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ABSTRACT 

The paper deals with the seismic design of lock gates. When such structures are submitted to an 
earthquake, the water contained in the chamber is responsible for an additional hydrodynamic 
pressure acting on the gate. This one is the sum of three different parts, respectively called the 
convective, rigid and flexible contributions. The two first ones have already been extensively studied in 
the literature, but the flexible part is more difficult to assess as it is largely influenced by the coupling 
occurring between the fluid and the gate. To overcome this difficulty, it is of course possible to use 
finite elements software, but doing so is not always convenient. This is why some research have been 
undertaken to provide a rapid way for approximating the flexible pressure on lock gates. This is 
achieved by applying the analytical approach that is shortly presented in this paper. As a matter of 
validation, the results obtained through this simplified procedure are compared to numerical solutions. 
The agreement between both of them is found to be satisfactory. 
 
1. INTRODUCTION 

When a lock chamber is submitted to a longitudinal ground acceleration, an additional hydrodynamic 
pressure is applied on the gates because the water confined between the downstream and upstream 
gates is also put into motion. The resulting total pressure is known to have the three following 
contributions: 

• The convective part associated to the sloshing appearing at the free surface of the lock chamber. 
Most of the time, this contribution is negligible, as the lock chamber is quite long. Accounting for the 
convective pressure is more relevant for smaller reservoirs, where the liquid is strongly confined. 
 

• The rigid impulsive part, which is derived by assuming that the gates are rigid and therefore moving 
in unison with the ground. This is typically the pressure that is used for designing concrete dams for 
example. 
 

• The rigid flexible part, which is coming from the own vibrations of the gates during the earthquake. 
These ones also produce an additional water pressure that would not be present if the gate were 
perfectly rigid.  

The two first parts have already been extensively investigated in the literature. Many improved 
developments are nowadays available since the pioneer work of Westergaard [5], such as those 
perfomed by Haroun [1], Housner [2], Ibrahim [3] or Epstein [4] amongst others. All these authors 
provide various analytical formulae for deriving the rigid and convective pressures.  

However, assessing the third contribution is more difficult. This is due to the coupling taking place 
between the structure and the fluid. Indeed, the flexible pressure is directly influenced by the vibrations 
of the gate, which also has an influence on the motion of the structure. It is not easy to have a 
simplified analytical treatment of such an fluid-structure interaction problem. For this reason, an 
alternative solution is to perform a numerical investigation of this phenomenon by using finite elements 
software. 

Nowadays, it is evident that such numerical tools constitute a precious help for engineers by allowing 
them to solve a great number of technical problems. Nevertheless, finite elements also have some 
practical drawbacks, in particular for performing coupled fluid-structure analyses. This is briefly 
explained hereafter: 

• Having a proper modeling of the fluid, the structure and the coupling occurring between them is not 
easy to achieve. Developing a consistent model is not straightforward, one of the main problem 
being the leakages appearing during the simulation. This task is quite arduous and may therefore 
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turns out to be time demanding. Moreover, the work has to be achieved by engineers that are 
already used with such particular finite elements approaches. 
 

• Simulating the interaction between the liquid and the structure requires both of them to be 
represented. Doing so may have a considerable influence on the size of the model, in particular for 
lock chambers that are already quite large. 
 

• The calculation time is often prohibitive, due to the size of the model and the total duration of the 
earthquake. 

The non-exhaustive list presented here above clearly shows that having a purely numerical approach 
of the seismic response of lock gates is not a convenient way of working at the pre-design stage of 
such structures. As a consequence, another approach is required to include the effects of earthquakes 
in the early phases of design. This is particularly true when building new locks in sensible areas like 
the east side of America for example. The goal of this paper is therefore to present a new simplified 
methodology that can be used to overcome this difficulty. 
 
2. SIMPLIFIED ANALYTICAL METHODOLOGY 

Let us now have a brief presentation of the mathematical procedure leading to a rapid prediction of the 
flexible pressure acting on a lock gate. This will be achieved by deriving first the vibration properties of 
the structure. The results will then be used within a dynamic analysis to investigate the effects of an 
earthquake. 

2.1. Properties of the Gate 

In this article, we consider a basic rectangular chamber bounded by two identical upstream and 
downstream lock gates having a width � and a height �, as depicted on Figure 1. The total length of 
the lock is � and the water level is denoted by ℎ�. 
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Figure 1: Main Parameters Characterizing the Lock Chamber 

During a seismic event, this configuration is submitted to three different accelerations acting along the �, � and � axes. In this paper, only the longitudinal acceleration 	
  is considered, but the methodology 
exposed here may be easily extended to the vertical and transversal ones. Nevertheless, as the 
stiffness of the gate is quite important along the � and � directions, it is worth noting that the flexible 
contributions of the accelerations acting along these two axes are usually quite negligible in 
comparison with the rigid impulsive ones. 
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The gate is assumed to have a single plating reinforced by an orthogonal stiffening system (Figure 2a) 
made of vertical and horizontal elements. The first ones are called the frames and oriented along the � 
axis (Figure 2b), while the second ones are called the girders and oriented along the � axis (Figure 
2c). Some additional horizontal and/or vertical smaller stiffeners may also be present, mainly to 
provide the local buckling of the plating. All these elements have a T-shaped cross-section (Figure 
2d), with a web height ℎ� and a flange width ℎ�. The associated thicknesses are respectively � and �, while the notation � is used for the plating.  
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Figure 2: Main Parameters Characterizing the Lock Gate 

Regarding the boundary conditions for the analytical model, we suppose that the gate is simply 
supported in � = 0 and � = �, while the bottom and top edges are free to move. 

2.2. Free Vibration Analysis 

Let us start by finding first the modal properties of the dry structure. The aim is now to derive an 
analytical approximation of the natural frequencies �� and modes shapes �� characterizing the gate by 
assuming that this one is not surrounded by water. This can be achieved by applying the Rayleigh-Ritz 
method, as described by Shames [6]. Some examples of this procedure are given in references [7], [8] 
and [9] for plates with different boundary conditions. 

The basis of the Rayleigh-Ritz method is to make the hypothesis that the modes shapes �� may be 
decomposed into a set of admissible functions ��. These latter are arbitrarily chosen but they have to 
satisfy the boundary conditions exposed here above. With this assumption, we may write: 

����, �� = ��������, ���
���

 (1) 

where � is the total number of functions used for estimating ��. Of course, the approximation will be 
more refined for very high values of �, but this has the main drawback to make the analytical 
treatment more difficult to follow. In (1), the coefficients ��� are unknown and will be fixed as explained 
hereafter. 
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In this paper, we propose to chose �� by combining some functions �� and  � respectively 
characterizing the vibrations of the main horizontal and vertical stiffening elements reinforcing the 
gate. In other words, we suppose that: ����, �� = ����� ���� (2) 

Furthermore, as the girders are simply supported in � = 0 and � = �, it seems reasonable to chose  � 
as being the eigenmodes of a doubly supported beam with a span � (Figure 3a). Similarly, as the gate 
is free along its top and bottom edges, the frames can be supposed to vibrate as free-free beams and 
it may be therefore convenient to choose �� as being the associated eigenmodes (Figure 3b). 

(a) 

 

(b) 

f1(y) f2(y)

 
Figure 3: Two First Eigenmodes for a Doubly Supported Beam and for a Free-Free Beam 

The analytical derivation of �� and  � will not be performed in this paper as many references are 
available in the literature. The corresponding mathematical expressions are detailed by Leissa [10] for 
example and will not be recalled here. If we introduce them in (1), we finally get an approximate 
decomposition of the eigenmodes characterizing the dry structure. The next step is then to determine 
the unknown coefficients ���. 
This operation has to be performed by evaluating the internal and kinetic energies ! and " 
characterizing the free vibrations of the structure. If we follow the same assumptions than Shames [6], ! may be seen as the sum of two different contributions !� and !# respectively coming from the 
plating and the reinforcing system. These ones are given by: 

!� = $2&'()*��)�* +
* + ()*��)�* +

* + 2- )*��)�* )*��)�* + 2�1 − -� ()*��)�)�+
*0

1
2�2� 

		!# =�456,72 8 9)*��)�* ��7 , ��:
* 2�;

<7
+�45=,72 8 9)*��)�* ��, �7�:

* 2�>
<7

 

(3) 

where - and 4 are respectively the Poisson ratio and Young modulus. The plate is characterized by its 
surface ? and bending flexibility $. The inertias of the horizontal and vertical reinforcing elements are 
designated by 56,7 and 5=,7 respectively, while �7 and �7 denotes the discrete locations occupied by the 
frames and the girders. 

In a similar way, the kinetic energy ��*" due to the vibrations of the gate is also to be found by 
summing up the two contributions ��*"� and ��*"#. According to Shames [6], we have: 

"� = @�2 &��*��, ��2�2�1
 

"# =�@?6,72 8��*��7, ��2�
;

<7
+�@?=,72 8 ��*��, �7�2�

>
<7

 

(4) 

where @ is the mass density, while ?6,7 and ?=,7 respectively denote the cross-sectional areas of the 
girders and the frames. If we further introduce (1) in (3) and (4), it is possible to get a matrix 
formulation for " and !. This operation is quite fastidious, so we will not provide here the detailed 
derivation. If A� is the vector containing the unknown coefficients ��� mentioned in (1), it may be shown 
that: 
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" = 12�����"BC	�D��
D��

�
���

= 12A�EF"GA� 				; 				! = 12�����!BC	�D��
D��

�
���

= 12A�EF!GA� (5) 

With the aforementioned results, the last step in the Rayleigh-Ritz method is to find the vectors A� 
such that the Rayleigh quotient I is minimized. As detailed by Shames [6], this is achieved by solving 
the following classical eigenvalues problem:  

minMIN = min OA�EF"GA�A�EF!GA�P 			⇔ 			 det�F!G − ��*F"G� = 0			; 			�F!G − ��*F"G�A� = U (6) 

Solving (6) give the eigenfrequencies ��* characterizing the dry gate. Furthermore, the coefficients ��� 
are also available and may then be introduced in (1) to get the dry modes shapes ��. 
2.3. Dynamic Analysis 

As soon as the eigenfrequencies of the dry structure are available, the next step in the seismic 
analysis is to determine the dynamic response of the lock gate and also the resulting hydrodynamic 
pressure acting on it. To so, we can follow the basic idea of the modal decomposition and assume that 
the out-of-plane displacements V characterizing the structure are expressed as a combination of the 
dry modes shapes �� calculated here above. In other words, we have: 

V��, �, � = �W�������, ��X
���

⇔ �V��, �, � = ��WD������, ��X
D��

 (7) 

where Y is the total number of eigenmodes involved in the decomposition process and W� are 
unknown time coefficients. These latter can be fixed by applying the virtual work principle. We may 
recall that, as explained by Jones [11], this theorem states that a necessary and sufficient equilibrium 
condition is that the internal and external virtual works have to be equal for any kinematically 
compatible displacements field. Consequently, if we want here to express the global equilibrium of the 
lock gate, we have to successively evaluate: 

• The internal work �Z�7[ associated to the deformations of the gate when this one is submitted to a 
virtual displacements field �V. 
 

• The external work �Z\][ done by all the forces acting on the structure for the virtual displacements 
field �V. 

Let us start by evaluating �Z�7[. For an arbitrary compatible �V, this one is simply the sum of the 
virtual energies �Z� and �Z# dissipated to deform the plating and the reinforcing elements. These 
terms may be shown to be given by the following expressions: 

�Z� = $88()*V)�* )*�V)�* + )*V)�* )*�V)�* + - )*V)�* )*�V)�* + - )*�V)�* )*V)�* + 2�1 − -� )*V)�)� )*�V)�)�+ 2�2�
;

<
>
<

 

�Z# =�456,7 ^8)*V)�* )*�V)�* 2�;
<

_
7 `	�	`a

+�45=,7 ^8 )*V)�* )*�V)�* 2�>
<

_
7 b�ba

 

(8) 

If we now try to derive �Z\][, we have to account for all the forces acting on the gate during the 
earthquake. In the present paper, we will only consider the following ones: 

• The inertia forces due to the total accelerations V
 + 	
 . They are obtained by summing up the 
contributions coming from the plating and the reinforcing system: 

−88@��VcV
 + 	
d2�2�;
<

>
<

−�@?6,7 ^8�VcV
 + 	
d2�;
<

_
7 `	�	`a

−�@?=,7 ^8 �VcV
 + 	
d2�>
<

_
7 b�ba

 (9) 

• The damping forces associated to the mass and the stiffness of the dry gate. For convenience, 
these ones will be simply designated by �e but we will not provide here a detailed analytical 
expression to evaluate them (more details may be found in references [7] and [8] amongst others). 
It is worth noting that �e is a force per unit of surface, so that the work performed for a given �V is: 
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−88�e��, �, ��V��, �, �2�2�;
<

>
<

 (10) 

• The pressure forces produced by the water surrounding the gate. As mentioned in the introduction, 
these ones are the sum of the convective, impulsive and flexible contributions. Nevertheless, if we 
assume that only the two latter are of importance, designating them respectively by f# and f� leads 
to the following expression for their virtual work: 

−8 8cf#��, � + f���, �, �d�V��, �, �2�2�;
<

6g
<

 (11) 

In this last equation, the rigid and flexible pressures f# and f� can be evaluated by using the closed-
form solutions exposed by Kim [12] for example. We will not recall them here, but it is interesting to 
note that the time dependence of f# is directly related to the seismic acceleration 	
 , while the 
evolution of f� is closely influenced by the accelerations V
  of the gate. As a final remark concerning �Z\][, let us also mention that all the mathematical expressions (9), (10) and (11) are affected with a 
minus sign as the external forces are always acting in the opposite sense of the virtual displacements �V. 

The modal decompositions of V and �V given by (7) may now be introduced in (8), (9), (10) and (11) to 
get the unknown coefficients W�. Doing so is quite fastidious but leads to the following results for �Z�7[ 
and �Z\][: 
�Z�7[ =��WD�W�h�DX

���
X
D��

				 ; 				�Z\][ = −��WD ^�cW
���D + W�ci��D + jh�Dd − W
�k�Dd − lD	
X
���

_X
D��

 (12) 

in which i and j are the classical Rayleigh coefficients used respectively for the mass and stiffness 
proportional damping. Once again, for convenience, we will not provide here the detailed 
mathematical expressions for ��D, h�D, k�D and lD. Nevertheless, it is worth mentioning that ��D and h�D 
translates the effects of the mass and the stiffness of the gate, while k�D and lD are closely related to 
the flexible and rigid pressures.  

Finally, if we equate �Z�7[ and �Z\][, as the virtual work principle has to be satisfied for any �WD, the 
results in (12) leads to a set of Y equations that may be written under the following matrix form: �F�G − FkG�m
 �� + �iF�G + jFhG�mn �� + FhGm�� = o	
�� (13) 

in which W is a vector containing the unknown coefficients W�. If the time evolution of the seismic 
ground acceleration 	
  is known, (13) can be solved by using the Newmark integration scheme to get 
the parameters W�. These ones may then be introduced in (7) to evaluate the displacements and 
accelerations V
  of the gate, which allows for the derivation of the flexible hydrodynamic pressure f�.  

As a final remark, it is worth noting that (13) is very closed to the classical equation translating the 
dynamic equilibrium of a structure submitted to the external forces o	
 . Nevertheless, the fundamental 
difference here is the presence of the additional matrix FkG in the left hand side of (13). This term 
represents the action of the surrounding water and is responsible for a coupling between the gate and 
the fluid. If the pressure were calculated under the assumption of a perfectly rigid structure, then FkG 
would not appear and (13) would be stricly equivalent to the equilibrium equation that is considered in 
the added-mass method as applied by Forsyth for example. 

 
3. NUMERICAL VALIDATIONS 

In order to check if the analytical approach exposed here above leads to satisfactory solutions, we can 
make some comparisons with the results obtained by performing modal and dynamic analyses with 
finite elements software. This is done for the developments of sections 2.2 and 2.3.  

3.1. Description of the Structure 

Let us start by presenting the particular structure that is used for the validations. A three dimensional 
view of the gate is presented on Figure 4. It is made of a single plating reinforced by six frames and 
five girders. All of them have a T-shaped cross-section with the properties listed in Table 2. Twenty 
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smaller stiffeners are also present, mainly for preventing the plating from buckling. The dimensions of 
their rectangular cross-section are also given in Table 2. It is important to mention here that for 
convenience, the horizontal reinforcing elements are uniform over the height of the gate. In practice 
however, this is rarely the case as the gate is usually stiffer near the bottom of the lock. This 
particularity can of course be integrated in the present simplified analytical method because the cross-
section properties ?6,7 and 56,7 in equations (3), (4), (8) and (9) may be different for each element p. 

 
Figure 4: Three Dimensional View of the Gate 

Table 1: Material Properties 

Mass density @ (C /rs� 7850 
Young modulus 4 (�lw) 210000 

Poisson ratio - (-) 0.3 
 

The main distances between all the reinforcing components are presented on Figure 5. It can be seen 
that the frames are regularly spaced, but this is not the case for the girders and the stiffeners. 

The gate is made of a linear elastic material characterized by a mass density @, a Young modulus 4 
and a Poisson ration - having the values listed in Table 1 and corresponding more or less to the 
properties of steel. 

 
Figure 5: Main Distances (m) Between the Frames, the Girders 

and the Stiffeners 

Table 2: Dimensions (m) of 
the Reinforcing System 

Horizontal girders ℎ� 0.980 � 0.020 ℎ� 0.400 � 0.025 
Vertical frames ℎ� 0.980 � 0.020 ℎ� 0.500 � 0.025 

Horizontal stiffeners ℎ� 0.210 � 0.006 ℎ� 0.000 � 0.000 
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3.2. Numerical Validation of the Modal Properties 

The aim of this section is to check the simplified prediction of the eigenfrequencies and mode shapes 
exposed in 2.2. To do so, we can compute numerically the modal properties of the gate described 
here above. This is achieved by using the software NASTRAN, in which the plating is modeled with 
isoparametric shell elements, while classical beam elements are used for the reinforcing system. 

As expected for this kind of stiffened structure, the modal analysis performed with NASTRAN points out 
that the gate has only two dominant modes and a lot of local ones. Of course, the method detailed in 
section 2.2 is only able to capture the former, but hopefully, the latter do not have a lot of practical 
interest. Consequently, we simply have to check here that there is a satisfactory agreement on the 
modal properties for the two main global modes. 

The natural frequencies derived numerically and analytically are listed in Table 3. An estimation 
computed by the finite elements software LS-DYNA is also presented. From these results, it transpires 
that the correlation is quite good, as there is only a maximal error of 7	% with the values calculated by 
LS-DYNA. The discrepancy with NASTRAN is a bit more important, as the error is reaching this time 11	%. 
Furthermore, it is interesting to note that our simplified approach tends to overestimate the 
eigenfrequencies. This is not really surprising, as it may be theoretically shown [6] that this is 
imputable to the Rayleigh-Ritz method.  

 
Table 3: Eigenfrequencies Obtained Numerically and 

Analytically 

Mode 
Frequency (��) Error (%) 

NASTRAN 
LS-

DYNA Analytical NASTRAN 
LS-

DYNA 
1 19.2	 20.0	 21.3	 10.9	 6.5	
2 23.3	 25.3	 26.0	 11.6	 2.7	

 

 
Figure 6: Definition of Plane π for 

Comparing the Modes Shapes 

The second step is now to check if there is also a close agreement on the eigenmodes. To do so, we 
can compare the modes shapes in the vertical plane ~ that is perpendicular to the gate and crossing it 
in the middle (i.e. in � = �/2), as depicted on Erreur ! Source du renvoi introuvable.. The obtained 
results are depicted on Figure 7. Here again, we see that the agreement is also satisfactory. 

  
Figure 7: Comparison of the First and Second Eigenmodes Obtained Numerically and 

Analytically 
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As a conclusion, it transpires from the results exposed here above that the present simplified method 
leads to a pretty good approximation of the modal properties of the gate. The next phase is then to 
check that this also the case if the gate is submitted to an earthquake. 

3.3. Numerical Validation of the Hydrodynamic Pressure 

Let us now try to validate the analytical developments performed in section 2.3. The goal here is to 
check if our rapid prediction of the total hydrodynamic pressure induced on a lock gate during a seism 
is more or less closely correlated to the one derived numerically. 

To do so, we consider a lock chamber having a total length � of 50	r, filled with water up to a level ℎ� 
of 8	r (Figure 1) and submitted to the longitudinal seismic acceleration 	
  of Figure 8. 

 
Figure 8: Time evolution of the longitudinal acceleration Ẍ applied to the gate  

The numerical simulation is performed using the software LS-DYNA. In order to simulate the interaction 
between the gate and the water, it is required to have a finite elements model of both of them. In this 
article, constant stress solid elements [14] are used for the liquid, which means that the water is 
considered as an elastic medium with no shearing. The mesh of the fluid domain is regular, with a size 
of 20 × 20 × 20	�r (Figure 9). 

 
Figure 9: Finite Elements Model for the Dynamic Simulations 

On Figure 9, the upstream and downstream gates are assumed to be the same as the one presented 
in section 3.3 (see Figure 4, Figure 5 and Table 2 for more details). The plating is model with 
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Belytscko-Tsay shell elements [14], while Hughes-Liu beams [14] are used for the stiffening 
components. The material is still linear elastic, with the properties of Table 1. 

It is worth mentioning that the fluid and the structure do not share any nodes. In other words, the liquid 
is free to slide on the gate, friction beeing of course prohibited. To prevent the fluid from passing 
through the structure, the LS-DYNA contact algorithm is used for simulating the contact between the two 
entities.  

In order to check the validity of the pressures derived analytically through the simplified dynamic 
analysis of section 2.3, we can make a comparison of the total resulting hydrodynamic force � applied 
on the strucutre. This one is simply obtained by integrating the rigid and flexible contributions f# and f� over the entire surface of the gate, i.e.: 

��� = 8 8cf#��, � + f���, �d2�2�;
<

6g
<

 (14) 

The time evolutions of � predicted analytically and calculated by LS-DYNA are plotted on Figure 10, for 
the seismic accelaration of Figure 8. We see that there is a quite good agreement between the two 
curves.  

 

 
Figure 10: Time Evolution of the Total Hydrodynamic Force Applied on the Gate 

Moreover, we may also points out that the present simplified method tends to provide a conservative 
evaluation of the pressures, which is. Indeed, if we look at the extreme values listed in Table 4, we see 
that the analytical solution is overestimating the maximal value by an amount of 8	% more or less, 
while the minimal one is underestimated by 10	%. 
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Table 4: Extreme Values of the Total Hydrodynamic Force Appearing During the Earthquake 

 
Analytical 
solution �E 

Numerical 
solution �X 

Rigid 
solution �� 

Relative 
difference |1 − �E/�X| 

Ratio �E/�X 

Maximal value 2085.4	CY	 1936.1	CY	 375.2	CY	 7.7	%	 5.2	
Minimal value −2020.8	CY	 −1834.2	CY	 −517.1	CY	 10.2	%	 3.9	

Another point that is interesting to investigate is the importance of accounting for the structure 
flexibility when evaluating the pressures. If the gates were perfectly rigid, then only the contribution f# 
would be acting on them. Integrating f# over the entire surface of the gate leads to the rigid total 
hydrodynamic force ��: 

���� = � 8 f#��, �2�
6g
<

 (15) 

The extreme values of �� are also listed in Table 4. If we further look at the ratios of the following 
extreme values: max[ M���Nmax[ M����N				 ; 			

min[ M���Nmin[ M����N (16) 

we see from the rightmost column of Table 4 that assuming a perfectly rigid gate leads to a maximal 
resulting force five times smaller than the one computed numerically. Similarly, the minimal value is 
underestimated by a factor four. Of course, designing a lock gate with these results is not acceptable, 
which shows the real need of considering the structure flexibility. 

 
4. CONCLUSION 

The first part of this paper presents a simplified analytical procedure allowing for a rapid estimation of 
the modal properties of a lock gate with a single plating and an orthogonal stiffening system. The 
natural frequencies and mode shapes provided by this approach are compared to those given by the 
finite elements software NASTRAN for a given lock gate. The agreement between the analytical 
predictions and the numerical solutions are found to be satisfactory, which tends to corroborate our 
developments. 

 

Figure 11: Flow Chart of the Pre-Design Process Including the Seismic Action 
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In the second part of the article, a consistent method is also exposed to perform a simplified dynamic 
analysis of a lock gate submitted to an earthquake. This allows for an estimation of the hydrodynamic 
pressures acting on the gate during the seism. These developments were also validated by making a 
comparison with solutions given by the finite elements software LS-DYNA.  

The practical interest of the exposed method is to provide a very quick way for estimating the time 
evolution of the rigid and flexible pressures f# and f�. This may help the engineers to integrate the 
seismic action in the design process. Indeed, let us consider the flow-chart depicted on Figure 11. For 
a given lock gate submitted to a longitudinal acceleration 	
 , we can use this simplified approach to 
rapidly get the time evolution of f# and f�. These pressures may then be included in a finite elements 
model of the gate,in which there is no need to model the fluid domain as its action is already 
accounted for by applying f# and f� on the structure. A time history analysis of the gate submitted to 	
 , f#, f� and all the other required actions (hydrostatic pressure, damping forces...) leads to the 
extreme values of the stresses, strains and displacements. If the design is not satisfactory, then a 
reinforcement is necessary and the process of Figure 11 is started again. On the other hands, if the 
design is sufficient, then the process may be stopped or started again for optimization. 

Consequently, the method of Figure 11 shows that there is no need to model the fluid domain while 
performing finite elements analyses. This considerably reduces the complexity of preliminary seismic 
analyses of lock gates. All these achievements are likely to help engineers in integrating the seismic 
action when pre-desingning lock gates. Nevertheless, this conclusion has to be nuanced, as one has 
always to bear in mind that the present approach is based on some simplifying assumptions (for 
example, the support conditions of the gate are somewhat idealized). For this reason, working with a  
refined model of the structure is still required, but only at the very last step of the design process.  

 
5. REFERENCES 
 
[1] Haroun M.A. (1984). Stress Analysis of Rectangular Walls Under Seismically Induced 
 Hydrodynamic Loads, Bulletin of Seismological Society of America, 74(3), 1031-1041. 

[2] Housner G.W.(1974). Dynamic Pressures on Accelerated Fluid Containers, Bulletin of 
Seismological Society of America, 47(1), 15-37. 

[3] Ibrahim R.A. (2005). Liquid Sloshing Dynamics: Theory and Applications, Cambridge University 
Press. 

[4] Epstein H.I. (1976). Seismic Design of Liquid Storage Tanks, Journal of the Structural Division, 
102(9), 1659-1673. 

[5] Westergaard H.M. (1933). Water Pressure on Dams During Earthquakes, Transactions of the 
American Society of Civil Engineers, 98(2), 418-433. 

[6] Shames I.H. & Dym C.L. (1995). Energy and Finite Element Methods in Structural Mechanics, 
New Age International. 

[7] Zeng H. & Bert C.W. (2001). Free Vibration Analysis of Discretely Stiffened Skew Plates, 
International Journal of Structural Stability and Dynamics, 1(1), 125-144. 

[8] Amiri S.N. & Esmaeily A. (2010). Prediction of Dynamic Response of Stiffened Rectangular 
Plates Using Hybrid Formulation, Journal of Engineering Science and Technology, 5(3), 251-263. 

[9] Iyengar K.T. & Narayana R. (1967). Determination of the Orthotropic Plate Parameters of 
Stiffened Plates and Grillages in Free Vibration, Applied Sciences Research,17(6), 422-438. 

[10] Leissa A.W. (1973). The Free Vibration of Rectangular Plates, Journal of Sound and Vibration, 
31(3), 257-293. 

[11] Jones N. (2003). Structural Impact, Cambridge University Press. 

[12] Kim J.K., Koh K.H. & Kwahk I.J. (1996). Dynamic Response of Rectangular Flexible Fluid 
Containers, Journal of Engineering Mechanics, 122(9), 807-817. 

[13] Forsyth G. & Porteous A. (2000). The Design and Construction of Seismically Qualified Steel 
Caissons at Rosyth Royal Dockyard, The Structural Engineer, 78(21), 24-31. 

[14] Hallquist J.O. (2006). LS-DYNA Theoretical Manual, Livermore Software Technology 
Corporation. 


