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Abstract: This paper presents a procedure for computing approximate solution of bending
Kirchhoff plate by equilibrium finite element model. The accuracy of the equilibrium
approach is based on the concept of error estimator. Especially, a dual analysis by finite
elements which leads to lower and upper bounds of the exact solution is presented in
numerical examples.
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1. Introduction

Most of the today’s engineering analysis deals with problems involving differential
equations which are too difficult to be solved analytically. Currently the most widely used
method of solving these problems, especially those with irregular geometries and complex
boundary conditions, is the Finite Element Method (FEM) which over time has become an
indispensable tool for today’s engineer.

In linear elasticity, the FEM is divided into two basic models. First, the pure
displacement models are based on conforming displacement elements where the compatibility
equations of strains and displacements are verified exactly, relaxing on local equilibrium.
Secondly, pure equilibrium models are based on stress element where the equilibrium
equations are a priori satisfied and compatibility of strain is derived in weak form.

If displacement elements naturally suggest a stiffness matrix process, the same is not
true for equilibrium elements, for which a force method, with structural self-stresses
determination, seemed more natural. But the force method is very difficult to automate. Here,
Fraeijs de Veubeke showed initially that it is possible to use equilibrium elements in a
stiffness matrix formulation [1]so that the algorithm is still the displacement method.

In the present paper, we would like to establish an equilibrium element of plate
bending and then show that this element may be identified with a (nonconforming)
displacement element. Finally, an estimation of the error by dual analysis permits to obtain a
bound for the global error of the solution for the equilibrium model.

2. The equilibrium Morley element

First, we introduce a triangular equilibrium plate element with the constant moment
field. A complementary equilibrium approach to finite element modeling was proposed by
Fraeijs de Veubeke [1]. The equilibrium approach is used inside the element, in order to find
the stiffness matrix. The solution algorithm is then the displacement method. For this purpose



the total complementary energy will be used in order to determine the element stiffness matrix
[7]. For triangle e, one has

3
e - %J‘MTH—lMdQ—— j(K,,w —-M,mw,n)ds%—ZZiwl (1)
e de i=1

where X, M Z,,w,, arerespectively Krichhoff shear loads, normal moments, corner loads
and normal derivatives.

Classically, the moment distribution is assumed to be constant within an element. The
moments are thus written as

M=Np )
where N =[6,1,i, j=1,2,3 is a constant matrix, f=[g, B, pS,| areunknowns.

Next, consider the triangular element (Fig.3). These load corners are in the form [7]
Z1=(C,S, -C,S)M_ +(C,S, - C,8,)M , + C*-8°-C*+8,} W,
Z:=(C,S, —C,8,)M . +(C,S, ~C:S)IM,, +(C,* -8, -C>+ S, ()
Zs =(C,S, — C3S;)M . +(C,S; — C,8,)M ,, +(Cy* = 8,° = C,7 + 8, )M,

Total normal moment on Jj side is calculated by

[ ,ds = jM,,ds =(C*M , +S*M , +2CSM )] 4
side 0

where C, =(J’j - yi)/lij, S, =(x, - xj)/lij, ij =12, 23, 31 and /; is the length of side ij.
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Fig.1: The generalized loads

However, with this moment fields, it is not possible to obtain exact equilibrium when
applying a constant pressure. For this purpose, a special mode has to be complemented. It is
constructed as follows. Let side 1-2 be the X axis and ¥ axis be perpendicular to it, passes
through node 1 and orientate in such a manner that Y3 is positive (Fig. 2). Let c1(XY), c2(XY)
and c3(X,Y) be the three areal coordinates [3] and c, = 0be the equation of the side which i

opposite to node i.

It is a second degree field as follows

Mcomp = T}/ (5)

where A7, isin equilibrium with a constant pressure p and amplitude y refers to pressure
p.
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For this equilibrium, The following special mode 7 has been developed by one of the authors,
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Let the three corner loads of triangular element be added by

P 1
Z]=Z2=Z3=—~3—:—-—§7/ )

and one implements a new load g, = where P = pS§, S being the area of the triangle.

Here, these 7 loads may be assembled in a load vector —g—T =[g" g,] isinthe form

Zi
7. C,8,-C,S, CS,-CS8, C*-8*-C2+82 ~1/3]
7, cs -C,8, C,8,~-CS, C2-8-C}+S8? -1/3 "5
g - jM,,dS C,8, ~CySy Ci8,~C,8, C;-87-C7+8; ~1/3 ﬂ]
[ }: 2 ~-C2l, - 821, -2C, 8,1, - 0 *1(3)
g, - 2J:;Mna'.sr ~Cl, - 821, ~2C,8,1,, 0 B
- J'Mnds -C3l, - 831, -2C, 8,1, 0 7
31 0 0 0 1
L P :
or globally,
g=Ca ©)
where



0 1
Cy =[-1/3 -1/3 -1/3 0 0 0]

The work of reactions against the prescribed conjugate displacement and displacement
conjugate to the distributed load will be

C{C" C’}, a’ =(f"y)

e e

W=q'g+9.8.=9 & (10)
where c—]T = [qT qe] and g, q, are the conjugate boundary displacements and the
displacement conjugate to the distributed load, respectively.

The complementary energy is then
V==- jMT HMmds =L B FuP+BTF, ,7’+%7’FW7’ (11)
with the following ﬂex1b1hty matrices
=[N"H"NdS =SH™ . F,, INTH“‘TdS F, jTTH 7dS

where 7/ ! is the inverse plate Hooke matrix.

The total complementary energy

_1 v o | P ——a minimum 12
Sl L, FWL ~g g=a"Fa-q Ca (12)
Varying (12) by respect of fand y leads to

FpB+Fpy=Cphq

r (13)
Fﬁyﬂ+F;7y:C7q+qe
or, in global form,
=CTq (14)
This implies
a=F7C"q (15)
From (9) and (15), one obtains
g=CF'C"g=K‘g (16)

and K° =CF'C" is the stiffness matrix. The system (16) can be rewritten
KZI K22 _ qe ge
By eliminating the last element of ¢, that is g., we obtain

g* :(g——KnK;;ge)Z(K“ —KlzK;;Kzl)q:ch (17)

Matrix K°=(K,, —-K,K,K, ) is the (6x6) stiffness matrix of element and g may be
interpreted as mean displacement. In fact, from virtual work,

V=" Ja=8"C"q=q"6(Ca)=q" &% : (18)

As the work of reactions is



q"68=q,0Z) +q,0Z2 +q,0Zs + 4,5 [M,ds+q,6 [M,ds+q,6 [Mds (19
hy Iy Iy
It implies that
q.,9,,4, are the corresponding displacements at node 1, 2, 3.

q..95,q, are the corresponding mean of w, on side 12, 23, 31.

The connectors are thus the same as in Morley’s element [3]. Now, when there is no pressure
load, moments are constants. Any constant moment field is compatible, that is, there exist a
displacement field of second degree, whose curvatures lead to this moment field. It is clear
that the strain energy of the displacement field is equal to the above complementary energy.
So that Morley’s element is nothing other than a disguised form of the constant moment
element. But a difference arises when a constant pressure is applied.

3. Numerical results o » g
: 3 &
Problem 1 ///////////////////3’////4;////////////
4 s
Consider a square plate clamped at all |
edges, length of edge L =10, thicknesst= 0.1, ER
Young module E=2.05x10", Poisson ratio v = 0.3, I Y / X
uniform load p=-1000. Mesh M x M element < -0
over one quater were used with M =2, 4, 816,24 ;
and 32. :
N LA

The result of deflection at center and extenal work Fig. 3
is determined by [2, 6]
pL4 B _ p2L6
o W= i pwdQ =
where Q) is area of plate, D = Ef* /12(1 - v?)- the bending stiffness.

We =a

Exact solution (Hencky-Wojtaszak):
a, =1.26532.107, w, =3.89120.10~*

The context of error estimate in energy norm

i - ”U,,

2
a

2
a = '"Uex

e

with the exact strain energy is %HUWHZ =10.36388, |U,

i is the square energy norm of FEM

solution.
The percentage of relative error in the deflection at center and strain energy is

Ay — & @ g — @
o,y =100x—2L = ¢  =100x 2L e
o o

ex ex

Tables 1 to 2 assemble all the results of error estimation for a sequence of meshes uniformly
refined from the initial ones (Fig. 3).

Table 1: The FEM solution and error energy for equilibrium model




Mesh | NEL | DOF Lo, Les?

g hla 2 hla
2%2 8 12 | 25.534581643874 | 15.170702619483
4x4 32 56 | 14.997471297109 | 4.633592272718
8x8 128 240 | 11.472889637504 | 1.109010613113
16x16 | 512 992 | 10.558121861220 | 0.194242836829
24x24 | 1152 | 2256 |10.408685734228 | 0.044806709837
| 32x32 | 2048 | 4032 | 10.365206787949  0.001327763558

Table 2: The percentage of relative error in the deflection at center and the energy

Mesh | N.EL A gmns 107° | ® FEM 107 Orep (%) © g (%)
2x2 8 2.75306 10.06776 | 117.57809 | 158.73141
4x4 32 1.64496 5.66096 30.00375 45.48098
8x8 128 1.35301 4.30946 6.93038 10.74897

16x16 512 1.28114 3.96425 1.25048 1.87725

24x24 | 1152 1.26942 3.90805 0.32372 0.43294

32x32 | 2048 1.26595 3.89171 0.04956 0.01303

The following graph shows the energy convergence

The convergence of energy
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< Comments

» The equilibrium model leads to an upper bound of the exact solution. The FEM energy
converges to the exact energy when mesh is refined.

o If the exact solution of a problem is known, then all the reliability indices defined above
can be easily evaluated. However, most of the problems encountered in practice do not have
analytical solutions. It is then more important to evaluate the reliability of the error estimators
for problems whose exact solution is not available. In this case the uniformity index can not
be evaluated, but the global effect index can still be precisely calculated if the strain energy of




the structure can be precisely obtained. When the convergence of the energy norm of the error
is monotonic and asymptotic, then there exists an asymptotic relation between the global
energy of the error and the total number of degrees of freedom (DOF)

2r,
ol =< 507

where C is a constant independent of the mesh size, r. is called the asymptotic convergence
rate of the global energy norm of the error. The exact energy normHUex”a of the structure can
be estimated by a procedure called Richardson’s extrapolation [5]. Three analyses are needed
to determine the two constants C, 7, and the energy norm. Denote such an estimate byHU RHa
Then if the boundary displacement conditions of a structure are homogeneous and consistent
loads are applied, the Pythagoras’ theorem of the discretization error can be applied

=[U.l.

“eh

so that the exact error can be approximated by

In order that the approximate global effect indices be sufficiently precise, a sequence of fine
meshes should be used in the procedure of Richardson’s extrapolation.

2 2
2~ Uzl

The exact and estimated relative error (Fig. 4) is given by

2
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Fig. 5 shows that the exact energy norm can be replaced by the energy of Richardson’s
extrapolation.

Another method to obtain a precise estimation of the exact strain energy of plate is to
perform dual analyses [3, 4] in which the same problem is solved by using both displacement
models and equilibrium models. Then if the displacement boundary conditions are




homogeneous and consistent loads are applied, a displacement model gives a lower bound to
the exact strain energy while an equilibrium model gives an upper bound. Richardson’s
extrapolation may then be applied to both sequences of displacement and equilibrium models
so as to obtain two estimates which bound the exact strain energy.

The steps of calculation in a brief of dual analysis as follow

o Compute the total strain energy Il(w,)=U(w,)+ P(w,) which is obtained from the
conforming HCT’s element (displacement model) [7].

e Compute the total complementary energy V(M W)=V M) +PM,) which obtained
with equilibrium Morley’s element (equilibrium model).

e The relative error is calculated by

RE:gﬁwu+wmaﬂ}

Uw,)+V(M,)

In the case of a clamped plate, one type of boundary conditions is homogeneous
(Fraeijs de Veubeke’s particular case). Thus the relative error can be rewritten as

RE:{W@LJ—UnmﬂF”
Uw,)+V(M,)

where

U(w) = _;__[Q ¥ HydQ) - strain energy of plate

V(M) = %j f{\/[ T H ™' MdQ - strain complementary energy of plate

The error is thus measured by the difference between the two obtained values of the
elastic energy.

Table 3: The results on relative error of conventional dual analysis

Mesh N° Morley element | HCT element RE
ViM,) Uw,)
2x2 25.53458 8.19668 0.716938622160
4x4 14.99747 9.77068 0.459378580234
8x8 11.47289 10.23024 0.239283760983
16x16 10.55812 10.33456 0.103442730131
24x24 10.40869 10.35166 0.052413797916
32x32 10.36521 10.35726 0.019588576616

Herein, both approaches converge when the mesh is refined. The distance between
two curves is a measure of convergence.

The convergence behaviour of strain energy in dual analysis is illustrated in Figure. 6.
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Problem 2

Consider a L-shaped plate with a
uniform pressure and clamped on a part of
its boundary (Fig.6). Data of problem is
the same of the first problem.

The meshes will generally be
composed of 3-node or 6-node triangles
with two different levels of refinement.

Fig.7 shows that a uniform mesh is
generated
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" Table 4: The results on relative error of conventional dual analysis

NEL Morley element HCT element RE
ViM,) Uwy)
16 113.853208442487 | 40.059883652542 | 0.692421839611
64 72.941612872744 | 48.533920209122 | 0.448248614913
256 60.007267746066 | 51.062060819190 | 0.283790675966
1024 55.707999760283 | 52.109129736621 | 0.182700273914

Fig. 8 plots the convergence of the energy of L-shaped plate in dual analysis.

Dual conventional analysis
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The following mesh will be graded with smaller elements towards the inward corner.
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Fig. 11 presents the results of relative error in two case the uniform mesh and other.

The convergence of relative errar in dual conventional analysis
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It shows that mesh is based on smaller elements towards the inward corner gives better
values of convergence compared with a uniform mesh.

4. Conclusion

e This paper has showed how to obtain equilibrium element and error estimation for
plate bending. Here, a new moment field was proposed, which permits to take pressures in
account with corner loads. These fields may be complemented to equilibrium elements of
constant moment field. This constitutes an appreciable extension of the application field of
these elements. In the case of a constant pressure, the proposed field is only slightly more
intricate than Sander’s one [2] which in counterpart requires the first degree connectors at
least. The obtained results not only apply to problems with the known exact solution but also
solve most of the problems which do not have analytical solutions.

e Th errors may be estimated from the squared distance between the two approximations
which refers to conventional dual analysis. The conventional dual analysis consists in a
parallel analysis of an equilibrium finite element model and a compatible finite element
model. A Rayleigh-Ritz process is performed in both cases, so the approaches do converge
when the mesh is refined. The relative error is then obtained. It is therefore possible not only
to detect too coarse meshes but also to know if a given solution is a good one. As most
practical problems do not have analytical solutions, this method. is a very useful tool to
estimate the error.

o However, the results only derive the evolution of the computed error of the plate using
a uniform refinement of the mesh. We thus can combine with adaptive meshing that these
error estimators prove to be effective parameters in mesh optimization for plate analysis.

e Further observations on the equilibrium element show that the errors are the lack of
compatibility of the strain field and an estimation of the error that is called to be compatibility
error [7]. This is the dual of equilibrium error present in the stress field obtained by using
compatible finite element model. Thus, a compatible displacement field may be recovered
from equilibrium element through a post-processing scheme. This procedure can be
considered as a dual of Ladevéze method [8] for problem of plate bending. From this dual

11




solution, an upper bound for the global error is obtained. Numerical examples on the dual-
Ladevéze method will be shown in another paper.
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