnrU
′
nr − UdrFdr

]

Σ−1
ǫǫ Z

′
it. (C.10)

From (C.9) and (C.10) we can see that while ∂(Z̄
′

i
̺̺̺+ˆ̃αααi)
∂δδδ′

for an individual i remains the same

for all time periods, ∂ǫ̂ǫǫit
∂δδδ′

varies with time.
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C.1 Hypothesis Testing of Average Partial Effects

In section 2 we discussed the identification and estimation of the average partial effect
(APE) of a variable w for a binary choice model. In order to draw inferences about the
APE’s we need to compute the standard errors of the estimated APE’s. From equation
(2.15) in the main text we know that estimated APE of w on the probability of yit = 1,
given Xit = X̄ , is given by

∂̂Pr(yit = 1|X̄ )

∂w
=

1

NT

N
∑

i=1

T
∑

t=1

ϕ̂w − ĥ′w(.)(X̄
′
itΘ̂2s)

exp(h(α̂ααi, ǫ̂ǫǫit))
φ

(

X̄
′
itΘ̂2s

exp(h(α̂ααi, ǫ̂ǫǫit))

)

≡ 1

NT

N
∑

i=1

T
∑

t=1

gwit(Θ̂2), (C.11)

where X̄it = {X̄ ′, α̂αα′
i, ǫ̂ǫǫ

′
it}′ and Θ2s = {ϕϕϕ′,Σ′

α,Σ
′
ǫ}′. Now, we know that by the linear

approximation approach (delta method), the asymptotic variance of ∂P̂r(yit=1|X̄ )
∂w

can be
estimated by computing

[

1

NT

N
∑

i=1

T
∑

t=1

∂gwit(Θ̂2)

∂Θ̂′
2

]

V̂ ∗
2

[

1

NT

N
∑

i=1

T
∑

t=1

∂gwit(Θ̂2)

∂Θ̂′
2

]′

, (C.12)

where Θ2 = {Θ′
2s,Θ

′
2h}′, Θ2h being the coefficients of the heteroscedastic specification, and

V̂ ∗
2 is the second stage error adjusted covariance matrix of Θ2 estimated at Θ̂2.

∂gwit(Θ̂2)

∂Θ̂′

2

in

(C.12) turns out to be

[ φ(.)
exp(.)

[ews − ĥ′w(.)X̄it − 1
exp2(.)

(ϕ̂w − ĥ′w(.)X̄
′
itΘ̂2s)(X̄

′
itΘ̂2s)X̄it]

−φ(.)
exp(.)

[ewhX̄
′
itΘ̂2s + (1− (X̄′

it
Θ̂2s)2

exp3(.)
)(ϕ̂w − ĥ′w(.)X̄

′
itΘ̂2s)

∂h(.)

∂Θ̂′

2h

]

]′

, (C.13)

where ews is a column vector having the dimension of Θ′
2s and with 1 at the position of ϕw

in Θ2s and zeros elsewhere and ewh is a column vector having the dimension of Θ′
2h and

with 1 at the position of h′w(.) = γw in Θ2h and zeros elsewhere.
By application of delta method the variance of APE of w when w is a dummy variable

can also be easily obtained. For lack of space we do not detail its estimation here.

APPENDIX D: Note on Numerical Integration

In order to obtain the structural estimates we have to compute the expected a Posteriori
values of the time invariant individual effects given by:

ˆ̃ααα(X,Z,Θ1) =

∫

Ca exp(−1
2

∑T
t=1(xt − Z′

tδδδ − α̃αα)′Σ−1
ǫǫ (xt − Z′

tδδδ − Ca))φ(a)da
∫

exp(−1
2

∑T
t=1(xt − Z′

tδδδ − Ca)′Σ−1
ǫǫ (xt − Z′

tδδδ − Ca))φ(a)da

=

∫

C exp(−1
2
r(Θ1, a))φ(a)da

∫

exp(−1
2
r(Θ1, a))φ(a)da

=
Unr

Udr

, (D.1)
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where α̃αα = Ca, CC ′ being the Cholesky decomposition of the (m×m) covariance matrix
Λαα, so that dα̃αα = |C|da = |Λαα|1/2da, and r(Θ1, a) =

∑T
t=1(xt−Z′

tδδδ−Ca)′Σ−1
ǫǫ (xt−Z′

tδδδ−
Ca). And to obtain error adjusted covariance matrix in addition to Unr and Udr we have
to estimate Fnr and Fdr given by

Fnr =

∫

Imα̃ααvec(α̃ααα̃αα
′)′ exp(−1

2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα and Fdr =

∫

α̃ααα̃αα′ exp(−1

2
r(Θ1, α̃αα))φ(α̃αα)dα̃αα

(D.2)

respectively.
Here we discuss how to compute Unr, Udr, Fnr, and Fdr. Take, for example, Unr, which

can be written as
∫

Ca exp(−1

2
r(Θ1, a))det(C)φ(a)da =

∫

Ca exp(−1

2
r(Θ1, a))det(C)

1

(2π)m/2
e−

a
′
a

2 da

=

∫

f(a)
1

(2π)m/2
e−

a
′
a

2 da,

where
∫

f(a) 1
(2π)m/2

e−
a
′
a

2 da =
∫∞

−∞
. . .

∫∞

−∞
f(a) 1

(2π)m/2
e−

a
′
a

2 da1 . . . dam.

A general treatment for numerically computing multidimensional integrals can be found
in Krommer and Ueberhuber (1994). More recently Cools and Haegemans (1994) have de-
veloped integration rules for multidimensional integrals over infinite integration regions
with a Gaussian weight function to evaluate integrals of the type stated above, and
Genz and Keister (1996) have provided more efficient rules of the same. The integration
rules consist of constructing N weights, wj, and points aj, aj ∈ R

m, such that

Q(f) =

N
∑

j=1

wjf(aj), (D.3)

where Q(f) approximates the integral
∫∞

−∞
. . .

∫∞

−∞
f(a) 1

(2π)m/2
e−

a
′
a

2 da1 . . . dam. Fortran rou-

tines for computing Q(f), developed in Genz and Keister (1996), can be obtained from
Alan Genz’s webpage. Heiss and Winschel (2008) develop multi-dimension integration
rules on sparse grids which has the advantage over product rule extension of univariate
quadrature in that it does not impose exponentially increasing computational costs with
rising number of dimensions. STATA and Matlab codes for generating quadratures and
weights on sparse grid for integration rule developed in Genz and Keister (1996) can be
obtained from Frorian Heiss and Viktor Winschels web page, http://www.sparse-grids.de/.
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