In situ measurement of olfactive pollution with inaganic semiconductors:
Limitations due to humidity and temperature influence

A-C. ROMAIN, J. NICOLAS, Ph. ANDRE
FONDATION UNIVERSITAIRE LUXEMBOURGEOISE, Surveillance de I'environnement
185, Avenue de Longwy, 6700 ARLON (BELGIQUE)

Tél:+3263 2308 11
Fax : +32 63 23 08 00
E-mail : romain@ful.ac.be

Abstract

Synthetic mixtures, as well as real industrial eiiss sampled in Tedfarbags, are passed through a 12
inorganic semiconductors array (Figaro trademarke experiments are performed in the laboratorgearly
field conditions. The influence of external factossich as humidity content of the malodorous, ansbnsors
signals have been pointed out. Humidity disturkes thsults of the pattern recognition techniquescitral
component analysis and artificial neural networlNBB with back-propagation model have been testedNA
allows a good recognition of 6 "test" chemicalsreyfewater content of the mixtures don't remainedstant
during the experiments. The use of Smiultisensors for in situ olfactive pollution asseent is still a challenge
but these results give hope and motivation fomidéal investigations.

keywords : olfactive pollution detector, tin oxide semicondugtpattern recognition
1. Introduction

The growing public concern about nasty odors nedwstrial plants, agricultural installations, laitidf
sites or wastewater facilities gives rise to thelamentation of environmental policies in various
countries, with the aim of safeguarding or resigtime quality of the natural surroundings. In orter
assess and to monitor the state of the environimethiis field, and also to suggest odor abatement
techniques, it is important to have at one's digpesgitable means of objective measurement and
inspection of environmental odors.

Since a few years, an intermediate and very atbetéchnique is more and more used to identify and
to monitor odor phenomena : the "electronic nosetually, environment is often mentioned among
the numerous applications of e-noses. However,tipis of measurement of odor annoyance in the
field remains exceptional.

Applications of this technique are almost restddie food and agricultural emissions [Nexyad, 1995]
To date, the running studies related to the usalatftronic noses in the environment are focused on
the detection of some specific compounds, suchadson monoxide in ambient air, or for domestic
use [Patissier, 1996] or hydrogen sulfide [Falcaateal., 1990].

Most of these studies however concern the sensivices able to detect the specific compound
(sometimes non odorous, such as CO), but not raallglectronic nose, with an array of sensors, and
a pattern recognition engine.

Some other research works involve the use of e-farsthe measurement of a group of compounds,
such as VOC's [Lorans, 1995] or hazardous orgagpours [Hierlemann et al., 1995], but the authors
unanimously admit that the problem is complex.

Finally, very few studies are devoted to environtakmpplications in the field. All of them are
restricted to the identification of very specifidars, chiefly at the emission, just near the saufbe
majority of them apply the electronic nose to tlededtion of hazardous compounds or of olfactive
nuisance in the agricultural and the breeding segkdliott-Martin, 1994; Persaud et al., 1996].

To become a reality, the use of e-nose to assessdbr directly in the environment has first to
overcome two obstacles, at least : the improveroeaensors sensitivity in order to be able to detec



the very low concentration levels of odorous commusuin the atmosphere, and the understanding
and the control of the ambient parameters influemaenly temperature and humidity.

The purpose of the present work, indeed, is to éxairhe potential of e-nose technology for in situ
monitoring of olfactive pollution in the vicinityfandustrial plants. Although being an attractiveda
convenient solution, the use of commercially adddaelectronic noses was discarded for the reason
that they are not adapted to environmental comég:aMore particularly, actual e-nose instruments
are dedicated to lab applications, and they apmtiable; most of the time, they involve a sample
preparation technique, such as headspace, butfeeryare adapted to the handling of gaseous
atmospheres, on line or by sampling the air diyefitbm the environment; and lastly, although
measuring external parameters variations (tempersgnd humidity), they do not take them into
account in the discrimination procedure.

This paper wonders whether a multisensor arraysyst able to approach in situ odor assessment, in
spite of limitations due to ambient humidity anchpeerature.

2. Materials and methods

Artificial odors are prepared by injection 4 plhadlatile chemicals through the septum of a Tedlar®

bag filled with 40 | of ambient air. After the exaption of the liquids (Aldrich®, purity between

95% and 99.5%), the gaseous mixture is drawn actlosssensors chamber by a mini-pump.

Compounds found in typical olfactive pollution (detined by GC-MS) have been tested. Six

chemical families are represented : alcohol (n+afda ester (butyl acetate), amine (n-butylamine),

aldehyde (decanal), cetone (6-methyl-5-hepten-2-ané sulfide (methyl sulfide).

Real atmosphere from the environment (in this ¢asa animal fat treatment) are sampled in Tetllar

bag without direct contact of pumping.

As the purpose of this experiments is to point thiet external parameters influence on the sensors

signals and on the PARC, we don't control the awrpental conditions :

- mixtures prepared with outside air with humidityntent depending on meteorological conditions,

- laboratory atmosphere close to the real milieorse (opened windows, no constant room
temperature),

- no temperature regulation of the sensors chamber.

Only the reference air is a bit more controlledry dir bubbling into saturated salt water (KCI, in

melted ice).

A sensor array consisting of 12 commercial tin exghs sensors (Figaro Engineering Inc.) are sealed

in 6 dm3 perspex cubic chamber. Like the other ¢baimsensors (conductor polymers

[Persaud, 1992], SAW and BAW with polymer or lip@stive films, electrochemical fuel cells...), tin

oxide sensors have a lot of disadvantages : pability, low sensitivity, short life time, tempetae

and humidity sensitivity, drift, poisoning effecspw response times... The more important one for

environmental measurement is the high sensitiaityumidity.

The choice of the Snensors results of the best compromise. Their gr@akr consumption is a

bad point but they are easily available, robust Emldistrially produced (better interchangeability).

Among this twelve sensors, two are specific tolthmidity sensing (TGS 883 and TGS 2180).

Moreover, a temperature sensor and a capacitivediyraensor are mounted into the chamber.

The sensor resistance is measured by a computérolbedh multiplexed system (HP 3421A). A

constant power voltage is supplied to the sens@atels. A home-made software written in

Labwindows provides the data acquisition and disptaal time graphic). Two commercial software

package (Statistica and Matlab) are used to prabesdata.

The experimental procedure generally consists adifeg alternatively the reference air and the

gaseous sample into the sensors using a threealasy, keeping a constant 2000ml/min flow rate.

The samples were presented in random order dunneg weeks and at least six replicates were done

for each compounds.

3. Results and discussion



3.1.Humidity and ambient temperature influencer@ndensor signals

The presence of water vapour is known to causesmatic decrease of the Syg€ensors resistance.
Two mechanisms could explain this influence : tiesakiation of the water molecule into hydroxyl
species which act as electron donors [McAleer et1887 and 1988] and the creation of lattice
vacancies by the reaction of the hydrogen atonjymed from the water dissociation, with oxygen
lattice atoms [Vlachos, 1995].

Our goal is not to understand the theory of thoselanisms but only to show the consequences of
the water influence on an environmental odor resp@nd how to take this effect into account.

The odorous mixture generated by any industriar@umay exhibit a water content ranging from
near zero to about saturation. Consequently, th@ceaductor resistance variation is modified or
even reversed. Figure 1 and 2 show time - respomses for four sensors for animal fat treatment
odor. The right scale indicates the relative hutpiglalue. The odor, in the two figures, comes from
the same source but the sampling date is differedtthe external conditions as well.

In this case, the reference air is the lab amlzent

With a 28% to 25% relative humidity variation, &®wn in figure 1, the signal exhibit a decrease due
to the animal fat odor, like usual with reducingsgg But with a 20% to 15% relative humidity
variation (figure 2), the sensors resistance vianabor the same odor (same olfactive perceptiom) a
with same temperature and flow conditions are ®aekr This unexpected increase can be explain by
the humidity value.

Indeed, in the absence of an odor, a diminutioadsforbed water on the Snp€eramics is known to
increase its resistance. Its appears that the lagi$onoisture can dominate the resistivity behavaur
the sensors [Vlachos, 1993]. Precisely, the humibds a higher negative variation and the final
value is lower. This experiment proves that iths@utely necessary to take the water contentef th
samples into account when interpreting the serrssronses data.

The sensors signals are also strongly dependehedemperature. This parameter is involved in the
kinetics of the chemical processes on the oxides@ly, 1991 ; McAleer et al, 1988 ]. That's why a

voltage is applied to a inside heater resistandeeép the sensor at a high fixed temperature (@roun

400°C). A change of the gas flow or of the surraogdatmosphere temperature can disturb the
temperature of the semiconductor surface and hitveceonductance value.

Figure 3 shows the sensors signals fluctuationstdule change of the array chamber temperature.
However, this parameter is not so important thamitdity. The temperature control is easier [Jonda,

1996] than the humidity one because it is a paramehich doesn't depend on the odor quality but

only to the external conditions.

For the further experiments, the gas flow is kdptha same fixed level before and during the odor
sensing. Though, the temperature in the labordtangs on the weather.

3.2. Effect of humidity on PARC results

Data preprocessing

The selection of the data preprocessing algoritlsrasn important stage. Various algorithms have
been investigated (resistance differencgRRfractional resistance change,fR/R,, normalised

fractional resistance change), wherg R are the resistance's in air or gas respectividlg best
classification results are obtained with the norseal fractional resistance change :

1 2
z— [ J

wheren is the number of sensors.



This choice was foreseeable since this parametlkenosin to nearly remove the gas concentration
linear dependence [Gardner, 1991; Gardner, 199@].tke olfactive annoyance recognition, the
sensors array must be able to differentiate smea@fnission mixtures even over a range of
concentrations. However, for most of the odors,dbrecentration-response curves are non-linear and
therefore the patterns for individual chemicals robgnge with concentration [Persaud, 1996].

Here, the injection of 4pl of liquid chemicals irD 4 bag don't produce the same gaseous
concentration for each component (various volgtdind liquid density) and for the six same samples
(various lab temperature, injected volume and lwdgme errors).

Furthermore, to perform the pattern recognitioms, ghevious values are scaled (Y-Ymin/Ymax-Ymin)
so that the response of each sensor has a valuedye0 and 1.

Principal component analysis (PCA)

PCA is a well-known linear unsupervised patterrogzition technique [Everitt, 1994]. Due to the use
of dilute individual components, the assumptioradinear concentration-dependent response can be
made. The purpose is to reduce the multidimensiynail a problem into two or so dimensions. The
12 original variables (sensors responses) are ewdbio find a new group of variables called the
principal components.

Figures 4a and 4b show the plot of the first twm@pal components (factor 1 and factor 2) for the
sensors responses to 3 sets of compounds. 908 whtiance within the data is contained in th&t fir
two principal components.

Plot 4a shows a good separation of data into tthistenct groups that corresponds to each of theethr
set of compounds.

In the next plot b, two other sensors data have bdded, namely the responses of TGS 883 and TGS
2180. This sensors are excessively sensitive terwaipour. In this case the obtained separatios doe
not match the expected one. Five groups can berdied. The previous "sul" group is splitted and a
new one is formed by "but6-onel-one2".

In fact, further investigations show that the twddigional clusters are due to distinct water
conditions. The water content is represented by fthetional absolute humidity change ([AH-
AHg)/AH, where AH, AR are the asolute humidity in the array chamber whth odor or with the
reference air respectively).

One sul group has a water range between 0.2 antién3he other one has a lower water range. The
three data of the new group (but6-onel-one2) hass#ime water value. Within the "one3-4-5-6"
group, one 6 has a positive water value and itdeerseparated from the three other ones.

In the end, factor 2 could describe the water patam 0.1 to the left, O in the middle and negativ
value to the right. Although factor 1 (here vertigaepresented) reflects well the composition
heterogeneity of samples, the scatter along factée&ns more due to water content : the water
parameter varying from 0.1 to negative values fribva left to the right of the axis. Indeed, the
addition of two water sensitive sensors has poioigidthe importance of the external conditions on
the PCA results.

Consequently, the data separation is not only dube nature of compounds but also to the range of
humidity.

An other example proving that the variability ofetlexperimental conditions disturbs the PCA
classification results is shown in figure 5. Indeie PCA on six samples of six compounds (without
the data of TGS 2180 and TGS 883) under variousiditynlevels reveals the difficulties in
separating out the six classes of compounds.

This expected result is still due to the changthefsensor signal pattern of a given compound when
external conditions varies.

Artificial neural network (ANN)



Unlike PCA, the neural network is a non linear sujged pattern recognition technique [Baughman
et al, 1995]. The major advantage of a non linéassification technique is that the data can be non
linear. It is commonly the case of environmentabrad Furthermore, the second fundamental
difference is that there is an supervised learstage.

A three layer network, using back-propagation obex learning rule, is built. There are 12 elements
in the input layer (12 sensors signals), 4 elementbe hidden layer and six elements in the output
layer representing the six odor classes. The maratfitransfer function is log sigmoid. Trainingeim
is lowered thanks to an adaptive learning rate.@5,0a learning increase of 1.05, a learning deerea
of 0.7 and a momentum term of 0.95.

A batching operation (all the input vectors simoéiausly presented to the network) is applied. For
the training, there are a maximum of 5 input vesfor each of the six compounds.

During the training stage, the data from known coumgls are trained onto target outputs, coded such
that a "1" is present on a given output only whies ¢orresponding compound is presented to the
network (e.g. output 1=[1 0 0 0 0 0]) (see tabl@he process is continually repeated until thelfina
error (the error goal) between the target valuesthe actual values is less then 0.001.

Table 2a shows the outputs of the network aftetrdiaing with all 30 input vectors (6 compounds X

5). In fact, these 30 vectors represent 30 expertisngone under uncontrolled external conditions and
thus under various humidity levels.

After the network learning step, with a training sé odors signals under any humidity levels, the

network should be able to recognise new or "testhmounds (6 compounds x 1), this is the

validation step. Table 2b shows that the compoanesvell identified.

The same operation is performed with the previauspound, but this time, the training was done
only with some of the thirty input vectors (tabla)3 those with an absolute humidity level (AH)
below 3.

The "test" compounds are the ones obtained witlhwanidity level above 3. Table 3b shows the
unfortunate results of the recognition. A trainiwgh a set of odor data obtained in a particular
condition don't allow a good classification of nedor data obtained in an other particular condition
Thus in this case the ANN results are disturbethbywater content. But it worth to be noticed (ésbl
2a and 2b) that if the network learns the samesodnder a lot of various situations (drift, humydlit
temperature,...) it can easy recognise an odorrundpecific state. This pattern recognition teghai

is more able than the PCA to classify and to remmgidorous mixtures under various external
conditions. Therefore, ANN seems more suitableoftactive pollution recognition. But the network
training with odor from different industrial souscand under various conditions takes a considerable
amount of time. Furthermore, it assumes that th@,Sensors array remains unchanged!

4. Conclusions

These results confirm the bad effect of the humpiditd temperature fluctuations on the tin oxide
sensors responses. Despite this well-known conistiatathe consequences for in situ olfactive

annoyance measurement is not so dramatic thenopieguppose. Even with non fixed experimental
conditions, near the ambient atmosphere, a discaticin of various single odors is possible.

Furthermore, the six single compounds may be disodated from each other even if their own

concentration varies.

Indeed, we pointed out the importance of using dapted pattern recognition engine as well as a
previous data pre-processing. A supervised noratinechnique (ANN, backpropagation) is able to

classify all the test samples for any experimetatditions. In this case, a good recognition is
realised despite the humidity influence on the sensignals.

However, the in situ olfactive pollution assessmeitith an Sn@ sensors array and a PARC remains a
challenge.

The nature, the number and the concentration df eampounds making up a complex mixture such
as olfactive pollution can change from day to dapehding, for example, of the industrial process.



But, even if the mixture changes, the source issree and the annoyance perceived always comes
from this typical source! How could the sensorsawarrecognise this source? Maybe with a very
intensive supervised training of the data recognitiFurthermore, for an objective olfactive
annoyance measurement, they are still other liroitatdue to the SnOsensors itself, e.g. low
sensitivity compared to the human nose one andltoet life time. Nevertheless, these results are
promising for in situ objective malodors recognitid-urther investigations are underway to improve
in situ measurement always by keeping sensorsdiimits in mind. There are focused on the data
analysis (e.g. training with real malodors undeniows ambient conditions, testing other techniques
like nonsupervised non-linear technigues Sammon)napm on the experimental conditions
(e.g. improvement of the temperature regulations).
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Fig. 1. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from
28%to 25% (right scale).
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Fig. 2. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from

20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity
value.
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber
temperature variations (right scale).
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds.
(water=[ (AH-AHg)/AH.] , AH: absolute humidity)
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors
sensitive to water vapour) to 6 compounds under various humidity levels.



Table 1. Target outputs for the network trainingf

compounds

outputs|butyl acetat¢ n-butanpl n-butylamine methylsul*ide 6-methyl-5-hepten-2-o0
output 1 1.000 0.000 0.000 0.000 0.000 0.000
output 2 0.000 1.000 0.000 0.000 0.000 0.000
output 3 0.000 0.000 1.000 0.000 0.000 0.000
output 4 0.000 0.000 0.000 1.000 0.000 0.000
output 5 0.000 0.000 0.000 0.000 1.000 0.000

output § 0.000 0.000 0.000 0.000 0.000 1.000




Table 2a.Results of the training with various humidity lé&véor all compounds

Network outputs

compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0994 0997 099% 0999 0597 0000 0.000 0.000000.00.000 0.000 0.004 0.000 0.001 O0p0O 0000 0.000 0.000 00.0m00¢ 0.003 0.003 0.005 0.003 0.p01 0.000 0.000 0.000 0.0m00(
output 2 0.000 0.000 0.000 0.000 0.p00 0.999 0.998 0.996940.90.992 0.005 0.000 0.008 0.001 0p05 0.000 0.000 0.000 00.0m00¢ 0.000 0.000 0.000 0.000 0.00 0.001 0.00 0.000 0.000OO0Y
output 3 0.004 0.002 0.003 0.002 0.p01 0.000 0.001 0.002000.00.00]1 0.999 0.994 0.998 0996 0p97 0,003 0.001 0.002 20.00003 0.000 0.000 0.000 0.000 0.00 0.000 0.00 0.000 0.0000Q
output 4 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000000.00.00¢0 0.001 0.000 0.001 0.000 0p0O5 0.998 0.997 0.998 80.9999¢ 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000 0.0mOOQ
output 5 0.001 0.003 0.001 0.006 0.p04 0.000 0.000 0.000000.00.00¢0 0.000 0.000 0.000 0.000 0p00 0.000 0.000 0.000 00.0m00¢ 0.998 0.998 0.998 0.999 091 0.000 0.006 0.002 0.00003
output 6 0.000 0.000 0.000 0.000 0.p00 0.000 0.001 0.001020.00.002 0.002 0.000 0.001 0.000 0fp05 0.001 0.000 0.001 00.0000] 0.001 0.003 0.000 0.000 0.07 0.999 0993 0.999 1.0009%




Table 2b. Validation results with the "test" compounds

classification
results

Network outputs
compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide| atedt 6-methyl-5-hep.
output 1 0.994 0.000 0.063 0.000 0.003 0.000
output 2 0.000 0.991 0.000 0.000 0.000 0.000
output 3 0.003 0.004 0.002 0.000 0.000
output 4 0.000 0.000 0.998 0.000 0.000
output 5 0.001 0.000 0.000 0.996 0.010
output 6 0.000 0.001 0.000 0.010 0.995




Table 3a.Results of the training for compounds with absoluimidity level < 3(g water/kg air)

Network outputs
compounds
outputs butyl acetate n-butanol | butylamine methylsulfide decanal 6-methyl-5-hepten-2-one
outputl 0.991 0.995 0.99¢ 0.000 0.000 0.01 0.000 0.000 00j00.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000
output2 0.000 0.000 0.00 0.992 0.993 0.007 0.004 0.003 40/00.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000
output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 00{00.000 0.000 0.000 0.0¢0 0.000  0.000 0.000 0.000
output4 0.000 0.000 0.00 0.003 0.¢04 0.00! 0.997 0.998 70|90.000 0.000 0.000 0.0f1 0.000 0.000 0.000 0.001L
output5 0.004 0.005 0.004 0.000 0.000 0.00 0.000 0.000 00]j00.999 0.998 0.993 0.9¢97 0.000 0.000 0.001 0.006
output6 0.000 0.000 0.00 0.002 0.003 0.00 0.000 0.000 00j00.001 0.001 0.002 0.002 0.999 0.999 0.996 0.990




Table 3b. Validation results for "test" compounds with akgelhumidity level >3 (g water/kg air)

Networks outputs

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

outputl 0.990 0.983 0.992 0.000 . . X . 0.000 0.000  0.00{ 0.001 . 0.000
output2 0.000 0.000 0.000 . 0.996 i . | 0.005 0.005  0.004 0.000
output3 0.041 0.003 0.0000  0.000  0.004 0.000
output4 0.000 0.000 0.000 0993  0.994  0.99 0.000
outputs 0.001 0.000 0.004 0.000 0.000  0.00 0.978
outputé 0.000 0.000 0.000 0.000 0.000  0.00 0.006

classification
results

nal
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Abstract

Synthetic mixtures, as well as real industrial eiiss sampled in Tedfarbags, are passed through a 12
inorganic semiconductors array (Figaro trademarke experiments are performed in the laboratorgearly
field conditions. The influence of external factossich as humidity content of the malodorous, ansbnsors
signals have been pointed out. Humidity disturkes thsults of the pattern recognition techniquescitral
component analysis and artificial neural networlNBB with back-propagation model have been testedNA
allows a good recognition of 6 "test" chemicalsreyfewater content of the mixtures don't remainedstant
during the experiments. The use of Smiultisensors for in situ olfactive pollution asseent is still a challenge
but these results give hope and motivation fomidéal investigations.

keywords : olfactive pollution detector, tin oxide semicondugtpattern recognition
1. Introduction

The growing public concern about nasty odors nedwstrial plants, agricultural installations, laitidf
sites or wastewater facilities gives rise to thelamentation of environmental policies in various
countries, with the aim of safeguarding or resigtime quality of the natural surroundings. In orter
assess and to monitor the state of the environimethiis field, and also to suggest odor abatement
techniques, it is important to have at one's digpesgitable means of objective measurement and
inspection of environmental odors.

Since a few years, an intermediate and very atbetéchnique is more and more used to identify and
to monitor odor phenomena : the "electronic nosetually, environment is often mentioned among
the numerous applications of e-noses. However,tipis of measurement of odor annoyance in the
field remains exceptional.

Applications of this technique are almost restddie food and agricultural emissions [Nexyad, 1995]
To date, the running studies related to the usalatftronic noses in the environment are focused on
the detection of some specific compounds, suchadson monoxide in ambient air, or for domestic
use [Patissier, 1996] or hydrogen sulfide [Falcaateal., 1990].

Most of these studies however concern the sensivices able to detect the specific compound
(sometimes non odorous, such as CO), but not raallglectronic nose, with an array of sensors, and
a pattern recognition engine.

Some other research works involve the use of e-farsthe measurement of a group of compounds,
such as VOC's [Lorans, 1995] or hazardous orgagpours [Hierlemann et al., 1995], but the authors
unanimously admit that the problem is complex.

Finally, very few studies are devoted to environtakmpplications in the field. All of them are
restricted to the identification of very specifidars, chiefly at the emission, just near the saufbe
majority of them apply the electronic nose to tlededtion of hazardous compounds or of olfactive
nuisance in the agricultural and the breeding segkdliott-Martin, 1994; Persaud et al., 1996].

To become a reality, the use of e-nose to assessdbr directly in the environment has first to
overcome two obstacles, at least : the improveroeaensors sensitivity in order to be able to detec



the very low concentration levels of odorous commusuin the atmosphere, and the understanding
and the control of the ambient parameters influemaenly temperature and humidity.

The purpose of the present work, indeed, is to éxairhe potential of e-nose technology for in situ
monitoring of olfactive pollution in the vicinityfandustrial plants. Although being an attractiveda
convenient solution, the use of commercially adddaelectronic noses was discarded for the reason
that they are not adapted to environmental comég:aMore particularly, actual e-nose instruments
are dedicated to lab applications, and they apmtiable; most of the time, they involve a sample
preparation technique, such as headspace, butfeeryare adapted to the handling of gaseous
atmospheres, on line or by sampling the air diyefitbm the environment; and lastly, although
measuring external parameters variations (tempersgnd humidity), they do not take them into
account in the discrimination procedure.

This paper wonders whether a multisensor arraysyst able to approach in situ odor assessment, in
spite of limitations due to ambient humidity anchpeerature.

2. Materials and methods

Artificial odors are prepared by injection 4 plhadlatile chemicals through the septum of a Tedlar®

bag filled with 40 | of ambient air. After the exaption of the liquids (Aldrich®, purity between

95% and 99.5%), the gaseous mixture is drawn actlosssensors chamber by a mini-pump.

Compounds found in typical olfactive pollution (detined by GC-MS) have been tested. Six

chemical families are represented : alcohol (n+afda ester (butyl acetate), amine (n-butylamine),

aldehyde (decanal), cetone (6-methyl-5-hepten-2-ané sulfide (methyl sulfide).

Real atmosphere from the environment (in this ¢asa animal fat treatment) are sampled in Tetllar

bag without direct contact of pumping.

As the purpose of this experiments is to point thiet external parameters influence on the sensors

signals and on the PARC, we don't control the awrpental conditions :

- mixtures prepared with outside air with humidityntent depending on meteorological conditions,

- laboratory atmosphere close to the real milieorse (opened windows, no constant room
temperature),

- no temperature regulation of the sensors chamber.

Only the reference air is a bit more controlledry dir bubbling into saturated salt water (KCI, in

melted ice).

A sensor array consisting of 12 commercial tin exghs sensors (Figaro Engineering Inc.) are sealed

in 6 dm3 perspex cubic chamber. Like the other ¢baimsensors (conductor polymers

[Persaud, 1992], SAW and BAW with polymer or lip@stive films, electrochemical fuel cells...), tin

oxide sensors have a lot of disadvantages : pability, low sensitivity, short life time, tempetae

and humidity sensitivity, drift, poisoning effecspw response times... The more important one for

environmental measurement is the high sensitiaityumidity.

The choice of the Snensors results of the best compromise. Their gr@akr consumption is a

bad point but they are easily available, robust Emldistrially produced (better interchangeability).

Among this twelve sensors, two are specific tolthmidity sensing (TGS 883 and TGS 2180).

Moreover, a temperature sensor and a capacitivediyraensor are mounted into the chamber.

The sensor resistance is measured by a computérolbedh multiplexed system (HP 3421A). A

constant power voltage is supplied to the sens@atels. A home-made software written in

Labwindows provides the data acquisition and disptaal time graphic). Two commercial software

package (Statistica and Matlab) are used to prabesdata.

The experimental procedure generally consists adifeg alternatively the reference air and the

gaseous sample into the sensors using a threealasy, keeping a constant 2000ml/min flow rate.

The samples were presented in random order dunneg weeks and at least six replicates were done

for each compounds.

3. Results and discussion



3.1.Humidity and ambient temperature influencer@ndensor signals

The presence of water vapour is known to causesmatic decrease of the Syg€ensors resistance.
Two mechanisms could explain this influence : tiesakiation of the water molecule into hydroxyl
species which act as electron donors [McAleer et1887 and 1988] and the creation of lattice
vacancies by the reaction of the hydrogen atonjymed from the water dissociation, with oxygen
lattice atoms [Vlachos, 1995].

Our goal is not to understand the theory of thoselanisms but only to show the consequences of
the water influence on an environmental odor resp@nd how to take this effect into account.

The odorous mixture generated by any industriar@umay exhibit a water content ranging from
near zero to about saturation. Consequently, th@ceaductor resistance variation is modified or
even reversed. Figure 1 and 2 show time - respomses for four sensors for animal fat treatment
odor. The right scale indicates the relative hutpiglalue. The odor, in the two figures, comes from
the same source but the sampling date is differedtthe external conditions as well.

In this case, the reference air is the lab amlzent

With a 28% to 25% relative humidity variation, &®wn in figure 1, the signal exhibit a decrease due
to the animal fat odor, like usual with reducingsgg But with a 20% to 15% relative humidity
variation (figure 2), the sensors resistance vianabor the same odor (same olfactive perceptiom) a
with same temperature and flow conditions are ®aekr This unexpected increase can be explain by
the humidity value.

Indeed, in the absence of an odor, a diminutioadsforbed water on the Snp€eramics is known to
increase its resistance. Its appears that the lagi$onoisture can dominate the resistivity behavaur
the sensors [Vlachos, 1993]. Precisely, the humibds a higher negative variation and the final
value is lower. This experiment proves that iths@utely necessary to take the water contentef th
samples into account when interpreting the serrssronses data.

The sensors signals are also strongly dependehedemperature. This parameter is involved in the
kinetics of the chemical processes on the oxides@ly, 1991 ; McAleer et al, 1988 ]. That's why a

voltage is applied to a inside heater resistandeeép the sensor at a high fixed temperature (@roun

400°C). A change of the gas flow or of the surraogdatmosphere temperature can disturb the
temperature of the semiconductor surface and hitveceonductance value.

Figure 3 shows the sensors signals fluctuationstdule change of the array chamber temperature.
However, this parameter is not so important thamitdity. The temperature control is easier [Jonda,

1996] than the humidity one because it is a paramehich doesn't depend on the odor quality but

only to the external conditions.

For the further experiments, the gas flow is kdptha same fixed level before and during the odor
sensing. Though, the temperature in the labordtangs on the weather.

3.2. Effect of humidity on PARC results

Data preprocessing

The selection of the data preprocessing algoritlsrasn important stage. Various algorithms have
been investigated (resistance differencgRRfractional resistance change,fR/R,, normalised

fractional resistance change), wherg R are the resistance's in air or gas respectividlg best
classification results are obtained with the norseal fractional resistance change :

1 2
z— [ J

wheren is the number of sensors.



This choice was foreseeable since this parametlkenosin to nearly remove the gas concentration
linear dependence [Gardner, 1991; Gardner, 199@].tke olfactive annoyance recognition, the
sensors array must be able to differentiate smea@fnission mixtures even over a range of
concentrations. However, for most of the odors,dbrecentration-response curves are non-linear and
therefore the patterns for individual chemicals robgnge with concentration [Persaud, 1996].

Here, the injection of 4pl of liquid chemicals irD 4 bag don't produce the same gaseous
concentration for each component (various volgtdind liquid density) and for the six same samples
(various lab temperature, injected volume and lwdgme errors).

Furthermore, to perform the pattern recognitioms, ghevious values are scaled (Y-Ymin/Ymax-Ymin)
so that the response of each sensor has a valuedye0 and 1.

Principal component analysis (PCA)

PCA is a well-known linear unsupervised patterrogzition technique [Everitt, 1994]. Due to the use
of dilute individual components, the assumptioradinear concentration-dependent response can be
made. The purpose is to reduce the multidimensiynail a problem into two or so dimensions. The
12 original variables (sensors responses) are ewdbio find a new group of variables called the
principal components.

Figures 4a and 4b show the plot of the first twm@pal components (factor 1 and factor 2) for the
sensors responses to 3 sets of compounds. 908 whtiance within the data is contained in th&t fir
two principal components.

Plot 4a shows a good separation of data into tthistenct groups that corresponds to each of theethr
set of compounds.

In the next plot b, two other sensors data have bdded, namely the responses of TGS 883 and TGS
2180. This sensors are excessively sensitive terwaipour. In this case the obtained separatios doe
not match the expected one. Five groups can berdied. The previous "sul" group is splitted and a
new one is formed by "but6-onel-one2".

In fact, further investigations show that the twddigional clusters are due to distinct water
conditions. The water content is represented by fthetional absolute humidity change ([AH-
AHg)/AH, where AH, AR are the asolute humidity in the array chamber whth odor or with the
reference air respectively).

One sul group has a water range between 0.2 antién3he other one has a lower water range. The
three data of the new group (but6-onel-one2) hass#ime water value. Within the "one3-4-5-6"
group, one 6 has a positive water value and itdeerseparated from the three other ones.

In the end, factor 2 could describe the water patam 0.1 to the left, O in the middle and negativ
value to the right. Although factor 1 (here vertigaepresented) reflects well the composition
heterogeneity of samples, the scatter along factée&ns more due to water content : the water
parameter varying from 0.1 to negative values fribva left to the right of the axis. Indeed, the
addition of two water sensitive sensors has poioigidthe importance of the external conditions on
the PCA results.

Consequently, the data separation is not only dube nature of compounds but also to the range of
humidity.

An other example proving that the variability ofetlexperimental conditions disturbs the PCA
classification results is shown in figure 5. Indeie PCA on six samples of six compounds (without
the data of TGS 2180 and TGS 883) under variousiditynlevels reveals the difficulties in
separating out the six classes of compounds.

This expected result is still due to the changthefsensor signal pattern of a given compound when
external conditions varies.

Artificial neural network (ANN)



Unlike PCA, the neural network is a non linear sujged pattern recognition technique [Baughman
et al, 1995]. The major advantage of a non linéassification technique is that the data can be non
linear. It is commonly the case of environmentabrad Furthermore, the second fundamental
difference is that there is an supervised learstage.

A three layer network, using back-propagation obex learning rule, is built. There are 12 elements
in the input layer (12 sensors signals), 4 elementbe hidden layer and six elements in the output
layer representing the six odor classes. The maratfitransfer function is log sigmoid. Trainingeim
is lowered thanks to an adaptive learning rate.@5,0a learning increase of 1.05, a learning deerea
of 0.7 and a momentum term of 0.95.

A batching operation (all the input vectors simoéiausly presented to the network) is applied. For
the training, there are a maximum of 5 input vesfor each of the six compounds.

During the training stage, the data from known coumgls are trained onto target outputs, coded such
that a "1" is present on a given output only whies ¢orresponding compound is presented to the
network (e.g. output 1=[1 0 0 0 0 0]) (see tabl@he process is continually repeated until thelfina
error (the error goal) between the target valuesthe actual values is less then 0.001.

Table 2a shows the outputs of the network aftetrdiaing with all 30 input vectors (6 compounds X

5). In fact, these 30 vectors represent 30 expertisngone under uncontrolled external conditions and
thus under various humidity levels.

After the network learning step, with a training sé odors signals under any humidity levels, the

network should be able to recognise new or "testhmounds (6 compounds x 1), this is the

validation step. Table 2b shows that the compoanesvell identified.

The same operation is performed with the previauspound, but this time, the training was done
only with some of the thirty input vectors (tabla)3 those with an absolute humidity level (AH)
below 3.

The "test" compounds are the ones obtained witlhwanidity level above 3. Table 3b shows the
unfortunate results of the recognition. A trainiwgh a set of odor data obtained in a particular
condition don't allow a good classification of nedor data obtained in an other particular condition
Thus in this case the ANN results are disturbethbywater content. But it worth to be noticed (ésbl
2a and 2b) that if the network learns the samesodnder a lot of various situations (drift, humydlit
temperature,...) it can easy recognise an odorrundpecific state. This pattern recognition teghai

is more able than the PCA to classify and to remmgidorous mixtures under various external
conditions. Therefore, ANN seems more suitableoftactive pollution recognition. But the network
training with odor from different industrial souscand under various conditions takes a considerable
amount of time. Furthermore, it assumes that th@,Sensors array remains unchanged!

4. Conclusions

These results confirm the bad effect of the humpiditd temperature fluctuations on the tin oxide
sensors responses. Despite this well-known conistiatathe consequences for in situ olfactive

annoyance measurement is not so dramatic thenopieguppose. Even with non fixed experimental
conditions, near the ambient atmosphere, a discaticin of various single odors is possible.

Furthermore, the six single compounds may be disodated from each other even if their own

concentration varies.

Indeed, we pointed out the importance of using dapted pattern recognition engine as well as a
previous data pre-processing. A supervised noratinechnique (ANN, backpropagation) is able to

classify all the test samples for any experimetatditions. In this case, a good recognition is
realised despite the humidity influence on the sensignals.

However, the in situ olfactive pollution assessmeitith an Sn@ sensors array and a PARC remains a
challenge.

The nature, the number and the concentration df eampounds making up a complex mixture such
as olfactive pollution can change from day to dapehding, for example, of the industrial process.



But, even if the mixture changes, the source issree and the annoyance perceived always comes
from this typical source! How could the sensorsawarrecognise this source? Maybe with a very
intensive supervised training of the data recognitiFurthermore, for an objective olfactive
annoyance measurement, they are still other liroitatdue to the SnOsensors itself, e.g. low
sensitivity compared to the human nose one andltoet life time. Nevertheless, these results are
promising for in situ objective malodors recognitid-urther investigations are underway to improve
in situ measurement always by keeping sensorsdiimits in mind. There are focused on the data
analysis (e.g. training with real malodors undeniows ambient conditions, testing other techniques
like nonsupervised non-linear technigues Sammon)napm on the experimental conditions
(e.g. improvement of the temperature regulations).
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Fig. 1. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from
28%to 25% (right scale).
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Fig. 2. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from

20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity
value.
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber
temperature variations (right scale).
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds.
(water=[ (AH-AHg)/AH.] , AH: absolute humidity)
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors
sensitive to water vapour) to 6 compounds under various humidity levels.



Table 1. Target outputs for the network trainingf

compounds

outputs|butyl acetat¢ n-butanpl n-butylamine methylsul*ide 6-methyl-5-hepten-2-o0
output 1 1.000 0.000 0.000 0.000 0.000 0.000
output 2 0.000 1.000 0.000 0.000 0.000 0.000
output 3 0.000 0.000 1.000 0.000 0.000 0.000
output 4 0.000 0.000 0.000 1.000 0.000 0.000
output 5 0.000 0.000 0.000 0.000 1.000 0.000

output § 0.000 0.000 0.000 0.000 0.000 1.000




Table 2a.Results of the training with various humidity lé&véor all compounds

Network outputs

compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0994 0997 099% 0999 0597 0000 0.000 0.000000.00.000 0.000 0.004 0.000 0.001 O0p0O 0000 0.000 0.000 00.0m00¢ 0.003 0.003 0.005 0.003 0.p01 0.000 0.000 0.000 0.0m00(
output 2 0.000 0.000 0.000 0.000 0.p00 0.999 0.998 0.996940.90.992 0.005 0.000 0.008 0.001 0p05 0.000 0.000 0.000 00.0m00¢ 0.000 0.000 0.000 0.000 0.00 0.001 0.00 0.000 0.000OO0Y
output 3 0.004 0.002 0.003 0.002 0.p01 0.000 0.001 0.002000.00.00]1 0.999 0.994 0.998 0996 0p97 0,003 0.001 0.002 20.00003 0.000 0.000 0.000 0.000 0.00 0.000 0.00 0.000 0.0000Q
output 4 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000000.00.00¢0 0.001 0.000 0.001 0.000 0p0O5 0.998 0.997 0.998 80.9999¢ 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000 0.0mOOQ
output 5 0.001 0.003 0.001 0.006 0.p04 0.000 0.000 0.000000.00.00¢0 0.000 0.000 0.000 0.000 0p00 0.000 0.000 0.000 00.0m00¢ 0.998 0.998 0.998 0.999 091 0.000 0.006 0.002 0.00003
output 6 0.000 0.000 0.000 0.000 0.p00 0.000 0.001 0.001020.00.002 0.002 0.000 0.001 0.000 0fp05 0.001 0.000 0.001 00.0000] 0.001 0.003 0.000 0.000 0.07 0.999 0993 0.999 1.0009%




Table 2b. Validation results with the "test" compounds

classification
results

Network outputs
compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide| atedt 6-methyl-5-hep.
output 1 0.994 0.000 0.063 0.000 0.003 0.000
output 2 0.000 0.991 0.000 0.000 0.000 0.000
output 3 0.003 0.004 0.002 0.000 0.000
output 4 0.000 0.000 0.998 0.000 0.000
output 5 0.001 0.000 0.000 0.996 0.010
output 6 0.000 0.001 0.000 0.010 0.995




Table 3a.Results of the training for compounds with absoluimidity level < 3(g water/kg air)

Network outputs
compounds
outputs butyl acetate n-butanol | butylamine methylsulfide decanal 6-methyl-5-hepten-2-one
outputl 0.991 0.995 0.99¢ 0.000 0.000 0.01 0.000 0.000 00j00.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000
output2 0.000 0.000 0.00 0.992 0.993 0.007 0.004 0.003 40/00.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000
output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 00{00.000 0.000 0.000 0.0¢0 0.000  0.000 0.000 0.000
output4 0.000 0.000 0.00 0.003 0.¢04 0.00! 0.997 0.998 70|90.000 0.000 0.000 0.0f1 0.000 0.000 0.000 0.001L
output5 0.004 0.005 0.004 0.000 0.000 0.00 0.000 0.000 00]j00.999 0.998 0.993 0.9¢97 0.000 0.000 0.001 0.006
output6 0.000 0.000 0.00 0.002 0.003 0.00 0.000 0.000 00j00.001 0.001 0.002 0.002 0.999 0.999 0.996 0.990




Table 3b. Validation results for "test" compounds with akgelhumidity level >3 (g water/kg air)

Networks outputs

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

outputl 0.990 0.983 0.992 0.000 . . X . 0.000 0.000  0.00{ 0.001 . 0.000
output2 0.000 0.000 0.000 . 0.996 i . | 0.005 0.005  0.004 0.000
output3 0.041 0.003 0.0000  0.000  0.004 0.000
output4 0.000 0.000 0.000 0993  0.994  0.99 0.000
outputs 0.001 0.000 0.004 0.000 0.000  0.00 0.978
outputé 0.000 0.000 0.000 0.000 0.000  0.00 0.006

classification
results

nal




23



24
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Abstract

Synthetic mixtures, as well as real industrial eiiss sampled in Tedfarbags, are passed through a 12
inorganic semiconductors array (Figaro trademarke experiments are performed in the laboratorgearly
field conditions. The influence of external factossich as humidity content of the malodorous, ansbnsors
signals have been pointed out. Humidity disturkes thsults of the pattern recognition techniquescitral
component analysis and artificial neural networlNBB with back-propagation model have been testedNA
allows a good recognition of 6 "test" chemicalsreyfewater content of the mixtures don't remainedstant
during the experiments. The use of Smiultisensors for in situ olfactive pollution asseent is still a challenge
but these results give hope and motivation fomidéal investigations.

keywords : olfactive pollution detector, tin oxide semicondugtpattern recognition
1. Introduction

The growing public concern about nasty odors nedwstrial plants, agricultural installations, laitidf
sites or wastewater facilities gives rise to thelamentation of environmental policies in various
countries, with the aim of safeguarding or resigtime quality of the natural surroundings. In orter
assess and to monitor the state of the environimethiis field, and also to suggest odor abatement
techniques, it is important to have at one's digpesgitable means of objective measurement and
inspection of environmental odors.

Since a few years, an intermediate and very atbetéchnique is more and more used to identify and
to monitor odor phenomena : the "electronic nosetually, environment is often mentioned among
the numerous applications of e-noses. However,tipis of measurement of odor annoyance in the
field remains exceptional.

Applications of this technique are almost restddie food and agricultural emissions [Nexyad, 1995]
To date, the running studies related to the usalatftronic noses in the environment are focused on
the detection of some specific compounds, suchadson monoxide in ambient air, or for domestic
use [Patissier, 1996] or hydrogen sulfide [Falcaateal., 1990].

Most of these studies however concern the sensivices able to detect the specific compound
(sometimes non odorous, such as CO), but not raallglectronic nose, with an array of sensors, and
a pattern recognition engine.

Some other research works involve the use of e-farsthe measurement of a group of compounds,
such as VOC's [Lorans, 1995] or hazardous orgagpours [Hierlemann et al., 1995], but the authors
unanimously admit that the problem is complex.

Finally, very few studies are devoted to environtakmpplications in the field. All of them are
restricted to the identification of very specifidars, chiefly at the emission, just near the saufbe
majority of them apply the electronic nose to tlededtion of hazardous compounds or of olfactive
nuisance in the agricultural and the breeding segkdliott-Martin, 1994; Persaud et al., 1996].

To become a reality, the use of e-nose to assessdbr directly in the environment has first to
overcome two obstacles, at least : the improveroeaensors sensitivity in order to be able to detec



the very low concentration levels of odorous commusuin the atmosphere, and the understanding
and the control of the ambient parameters influemaenly temperature and humidity.

The purpose of the present work, indeed, is to éxairhe potential of e-nose technology for in situ
monitoring of olfactive pollution in the vicinityfandustrial plants. Although being an attractiveda
convenient solution, the use of commercially adddaelectronic noses was discarded for the reason
that they are not adapted to environmental comég:aMore particularly, actual e-nose instruments
are dedicated to lab applications, and they apmtiable; most of the time, they involve a sample
preparation technique, such as headspace, butfeeryare adapted to the handling of gaseous
atmospheres, on line or by sampling the air diyefitbm the environment; and lastly, although
measuring external parameters variations (tempersgnd humidity), they do not take them into
account in the discrimination procedure.

This paper wonders whether a multisensor arraysyst able to approach in situ odor assessment, in
spite of limitations due to ambient humidity anchpeerature.

2. Materials and methods

Artificial odors are prepared by injection 4 plhadlatile chemicals through the septum of a Tedlar®

bag filled with 40 | of ambient air. After the exaption of the liquids (Aldrich®, purity between

95% and 99.5%), the gaseous mixture is drawn actlosssensors chamber by a mini-pump.

Compounds found in typical olfactive pollution (detined by GC-MS) have been tested. Six

chemical families are represented : alcohol (n+afda ester (butyl acetate), amine (n-butylamine),

aldehyde (decanal), cetone (6-methyl-5-hepten-2-ané sulfide (methyl sulfide).

Real atmosphere from the environment (in this ¢asa animal fat treatment) are sampled in Tetllar

bag without direct contact of pumping.

As the purpose of this experiments is to point thiet external parameters influence on the sensors

signals and on the PARC, we don't control the awrpental conditions :

- mixtures prepared with outside air with humidityntent depending on meteorological conditions,

- laboratory atmosphere close to the real milieorse (opened windows, no constant room
temperature),

- no temperature regulation of the sensors chamber.

Only the reference air is a bit more controlledry dir bubbling into saturated salt water (KCI, in

melted ice).

A sensor array consisting of 12 commercial tin exghs sensors (Figaro Engineering Inc.) are sealed

in 6 dm3 perspex cubic chamber. Like the other ¢baimsensors (conductor polymers

[Persaud, 1992], SAW and BAW with polymer or lip@stive films, electrochemical fuel cells...), tin

oxide sensors have a lot of disadvantages : pability, low sensitivity, short life time, tempetae

and humidity sensitivity, drift, poisoning effecspw response times... The more important one for

environmental measurement is the high sensitiaityumidity.

The choice of the Snensors results of the best compromise. Their gr@akr consumption is a

bad point but they are easily available, robust Emldistrially produced (better interchangeability).

Among this twelve sensors, two are specific tolthmidity sensing (TGS 883 and TGS 2180).

Moreover, a temperature sensor and a capacitivediyraensor are mounted into the chamber.

The sensor resistance is measured by a computérolbedh multiplexed system (HP 3421A). A

constant power voltage is supplied to the sens@atels. A home-made software written in

Labwindows provides the data acquisition and disptaal time graphic). Two commercial software

package (Statistica and Matlab) are used to prabesdata.

The experimental procedure generally consists adifeg alternatively the reference air and the

gaseous sample into the sensors using a threealasy, keeping a constant 2000ml/min flow rate.

The samples were presented in random order dunneg weeks and at least six replicates were done

for each compounds.

3. Results and discussion



3.1.Humidity and ambient temperature influencer@ndensor signals

The presence of water vapour is known to causesmatic decrease of the Syg€ensors resistance.
Two mechanisms could explain this influence : tiesakiation of the water molecule into hydroxyl
species which act as electron donors [McAleer et1887 and 1988] and the creation of lattice
vacancies by the reaction of the hydrogen atonjymed from the water dissociation, with oxygen
lattice atoms [Vlachos, 1995].

Our goal is not to understand the theory of thoselanisms but only to show the consequences of
the water influence on an environmental odor resp@nd how to take this effect into account.

The odorous mixture generated by any industriar@umay exhibit a water content ranging from
near zero to about saturation. Consequently, th@ceaductor resistance variation is modified or
even reversed. Figure 1 and 2 show time - respomses for four sensors for animal fat treatment
odor. The right scale indicates the relative hutpiglalue. The odor, in the two figures, comes from
the same source but the sampling date is differedtthe external conditions as well.

In this case, the reference air is the lab amlzent

With a 28% to 25% relative humidity variation, &®wn in figure 1, the signal exhibit a decrease due
to the animal fat odor, like usual with reducingsgg But with a 20% to 15% relative humidity
variation (figure 2), the sensors resistance vianabor the same odor (same olfactive perceptiom) a
with same temperature and flow conditions are ®aekr This unexpected increase can be explain by
the humidity value.

Indeed, in the absence of an odor, a diminutioadsforbed water on the Snp€eramics is known to
increase its resistance. Its appears that the lagi$onoisture can dominate the resistivity behavaur
the sensors [Vlachos, 1993]. Precisely, the humibds a higher negative variation and the final
value is lower. This experiment proves that iths@utely necessary to take the water contentef th
samples into account when interpreting the serrssronses data.

The sensors signals are also strongly dependehedemperature. This parameter is involved in the
kinetics of the chemical processes on the oxides@ly, 1991 ; McAleer et al, 1988 ]. That's why a

voltage is applied to a inside heater resistandeeép the sensor at a high fixed temperature (@roun

400°C). A change of the gas flow or of the surraogdatmosphere temperature can disturb the
temperature of the semiconductor surface and hitveceonductance value.

Figure 3 shows the sensors signals fluctuationstdule change of the array chamber temperature.
However, this parameter is not so important thamitdity. The temperature control is easier [Jonda,

1996] than the humidity one because it is a paramehich doesn't depend on the odor quality but

only to the external conditions.

For the further experiments, the gas flow is kdptha same fixed level before and during the odor
sensing. Though, the temperature in the labordtangs on the weather.

3.2. Effect of humidity on PARC results

Data preprocessing

The selection of the data preprocessing algoritlsrasn important stage. Various algorithms have
been investigated (resistance differencgRRfractional resistance change,fR/R,, normalised

fractional resistance change), wherg R are the resistance's in air or gas respectividlg best
classification results are obtained with the norseal fractional resistance change :

1 2
z— [ J

wheren is the number of sensors.



This choice was foreseeable since this parametlkenosin to nearly remove the gas concentration
linear dependence [Gardner, 1991; Gardner, 199@].tke olfactive annoyance recognition, the
sensors array must be able to differentiate smea@fnission mixtures even over a range of
concentrations. However, for most of the odors,dbrecentration-response curves are non-linear and
therefore the patterns for individual chemicals robgnge with concentration [Persaud, 1996].

Here, the injection of 4pl of liquid chemicals irD 4 bag don't produce the same gaseous
concentration for each component (various volgtdind liquid density) and for the six same samples
(various lab temperature, injected volume and lwdgme errors).

Furthermore, to perform the pattern recognitioms, ghevious values are scaled (Y-Ymin/Ymax-Ymin)
so that the response of each sensor has a valuedye0 and 1.

Principal component analysis (PCA)

PCA is a well-known linear unsupervised patterrogzition technique [Everitt, 1994]. Due to the use
of dilute individual components, the assumptioradinear concentration-dependent response can be
made. The purpose is to reduce the multidimensiynail a problem into two or so dimensions. The
12 original variables (sensors responses) are ewdbio find a new group of variables called the
principal components.

Figures 4a and 4b show the plot of the first twm@pal components (factor 1 and factor 2) for the
sensors responses to 3 sets of compounds. 908 whtiance within the data is contained in th&t fir
two principal components.

Plot 4a shows a good separation of data into tthistenct groups that corresponds to each of theethr
set of compounds.

In the next plot b, two other sensors data have bdded, namely the responses of TGS 883 and TGS
2180. This sensors are excessively sensitive terwaipour. In this case the obtained separatios doe
not match the expected one. Five groups can berdied. The previous "sul" group is splitted and a
new one is formed by "but6-onel-one2".

In fact, further investigations show that the twddigional clusters are due to distinct water
conditions. The water content is represented by fthetional absolute humidity change ([AH-
AHg)/AH, where AH, AR are the asolute humidity in the array chamber whth odor or with the
reference air respectively).

One sul group has a water range between 0.2 antién3he other one has a lower water range. The
three data of the new group (but6-onel-one2) hass#ime water value. Within the "one3-4-5-6"
group, one 6 has a positive water value and itdeerseparated from the three other ones.

In the end, factor 2 could describe the water patam 0.1 to the left, O in the middle and negativ
value to the right. Although factor 1 (here vertigaepresented) reflects well the composition
heterogeneity of samples, the scatter along factée&ns more due to water content : the water
parameter varying from 0.1 to negative values fribva left to the right of the axis. Indeed, the
addition of two water sensitive sensors has poioigidthe importance of the external conditions on
the PCA results.

Consequently, the data separation is not only dube nature of compounds but also to the range of
humidity.

An other example proving that the variability ofetlexperimental conditions disturbs the PCA
classification results is shown in figure 5. Indeie PCA on six samples of six compounds (without
the data of TGS 2180 and TGS 883) under variousiditynlevels reveals the difficulties in
separating out the six classes of compounds.

This expected result is still due to the changthefsensor signal pattern of a given compound when
external conditions varies.

Artificial neural network (ANN)



Unlike PCA, the neural network is a non linear sujged pattern recognition technique [Baughman
et al, 1995]. The major advantage of a non linéassification technique is that the data can be non
linear. It is commonly the case of environmentabrad Furthermore, the second fundamental
difference is that there is an supervised learstage.

A three layer network, using back-propagation obex learning rule, is built. There are 12 elements
in the input layer (12 sensors signals), 4 elementbe hidden layer and six elements in the output
layer representing the six odor classes. The maratfitransfer function is log sigmoid. Trainingeim
is lowered thanks to an adaptive learning rate.@5,0a learning increase of 1.05, a learning deerea
of 0.7 and a momentum term of 0.95.

A batching operation (all the input vectors simoéiausly presented to the network) is applied. For
the training, there are a maximum of 5 input vesfor each of the six compounds.

During the training stage, the data from known coumgls are trained onto target outputs, coded such
that a "1" is present on a given output only whies ¢orresponding compound is presented to the
network (e.g. output 1=[1 0 0 0 0 0]) (see tabl@he process is continually repeated until thelfina
error (the error goal) between the target valuesthe actual values is less then 0.001.

Table 2a shows the outputs of the network aftetrdiaing with all 30 input vectors (6 compounds X

5). In fact, these 30 vectors represent 30 expertisngone under uncontrolled external conditions and
thus under various humidity levels.

After the network learning step, with a training sé odors signals under any humidity levels, the

network should be able to recognise new or "testhmounds (6 compounds x 1), this is the

validation step. Table 2b shows that the compoanesvell identified.

The same operation is performed with the previauspound, but this time, the training was done
only with some of the thirty input vectors (tabla)3 those with an absolute humidity level (AH)
below 3.

The "test" compounds are the ones obtained witlhwanidity level above 3. Table 3b shows the
unfortunate results of the recognition. A trainiwgh a set of odor data obtained in a particular
condition don't allow a good classification of nedor data obtained in an other particular condition
Thus in this case the ANN results are disturbethbywater content. But it worth to be noticed (ésbl
2a and 2b) that if the network learns the samesodnder a lot of various situations (drift, humydlit
temperature,...) it can easy recognise an odorrundpecific state. This pattern recognition teghai

is more able than the PCA to classify and to remmgidorous mixtures under various external
conditions. Therefore, ANN seems more suitableoftactive pollution recognition. But the network
training with odor from different industrial souscand under various conditions takes a considerable
amount of time. Furthermore, it assumes that th@,Sensors array remains unchanged!

4. Conclusions

These results confirm the bad effect of the humpiditd temperature fluctuations on the tin oxide
sensors responses. Despite this well-known conistiatathe consequences for in situ olfactive

annoyance measurement is not so dramatic thenopieguppose. Even with non fixed experimental
conditions, near the ambient atmosphere, a discaticin of various single odors is possible.

Furthermore, the six single compounds may be disodated from each other even if their own

concentration varies.

Indeed, we pointed out the importance of using dapted pattern recognition engine as well as a
previous data pre-processing. A supervised noratinechnique (ANN, backpropagation) is able to

classify all the test samples for any experimetatditions. In this case, a good recognition is
realised despite the humidity influence on the sensignals.

However, the in situ olfactive pollution assessmeitith an Sn@ sensors array and a PARC remains a
challenge.

The nature, the number and the concentration df eampounds making up a complex mixture such
as olfactive pollution can change from day to dapehding, for example, of the industrial process.



But, even if the mixture changes, the source issree and the annoyance perceived always comes
from this typical source! How could the sensorsawarrecognise this source? Maybe with a very
intensive supervised training of the data recognitiFurthermore, for an objective olfactive
annoyance measurement, they are still other liroitatdue to the SnOsensors itself, e.g. low
sensitivity compared to the human nose one andltoet life time. Nevertheless, these results are
promising for in situ objective malodors recognitid-urther investigations are underway to improve
in situ measurement always by keeping sensorsdiimits in mind. There are focused on the data
analysis (e.g. training with real malodors undeniows ambient conditions, testing other techniques
like nonsupervised non-linear technigues Sammon)napm on the experimental conditions
(e.g. improvement of the temperature regulations).
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Fig. 1. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from
28%to 25% (right scale).
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Fig. 2. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from

20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity
value.
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber
temperature variations (right scale).
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds.
(water=[ (AH-AHg)/AH.] , AH: absolute humidity)
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors
sensitive to water vapour) to 6 compounds under various humidity levels.



Table 1. Target outputs for the network trainingf

compounds

outputs|butyl acetat¢ n-butanpl n-butylamine methylsul*ide 6-methyl-5-hepten-2-o0
output 1 1.000 0.000 0.000 0.000 0.000 0.000
output 2 0.000 1.000 0.000 0.000 0.000 0.000
output 3 0.000 0.000 1.000 0.000 0.000 0.000
output 4 0.000 0.000 0.000 1.000 0.000 0.000
output 5 0.000 0.000 0.000 0.000 1.000 0.000

output § 0.000 0.000 0.000 0.000 0.000 1.000




Table 2a.Results of the training with various humidity lé&véor all compounds

Network outputs

compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0994 0997 099% 0999 0597 0000 0.000 0.000000.00.000 0.000 0.004 0.000 0.001 O0p0O 0000 0.000 0.000 00.0m00¢ 0.003 0.003 0.005 0.003 0.p01 0.000 0.000 0.000 0.0m00(
output 2 0.000 0.000 0.000 0.000 0.p00 0.999 0.998 0.996940.90.992 0.005 0.000 0.008 0.001 0p05 0.000 0.000 0.000 00.0m00¢ 0.000 0.000 0.000 0.000 0.00 0.001 0.00 0.000 0.000OO0Y
output 3 0.004 0.002 0.003 0.002 0.p01 0.000 0.001 0.002000.00.00]1 0.999 0.994 0.998 0996 0p97 0,003 0.001 0.002 20.00003 0.000 0.000 0.000 0.000 0.00 0.000 0.00 0.000 0.0000Q
output 4 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000000.00.00¢0 0.001 0.000 0.001 0.000 0p0O5 0.998 0.997 0.998 80.9999¢ 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000 0.0mOOQ
output 5 0.001 0.003 0.001 0.006 0.p04 0.000 0.000 0.000000.00.00¢0 0.000 0.000 0.000 0.000 0p00 0.000 0.000 0.000 00.0m00¢ 0.998 0.998 0.998 0.999 091 0.000 0.006 0.002 0.00003
output 6 0.000 0.000 0.000 0.000 0.p00 0.000 0.001 0.001020.00.002 0.002 0.000 0.001 0.000 0fp05 0.001 0.000 0.001 00.0000] 0.001 0.003 0.000 0.000 0.07 0.999 0993 0.999 1.0009%




Table 2b. Validation results with the "test" compounds

classification
results

Network outputs
compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide| atedt 6-methyl-5-hep.
output 1 0.994 0.000 0.063 0.000 0.003 0.000
output 2 0.000 0.991 0.000 0.000 0.000 0.000
output 3 0.003 0.004 0.002 0.000 0.000
output 4 0.000 0.000 0.998 0.000 0.000
output 5 0.001 0.000 0.000 0.996 0.010
output 6 0.000 0.001 0.000 0.010 0.995




Table 3a.Results of the training for compounds with absoluimidity level < 3(g water/kg air)

Network outputs
compounds
outputs butyl acetate n-butanol | butylamine methylsulfide decanal 6-methyl-5-hepten-2-one
outputl 0.991 0.995 0.99¢ 0.000 0.000 0.01 0.000 0.000 00j00.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000
output2 0.000 0.000 0.00 0.992 0.993 0.007 0.004 0.003 40/00.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000
output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 00{00.000 0.000 0.000 0.0¢0 0.000  0.000 0.000 0.000
output4 0.000 0.000 0.00 0.003 0.¢04 0.00! 0.997 0.998 70|90.000 0.000 0.000 0.0f1 0.000 0.000 0.000 0.001L
output5 0.004 0.005 0.004 0.000 0.000 0.00 0.000 0.000 00]j00.999 0.998 0.993 0.9¢97 0.000 0.000 0.001 0.006
output6 0.000 0.000 0.00 0.002 0.003 0.00 0.000 0.000 00j00.001 0.001 0.002 0.002 0.999 0.999 0.996 0.990




Table 3b. Validation results for "test" compounds with akgelhumidity level >3 (g water/kg air)

Networks outputs

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

outputl 0.990 0.983 0.992 0.000 . . X . 0.000 0.000  0.00{ 0.001 . 0.000
output2 0.000 0.000 0.000 . 0.996 i . | 0.005 0.005  0.004 0.000
output3 0.041 0.003 0.0000  0.000  0.004 0.000
output4 0.000 0.000 0.000 0993  0.994  0.99 0.000
outputs 0.001 0.000 0.004 0.000 0.000  0.00 0.978
outputé 0.000 0.000 0.000 0.000 0.000  0.00 0.006

classification
results

nal
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Abstract

Synthetic mixtures, as well as real industrial eiiss sampled in Tedfarbags, are passed through a 12
inorganic semiconductors array (Figaro trademarke experiments are performed in the laboratorgearly
field conditions. The influence of external factossich as humidity content of the malodorous, ansbnsors
signals have been pointed out. Humidity disturkes thsults of the pattern recognition techniquescitral
component analysis and artificial neural networlNBB with back-propagation model have been testedNA
allows a good recognition of 6 "test" chemicalsreyfewater content of the mixtures don't remainedstant
during the experiments. The use of Smiultisensors for in situ olfactive pollution asseent is still a challenge
but these results give hope and motivation fomidéal investigations.

keywords : olfactive pollution detector, tin oxide semicondugtpattern recognition
1. Introduction

The growing public concern about nasty odors nedwstrial plants, agricultural installations, laitidf
sites or wastewater facilities gives rise to thelamentation of environmental policies in various
countries, with the aim of safeguarding or resigtime quality of the natural surroundings. In orter
assess and to monitor the state of the environimethiis field, and also to suggest odor abatement
techniques, it is important to have at one's digpesgitable means of objective measurement and
inspection of environmental odors.

Since a few years, an intermediate and very atbetéchnique is more and more used to identify and
to monitor odor phenomena : the "electronic nosetually, environment is often mentioned among
the numerous applications of e-noses. However,tipis of measurement of odor annoyance in the
field remains exceptional.

Applications of this technique are almost restddie food and agricultural emissions [Nexyad, 1995]
To date, the running studies related to the usalatftronic noses in the environment are focused on
the detection of some specific compounds, suchadson monoxide in ambient air, or for domestic
use [Patissier, 1996] or hydrogen sulfide [Falcaateal., 1990].

Most of these studies however concern the sensivices able to detect the specific compound
(sometimes non odorous, such as CO), but not raallglectronic nose, with an array of sensors, and
a pattern recognition engine.

Some other research works involve the use of e-farsthe measurement of a group of compounds,
such as VOC's [Lorans, 1995] or hazardous orgagpours [Hierlemann et al., 1995], but the authors
unanimously admit that the problem is complex.

Finally, very few studies are devoted to environtakmpplications in the field. All of them are
restricted to the identification of very specifidars, chiefly at the emission, just near the saufbe
majority of them apply the electronic nose to tlededtion of hazardous compounds or of olfactive
nuisance in the agricultural and the breeding segkdliott-Martin, 1994; Persaud et al., 1996].

To become a reality, the use of e-nose to assessdbr directly in the environment has first to
overcome two obstacles, at least : the improveroeaensors sensitivity in order to be able to detec



the very low concentration levels of odorous commusuin the atmosphere, and the understanding
and the control of the ambient parameters influemaenly temperature and humidity.

The purpose of the present work, indeed, is to éxairhe potential of e-nose technology for in situ
monitoring of olfactive pollution in the vicinityfandustrial plants. Although being an attractiveda
convenient solution, the use of commercially adddaelectronic noses was discarded for the reason
that they are not adapted to environmental comég:aMore particularly, actual e-nose instruments
are dedicated to lab applications, and they apmtiable; most of the time, they involve a sample
preparation technique, such as headspace, butfeeryare adapted to the handling of gaseous
atmospheres, on line or by sampling the air diyefitbm the environment; and lastly, although
measuring external parameters variations (tempersgnd humidity), they do not take them into
account in the discrimination procedure.

This paper wonders whether a multisensor arraysyst able to approach in situ odor assessment, in
spite of limitations due to ambient humidity anchpeerature.

2. Materials and methods

Artificial odors are prepared by injection 4 plhadlatile chemicals through the septum of a Tedlar®

bag filled with 40 | of ambient air. After the exaption of the liquids (Aldrich®, purity between

95% and 99.5%), the gaseous mixture is drawn actlosssensors chamber by a mini-pump.

Compounds found in typical olfactive pollution (detined by GC-MS) have been tested. Six

chemical families are represented : alcohol (n+afda ester (butyl acetate), amine (n-butylamine),

aldehyde (decanal), cetone (6-methyl-5-hepten-2-ané sulfide (methyl sulfide).

Real atmosphere from the environment (in this ¢asa animal fat treatment) are sampled in Tetllar

bag without direct contact of pumping.

As the purpose of this experiments is to point thiet external parameters influence on the sensors

signals and on the PARC, we don't control the awrpental conditions :

- mixtures prepared with outside air with humidityntent depending on meteorological conditions,

- laboratory atmosphere close to the real milieorse (opened windows, no constant room
temperature),

- no temperature regulation of the sensors chamber.

Only the reference air is a bit more controlledry dir bubbling into saturated salt water (KCI, in

melted ice).

A sensor array consisting of 12 commercial tin exghs sensors (Figaro Engineering Inc.) are sealed

in 6 dm3 perspex cubic chamber. Like the other ¢baimsensors (conductor polymers

[Persaud, 1992], SAW and BAW with polymer or lip@stive films, electrochemical fuel cells...), tin

oxide sensors have a lot of disadvantages : pability, low sensitivity, short life time, tempetae

and humidity sensitivity, drift, poisoning effecspw response times... The more important one for

environmental measurement is the high sensitiaityumidity.

The choice of the Snensors results of the best compromise. Their gr@akr consumption is a

bad point but they are easily available, robust Emldistrially produced (better interchangeability).

Among this twelve sensors, two are specific tolthmidity sensing (TGS 883 and TGS 2180).

Moreover, a temperature sensor and a capacitivediyraensor are mounted into the chamber.

The sensor resistance is measured by a computérolbedh multiplexed system (HP 3421A). A

constant power voltage is supplied to the sens@atels. A home-made software written in

Labwindows provides the data acquisition and disptaal time graphic). Two commercial software

package (Statistica and Matlab) are used to prabesdata.

The experimental procedure generally consists adifeg alternatively the reference air and the

gaseous sample into the sensors using a threealasy, keeping a constant 2000ml/min flow rate.

The samples were presented in random order dunneg weeks and at least six replicates were done

for each compounds.

3. Results and discussion



3.1.Humidity and ambient temperature influencer@ndensor signals

The presence of water vapour is known to causesmatic decrease of the Syg€ensors resistance.
Two mechanisms could explain this influence : tiesakiation of the water molecule into hydroxyl
species which act as electron donors [McAleer et1887 and 1988] and the creation of lattice
vacancies by the reaction of the hydrogen atonjymed from the water dissociation, with oxygen
lattice atoms [Vlachos, 1995].

Our goal is not to understand the theory of thoselanisms but only to show the consequences of
the water influence on an environmental odor resp@nd how to take this effect into account.

The odorous mixture generated by any industriar@umay exhibit a water content ranging from
near zero to about saturation. Consequently, th@ceaductor resistance variation is modified or
even reversed. Figure 1 and 2 show time - respomses for four sensors for animal fat treatment
odor. The right scale indicates the relative hutpiglalue. The odor, in the two figures, comes from
the same source but the sampling date is differedtthe external conditions as well.

In this case, the reference air is the lab amlzent

With a 28% to 25% relative humidity variation, &®wn in figure 1, the signal exhibit a decrease due
to the animal fat odor, like usual with reducingsgg But with a 20% to 15% relative humidity
variation (figure 2), the sensors resistance vianabor the same odor (same olfactive perceptiom) a
with same temperature and flow conditions are ®aekr This unexpected increase can be explain by
the humidity value.

Indeed, in the absence of an odor, a diminutioadsforbed water on the Snp€eramics is known to
increase its resistance. Its appears that the lagi$onoisture can dominate the resistivity behavaur
the sensors [Vlachos, 1993]. Precisely, the humibds a higher negative variation and the final
value is lower. This experiment proves that iths@utely necessary to take the water contentef th
samples into account when interpreting the serrssronses data.

The sensors signals are also strongly dependehedemperature. This parameter is involved in the
kinetics of the chemical processes on the oxides@ly, 1991 ; McAleer et al, 1988 ]. That's why a

voltage is applied to a inside heater resistandeeép the sensor at a high fixed temperature (@roun

400°C). A change of the gas flow or of the surraogdatmosphere temperature can disturb the
temperature of the semiconductor surface and hitveceonductance value.

Figure 3 shows the sensors signals fluctuationstdule change of the array chamber temperature.
However, this parameter is not so important thamitdity. The temperature control is easier [Jonda,

1996] than the humidity one because it is a paramehich doesn't depend on the odor quality but

only to the external conditions.

For the further experiments, the gas flow is kdptha same fixed level before and during the odor
sensing. Though, the temperature in the labordtangs on the weather.

3.2. Effect of humidity on PARC results

Data preprocessing

The selection of the data preprocessing algoritlsrasn important stage. Various algorithms have
been investigated (resistance differencgRRfractional resistance change,fR/R,, normalised

fractional resistance change), wherg R are the resistance's in air or gas respectividlg best
classification results are obtained with the norseal fractional resistance change :

1 2
z— [ J

wheren is the number of sensors.



This choice was foreseeable since this parametlkenosin to nearly remove the gas concentration
linear dependence [Gardner, 1991; Gardner, 199@].tke olfactive annoyance recognition, the
sensors array must be able to differentiate smea@fnission mixtures even over a range of
concentrations. However, for most of the odors,dbrecentration-response curves are non-linear and
therefore the patterns for individual chemicals robgnge with concentration [Persaud, 1996].

Here, the injection of 4pl of liquid chemicals irD 4 bag don't produce the same gaseous
concentration for each component (various volgtdind liquid density) and for the six same samples
(various lab temperature, injected volume and lwdgme errors).

Furthermore, to perform the pattern recognitioms, ghevious values are scaled (Y-Ymin/Ymax-Ymin)
so that the response of each sensor has a valuedye0 and 1.

Principal component analysis (PCA)

PCA is a well-known linear unsupervised patterrogzition technique [Everitt, 1994]. Due to the use
of dilute individual components, the assumptioradinear concentration-dependent response can be
made. The purpose is to reduce the multidimensiynail a problem into two or so dimensions. The
12 original variables (sensors responses) are ewdbio find a new group of variables called the
principal components.

Figures 4a and 4b show the plot of the first twm@pal components (factor 1 and factor 2) for the
sensors responses to 3 sets of compounds. 908 whtiance within the data is contained in th&t fir
two principal components.

Plot 4a shows a good separation of data into tthistenct groups that corresponds to each of theethr
set of compounds.

In the next plot b, two other sensors data have bdded, namely the responses of TGS 883 and TGS
2180. This sensors are excessively sensitive terwaipour. In this case the obtained separatios doe
not match the expected one. Five groups can berdied. The previous "sul" group is splitted and a
new one is formed by "but6-onel-one2".

In fact, further investigations show that the twddigional clusters are due to distinct water
conditions. The water content is represented by fthetional absolute humidity change ([AH-
AHg)/AH, where AH, AR are the asolute humidity in the array chamber whth odor or with the
reference air respectively).

One sul group has a water range between 0.2 antién3he other one has a lower water range. The
three data of the new group (but6-onel-one2) hass#ime water value. Within the "one3-4-5-6"
group, one 6 has a positive water value and itdeerseparated from the three other ones.

In the end, factor 2 could describe the water patam 0.1 to the left, O in the middle and negativ
value to the right. Although factor 1 (here vertigaepresented) reflects well the composition
heterogeneity of samples, the scatter along factée&ns more due to water content : the water
parameter varying from 0.1 to negative values fribva left to the right of the axis. Indeed, the
addition of two water sensitive sensors has poioigidthe importance of the external conditions on
the PCA results.

Consequently, the data separation is not only dube nature of compounds but also to the range of
humidity.

An other example proving that the variability ofetlexperimental conditions disturbs the PCA
classification results is shown in figure 5. Indeie PCA on six samples of six compounds (without
the data of TGS 2180 and TGS 883) under variousiditynlevels reveals the difficulties in
separating out the six classes of compounds.

This expected result is still due to the changthefsensor signal pattern of a given compound when
external conditions varies.

Artificial neural network (ANN)



Unlike PCA, the neural network is a non linear sujged pattern recognition technique [Baughman
et al, 1995]. The major advantage of a non linéassification technique is that the data can be non
linear. It is commonly the case of environmentabrad Furthermore, the second fundamental
difference is that there is an supervised learstage.

A three layer network, using back-propagation obex learning rule, is built. There are 12 elements
in the input layer (12 sensors signals), 4 elementbe hidden layer and six elements in the output
layer representing the six odor classes. The maratfitransfer function is log sigmoid. Trainingeim
is lowered thanks to an adaptive learning rate.@5,0a learning increase of 1.05, a learning deerea
of 0.7 and a momentum term of 0.95.

A batching operation (all the input vectors simoéiausly presented to the network) is applied. For
the training, there are a maximum of 5 input vesfor each of the six compounds.

During the training stage, the data from known coumgls are trained onto target outputs, coded such
that a "1" is present on a given output only whies ¢orresponding compound is presented to the
network (e.g. output 1=[1 0 0 0 0 0]) (see tabl@he process is continually repeated until thelfina
error (the error goal) between the target valuesthe actual values is less then 0.001.

Table 2a shows the outputs of the network aftetrdiaing with all 30 input vectors (6 compounds X

5). In fact, these 30 vectors represent 30 expertisngone under uncontrolled external conditions and
thus under various humidity levels.

After the network learning step, with a training sé odors signals under any humidity levels, the

network should be able to recognise new or "testhmounds (6 compounds x 1), this is the

validation step. Table 2b shows that the compoanesvell identified.

The same operation is performed with the previauspound, but this time, the training was done
only with some of the thirty input vectors (tabla)3 those with an absolute humidity level (AH)
below 3.

The "test" compounds are the ones obtained witlhwanidity level above 3. Table 3b shows the
unfortunate results of the recognition. A trainiwgh a set of odor data obtained in a particular
condition don't allow a good classification of nedor data obtained in an other particular condition
Thus in this case the ANN results are disturbethbywater content. But it worth to be noticed (ésbl
2a and 2b) that if the network learns the samesodnder a lot of various situations (drift, humydlit
temperature,...) it can easy recognise an odorrundpecific state. This pattern recognition teghai

is more able than the PCA to classify and to remmgidorous mixtures under various external
conditions. Therefore, ANN seems more suitableoftactive pollution recognition. But the network
training with odor from different industrial souscand under various conditions takes a considerable
amount of time. Furthermore, it assumes that th@,Sensors array remains unchanged!

4. Conclusions

These results confirm the bad effect of the humpiditd temperature fluctuations on the tin oxide
sensors responses. Despite this well-known conistiatathe consequences for in situ olfactive

annoyance measurement is not so dramatic thenopieguppose. Even with non fixed experimental
conditions, near the ambient atmosphere, a discaticin of various single odors is possible.

Furthermore, the six single compounds may be disodated from each other even if their own

concentration varies.

Indeed, we pointed out the importance of using dapted pattern recognition engine as well as a
previous data pre-processing. A supervised noratinechnique (ANN, backpropagation) is able to

classify all the test samples for any experimetatditions. In this case, a good recognition is
realised despite the humidity influence on the sensignals.

However, the in situ olfactive pollution assessmeitith an Sn@ sensors array and a PARC remains a
challenge.

The nature, the number and the concentration df eampounds making up a complex mixture such
as olfactive pollution can change from day to dapehding, for example, of the industrial process.



But, even if the mixture changes, the source issree and the annoyance perceived always comes
from this typical source! How could the sensorsawarrecognise this source? Maybe with a very
intensive supervised training of the data recognitiFurthermore, for an objective olfactive
annoyance measurement, they are still other liroitatdue to the SnOsensors itself, e.g. low
sensitivity compared to the human nose one andltoet life time. Nevertheless, these results are
promising for in situ objective malodors recognitid-urther investigations are underway to improve
in situ measurement always by keeping sensorsdiimits in mind. There are focused on the data
analysis (e.g. training with real malodors undeniows ambient conditions, testing other techniques
like nonsupervised non-linear technigues Sammon)napm on the experimental conditions
(e.g. improvement of the temperature regulations).
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Fig. 1. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from
28%to 25% (right scale).
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Fig. 2. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from

20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity
value.
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber
temperature variations (right scale).
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds.
(water=[ (AH-AHg)/AH.] , AH: absolute humidity)
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors
sensitive to water vapour) to 6 compounds under various humidity levels.



Table 1. Target outputs for the network trainingf

compounds

outputs|butyl acetat¢ n-butanpl n-butylamine methylsul*ide 6-methyl-5-hepten-2-o0
output 1 1.000 0.000 0.000 0.000 0.000 0.000
output 2 0.000 1.000 0.000 0.000 0.000 0.000
output 3 0.000 0.000 1.000 0.000 0.000 0.000
output 4 0.000 0.000 0.000 1.000 0.000 0.000
output 5 0.000 0.000 0.000 0.000 1.000 0.000

output § 0.000 0.000 0.000 0.000 0.000 1.000




Table 2a.Results of the training with various humidity lé&véor all compounds

Network outputs

compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0994 0997 099% 0999 0597 0000 0.000 0.000000.00.000 0.000 0.004 0.000 0.001 O0p0O 0000 0.000 0.000 00.0m00¢ 0.003 0.003 0.005 0.003 0.p01 0.000 0.000 0.000 0.0m00(
output 2 0.000 0.000 0.000 0.000 0.p00 0.999 0.998 0.996940.90.992 0.005 0.000 0.008 0.001 0p05 0.000 0.000 0.000 00.0m00¢ 0.000 0.000 0.000 0.000 0.00 0.001 0.00 0.000 0.000OO0Y
output 3 0.004 0.002 0.003 0.002 0.p01 0.000 0.001 0.002000.00.00]1 0.999 0.994 0.998 0996 0p97 0,003 0.001 0.002 20.00003 0.000 0.000 0.000 0.000 0.00 0.000 0.00 0.000 0.0000Q
output 4 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000000.00.00¢0 0.001 0.000 0.001 0.000 0p0O5 0.998 0.997 0.998 80.9999¢ 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000 0.0mOOQ
output 5 0.001 0.003 0.001 0.006 0.p04 0.000 0.000 0.000000.00.00¢0 0.000 0.000 0.000 0.000 0p00 0.000 0.000 0.000 00.0m00¢ 0.998 0.998 0.998 0.999 091 0.000 0.006 0.002 0.00003
output 6 0.000 0.000 0.000 0.000 0.p00 0.000 0.001 0.001020.00.002 0.002 0.000 0.001 0.000 0fp05 0.001 0.000 0.001 00.0000] 0.001 0.003 0.000 0.000 0.07 0.999 0993 0.999 1.0009%




Table 2b. Validation results with the "test" compounds

classification
results

Network outputs
compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide| atedt 6-methyl-5-hep.
output 1 0.994 0.000 0.063 0.000 0.003 0.000
output 2 0.000 0.991 0.000 0.000 0.000 0.000
output 3 0.003 0.004 0.002 0.000 0.000
output 4 0.000 0.000 0.998 0.000 0.000
output 5 0.001 0.000 0.000 0.996 0.010
output 6 0.000 0.001 0.000 0.010 0.995




Table 3a.Results of the training for compounds with absoluimidity level < 3(g water/kg air)

Network outputs
compounds
outputs butyl acetate n-butanol | butylamine methylsulfide decanal 6-methyl-5-hepten-2-one
outputl 0.991 0.995 0.99¢ 0.000 0.000 0.01 0.000 0.000 00j00.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000
output2 0.000 0.000 0.00 0.992 0.993 0.007 0.004 0.003 40/00.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000
output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 00{00.000 0.000 0.000 0.0¢0 0.000  0.000 0.000 0.000
output4 0.000 0.000 0.00 0.003 0.¢04 0.00! 0.997 0.998 70|90.000 0.000 0.000 0.0f1 0.000 0.000 0.000 0.001L
output5 0.004 0.005 0.004 0.000 0.000 0.00 0.000 0.000 00]j00.999 0.998 0.993 0.9¢97 0.000 0.000 0.001 0.006
output6 0.000 0.000 0.00 0.002 0.003 0.00 0.000 0.000 00j00.001 0.001 0.002 0.002 0.999 0.999 0.996 0.990




Table 3b. Validation results for "test" compounds with akgelhumidity level >3 (g water/kg air)

Networks outputs

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

outputl 0.990 0.983 0.992 0.000 . . X . 0.000 0.000  0.00{ 0.001 . 0.000
output2 0.000 0.000 0.000 . 0.996 i . | 0.005 0.005  0.004 0.000
output3 0.041 0.003 0.0000  0.000  0.004 0.000
output4 0.000 0.000 0.000 0993  0.994  0.99 0.000
outputs 0.001 0.000 0.004 0.000 0.000  0.00 0.978
outputé 0.000 0.000 0.000 0.000 0.000  0.00 0.006

classification
results

nal
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Abstract

Synthetic mixtures, as well as real industrial eiiss sampled in Tedfarbags, are passed through a 12
inorganic semiconductors array (Figaro trademarke experiments are performed in the laboratorgearly
field conditions. The influence of external factossich as humidity content of the malodorous, ansbnsors
signals have been pointed out. Humidity disturkes thsults of the pattern recognition techniquescitral
component analysis and artificial neural networlNBB with back-propagation model have been testedNA
allows a good recognition of 6 "test" chemicalsreyfewater content of the mixtures don't remainedstant
during the experiments. The use of Smiultisensors for in situ olfactive pollution asseent is still a challenge
but these results give hope and motivation fomidéal investigations.

keywords : olfactive pollution detector, tin oxide semicondugtpattern recognition
1. Introduction

The growing public concern about nasty odors nedwstrial plants, agricultural installations, laitidf
sites or wastewater facilities gives rise to thelamentation of environmental policies in various
countries, with the aim of safeguarding or resigtime quality of the natural surroundings. In orter
assess and to monitor the state of the environimethiis field, and also to suggest odor abatement
techniques, it is important to have at one's digpesgitable means of objective measurement and
inspection of environmental odors.

Since a few years, an intermediate and very atbetéchnique is more and more used to identify and
to monitor odor phenomena : the "electronic nosetually, environment is often mentioned among
the numerous applications of e-noses. However,tipis of measurement of odor annoyance in the
field remains exceptional.

Applications of this technique are almost restddie food and agricultural emissions [Nexyad, 1995]
To date, the running studies related to the usalatftronic noses in the environment are focused on
the detection of some specific compounds, suchadson monoxide in ambient air, or for domestic
use [Patissier, 1996] or hydrogen sulfide [Falcaateal., 1990].

Most of these studies however concern the sensivices able to detect the specific compound
(sometimes non odorous, such as CO), but not raallglectronic nose, with an array of sensors, and
a pattern recognition engine.

Some other research works involve the use of e-farsthe measurement of a group of compounds,
such as VOC's [Lorans, 1995] or hazardous orgagpours [Hierlemann et al., 1995], but the authors
unanimously admit that the problem is complex.

Finally, very few studies are devoted to environtakmpplications in the field. All of them are
restricted to the identification of very specifidars, chiefly at the emission, just near the saufbe
majority of them apply the electronic nose to tlededtion of hazardous compounds or of olfactive
nuisance in the agricultural and the breeding segkdliott-Martin, 1994; Persaud et al., 1996].

To become a reality, the use of e-nose to assessdbr directly in the environment has first to
overcome two obstacles, at least : the improveroeaensors sensitivity in order to be able to detec



the very low concentration levels of odorous commusuin the atmosphere, and the understanding
and the control of the ambient parameters influemaenly temperature and humidity.

The purpose of the present work, indeed, is to éxairhe potential of e-nose technology for in situ
monitoring of olfactive pollution in the vicinityfandustrial plants. Although being an attractiveda
convenient solution, the use of commercially adddaelectronic noses was discarded for the reason
that they are not adapted to environmental comég:aMore particularly, actual e-nose instruments
are dedicated to lab applications, and they apmtiable; most of the time, they involve a sample
preparation technique, such as headspace, butfeeryare adapted to the handling of gaseous
atmospheres, on line or by sampling the air diyefitbm the environment; and lastly, although
measuring external parameters variations (tempersgnd humidity), they do not take them into
account in the discrimination procedure.

This paper wonders whether a multisensor arraysyst able to approach in situ odor assessment, in
spite of limitations due to ambient humidity anchpeerature.

2. Materials and methods

Artificial odors are prepared by injection 4 plhadlatile chemicals through the septum of a Tedlar®

bag filled with 40 | of ambient air. After the exaption of the liquids (Aldrich®, purity between

95% and 99.5%), the gaseous mixture is drawn actlosssensors chamber by a mini-pump.

Compounds found in typical olfactive pollution (detined by GC-MS) have been tested. Six

chemical families are represented : alcohol (n+afda ester (butyl acetate), amine (n-butylamine),

aldehyde (decanal), cetone (6-methyl-5-hepten-2-ané sulfide (methyl sulfide).

Real atmosphere from the environment (in this ¢asa animal fat treatment) are sampled in Tetllar

bag without direct contact of pumping.

As the purpose of this experiments is to point thiet external parameters influence on the sensors

signals and on the PARC, we don't control the awrpental conditions :

- mixtures prepared with outside air with humidityntent depending on meteorological conditions,

- laboratory atmosphere close to the real milieorse (opened windows, no constant room
temperature),

- no temperature regulation of the sensors chamber.

Only the reference air is a bit more controlledry dir bubbling into saturated salt water (KCI, in

melted ice).

A sensor array consisting of 12 commercial tin exghs sensors (Figaro Engineering Inc.) are sealed

in 6 dm3 perspex cubic chamber. Like the other ¢baimsensors (conductor polymers

[Persaud, 1992], SAW and BAW with polymer or lip@stive films, electrochemical fuel cells...), tin

oxide sensors have a lot of disadvantages : pability, low sensitivity, short life time, tempetae

and humidity sensitivity, drift, poisoning effecspw response times... The more important one for

environmental measurement is the high sensitiaityumidity.

The choice of the Snensors results of the best compromise. Their gr@akr consumption is a

bad point but they are easily available, robust Emldistrially produced (better interchangeability).

Among this twelve sensors, two are specific tolthmidity sensing (TGS 883 and TGS 2180).

Moreover, a temperature sensor and a capacitivediyraensor are mounted into the chamber.

The sensor resistance is measured by a computérolbedh multiplexed system (HP 3421A). A

constant power voltage is supplied to the sens@atels. A home-made software written in

Labwindows provides the data acquisition and disptaal time graphic). Two commercial software

package (Statistica and Matlab) are used to prabesdata.

The experimental procedure generally consists adifeg alternatively the reference air and the

gaseous sample into the sensors using a threealasy, keeping a constant 2000ml/min flow rate.

The samples were presented in random order dunneg weeks and at least six replicates were done

for each compounds.

3. Results and discussion



3.1.Humidity and ambient temperature influencer@ndensor signals

The presence of water vapour is known to causesmatic decrease of the Syg€ensors resistance.
Two mechanisms could explain this influence : tiesakiation of the water molecule into hydroxyl
species which act as electron donors [McAleer et1887 and 1988] and the creation of lattice
vacancies by the reaction of the hydrogen atonjymed from the water dissociation, with oxygen
lattice atoms [Vlachos, 1995].

Our goal is not to understand the theory of thoselanisms but only to show the consequences of
the water influence on an environmental odor resp@nd how to take this effect into account.

The odorous mixture generated by any industriar@umay exhibit a water content ranging from
near zero to about saturation. Consequently, th@ceaductor resistance variation is modified or
even reversed. Figure 1 and 2 show time - respomses for four sensors for animal fat treatment
odor. The right scale indicates the relative hutpiglalue. The odor, in the two figures, comes from
the same source but the sampling date is differedtthe external conditions as well.

In this case, the reference air is the lab amlzent

With a 28% to 25% relative humidity variation, &®wn in figure 1, the signal exhibit a decrease due
to the animal fat odor, like usual with reducingsgg But with a 20% to 15% relative humidity
variation (figure 2), the sensors resistance vianabor the same odor (same olfactive perceptiom) a
with same temperature and flow conditions are ®aekr This unexpected increase can be explain by
the humidity value.

Indeed, in the absence of an odor, a diminutioadsforbed water on the Snp€eramics is known to
increase its resistance. Its appears that the lagi$onoisture can dominate the resistivity behavaur
the sensors [Vlachos, 1993]. Precisely, the humibds a higher negative variation and the final
value is lower. This experiment proves that iths@utely necessary to take the water contentef th
samples into account when interpreting the serrssronses data.

The sensors signals are also strongly dependehedemperature. This parameter is involved in the
kinetics of the chemical processes on the oxides@ly, 1991 ; McAleer et al, 1988 ]. That's why a

voltage is applied to a inside heater resistandeeép the sensor at a high fixed temperature (@roun

400°C). A change of the gas flow or of the surraogdatmosphere temperature can disturb the
temperature of the semiconductor surface and hitveceonductance value.

Figure 3 shows the sensors signals fluctuationstdule change of the array chamber temperature.
However, this parameter is not so important thamitdity. The temperature control is easier [Jonda,

1996] than the humidity one because it is a paramehich doesn't depend on the odor quality but

only to the external conditions.

For the further experiments, the gas flow is kdptha same fixed level before and during the odor
sensing. Though, the temperature in the labordtangs on the weather.

3.2. Effect of humidity on PARC results

Data preprocessing

The selection of the data preprocessing algoritlsrasn important stage. Various algorithms have
been investigated (resistance differencgRRfractional resistance change,fR/R,, normalised

fractional resistance change), wherg R are the resistance's in air or gas respectividlg best
classification results are obtained with the norseal fractional resistance change :

1 2
z— [ J

wheren is the number of sensors.



This choice was foreseeable since this parametlkenosin to nearly remove the gas concentration
linear dependence [Gardner, 1991; Gardner, 199@].tke olfactive annoyance recognition, the
sensors array must be able to differentiate smea@fnission mixtures even over a range of
concentrations. However, for most of the odors,dbrecentration-response curves are non-linear and
therefore the patterns for individual chemicals robgnge with concentration [Persaud, 1996].

Here, the injection of 4pl of liquid chemicals irD 4 bag don't produce the same gaseous
concentration for each component (various volgtdind liquid density) and for the six same samples
(various lab temperature, injected volume and lwdgme errors).

Furthermore, to perform the pattern recognitioms, ghevious values are scaled (Y-Ymin/Ymax-Ymin)
so that the response of each sensor has a valuedye0 and 1.

Principal component analysis (PCA)

PCA is a well-known linear unsupervised patterrogzition technique [Everitt, 1994]. Due to the use
of dilute individual components, the assumptioradinear concentration-dependent response can be
made. The purpose is to reduce the multidimensiynail a problem into two or so dimensions. The
12 original variables (sensors responses) are ewdbio find a new group of variables called the
principal components.

Figures 4a and 4b show the plot of the first twm@pal components (factor 1 and factor 2) for the
sensors responses to 3 sets of compounds. 908 whtiance within the data is contained in th&t fir
two principal components.

Plot 4a shows a good separation of data into tthistenct groups that corresponds to each of theethr
set of compounds.

In the next plot b, two other sensors data have bdded, namely the responses of TGS 883 and TGS
2180. This sensors are excessively sensitive terwaipour. In this case the obtained separatios doe
not match the expected one. Five groups can berdied. The previous "sul" group is splitted and a
new one is formed by "but6-onel-one2".

In fact, further investigations show that the twddigional clusters are due to distinct water
conditions. The water content is represented by fthetional absolute humidity change ([AH-
AHg)/AH, where AH, AR are the asolute humidity in the array chamber whth odor or with the
reference air respectively).

One sul group has a water range between 0.2 antién3he other one has a lower water range. The
three data of the new group (but6-onel-one2) hass#ime water value. Within the "one3-4-5-6"
group, one 6 has a positive water value and itdeerseparated from the three other ones.

In the end, factor 2 could describe the water patam 0.1 to the left, O in the middle and negativ
value to the right. Although factor 1 (here vertigaepresented) reflects well the composition
heterogeneity of samples, the scatter along factée&ns more due to water content : the water
parameter varying from 0.1 to negative values fribva left to the right of the axis. Indeed, the
addition of two water sensitive sensors has poioigidthe importance of the external conditions on
the PCA results.

Consequently, the data separation is not only dube nature of compounds but also to the range of
humidity.

An other example proving that the variability ofetlexperimental conditions disturbs the PCA
classification results is shown in figure 5. Indeie PCA on six samples of six compounds (without
the data of TGS 2180 and TGS 883) under variousiditynlevels reveals the difficulties in
separating out the six classes of compounds.

This expected result is still due to the changthefsensor signal pattern of a given compound when
external conditions varies.

Artificial neural network (ANN)



Unlike PCA, the neural network is a non linear sujged pattern recognition technique [Baughman
et al, 1995]. The major advantage of a non linéassification technique is that the data can be non
linear. It is commonly the case of environmentabrad Furthermore, the second fundamental
difference is that there is an supervised learstage.

A three layer network, using back-propagation obex learning rule, is built. There are 12 elements
in the input layer (12 sensors signals), 4 elementbe hidden layer and six elements in the output
layer representing the six odor classes. The maratfitransfer function is log sigmoid. Trainingeim
is lowered thanks to an adaptive learning rate.@5,0a learning increase of 1.05, a learning deerea
of 0.7 and a momentum term of 0.95.

A batching operation (all the input vectors simoéiausly presented to the network) is applied. For
the training, there are a maximum of 5 input vesfor each of the six compounds.

During the training stage, the data from known coumgls are trained onto target outputs, coded such
that a "1" is present on a given output only whies ¢orresponding compound is presented to the
network (e.g. output 1=[1 0 0 0 0 0]) (see tabl@he process is continually repeated until thelfina
error (the error goal) between the target valuesthe actual values is less then 0.001.

Table 2a shows the outputs of the network aftetrdiaing with all 30 input vectors (6 compounds X

5). In fact, these 30 vectors represent 30 expertisngone under uncontrolled external conditions and
thus under various humidity levels.

After the network learning step, with a training sé odors signals under any humidity levels, the

network should be able to recognise new or "testhmounds (6 compounds x 1), this is the

validation step. Table 2b shows that the compoanesvell identified.

The same operation is performed with the previauspound, but this time, the training was done
only with some of the thirty input vectors (tabla)3 those with an absolute humidity level (AH)
below 3.

The "test" compounds are the ones obtained witlhwanidity level above 3. Table 3b shows the
unfortunate results of the recognition. A trainiwgh a set of odor data obtained in a particular
condition don't allow a good classification of nedor data obtained in an other particular condition
Thus in this case the ANN results are disturbethbywater content. But it worth to be noticed (ésbl
2a and 2b) that if the network learns the samesodnder a lot of various situations (drift, humydlit
temperature,...) it can easy recognise an odorrundpecific state. This pattern recognition teghai

is more able than the PCA to classify and to remmgidorous mixtures under various external
conditions. Therefore, ANN seems more suitableoftactive pollution recognition. But the network
training with odor from different industrial souscand under various conditions takes a considerable
amount of time. Furthermore, it assumes that th@,Sensors array remains unchanged!

4. Conclusions

These results confirm the bad effect of the humpiditd temperature fluctuations on the tin oxide
sensors responses. Despite this well-known conistiatathe consequences for in situ olfactive

annoyance measurement is not so dramatic thenopieguppose. Even with non fixed experimental
conditions, near the ambient atmosphere, a discaticin of various single odors is possible.

Furthermore, the six single compounds may be disodated from each other even if their own

concentration varies.

Indeed, we pointed out the importance of using dapted pattern recognition engine as well as a
previous data pre-processing. A supervised noratinechnique (ANN, backpropagation) is able to

classify all the test samples for any experimetatditions. In this case, a good recognition is
realised despite the humidity influence on the sensignals.

However, the in situ olfactive pollution assessmeitith an Sn@ sensors array and a PARC remains a
challenge.

The nature, the number and the concentration df eampounds making up a complex mixture such
as olfactive pollution can change from day to dapehding, for example, of the industrial process.



But, even if the mixture changes, the source issree and the annoyance perceived always comes
from this typical source! How could the sensorsawarrecognise this source? Maybe with a very
intensive supervised training of the data recognitiFurthermore, for an objective olfactive
annoyance measurement, they are still other liroitatdue to the SnOsensors itself, e.g. low
sensitivity compared to the human nose one andltoet life time. Nevertheless, these results are
promising for in situ objective malodors recognitid-urther investigations are underway to improve
in situ measurement always by keeping sensorsdiimits in mind. There are focused on the data
analysis (e.g. training with real malodors undeniows ambient conditions, testing other techniques
like nonsupervised non-linear technigues Sammon)napm on the experimental conditions
(e.g. improvement of the temperature regulations).
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Fig. 1. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from
28%to 25% (right scale).
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Fig. 2. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from

20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity
value.
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber
temperature variations (right scale).
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds.
(water=[ (AH-AHg)/AH.] , AH: absolute humidity)
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors
sensitive to water vapour) to 6 compounds under various humidity levels.



Table 1. Target outputs for the network trainingf

compounds

outputs|butyl acetat¢ n-butanpl n-butylamine methylsul*ide 6-methyl-5-hepten-2-o0
output 1 1.000 0.000 0.000 0.000 0.000 0.000
output 2 0.000 1.000 0.000 0.000 0.000 0.000
output 3 0.000 0.000 1.000 0.000 0.000 0.000
output 4 0.000 0.000 0.000 1.000 0.000 0.000
output 5 0.000 0.000 0.000 0.000 1.000 0.000

output § 0.000 0.000 0.000 0.000 0.000 1.000




Table 2a.Results of the training with various humidity lé&véor all compounds

Network outputs

compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0994 0997 099% 0999 0597 0000 0.000 0.000000.00.000 0.000 0.004 0.000 0.001 O0p0O 0000 0.000 0.000 00.0m00¢ 0.003 0.003 0.005 0.003 0.p01 0.000 0.000 0.000 0.0m00(
output 2 0.000 0.000 0.000 0.000 0.p00 0.999 0.998 0.996940.90.992 0.005 0.000 0.008 0.001 0p05 0.000 0.000 0.000 00.0m00¢ 0.000 0.000 0.000 0.000 0.00 0.001 0.00 0.000 0.000OO0Y
output 3 0.004 0.002 0.003 0.002 0.p01 0.000 0.001 0.002000.00.00]1 0.999 0.994 0.998 0996 0p97 0,003 0.001 0.002 20.00003 0.000 0.000 0.000 0.000 0.00 0.000 0.00 0.000 0.0000Q
output 4 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000000.00.00¢0 0.001 0.000 0.001 0.000 0p0O5 0.998 0.997 0.998 80.9999¢ 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000 0.0mOOQ
output 5 0.001 0.003 0.001 0.006 0.p04 0.000 0.000 0.000000.00.00¢0 0.000 0.000 0.000 0.000 0p00 0.000 0.000 0.000 00.0m00¢ 0.998 0.998 0.998 0.999 091 0.000 0.006 0.002 0.00003
output 6 0.000 0.000 0.000 0.000 0.p00 0.000 0.001 0.001020.00.002 0.002 0.000 0.001 0.000 0fp05 0.001 0.000 0.001 00.0000] 0.001 0.003 0.000 0.000 0.07 0.999 0993 0.999 1.0009%




Table 2b. Validation results with the "test" compounds

classification
results

Network outputs
compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide| atedt 6-methyl-5-hep.
output 1 0.994 0.000 0.063 0.000 0.003 0.000
output 2 0.000 0.991 0.000 0.000 0.000 0.000
output 3 0.003 0.004 0.002 0.000 0.000
output 4 0.000 0.000 0.998 0.000 0.000
output 5 0.001 0.000 0.000 0.996 0.010
output 6 0.000 0.001 0.000 0.010 0.995




Table 3a.Results of the training for compounds with absoluimidity level < 3(g water/kg air)

Network outputs
compounds
outputs butyl acetate n-butanol | butylamine methylsulfide decanal 6-methyl-5-hepten-2-one
outputl 0.991 0.995 0.99¢ 0.000 0.000 0.01 0.000 0.000 00j00.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000
output2 0.000 0.000 0.00 0.992 0.993 0.007 0.004 0.003 40/00.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000
output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 00{00.000 0.000 0.000 0.0¢0 0.000  0.000 0.000 0.000
output4 0.000 0.000 0.00 0.003 0.¢04 0.00! 0.997 0.998 70|90.000 0.000 0.000 0.0f1 0.000 0.000 0.000 0.001L
output5 0.004 0.005 0.004 0.000 0.000 0.00 0.000 0.000 00]j00.999 0.998 0.993 0.9¢97 0.000 0.000 0.001 0.006
output6 0.000 0.000 0.00 0.002 0.003 0.00 0.000 0.000 00j00.001 0.001 0.002 0.002 0.999 0.999 0.996 0.990




Table 3b. Validation results for "test" compounds with akgelhumidity level >3 (g water/kg air)

Networks outputs

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

outputl 0.990 0.983 0.992 0.000 . . X . 0.000 0.000  0.00{ 0.001 . 0.000
output2 0.000 0.000 0.000 . 0.996 i . | 0.005 0.005  0.004 0.000
output3 0.041 0.003 0.0000  0.000  0.004 0.000
output4 0.000 0.000 0.000 0993  0.994  0.99 0.000
outputs 0.001 0.000 0.004 0.000 0.000  0.00 0.978
outputé 0.000 0.000 0.000 0.000 0.000  0.00 0.006

classification
results

nal
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Abstract

Synthetic mixtures, as well as real industrial eiiss sampled in Tedfarbags, are passed through a 12
inorganic semiconductors array (Figaro trademarke experiments are performed in the laboratorgearly
field conditions. The influence of external factossich as humidity content of the malodorous, ansbnsors
signals have been pointed out. Humidity disturkes thsults of the pattern recognition techniquescitral
component analysis and artificial neural networlNBB with back-propagation model have been testedNA
allows a good recognition of 6 "test" chemicalsreyfewater content of the mixtures don't remainedstant
during the experiments. The use of Smiultisensors for in situ olfactive pollution asseent is still a challenge
but these results give hope and motivation fomidéal investigations.

keywords : olfactive pollution detector, tin oxide semicondugtpattern recognition
1. Introduction

The growing public concern about nasty odors nedwstrial plants, agricultural installations, laitidf
sites or wastewater facilities gives rise to thelamentation of environmental policies in various
countries, with the aim of safeguarding or resigtime quality of the natural surroundings. In orter
assess and to monitor the state of the environimethiis field, and also to suggest odor abatement
techniques, it is important to have at one's digpesgitable means of objective measurement and
inspection of environmental odors.

Since a few years, an intermediate and very atbetéchnique is more and more used to identify and
to monitor odor phenomena : the "electronic nosetually, environment is often mentioned among
the numerous applications of e-noses. However,tipis of measurement of odor annoyance in the
field remains exceptional.

Applications of this technique are almost restddie food and agricultural emissions [Nexyad, 1995]
To date, the running studies related to the usalatftronic noses in the environment are focused on
the detection of some specific compounds, suchadson monoxide in ambient air, or for domestic
use [Patissier, 1996] or hydrogen sulfide [Falcaateal., 1990].

Most of these studies however concern the sensivices able to detect the specific compound
(sometimes non odorous, such as CO), but not raallglectronic nose, with an array of sensors, and
a pattern recognition engine.

Some other research works involve the use of e-farsthe measurement of a group of compounds,
such as VOC's [Lorans, 1995] or hazardous orgagpours [Hierlemann et al., 1995], but the authors
unanimously admit that the problem is complex.

Finally, very few studies are devoted to environtakmpplications in the field. All of them are
restricted to the identification of very specifidars, chiefly at the emission, just near the saufbe
majority of them apply the electronic nose to tlededtion of hazardous compounds or of olfactive
nuisance in the agricultural and the breeding segkdliott-Martin, 1994; Persaud et al., 1996].

To become a reality, the use of e-nose to assessdbr directly in the environment has first to
overcome two obstacles, at least : the improveroeaensors sensitivity in order to be able to detec



the very low concentration levels of odorous commusuin the atmosphere, and the understanding
and the control of the ambient parameters influemaenly temperature and humidity.

The purpose of the present work, indeed, is to éxairhe potential of e-nose technology for in situ
monitoring of olfactive pollution in the vicinityfandustrial plants. Although being an attractiveda
convenient solution, the use of commercially adddaelectronic noses was discarded for the reason
that they are not adapted to environmental comég:aMore particularly, actual e-nose instruments
are dedicated to lab applications, and they apmtiable; most of the time, they involve a sample
preparation technique, such as headspace, butfeeryare adapted to the handling of gaseous
atmospheres, on line or by sampling the air diyefitbm the environment; and lastly, although
measuring external parameters variations (tempersgnd humidity), they do not take them into
account in the discrimination procedure.

This paper wonders whether a multisensor arraysyst able to approach in situ odor assessment, in
spite of limitations due to ambient humidity anchpeerature.

2. Materials and methods

Artificial odors are prepared by injection 4 plhadlatile chemicals through the septum of a Tedlar®

bag filled with 40 | of ambient air. After the exaption of the liquids (Aldrich®, purity between

95% and 99.5%), the gaseous mixture is drawn actlosssensors chamber by a mini-pump.

Compounds found in typical olfactive pollution (detined by GC-MS) have been tested. Six

chemical families are represented : alcohol (n+afda ester (butyl acetate), amine (n-butylamine),

aldehyde (decanal), cetone (6-methyl-5-hepten-2-ané sulfide (methyl sulfide).

Real atmosphere from the environment (in this ¢asa animal fat treatment) are sampled in Tetllar

bag without direct contact of pumping.

As the purpose of this experiments is to point thiet external parameters influence on the sensors

signals and on the PARC, we don't control the awrpental conditions :

- mixtures prepared with outside air with humidityntent depending on meteorological conditions,

- laboratory atmosphere close to the real milieorse (opened windows, no constant room
temperature),

- no temperature regulation of the sensors chamber.

Only the reference air is a bit more controlledry dir bubbling into saturated salt water (KCI, in

melted ice).

A sensor array consisting of 12 commercial tin exghs sensors (Figaro Engineering Inc.) are sealed

in 6 dm3 perspex cubic chamber. Like the other ¢baimsensors (conductor polymers

[Persaud, 1992], SAW and BAW with polymer or lip@stive films, electrochemical fuel cells...), tin

oxide sensors have a lot of disadvantages : pability, low sensitivity, short life time, tempetae

and humidity sensitivity, drift, poisoning effecspw response times... The more important one for

environmental measurement is the high sensitiaityumidity.

The choice of the Snensors results of the best compromise. Their gr@akr consumption is a

bad point but they are easily available, robust Emldistrially produced (better interchangeability).

Among this twelve sensors, two are specific tolthmidity sensing (TGS 883 and TGS 2180).

Moreover, a temperature sensor and a capacitivediyraensor are mounted into the chamber.

The sensor resistance is measured by a computérolbedh multiplexed system (HP 3421A). A

constant power voltage is supplied to the sens@atels. A home-made software written in

Labwindows provides the data acquisition and disptaal time graphic). Two commercial software

package (Statistica and Matlab) are used to prabesdata.

The experimental procedure generally consists adifeg alternatively the reference air and the

gaseous sample into the sensors using a threealasy, keeping a constant 2000ml/min flow rate.

The samples were presented in random order dunneg weeks and at least six replicates were done

for each compounds.

3. Results and discussion



3.1.Humidity and ambient temperature influencer@ndensor signals

The presence of water vapour is known to causesmatic decrease of the Syg€ensors resistance.
Two mechanisms could explain this influence : tiesakiation of the water molecule into hydroxyl
species which act as electron donors [McAleer et1887 and 1988] and the creation of lattice
vacancies by the reaction of the hydrogen atonjymed from the water dissociation, with oxygen
lattice atoms [Vlachos, 1995].

Our goal is not to understand the theory of thoselanisms but only to show the consequences of
the water influence on an environmental odor resp@nd how to take this effect into account.

The odorous mixture generated by any industriar@umay exhibit a water content ranging from
near zero to about saturation. Consequently, th@ceaductor resistance variation is modified or
even reversed. Figure 1 and 2 show time - respomses for four sensors for animal fat treatment
odor. The right scale indicates the relative hutpiglalue. The odor, in the two figures, comes from
the same source but the sampling date is differedtthe external conditions as well.

In this case, the reference air is the lab amlzent

With a 28% to 25% relative humidity variation, &®wn in figure 1, the signal exhibit a decrease due
to the animal fat odor, like usual with reducingsgg But with a 20% to 15% relative humidity
variation (figure 2), the sensors resistance vianabor the same odor (same olfactive perceptiom) a
with same temperature and flow conditions are ®aekr This unexpected increase can be explain by
the humidity value.

Indeed, in the absence of an odor, a diminutioadsforbed water on the Snp€eramics is known to
increase its resistance. Its appears that the lagi$onoisture can dominate the resistivity behavaur
the sensors [Vlachos, 1993]. Precisely, the humibds a higher negative variation and the final
value is lower. This experiment proves that iths@utely necessary to take the water contentef th
samples into account when interpreting the serrssronses data.

The sensors signals are also strongly dependehedemperature. This parameter is involved in the
kinetics of the chemical processes on the oxides@ly, 1991 ; McAleer et al, 1988 ]. That's why a

voltage is applied to a inside heater resistandeeép the sensor at a high fixed temperature (@roun

400°C). A change of the gas flow or of the surraogdatmosphere temperature can disturb the
temperature of the semiconductor surface and hitveceonductance value.

Figure 3 shows the sensors signals fluctuationstdule change of the array chamber temperature.
However, this parameter is not so important thamitdity. The temperature control is easier [Jonda,

1996] than the humidity one because it is a paramehich doesn't depend on the odor quality but

only to the external conditions.

For the further experiments, the gas flow is kdptha same fixed level before and during the odor
sensing. Though, the temperature in the labordtangs on the weather.

3.2. Effect of humidity on PARC results

Data preprocessing

The selection of the data preprocessing algoritlsrasn important stage. Various algorithms have
been investigated (resistance differencgRRfractional resistance change,fR/R,, normalised

fractional resistance change), wherg R are the resistance's in air or gas respectividlg best
classification results are obtained with the norseal fractional resistance change :

1 2
z— [ J

wheren is the number of sensors.



This choice was foreseeable since this parametlkenosin to nearly remove the gas concentration
linear dependence [Gardner, 1991; Gardner, 199@].tke olfactive annoyance recognition, the
sensors array must be able to differentiate smea@fnission mixtures even over a range of
concentrations. However, for most of the odors,dbrecentration-response curves are non-linear and
therefore the patterns for individual chemicals robgnge with concentration [Persaud, 1996].

Here, the injection of 4pl of liquid chemicals irD 4 bag don't produce the same gaseous
concentration for each component (various volgtdind liquid density) and for the six same samples
(various lab temperature, injected volume and lwdgme errors).

Furthermore, to perform the pattern recognitioms, ghevious values are scaled (Y-Ymin/Ymax-Ymin)
so that the response of each sensor has a valuedye0 and 1.

Principal component analysis (PCA)

PCA is a well-known linear unsupervised patterrogzition technique [Everitt, 1994]. Due to the use
of dilute individual components, the assumptioradinear concentration-dependent response can be
made. The purpose is to reduce the multidimensiynail a problem into two or so dimensions. The
12 original variables (sensors responses) are ewdbio find a new group of variables called the
principal components.

Figures 4a and 4b show the plot of the first twm@pal components (factor 1 and factor 2) for the
sensors responses to 3 sets of compounds. 908 whtiance within the data is contained in th&t fir
two principal components.

Plot 4a shows a good separation of data into tthistenct groups that corresponds to each of theethr
set of compounds.

In the next plot b, two other sensors data have bdded, namely the responses of TGS 883 and TGS
2180. This sensors are excessively sensitive terwaipour. In this case the obtained separatios doe
not match the expected one. Five groups can berdied. The previous "sul" group is splitted and a
new one is formed by "but6-onel-one2".

In fact, further investigations show that the twddigional clusters are due to distinct water
conditions. The water content is represented by fthetional absolute humidity change ([AH-
AHg)/AH, where AH, AR are the asolute humidity in the array chamber whth odor or with the
reference air respectively).

One sul group has a water range between 0.2 antién3he other one has a lower water range. The
three data of the new group (but6-onel-one2) hass#ime water value. Within the "one3-4-5-6"
group, one 6 has a positive water value and itdeerseparated from the three other ones.

In the end, factor 2 could describe the water patam 0.1 to the left, O in the middle and negativ
value to the right. Although factor 1 (here vertigaepresented) reflects well the composition
heterogeneity of samples, the scatter along factée&ns more due to water content : the water
parameter varying from 0.1 to negative values fribva left to the right of the axis. Indeed, the
addition of two water sensitive sensors has poioigidthe importance of the external conditions on
the PCA results.

Consequently, the data separation is not only dube nature of compounds but also to the range of
humidity.

An other example proving that the variability ofetlexperimental conditions disturbs the PCA
classification results is shown in figure 5. Indeie PCA on six samples of six compounds (without
the data of TGS 2180 and TGS 883) under variousiditynlevels reveals the difficulties in
separating out the six classes of compounds.

This expected result is still due to the changthefsensor signal pattern of a given compound when
external conditions varies.

Artificial neural network (ANN)



Unlike PCA, the neural network is a non linear sujged pattern recognition technique [Baughman
et al, 1995]. The major advantage of a non linéassification technique is that the data can be non
linear. It is commonly the case of environmentabrad Furthermore, the second fundamental
difference is that there is an supervised learstage.

A three layer network, using back-propagation obex learning rule, is built. There are 12 elements
in the input layer (12 sensors signals), 4 elementbe hidden layer and six elements in the output
layer representing the six odor classes. The maratfitransfer function is log sigmoid. Trainingeim
is lowered thanks to an adaptive learning rate.@5,0a learning increase of 1.05, a learning deerea
of 0.7 and a momentum term of 0.95.

A batching operation (all the input vectors simoéiausly presented to the network) is applied. For
the training, there are a maximum of 5 input vesfor each of the six compounds.

During the training stage, the data from known coumgls are trained onto target outputs, coded such
that a "1" is present on a given output only whies ¢orresponding compound is presented to the
network (e.g. output 1=[1 0 0 0 0 0]) (see tabl@he process is continually repeated until thelfina
error (the error goal) between the target valuesthe actual values is less then 0.001.

Table 2a shows the outputs of the network aftetrdiaing with all 30 input vectors (6 compounds X

5). In fact, these 30 vectors represent 30 expertisngone under uncontrolled external conditions and
thus under various humidity levels.

After the network learning step, with a training sé odors signals under any humidity levels, the

network should be able to recognise new or "testhmounds (6 compounds x 1), this is the

validation step. Table 2b shows that the compoanesvell identified.

The same operation is performed with the previauspound, but this time, the training was done
only with some of the thirty input vectors (tabla)3 those with an absolute humidity level (AH)
below 3.

The "test" compounds are the ones obtained witlhwanidity level above 3. Table 3b shows the
unfortunate results of the recognition. A trainiwgh a set of odor data obtained in a particular
condition don't allow a good classification of nedor data obtained in an other particular condition
Thus in this case the ANN results are disturbethbywater content. But it worth to be noticed (ésbl
2a and 2b) that if the network learns the samesodnder a lot of various situations (drift, humydlit
temperature,...) it can easy recognise an odorrundpecific state. This pattern recognition teghai

is more able than the PCA to classify and to remmgidorous mixtures under various external
conditions. Therefore, ANN seems more suitableoftactive pollution recognition. But the network
training with odor from different industrial souscand under various conditions takes a considerable
amount of time. Furthermore, it assumes that th@,Sensors array remains unchanged!

4. Conclusions

These results confirm the bad effect of the humpiditd temperature fluctuations on the tin oxide
sensors responses. Despite this well-known conistiatathe consequences for in situ olfactive

annoyance measurement is not so dramatic thenopieguppose. Even with non fixed experimental
conditions, near the ambient atmosphere, a discaticin of various single odors is possible.

Furthermore, the six single compounds may be disodated from each other even if their own

concentration varies.

Indeed, we pointed out the importance of using dapted pattern recognition engine as well as a
previous data pre-processing. A supervised noratinechnique (ANN, backpropagation) is able to

classify all the test samples for any experimetatditions. In this case, a good recognition is
realised despite the humidity influence on the sensignals.

However, the in situ olfactive pollution assessmeitith an Sn@ sensors array and a PARC remains a
challenge.

The nature, the number and the concentration df eampounds making up a complex mixture such
as olfactive pollution can change from day to dapehding, for example, of the industrial process.



But, even if the mixture changes, the source issree and the annoyance perceived always comes
from this typical source! How could the sensorsawarrecognise this source? Maybe with a very
intensive supervised training of the data recognitiFurthermore, for an objective olfactive
annoyance measurement, they are still other liroitatdue to the SnOsensors itself, e.g. low
sensitivity compared to the human nose one andltoet life time. Nevertheless, these results are
promising for in situ objective malodors recognitid-urther investigations are underway to improve
in situ measurement always by keeping sensorsdiimits in mind. There are focused on the data
analysis (e.g. training with real malodors undeniows ambient conditions, testing other techniques
like nonsupervised non-linear technigues Sammon)napm on the experimental conditions
(e.g. improvement of the temperature regulations).
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Fig. 1. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from
28%to 25% (right scale).
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Fig. 2. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from

20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity
value.
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber
temperature variations (right scale).
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds.
(water=[ (AH-AHg)/AH.] , AH: absolute humidity)
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors
sensitive to water vapour) to 6 compounds under various humidity levels.



Table 1. Target outputs for the network trainingf

compounds

outputs|butyl acetat¢ n-butanpl n-butylamine methylsul*ide 6-methyl-5-hepten-2-o0
output 1 1.000 0.000 0.000 0.000 0.000 0.000
output 2 0.000 1.000 0.000 0.000 0.000 0.000
output 3 0.000 0.000 1.000 0.000 0.000 0.000
output 4 0.000 0.000 0.000 1.000 0.000 0.000
output 5 0.000 0.000 0.000 0.000 1.000 0.000

output § 0.000 0.000 0.000 0.000 0.000 1.000




Table 2a.Results of the training with various humidity lé&véor all compounds

Network outputs

compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0994 0997 099% 0999 0597 0000 0.000 0.000000.00.000 0.000 0.004 0.000 0.001 O0p0O 0000 0.000 0.000 00.0m00¢ 0.003 0.003 0.005 0.003 0.p01 0.000 0.000 0.000 0.0m00(
output 2 0.000 0.000 0.000 0.000 0.p00 0.999 0.998 0.996940.90.992 0.005 0.000 0.008 0.001 0p05 0.000 0.000 0.000 00.0m00¢ 0.000 0.000 0.000 0.000 0.00 0.001 0.00 0.000 0.000OO0Y
output 3 0.004 0.002 0.003 0.002 0.p01 0.000 0.001 0.002000.00.00]1 0.999 0.994 0.998 0996 0p97 0,003 0.001 0.002 20.00003 0.000 0.000 0.000 0.000 0.00 0.000 0.00 0.000 0.0000Q
output 4 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000000.00.00¢0 0.001 0.000 0.001 0.000 0p0O5 0.998 0.997 0.998 80.9999¢ 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000 0.0mOOQ
output 5 0.001 0.003 0.001 0.006 0.p04 0.000 0.000 0.000000.00.00¢0 0.000 0.000 0.000 0.000 0p00 0.000 0.000 0.000 00.0m00¢ 0.998 0.998 0.998 0.999 091 0.000 0.006 0.002 0.00003
output 6 0.000 0.000 0.000 0.000 0.p00 0.000 0.001 0.001020.00.002 0.002 0.000 0.001 0.000 0fp05 0.001 0.000 0.001 00.0000] 0.001 0.003 0.000 0.000 0.07 0.999 0993 0.999 1.0009%




Table 2b. Validation results with the "test" compounds

classification
results

Network outputs
compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide| atedt 6-methyl-5-hep.
output 1 0.994 0.000 0.063 0.000 0.003 0.000
output 2 0.000 0.991 0.000 0.000 0.000 0.000
output 3 0.003 0.004 0.002 0.000 0.000
output 4 0.000 0.000 0.998 0.000 0.000
output 5 0.001 0.000 0.000 0.996 0.010
output 6 0.000 0.001 0.000 0.010 0.995




Table 3a.Results of the training for compounds with absoluimidity level < 3(g water/kg air)

Network outputs
compounds
outputs butyl acetate n-butanol | butylamine methylsulfide decanal 6-methyl-5-hepten-2-one
outputl 0.991 0.995 0.99¢ 0.000 0.000 0.01 0.000 0.000 00j00.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000
output2 0.000 0.000 0.00 0.992 0.993 0.007 0.004 0.003 40/00.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000
output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 00{00.000 0.000 0.000 0.0¢0 0.000  0.000 0.000 0.000
output4 0.000 0.000 0.00 0.003 0.¢04 0.00! 0.997 0.998 70|90.000 0.000 0.000 0.0f1 0.000 0.000 0.000 0.001L
output5 0.004 0.005 0.004 0.000 0.000 0.00 0.000 0.000 00]j00.999 0.998 0.993 0.9¢97 0.000 0.000 0.001 0.006
output6 0.000 0.000 0.00 0.002 0.003 0.00 0.000 0.000 00j00.001 0.001 0.002 0.002 0.999 0.999 0.996 0.990




Table 3b. Validation results for "test" compounds with akgelhumidity level >3 (g water/kg air)

Networks outputs

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

outputl 0.990 0.983 0.992 0.000 . . X . 0.000 0.000  0.00{ 0.001 . 0.000
output2 0.000 0.000 0.000 . 0.996 i . | 0.005 0.005  0.004 0.000
output3 0.041 0.003 0.0000  0.000  0.004 0.000
output4 0.000 0.000 0.000 0993  0.994  0.99 0.000
outputs 0.001 0.000 0.004 0.000 0.000  0.00 0.978
outputé 0.000 0.000 0.000 0.000 0.000  0.00 0.006

classification
results

nal
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Abstract

Synthetic mixtures, as well as real industrial eiiss sampled in Tedfarbags, are passed through a 12
inorganic semiconductors array (Figaro trademarke experiments are performed in the laboratorgearly
field conditions. The influence of external factossich as humidity content of the malodorous, ansbnsors
signals have been pointed out. Humidity disturkes thsults of the pattern recognition techniquescitral
component analysis and artificial neural networlNBB with back-propagation model have been testedNA
allows a good recognition of 6 "test" chemicalsreyfewater content of the mixtures don't remainedstant
during the experiments. The use of Smiultisensors for in situ olfactive pollution asseent is still a challenge
but these results give hope and motivation fomidéal investigations.

keywords : olfactive pollution detector, tin oxide semicondugtpattern recognition
1. Introduction

The growing public concern about nasty odors nedwstrial plants, agricultural installations, laitidf
sites or wastewater facilities gives rise to thelamentation of environmental policies in various
countries, with the aim of safeguarding or resigtime quality of the natural surroundings. In orter
assess and to monitor the state of the environimethiis field, and also to suggest odor abatement
techniques, it is important to have at one's digpesgitable means of objective measurement and
inspection of environmental odors.

Since a few years, an intermediate and very atbetéchnique is more and more used to identify and
to monitor odor phenomena : the "electronic nosetually, environment is often mentioned among
the numerous applications of e-noses. However,tipis of measurement of odor annoyance in the
field remains exceptional.

Applications of this technique are almost restddie food and agricultural emissions [Nexyad, 1995]
To date, the running studies related to the usalatftronic noses in the environment are focused on
the detection of some specific compounds, suchadson monoxide in ambient air, or for domestic
use [Patissier, 1996] or hydrogen sulfide [Falcaateal., 1990].

Most of these studies however concern the sensivices able to detect the specific compound
(sometimes non odorous, such as CO), but not raallglectronic nose, with an array of sensors, and
a pattern recognition engine.

Some other research works involve the use of e-farsthe measurement of a group of compounds,
such as VOC's [Lorans, 1995] or hazardous orgagpours [Hierlemann et al., 1995], but the authors
unanimously admit that the problem is complex.

Finally, very few studies are devoted to environtakmpplications in the field. All of them are
restricted to the identification of very specifidars, chiefly at the emission, just near the saufbe
majority of them apply the electronic nose to tlededtion of hazardous compounds or of olfactive
nuisance in the agricultural and the breeding segkdliott-Martin, 1994; Persaud et al., 1996].

To become a reality, the use of e-nose to assessdbr directly in the environment has first to
overcome two obstacles, at least : the improveroeaensors sensitivity in order to be able to detec



the very low concentration levels of odorous commusuin the atmosphere, and the understanding
and the control of the ambient parameters influemaenly temperature and humidity.

The purpose of the present work, indeed, is to éxairhe potential of e-nose technology for in situ
monitoring of olfactive pollution in the vicinityfandustrial plants. Although being an attractiveda
convenient solution, the use of commercially adddaelectronic noses was discarded for the reason
that they are not adapted to environmental comég:aMore particularly, actual e-nose instruments
are dedicated to lab applications, and they apmtiable; most of the time, they involve a sample
preparation technique, such as headspace, butfeeryare adapted to the handling of gaseous
atmospheres, on line or by sampling the air diyefitbm the environment; and lastly, although
measuring external parameters variations (tempersgnd humidity), they do not take them into
account in the discrimination procedure.

This paper wonders whether a multisensor arraysyst able to approach in situ odor assessment, in
spite of limitations due to ambient humidity anchpeerature.

2. Materials and methods

Artificial odors are prepared by injection 4 plhadlatile chemicals through the septum of a Tedlar®

bag filled with 40 | of ambient air. After the exaption of the liquids (Aldrich®, purity between

95% and 99.5%), the gaseous mixture is drawn actlosssensors chamber by a mini-pump.

Compounds found in typical olfactive pollution (detined by GC-MS) have been tested. Six

chemical families are represented : alcohol (n+afda ester (butyl acetate), amine (n-butylamine),

aldehyde (decanal), cetone (6-methyl-5-hepten-2-ané sulfide (methyl sulfide).

Real atmosphere from the environment (in this ¢asa animal fat treatment) are sampled in Tetllar

bag without direct contact of pumping.

As the purpose of this experiments is to point thiet external parameters influence on the sensors

signals and on the PARC, we don't control the awrpental conditions :

- mixtures prepared with outside air with humidityntent depending on meteorological conditions,

- laboratory atmosphere close to the real milieorse (opened windows, no constant room
temperature),

- no temperature regulation of the sensors chamber.

Only the reference air is a bit more controlledry dir bubbling into saturated salt water (KCI, in

melted ice).

A sensor array consisting of 12 commercial tin exghs sensors (Figaro Engineering Inc.) are sealed

in 6 dm3 perspex cubic chamber. Like the other ¢baimsensors (conductor polymers

[Persaud, 1992], SAW and BAW with polymer or lip@stive films, electrochemical fuel cells...), tin

oxide sensors have a lot of disadvantages : pability, low sensitivity, short life time, tempetae

and humidity sensitivity, drift, poisoning effecspw response times... The more important one for

environmental measurement is the high sensitiaityumidity.

The choice of the Snensors results of the best compromise. Their gr@akr consumption is a

bad point but they are easily available, robust Emldistrially produced (better interchangeability).

Among this twelve sensors, two are specific tolthmidity sensing (TGS 883 and TGS 2180).

Moreover, a temperature sensor and a capacitivediyraensor are mounted into the chamber.

The sensor resistance is measured by a computérolbedh multiplexed system (HP 3421A). A

constant power voltage is supplied to the sens@atels. A home-made software written in

Labwindows provides the data acquisition and disptaal time graphic). Two commercial software

package (Statistica and Matlab) are used to prabesdata.

The experimental procedure generally consists adifeg alternatively the reference air and the

gaseous sample into the sensors using a threealasy, keeping a constant 2000ml/min flow rate.

The samples were presented in random order dunneg weeks and at least six replicates were done

for each compounds.

3. Results and discussion



3.1.Humidity and ambient temperature influencer@ndensor signals

The presence of water vapour is known to causesmatic decrease of the Syg€ensors resistance.
Two mechanisms could explain this influence : tiesakiation of the water molecule into hydroxyl
species which act as electron donors [McAleer et1887 and 1988] and the creation of lattice
vacancies by the reaction of the hydrogen atonjymed from the water dissociation, with oxygen
lattice atoms [Vlachos, 1995].

Our goal is not to understand the theory of thoselanisms but only to show the consequences of
the water influence on an environmental odor resp@nd how to take this effect into account.

The odorous mixture generated by any industriar@umay exhibit a water content ranging from
near zero to about saturation. Consequently, th@ceaductor resistance variation is modified or
even reversed. Figure 1 and 2 show time - respomses for four sensors for animal fat treatment
odor. The right scale indicates the relative hutpiglalue. The odor, in the two figures, comes from
the same source but the sampling date is differedtthe external conditions as well.

In this case, the reference air is the lab amlzent

With a 28% to 25% relative humidity variation, &®wn in figure 1, the signal exhibit a decrease due
to the animal fat odor, like usual with reducingsgg But with a 20% to 15% relative humidity
variation (figure 2), the sensors resistance vianabor the same odor (same olfactive perceptiom) a
with same temperature and flow conditions are ®aekr This unexpected increase can be explain by
the humidity value.

Indeed, in the absence of an odor, a diminutioadsforbed water on the Snp€eramics is known to
increase its resistance. Its appears that the lagi$onoisture can dominate the resistivity behavaur
the sensors [Vlachos, 1993]. Precisely, the humibds a higher negative variation and the final
value is lower. This experiment proves that iths@utely necessary to take the water contentef th
samples into account when interpreting the serrssronses data.

The sensors signals are also strongly dependehedemperature. This parameter is involved in the
kinetics of the chemical processes on the oxides@ly, 1991 ; McAleer et al, 1988 ]. That's why a

voltage is applied to a inside heater resistandeeép the sensor at a high fixed temperature (@roun

400°C). A change of the gas flow or of the surraogdatmosphere temperature can disturb the
temperature of the semiconductor surface and hitveceonductance value.

Figure 3 shows the sensors signals fluctuationstdule change of the array chamber temperature.
However, this parameter is not so important thamitdity. The temperature control is easier [Jonda,

1996] than the humidity one because it is a paramehich doesn't depend on the odor quality but

only to the external conditions.

For the further experiments, the gas flow is kdptha same fixed level before and during the odor
sensing. Though, the temperature in the labordtangs on the weather.

3.2. Effect of humidity on PARC results

Data preprocessing

The selection of the data preprocessing algoritlsrasn important stage. Various algorithms have
been investigated (resistance differencgRRfractional resistance change,fR/R,, normalised

fractional resistance change), wherg R are the resistance's in air or gas respectividlg best
classification results are obtained with the norseal fractional resistance change :

1 2
z— [ J

wheren is the number of sensors.



This choice was foreseeable since this parametlkenosin to nearly remove the gas concentration
linear dependence [Gardner, 1991; Gardner, 199@].tke olfactive annoyance recognition, the
sensors array must be able to differentiate smea@fnission mixtures even over a range of
concentrations. However, for most of the odors,dbrecentration-response curves are non-linear and
therefore the patterns for individual chemicals robgnge with concentration [Persaud, 1996].

Here, the injection of 4pl of liquid chemicals irD 4 bag don't produce the same gaseous
concentration for each component (various volgtdind liquid density) and for the six same samples
(various lab temperature, injected volume and lwdgme errors).

Furthermore, to perform the pattern recognitioms, ghevious values are scaled (Y-Ymin/Ymax-Ymin)
so that the response of each sensor has a valuedye0 and 1.

Principal component analysis (PCA)

PCA is a well-known linear unsupervised patterrogzition technique [Everitt, 1994]. Due to the use
of dilute individual components, the assumptioradinear concentration-dependent response can be
made. The purpose is to reduce the multidimensiynail a problem into two or so dimensions. The
12 original variables (sensors responses) are ewdbio find a new group of variables called the
principal components.

Figures 4a and 4b show the plot of the first twm@pal components (factor 1 and factor 2) for the
sensors responses to 3 sets of compounds. 908 whtiance within the data is contained in th&t fir
two principal components.

Plot 4a shows a good separation of data into tthistenct groups that corresponds to each of theethr
set of compounds.

In the next plot b, two other sensors data have bdded, namely the responses of TGS 883 and TGS
2180. This sensors are excessively sensitive terwaipour. In this case the obtained separatios doe
not match the expected one. Five groups can berdied. The previous "sul" group is splitted and a
new one is formed by "but6-onel-one2".

In fact, further investigations show that the twddigional clusters are due to distinct water
conditions. The water content is represented by fthetional absolute humidity change ([AH-
AHg)/AH, where AH, AR are the asolute humidity in the array chamber whth odor or with the
reference air respectively).

One sul group has a water range between 0.2 antién3he other one has a lower water range. The
three data of the new group (but6-onel-one2) hass#ime water value. Within the "one3-4-5-6"
group, one 6 has a positive water value and itdeerseparated from the three other ones.

In the end, factor 2 could describe the water patam 0.1 to the left, O in the middle and negativ
value to the right. Although factor 1 (here vertigaepresented) reflects well the composition
heterogeneity of samples, the scatter along factée&ns more due to water content : the water
parameter varying from 0.1 to negative values fribva left to the right of the axis. Indeed, the
addition of two water sensitive sensors has poioigidthe importance of the external conditions on
the PCA results.

Consequently, the data separation is not only dube nature of compounds but also to the range of
humidity.

An other example proving that the variability ofetlexperimental conditions disturbs the PCA
classification results is shown in figure 5. Indeie PCA on six samples of six compounds (without
the data of TGS 2180 and TGS 883) under variousiditynlevels reveals the difficulties in
separating out the six classes of compounds.

This expected result is still due to the changthefsensor signal pattern of a given compound when
external conditions varies.

Artificial neural network (ANN)



Unlike PCA, the neural network is a non linear sujged pattern recognition technique [Baughman
et al, 1995]. The major advantage of a non linéassification technique is that the data can be non
linear. It is commonly the case of environmentabrad Furthermore, the second fundamental
difference is that there is an supervised learstage.

A three layer network, using back-propagation obex learning rule, is built. There are 12 elements
in the input layer (12 sensors signals), 4 elementbe hidden layer and six elements in the output
layer representing the six odor classes. The maratfitransfer function is log sigmoid. Trainingeim
is lowered thanks to an adaptive learning rate.@5,0a learning increase of 1.05, a learning deerea
of 0.7 and a momentum term of 0.95.

A batching operation (all the input vectors simoéiausly presented to the network) is applied. For
the training, there are a maximum of 5 input vesfor each of the six compounds.

During the training stage, the data from known coumgls are trained onto target outputs, coded such
that a "1" is present on a given output only whies ¢orresponding compound is presented to the
network (e.g. output 1=[1 0 0 0 0 0]) (see tabl@he process is continually repeated until thelfina
error (the error goal) between the target valuesthe actual values is less then 0.001.

Table 2a shows the outputs of the network aftetrdiaing with all 30 input vectors (6 compounds X

5). In fact, these 30 vectors represent 30 expertisngone under uncontrolled external conditions and
thus under various humidity levels.

After the network learning step, with a training sé odors signals under any humidity levels, the

network should be able to recognise new or "testhmounds (6 compounds x 1), this is the

validation step. Table 2b shows that the compoanesvell identified.

The same operation is performed with the previauspound, but this time, the training was done
only with some of the thirty input vectors (tabla)3 those with an absolute humidity level (AH)
below 3.

The "test" compounds are the ones obtained witlhwanidity level above 3. Table 3b shows the
unfortunate results of the recognition. A trainiwgh a set of odor data obtained in a particular
condition don't allow a good classification of nedor data obtained in an other particular condition
Thus in this case the ANN results are disturbethbywater content. But it worth to be noticed (ésbl
2a and 2b) that if the network learns the samesodnder a lot of various situations (drift, humydlit
temperature,...) it can easy recognise an odorrundpecific state. This pattern recognition teghai

is more able than the PCA to classify and to remmgidorous mixtures under various external
conditions. Therefore, ANN seems more suitableoftactive pollution recognition. But the network
training with odor from different industrial souscand under various conditions takes a considerable
amount of time. Furthermore, it assumes that th@,Sensors array remains unchanged!

4. Conclusions

These results confirm the bad effect of the humpiditd temperature fluctuations on the tin oxide
sensors responses. Despite this well-known conistiatathe consequences for in situ olfactive

annoyance measurement is not so dramatic thenopieguppose. Even with non fixed experimental
conditions, near the ambient atmosphere, a discaticin of various single odors is possible.

Furthermore, the six single compounds may be disodated from each other even if their own

concentration varies.

Indeed, we pointed out the importance of using dapted pattern recognition engine as well as a
previous data pre-processing. A supervised noratinechnique (ANN, backpropagation) is able to

classify all the test samples for any experimetatditions. In this case, a good recognition is
realised despite the humidity influence on the sensignals.

However, the in situ olfactive pollution assessmeitith an Sn@ sensors array and a PARC remains a
challenge.

The nature, the number and the concentration df eampounds making up a complex mixture such
as olfactive pollution can change from day to dapehding, for example, of the industrial process.



But, even if the mixture changes, the source issree and the annoyance perceived always comes
from this typical source! How could the sensorsawarrecognise this source? Maybe with a very
intensive supervised training of the data recognitiFurthermore, for an objective olfactive
annoyance measurement, they are still other liroitatdue to the SnOsensors itself, e.g. low
sensitivity compared to the human nose one andltoet life time. Nevertheless, these results are
promising for in situ objective malodors recognitid-urther investigations are underway to improve
in situ measurement always by keeping sensorsdiimits in mind. There are focused on the data
analysis (e.g. training with real malodors undeniows ambient conditions, testing other techniques
like nonsupervised non-linear technigues Sammon)napm on the experimental conditions
(e.g. improvement of the temperature regulations).
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Fig. 1. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from
28%to 25% (right scale).
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Fig. 2. Effect of moisture.
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from

20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity
value.
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber
temperature variations (right scale).
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds.
(water=[ (AH-AHg)/AH.] , AH: absolute humidity)
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors
sensitive to water vapour) to 6 compounds under various humidity levels.



Table 1. Target outputs for the network trainingf

compounds

outputs|butyl acetat¢ n-butanpl n-butylamine methylsul*ide 6-methyl-5-hepten-2-o0
output 1 1.000 0.000 0.000 0.000 0.000 0.000
output 2 0.000 1.000 0.000 0.000 0.000 0.000
output 3 0.000 0.000 1.000 0.000 0.000 0.000
output 4 0.000 0.000 0.000 1.000 0.000 0.000
output 5 0.000 0.000 0.000 0.000 1.000 0.000

output § 0.000 0.000 0.000 0.000 0.000 1.000




Table 2a.Results of the training with various humidity lé&véor all compounds

Network outputs

compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0994 0997 099% 0999 0597 0000 0.000 0.000000.00.000 0.000 0.004 0.000 0.001 O0p0O 0000 0.000 0.000 00.0m00¢ 0.003 0.003 0.005 0.003 0.p01 0.000 0.000 0.000 0.0m00(
output 2 0.000 0.000 0.000 0.000 0.p00 0.999 0.998 0.996940.90.992 0.005 0.000 0.008 0.001 0p05 0.000 0.000 0.000 00.0m00¢ 0.000 0.000 0.000 0.000 0.00 0.001 0.00 0.000 0.000OO0Y
output 3 0.004 0.002 0.003 0.002 0.p01 0.000 0.001 0.002000.00.00]1 0.999 0.994 0.998 0996 0p97 0,003 0.001 0.002 20.00003 0.000 0.000 0.000 0.000 0.00 0.000 0.00 0.000 0.0000Q
output 4 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000000.00.00¢0 0.001 0.000 0.001 0.000 0p0O5 0.998 0.997 0.998 80.9999¢ 0.000 0.000 0.000 0.000 0.p00 0.000 0.000 0.000 0.0mOOQ
output 5 0.001 0.003 0.001 0.006 0.p04 0.000 0.000 0.000000.00.00¢0 0.000 0.000 0.000 0.000 0p00 0.000 0.000 0.000 00.0m00¢ 0.998 0.998 0.998 0.999 091 0.000 0.006 0.002 0.00003
output 6 0.000 0.000 0.000 0.000 0.p00 0.000 0.001 0.001020.00.002 0.002 0.000 0.001 0.000 0fp05 0.001 0.000 0.001 00.0000] 0.001 0.003 0.000 0.000 0.07 0.999 0993 0.999 1.0009%




Table 2b. Validation results with the "test" compounds

classification
results

Network outputs
compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide| atedt 6-methyl-5-hep.
output 1 0.994 0.000 0.063 0.000 0.003 0.000
output 2 0.000 0.991 0.000 0.000 0.000 0.000
output 3 0.003 0.004 0.002 0.000 0.000
output 4 0.000 0.000 0.998 0.000 0.000
output 5 0.001 0.000 0.000 0.996 0.010
output 6 0.000 0.001 0.000 0.010 0.995




Table 3a.Results of the training for compounds with absoluimidity level < 3(g water/kg air)

Network outputs
compounds
outputs butyl acetate n-butanol | butylamine methylsulfide decanal 6-methyl-5-hepten-2-one
outputl 0.991 0.995 0.99¢ 0.000 0.000 0.01 0.000 0.000 00j00.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000
output2 0.000 0.000 0.00 0.992 0.993 0.007 0.004 0.003 40/00.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000
output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 00{00.000 0.000 0.000 0.0¢0 0.000  0.000 0.000 0.000
output4 0.000 0.000 0.00 0.003 0.¢04 0.00! 0.997 0.998 70|90.000 0.000 0.000 0.0f1 0.000 0.000 0.000 0.001L
output5 0.004 0.005 0.004 0.000 0.000 0.00 0.000 0.000 00]j00.999 0.998 0.993 0.9¢97 0.000 0.000 0.001 0.006
output6 0.000 0.000 0.00 0.002 0.003 0.00 0.000 0.000 00j00.001 0.001 0.002 0.002 0.999 0.999 0.996 0.990




Table 3b. Validation results for "test" compounds with akgelhumidity level >3 (g water/kg air)

Networks outputs

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

outputl 0.990 0.983 0.992 0.000 . . X . 0.000 0.000  0.00{ 0.001 . 0.000
output2 0.000 0.000 0.000 . 0.996 i . | 0.005 0.005  0.004 0.000
output3 0.041 0.003 0.0000  0.000  0.004 0.000
output4 0.000 0.000 0.000 0993  0.994  0.99 0.000
outputs 0.001 0.000 0.004 0.000 0.000  0.00 0.978
outputé 0.000 0.000 0.000 0.000 0.000  0.00 0.006

classification
results

nal
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