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Abstract 
 
Synthetic mixtures, as well as real industrial emissions sampled in Tedlar® bags, are passed through a 12 
inorganic semiconductors array (Figaro trademark). The experiments are performed in the laboratory in nearly 
field conditions. The influence of external factors, such as humidity content of the malodorous, on the sensors 
signals have been pointed out. Humidity disturbs the results of the pattern recognition techniques. Principal 
component analysis and artificial neural network (ANN) with back-propagation model have been tested. ANN 
allows a good recognition of 6 "test" chemicals even if water content of the mixtures don't remained constant 
during the experiments. The use of SnO2 multisensors for in situ olfactive pollution assessment is still a challenge 
but these results give hope and motivation for intended investigations. 
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1. Introduction  
 
The growing public concern about nasty odors near industrial plants, agricultural installations, landfill 
sites or wastewater facilities gives rise to the implementation of environmental policies in various 
countries, with the aim of safeguarding or restoring the quality of the natural surroundings. In order to 
assess and to monitor the state of the environment in this field, and also to suggest odor abatement 
techniques, it is important to have at one's disposal suitable means of objective measurement and 
inspection of environmental odors. 
Since a few years, an intermediate and very attractive technique is more and more used to identify and 
to monitor odor phenomena : the "electronic nose". Actually, environment is often mentioned among 
the numerous applications of e-noses. However, this type of measurement of odor annoyance in the 
field remains exceptional. 
Applications of this technique are almost restricted to food and agricultural emissions [Nexyad, 1995] 
To date, the running studies related to the use of electronic noses in the environment are focused on 
the detection of some specific compounds, such as carbon monoxide in ambient air, or for domestic 
use [Patissier, 1996] or hydrogen sulfide [Falconer et al., 1990]. 
Most of these studies however concern the sensing devices able to detect the specific compound 
(sometimes non odorous, such as CO), but not really an electronic nose, with an array of sensors, and 
a pattern recognition engine. 
Some other research works involve the use of e-nose for the measurement of a group of compounds, 
such as VOC's [Lorans, 1995] or hazardous organic vapours [Hierlemann et al., 1995], but the authors 
unanimously admit that the problem is complex. 
Finally, very few studies are devoted to environmental applications in the field. All of them are 
restricted to the identification of very specific odors, chiefly at the emission, just near the source. The 
majority of them apply the electronic nose to the detection of hazardous compounds or of olfactive 
nuisance in the agricultural and the breeding sectors [Elliott-Martin, 1994; Persaud et al., 1996]. 
To become a reality, the use of e-nose to assess the odor directly in the environment has first to 
overcome two obstacles, at least : the improvement of sensors sensitivity in order to be able to detect 



the very low concentration levels of odorous compounds in the atmosphere, and the understanding 
and the control of the ambient parameters influence, mainly temperature and humidity. 
The purpose of the present work, indeed, is to examine the potential of e-nose technology for in situ 
monitoring of olfactive pollution in the vicinity of industrial plants. Although being an attractive and 
convenient solution, the use of commercially available electronic noses was discarded for the reason 
that they are not adapted to environmental constraints. More particularly, actual e-nose instruments 
are dedicated to lab applications, and they aren't portable; most of the time, they involve a sample 
preparation technique, such as headspace, but very few are adapted to the handling of gaseous 
atmospheres, on line or by sampling the air directly from the environment; and lastly, although 
measuring external parameters variations (temperature and humidity), they do not take them into 
account in the discrimination procedure. 
 
This paper wonders whether a multisensor array system is able to approach in situ odor assessment, in 
spite of limitations due to ambient humidity and temperature. 
 
2. Materials and methods 
 
Artificial odors are prepared by injection 4 µl of volatile chemicals through the septum of a Tedlar® 
bag filled with 40 l of ambient air. After the evaporation of the liquids (Aldrich®, purity between 
95% and 99.5%), the gaseous mixture is drawn across the sensors chamber by a mini-pump. 
Compounds found in typical olfactive pollution (determined by GC-MS) have been tested. Six 
chemical families are represented : alcohol (n-butanol), ester (butyl acetate), amine (n-butylamine), 
aldehyde (decanal), cetone (6-methyl-5-hepten-2-one) and sulfide (methyl sulfide). 
Real atmosphere from the environment (in this case from animal fat treatment) are sampled in Tedlar® 
bag without direct contact of pumping. 
As the purpose of this experiments is to point out the external parameters influence on the sensors 
signals and on the PARC, we don't control the experimental conditions :  
- mixtures prepared with outside air with humidity content depending on meteorological conditions, 
- laboratory atmosphere close to the real milieu's one (opened windows, no constant room 
 temperature), 
- no temperature regulation of the sensors chamber. 
Only the reference air is a bit more controlled : dry air bubbling into saturated salt water (KCl, in 
melted ice). 
A sensor array consisting of 12 commercial tin oxide gas sensors (Figaro Engineering Inc.) are sealed 
in 6 dm³ perspex cubic chamber. Like the other chemical sensors (conductor polymers 
[Persaud, 1992], SAW and BAW with polymer or lipids active films, electrochemical fuel cells...), tin 
oxide sensors have a lot of disadvantages : poor stability, low sensitivity, short life time, temperature 
and humidity sensitivity, drift, poisoning effects, slow response times... The more important one for 
environmental measurement is the high sensitivity to humidity. 
The choice of the SnO2 sensors results of the best compromise. Their great power consumption is a 
bad point but they are easily available, robust and industrially produced (better interchangeability). 
Among this twelve sensors, two are specific to the humidity sensing (TGS 883 and TGS 2180). 
Moreover, a temperature sensor and a capacitive humidity sensor are mounted into the chamber. 
The sensor resistance is measured by a computer controlled multiplexed system (HP 3421A). A 
constant power voltage is supplied to the sensors heaters. A home-made software written in 
Labwindows provides the data acquisition and display (real time graphic). Two commercial software 
package (Statistica and Matlab) are used to process the data. 
The experimental procedure generally consists in leading alternatively the reference air and the 
gaseous sample into the sensors using a three-way valve, keeping a constant 2000ml/min flow rate. 
The samples were presented in random order during three weeks and at least six replicates were done 
for each compounds. 
 
3. Results and discussion 
 



3.1.Humidity and ambient temperature influence on the sensor signals 
 
The presence of water vapour is known to cause a dramatic decrease of the SnO2 sensors resistance. 
Two mechanisms could explain this influence : the dissociation of the water molecule into hydroxyl 
species which act as electron donors [McAleer et al, 1987 and 1988] and the creation of lattice 
vacancies by the reaction of the hydrogen atoms, produced from the water dissociation, with oxygen 
lattice atoms [Vlachos, 1995]. 
Our goal is not to understand the theory of those mechanisms but only to show the consequences of 
the water influence on an environmental odor response and how to take this effect into account.  
The odorous mixture generated by any industrial source may exhibit a water content ranging from 
near zero to about saturation. Consequently, the semiconductor resistance variation is modified or 
even reversed. Figure 1 and 2 show time - response curves for four sensors for animal fat treatment 
odor. The right scale indicates the relative humidity value. The odor, in the two figures, comes from 
the same source but the sampling date is different and the external conditions as well. 
In this case, the reference air is the lab ambient air. 
With a 28% to 25% relative humidity variation, as shown in figure 1, the signal exhibit a decrease due 
to the animal fat odor, like usual with reducing gases. But with a 20% to 15% relative humidity 
variation (figure 2), the sensors resistance variation for the same odor (same olfactive perception) and 
with same temperature and flow conditions are reversed. This unexpected increase can be explain by 
the humidity value. 
Indeed, in the absence of an odor, a diminution of adsorbed water on the SnO2 ceramics is known to 
increase its resistance. Its appears that the adsorbed moisture can dominate the resistivity behaviour of 
the sensors [Vlachos, 1993]. Precisely, the humidity has a higher negative variation and the final 
value is lower. This experiment proves that it is absolutely necessary to take the water content of the 
samples into account when interpreting the sensors responses data.  
 
The sensors signals are also strongly dependent of the temperature. This parameter is involved in the 
kinetics of the chemical processes on the oxide [Moseley, 1991 ; McAleer et al, 1988 ]. That's why a 
voltage is applied to a inside heater resistance to keep the sensor at a high fixed temperature (around 
400°C). A change of the gas flow or of the surrounding atmosphere temperature can disturb the 
temperature of the semiconductor surface and hence the conductance value. 
Figure 3 shows the sensors signals fluctuations due to the change of the array chamber temperature. 
However, this parameter is not so important than humidity. The temperature control is easier [Jonda, 
1996] than the humidity one because it is a parameter which doesn't depend on the odor quality but 
only to the external conditions. 
For the further experiments, the gas flow is kept at the same fixed level before and during the odor 
sensing. Though, the temperature in the laboratory hangs on the weather. 
 
3.2. Effect of humidity on PARC results 
 
Data preprocessing 
 
The selection of the data preprocessing algorithms is an important stage. Various algorithms have 
been investigated (resistance difference, R0-R, fractional resistance change, (R0-R)/R0, normalised 
fractional resistance change), where R0, R are the resistance's in air or gas respectively. The best 
classification results are obtained with the normalised fractional resistance change : 
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This choice was foreseeable since this parameter is known to nearly remove the gas concentration 
linear dependence [Gardner, 1991; Gardner, 1992]. For the olfactive annoyance recognition, the 
sensors array must be able to differentiate specific emission mixtures even over a range of 
concentrations. However, for most of the odors, the concentration-response curves are non-linear and 
therefore the patterns for individual chemicals may change with concentration [Persaud, 1996].  
Here, the injection of 4µl of liquid chemicals in 40 l bag don't produce the same gaseous 
concentration for each component (various volatility and liquid density) and for the six same samples 
(various lab temperature, injected volume and bag volume errors). 
Furthermore, to perform the pattern recognition, the previous values are scaled (Y-Ymin/Ymax-Ymin) 
so that the response of each sensor has a value between 0 and 1. 
 
Principal component analysis (PCA) 
 
PCA is a well-known linear unsupervised pattern recognition technique [Everitt, 1994]. Due to the use 
of dilute individual components, the assumption of a linear concentration-dependent response can be 
made. The purpose is to reduce the multidimensionality of a problem into two or so dimensions. The 
12 original variables (sensors responses) are combined to find a new group of variables called the 
principal components.  
 
Figures 4a and 4b show the plot of the first two principal components (factor 1 and factor 2) for the 
sensors responses to 3 sets of compounds. 90 % of the variance within the data is contained in the first 
two principal components. 
Plot 4a shows a good separation of data into three distinct groups that corresponds to each of the three 
set of compounds.  
In the next plot b, two other sensors data have been added, namely the responses of TGS 883 and TGS 
2180. This sensors are excessively sensitive to water vapour. In this case the obtained separation does 
not match the expected one. Five groups can be discerned. The previous "sul" group is splitted and a 
new one is formed by "but6-one1-one2". 
In fact, further investigations show that the two additional clusters are due to distinct water 
conditions. The water content is represented by the fractional absolute humidity change ([AH-
AH0]/AH 0 where AH, AH0 are the asolute humidity in the array chamber with the odor or with the 
reference air respectively). 
One sul group has a water range between 0.2 and 0.3 then the other one has a lower water range. The 
three data of the new group (but6-one1-one2) has the same water value. Within the "one3-4-5-6" 
group, one 6 has a positive water value and it is more separated from the three other ones. 
In the end, factor 2 could describe the water parameter : o.1 to the left, 0 in the middle and negative 
value to the right. Although factor 1 (here vertically represented) reflects well the composition 
heterogeneity of samples, the scatter along factor2 seems more due to water content : the water 
parameter varying from 0.1 to negative values from the left to the right of the axis. Indeed, the 
addition of two water sensitive sensors has pointed out the importance of the external conditions on 
the PCA results.  
Consequently, the data separation is not only due to the nature of compounds but also to the range of 
humidity. 
 
An other example proving that the variability of the experimental conditions disturbs the PCA 
classification results is shown in figure 5. Indeed, the PCA on six samples of six compounds (without 
the data of TGS 2180 and TGS 883) under various humidity levels reveals the difficulties in 
separating out the six classes of compounds.  
This expected result is still due to the change of the sensor signal pattern of a given compound when 
external conditions varies.  
 
Artificial neural network (ANN) 
 



Unlike PCA, the neural network is a non linear supervised pattern recognition technique [Baughman 
et al, 1995]. The major advantage of a non linear classification technique is that the data can be non-
linear. It is commonly the case of environmental odors. Furthermore, the second fundamental 
difference is that there is an supervised learning stage.  
A three layer network, using back-propagation of errors learning rule, is built. There are 12 elements 
in the input layer (12 sensors signals), 4 elements in the hidden layer and six elements in the output 
layer representing the six odor classes. The non linear transfer function is log sigmoïd. Training time 
is lowered thanks to an adaptive learning rate of 0.05, a learning increase of 1.05, a learning decrease 
of 0.7 and a momentum term of 0.95.  
A batching operation (all the input vectors simultaneously presented to the network) is applied. For 
the training, there are a maximum of 5 input vectors for each of the six compounds. 
 
During the training stage, the data from known compounds are trained onto target outputs, coded such 
that a "1" is present on a given output only when the corresponding compound is presented to the 
network (e.g. output 1=[1 0 0 0 0 0]) (see table1). The process is continually repeated until the final 
error (the error goal) between the target values and the actual values is less then 0.001. 
 
Table 2a shows the outputs of the network after the training with all 30 input vectors (6 compounds x 
5). In fact, these 30 vectors represent 30 experiments done under uncontrolled external conditions and 
thus under various humidity levels.  
After the network learning step, with a training set of odors signals under any humidity levels, the 
network should be able to recognise new or "test" compounds (6 compounds x 1), this is the 
validation step. Table 2b shows that the compounds are well identified. 
 
The same operation is performed with the previous compound, but this time, the training was done 
only with some of the thirty input vectors (table 3a) : those with an absolute humidity level (AH) 
below 3.  
The "test" compounds are the ones obtained with an humidity level above 3. Table 3b shows the 
unfortunate results of the recognition. A training with a set of odor data obtained in a particular 
condition don't allow a good classification of new odor data obtained in an other particular condition. 
Thus in this case the ANN results are disturbed by the water content. But it worth to be noticed (tables 
2a and 2b) that if the network learns the same odors under a lot of various situations (drift, humidity, 
temperature,...) it can easy recognise an odor under a specific state. This pattern recognition technique 
is more able than the PCA to classify and to recognise odorous mixtures under various external 
conditions. Therefore, ANN seems more suitable for olfactive pollution recognition. But the network 
training with odor from different industrial sources and under various conditions takes a considerable 
amount of time. Furthermore, it assumes that the SnO2 sensors array remains unchanged! 
 
4. Conclusions 
 
These results confirm the bad effect of the humidity and temperature fluctuations on the tin oxide 
sensors responses. Despite this well-known constatation, the consequences for in situ olfactive 
annoyance measurement is not so dramatic then previous suppose. Even with non fixed experimental 
conditions, near the ambient atmosphere, a discrimination of various single odors is possible. 
Furthermore, the six single compounds may be discriminated from each other even if their own 
concentration varies.  
Indeed, we pointed out the importance of using an adapted pattern recognition engine as well as a 
previous data pre-processing. A supervised non-linear technique (ANN, backpropagation) is able to 
classify all the test samples for any experimental conditions. In this case, a good recognition is 
realised despite the humidity influence on the sensors signals. 
However, the in situ olfactive pollution assessment with an SnO2 sensors array and a PARC remains a 
challenge.  
The nature, the number and the concentration of each compounds making up a complex mixture such 
as olfactive pollution can change from day to day depending, for example, of the industrial process. 



But, even if the mixture changes, the source is the same and the annoyance perceived always comes 
from this typical source! How could the sensors array recognise this source? Maybe with a very 
intensive supervised training of the data recognition. Furthermore, for an objective olfactive 
annoyance measurement, they are still other limitations due to the SnO2 sensors itself, e.g. low 
sensitivity compared to the human nose one and the short life time. Nevertheless, these results are 
promising for in situ objective malodors recognition. Further investigations are underway to improve 
in situ measurement always by keeping sensors limitations in mind. There are focused on the data 
analysis (e.g. training with real malodors under various ambient conditions, testing other techniques 
like nonsupervised non-linear techniques Sammon map) and on the experimental conditions 
(e.g. improvement of the temperature regulations). 
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Fig. 1. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from 
28% to 25% (right scale). 
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Fig. 2. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from 
20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity 
value. 
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber 
temperature variations (right scale). 
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses  
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds. 
(water=[(AH-AH0)/AH0], AH:absolute humidity) 
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors 
sensitive to water vapour) to 6 compounds under various humidity levels. 
 
 



Table 1. Target outputs for the network trainingf 
 

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 1.000 0.000 0.000 0.000 0.000 0.000

output 2 0.000 1.000 0.000 0.000 0.000 0.000

output 3 0.000 0.000 1.000 0.000 0.000 0.000

output 4 0.000 0.000 0.000 1.000 0.000 0.000

output 5 0.000 0.000 0.000 0.000 1.000 0.000

output 6 0.000 0.000 0.000 0.000 0.000 1.000  



 
Table 2a. Results of the training with various humidity levels for all compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0.994 0.997 0.996 0.999 0.997 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.005 0.003 0.001 0.000 0.000 0.000 0.0000.000

output 2 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.996 0.994 0.992 0.005 0.000 0.008 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.0010.006

output 3 0.004 0.002 0.003 0.002 0.001 0.000 0.001 0.002 0.000 0.001 0.999 0.994 0.998 0.996 0.997 0.003 0.001 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.005 0.998 0.997 0.998 0.998 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 5 0.001 0.003 0.001 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 0.998 0.999 0.991 0.000 0.006 0.002 0.0000.001

output 6 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.000 0.001 0.000 0.005 0.001 0.000 0.001 0.000 0.001 0.001 0.003 0.000 0.000 0.007 0.999 0.993 0.999 1.0000.995 
 



 
 
Table 2b. Validation results with the "test" compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.

output 1 0.994 0.000 0.063 0.000 0.003 0.000

output 2 0.000 0.991 0.000 0.000 0.000 0.000

output 3 0.003 0.004 0.890 0.002 0.000 0.000

output 4 0.000 0.000 0.000 0.998 0.000 0.000

output 5 0.001 0.000 0.000 0.000 0.996 0.010

output 6 0.000 0.001 0.000 0.000 0.010 0.995

classification
results

butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.
 

 



 
 
Table 3a. Results of the training for compounds with absolute humidity level < 3(g water/kg air) 
 

Network outputs
compounds

outputs butyl acetate n-butanol butylamine methylsulfide decanal 6-methyl-5-hepten-2-one

output1 0.991 0.995 0.996 0.000 0.000 0.010 0.000 0.000 0.000 0.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.992 0.993 0.007 0.004 0.003 0.004 0.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000

output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

output4 0.000 0.000 0.000 0.003 0.004 0.000 0.997 0.998 0.997 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001

output5 0.004 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.993 0.997 0.000 0.000 0.001 0.006

output6 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.999 0.999 0.996 0.999 
 
 



 
Table 3b. Validation results for "test" compounds with absolute humidity level >3 (g water/kg air) 
 

Networks outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output1 0.990 0.983 0.992 0.002 0.000 0.000 0.001 0.014 0.603 0.006 0.605 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.844 0.996 0.903 0.298 0.102 0.000 0.125 0.000 0.996 0.005 0.005 0.004 0.000 0.000 0.783 0.100

output3 0.041 0.166 0.003 0.521 0.942 0.381 0.783 0.999 0.997 0.988 0.787 0.986 0.000 0.000 0.000 0.000 0.000 0.120 0.040

output4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.994 0.994 0.000 0.000 0.000 0.000

output5 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.978 0.015 0.000 0.000

output6 0.000 0.000 0.000 0.000 0.011 0.002 0.001 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.006 0.987 0.425 0.958

classification 
results

butylac. butylac. butylac. false false false false butylam. false butylam. false false met. met. met. decanal false false 6-methyl.
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Abstract 
 
Synthetic mixtures, as well as real industrial emissions sampled in Tedlar® bags, are passed through a 12 
inorganic semiconductors array (Figaro trademark). The experiments are performed in the laboratory in nearly 
field conditions. The influence of external factors, such as humidity content of the malodorous, on the sensors 
signals have been pointed out. Humidity disturbs the results of the pattern recognition techniques. Principal 
component analysis and artificial neural network (ANN) with back-propagation model have been tested. ANN 
allows a good recognition of 6 "test" chemicals even if water content of the mixtures don't remained constant 
during the experiments. The use of SnO2 multisensors for in situ olfactive pollution assessment is still a challenge 
but these results give hope and motivation for intended investigations. 
 
keywords : olfactive pollution detector, tin oxide semiconductor, pattern recognition 
 
1. Introduction  
 
The growing public concern about nasty odors near industrial plants, agricultural installations, landfill 
sites or wastewater facilities gives rise to the implementation of environmental policies in various 
countries, with the aim of safeguarding or restoring the quality of the natural surroundings. In order to 
assess and to monitor the state of the environment in this field, and also to suggest odor abatement 
techniques, it is important to have at one's disposal suitable means of objective measurement and 
inspection of environmental odors. 
Since a few years, an intermediate and very attractive technique is more and more used to identify and 
to monitor odor phenomena : the "electronic nose". Actually, environment is often mentioned among 
the numerous applications of e-noses. However, this type of measurement of odor annoyance in the 
field remains exceptional. 
Applications of this technique are almost restricted to food and agricultural emissions [Nexyad, 1995] 
To date, the running studies related to the use of electronic noses in the environment are focused on 
the detection of some specific compounds, such as carbon monoxide in ambient air, or for domestic 
use [Patissier, 1996] or hydrogen sulfide [Falconer et al., 1990]. 
Most of these studies however concern the sensing devices able to detect the specific compound 
(sometimes non odorous, such as CO), but not really an electronic nose, with an array of sensors, and 
a pattern recognition engine. 
Some other research works involve the use of e-nose for the measurement of a group of compounds, 
such as VOC's [Lorans, 1995] or hazardous organic vapours [Hierlemann et al., 1995], but the authors 
unanimously admit that the problem is complex. 
Finally, very few studies are devoted to environmental applications in the field. All of them are 
restricted to the identification of very specific odors, chiefly at the emission, just near the source. The 
majority of them apply the electronic nose to the detection of hazardous compounds or of olfactive 
nuisance in the agricultural and the breeding sectors [Elliott-Martin, 1994; Persaud et al., 1996]. 
To become a reality, the use of e-nose to assess the odor directly in the environment has first to 
overcome two obstacles, at least : the improvement of sensors sensitivity in order to be able to detect 



the very low concentration levels of odorous compounds in the atmosphere, and the understanding 
and the control of the ambient parameters influence, mainly temperature and humidity. 
The purpose of the present work, indeed, is to examine the potential of e-nose technology for in situ 
monitoring of olfactive pollution in the vicinity of industrial plants. Although being an attractive and 
convenient solution, the use of commercially available electronic noses was discarded for the reason 
that they are not adapted to environmental constraints. More particularly, actual e-nose instruments 
are dedicated to lab applications, and they aren't portable; most of the time, they involve a sample 
preparation technique, such as headspace, but very few are adapted to the handling of gaseous 
atmospheres, on line or by sampling the air directly from the environment; and lastly, although 
measuring external parameters variations (temperature and humidity), they do not take them into 
account in the discrimination procedure. 
 
This paper wonders whether a multisensor array system is able to approach in situ odor assessment, in 
spite of limitations due to ambient humidity and temperature. 
 
2. Materials and methods 
 
Artificial odors are prepared by injection 4 µl of volatile chemicals through the septum of a Tedlar® 
bag filled with 40 l of ambient air. After the evaporation of the liquids (Aldrich®, purity between 
95% and 99.5%), the gaseous mixture is drawn across the sensors chamber by a mini-pump. 
Compounds found in typical olfactive pollution (determined by GC-MS) have been tested. Six 
chemical families are represented : alcohol (n-butanol), ester (butyl acetate), amine (n-butylamine), 
aldehyde (decanal), cetone (6-methyl-5-hepten-2-one) and sulfide (methyl sulfide). 
Real atmosphere from the environment (in this case from animal fat treatment) are sampled in Tedlar® 
bag without direct contact of pumping. 
As the purpose of this experiments is to point out the external parameters influence on the sensors 
signals and on the PARC, we don't control the experimental conditions :  
- mixtures prepared with outside air with humidity content depending on meteorological conditions, 
- laboratory atmosphere close to the real milieu's one (opened windows, no constant room 
 temperature), 
- no temperature regulation of the sensors chamber. 
Only the reference air is a bit more controlled : dry air bubbling into saturated salt water (KCl, in 
melted ice). 
A sensor array consisting of 12 commercial tin oxide gas sensors (Figaro Engineering Inc.) are sealed 
in 6 dm³ perspex cubic chamber. Like the other chemical sensors (conductor polymers 
[Persaud, 1992], SAW and BAW with polymer or lipids active films, electrochemical fuel cells...), tin 
oxide sensors have a lot of disadvantages : poor stability, low sensitivity, short life time, temperature 
and humidity sensitivity, drift, poisoning effects, slow response times... The more important one for 
environmental measurement is the high sensitivity to humidity. 
The choice of the SnO2 sensors results of the best compromise. Their great power consumption is a 
bad point but they are easily available, robust and industrially produced (better interchangeability). 
Among this twelve sensors, two are specific to the humidity sensing (TGS 883 and TGS 2180). 
Moreover, a temperature sensor and a capacitive humidity sensor are mounted into the chamber. 
The sensor resistance is measured by a computer controlled multiplexed system (HP 3421A). A 
constant power voltage is supplied to the sensors heaters. A home-made software written in 
Labwindows provides the data acquisition and display (real time graphic). Two commercial software 
package (Statistica and Matlab) are used to process the data. 
The experimental procedure generally consists in leading alternatively the reference air and the 
gaseous sample into the sensors using a three-way valve, keeping a constant 2000ml/min flow rate. 
The samples were presented in random order during three weeks and at least six replicates were done 
for each compounds. 
 
3. Results and discussion 
 



3.1.Humidity and ambient temperature influence on the sensor signals 
 
The presence of water vapour is known to cause a dramatic decrease of the SnO2 sensors resistance. 
Two mechanisms could explain this influence : the dissociation of the water molecule into hydroxyl 
species which act as electron donors [McAleer et al, 1987 and 1988] and the creation of lattice 
vacancies by the reaction of the hydrogen atoms, produced from the water dissociation, with oxygen 
lattice atoms [Vlachos, 1995]. 
Our goal is not to understand the theory of those mechanisms but only to show the consequences of 
the water influence on an environmental odor response and how to take this effect into account.  
The odorous mixture generated by any industrial source may exhibit a water content ranging from 
near zero to about saturation. Consequently, the semiconductor resistance variation is modified or 
even reversed. Figure 1 and 2 show time - response curves for four sensors for animal fat treatment 
odor. The right scale indicates the relative humidity value. The odor, in the two figures, comes from 
the same source but the sampling date is different and the external conditions as well. 
In this case, the reference air is the lab ambient air. 
With a 28% to 25% relative humidity variation, as shown in figure 1, the signal exhibit a decrease due 
to the animal fat odor, like usual with reducing gases. But with a 20% to 15% relative humidity 
variation (figure 2), the sensors resistance variation for the same odor (same olfactive perception) and 
with same temperature and flow conditions are reversed. This unexpected increase can be explain by 
the humidity value. 
Indeed, in the absence of an odor, a diminution of adsorbed water on the SnO2 ceramics is known to 
increase its resistance. Its appears that the adsorbed moisture can dominate the resistivity behaviour of 
the sensors [Vlachos, 1993]. Precisely, the humidity has a higher negative variation and the final 
value is lower. This experiment proves that it is absolutely necessary to take the water content of the 
samples into account when interpreting the sensors responses data.  
 
The sensors signals are also strongly dependent of the temperature. This parameter is involved in the 
kinetics of the chemical processes on the oxide [Moseley, 1991 ; McAleer et al, 1988 ]. That's why a 
voltage is applied to a inside heater resistance to keep the sensor at a high fixed temperature (around 
400°C). A change of the gas flow or of the surrounding atmosphere temperature can disturb the 
temperature of the semiconductor surface and hence the conductance value. 
Figure 3 shows the sensors signals fluctuations due to the change of the array chamber temperature. 
However, this parameter is not so important than humidity. The temperature control is easier [Jonda, 
1996] than the humidity one because it is a parameter which doesn't depend on the odor quality but 
only to the external conditions. 
For the further experiments, the gas flow is kept at the same fixed level before and during the odor 
sensing. Though, the temperature in the laboratory hangs on the weather. 
 
3.2. Effect of humidity on PARC results 
 
Data preprocessing 
 
The selection of the data preprocessing algorithms is an important stage. Various algorithms have 
been investigated (resistance difference, R0-R, fractional resistance change, (R0-R)/R0, normalised 
fractional resistance change), where R0, R are the resistance's in air or gas respectively. The best 
classification results are obtained with the normalised fractional resistance change : 
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This choice was foreseeable since this parameter is known to nearly remove the gas concentration 
linear dependence [Gardner, 1991; Gardner, 1992]. For the olfactive annoyance recognition, the 
sensors array must be able to differentiate specific emission mixtures even over a range of 
concentrations. However, for most of the odors, the concentration-response curves are non-linear and 
therefore the patterns for individual chemicals may change with concentration [Persaud, 1996].  
Here, the injection of 4µl of liquid chemicals in 40 l bag don't produce the same gaseous 
concentration for each component (various volatility and liquid density) and for the six same samples 
(various lab temperature, injected volume and bag volume errors). 
Furthermore, to perform the pattern recognition, the previous values are scaled (Y-Ymin/Ymax-Ymin) 
so that the response of each sensor has a value between 0 and 1. 
 
Principal component analysis (PCA) 
 
PCA is a well-known linear unsupervised pattern recognition technique [Everitt, 1994]. Due to the use 
of dilute individual components, the assumption of a linear concentration-dependent response can be 
made. The purpose is to reduce the multidimensionality of a problem into two or so dimensions. The 
12 original variables (sensors responses) are combined to find a new group of variables called the 
principal components.  
 
Figures 4a and 4b show the plot of the first two principal components (factor 1 and factor 2) for the 
sensors responses to 3 sets of compounds. 90 % of the variance within the data is contained in the first 
two principal components. 
Plot 4a shows a good separation of data into three distinct groups that corresponds to each of the three 
set of compounds.  
In the next plot b, two other sensors data have been added, namely the responses of TGS 883 and TGS 
2180. This sensors are excessively sensitive to water vapour. In this case the obtained separation does 
not match the expected one. Five groups can be discerned. The previous "sul" group is splitted and a 
new one is formed by "but6-one1-one2". 
In fact, further investigations show that the two additional clusters are due to distinct water 
conditions. The water content is represented by the fractional absolute humidity change ([AH-
AH0]/AH 0 where AH, AH0 are the asolute humidity in the array chamber with the odor or with the 
reference air respectively). 
One sul group has a water range between 0.2 and 0.3 then the other one has a lower water range. The 
three data of the new group (but6-one1-one2) has the same water value. Within the "one3-4-5-6" 
group, one 6 has a positive water value and it is more separated from the three other ones. 
In the end, factor 2 could describe the water parameter : o.1 to the left, 0 in the middle and negative 
value to the right. Although factor 1 (here vertically represented) reflects well the composition 
heterogeneity of samples, the scatter along factor2 seems more due to water content : the water 
parameter varying from 0.1 to negative values from the left to the right of the axis. Indeed, the 
addition of two water sensitive sensors has pointed out the importance of the external conditions on 
the PCA results.  
Consequently, the data separation is not only due to the nature of compounds but also to the range of 
humidity. 
 
An other example proving that the variability of the experimental conditions disturbs the PCA 
classification results is shown in figure 5. Indeed, the PCA on six samples of six compounds (without 
the data of TGS 2180 and TGS 883) under various humidity levels reveals the difficulties in 
separating out the six classes of compounds.  
This expected result is still due to the change of the sensor signal pattern of a given compound when 
external conditions varies.  
 
Artificial neural network (ANN) 
 



Unlike PCA, the neural network is a non linear supervised pattern recognition technique [Baughman 
et al, 1995]. The major advantage of a non linear classification technique is that the data can be non-
linear. It is commonly the case of environmental odors. Furthermore, the second fundamental 
difference is that there is an supervised learning stage.  
A three layer network, using back-propagation of errors learning rule, is built. There are 12 elements 
in the input layer (12 sensors signals), 4 elements in the hidden layer and six elements in the output 
layer representing the six odor classes. The non linear transfer function is log sigmoïd. Training time 
is lowered thanks to an adaptive learning rate of 0.05, a learning increase of 1.05, a learning decrease 
of 0.7 and a momentum term of 0.95.  
A batching operation (all the input vectors simultaneously presented to the network) is applied. For 
the training, there are a maximum of 5 input vectors for each of the six compounds. 
 
During the training stage, the data from known compounds are trained onto target outputs, coded such 
that a "1" is present on a given output only when the corresponding compound is presented to the 
network (e.g. output 1=[1 0 0 0 0 0]) (see table1). The process is continually repeated until the final 
error (the error goal) between the target values and the actual values is less then 0.001. 
 
Table 2a shows the outputs of the network after the training with all 30 input vectors (6 compounds x 
5). In fact, these 30 vectors represent 30 experiments done under uncontrolled external conditions and 
thus under various humidity levels.  
After the network learning step, with a training set of odors signals under any humidity levels, the 
network should be able to recognise new or "test" compounds (6 compounds x 1), this is the 
validation step. Table 2b shows that the compounds are well identified. 
 
The same operation is performed with the previous compound, but this time, the training was done 
only with some of the thirty input vectors (table 3a) : those with an absolute humidity level (AH) 
below 3.  
The "test" compounds are the ones obtained with an humidity level above 3. Table 3b shows the 
unfortunate results of the recognition. A training with a set of odor data obtained in a particular 
condition don't allow a good classification of new odor data obtained in an other particular condition. 
Thus in this case the ANN results are disturbed by the water content. But it worth to be noticed (tables 
2a and 2b) that if the network learns the same odors under a lot of various situations (drift, humidity, 
temperature,...) it can easy recognise an odor under a specific state. This pattern recognition technique 
is more able than the PCA to classify and to recognise odorous mixtures under various external 
conditions. Therefore, ANN seems more suitable for olfactive pollution recognition. But the network 
training with odor from different industrial sources and under various conditions takes a considerable 
amount of time. Furthermore, it assumes that the SnO2 sensors array remains unchanged! 
 
4. Conclusions 
 
These results confirm the bad effect of the humidity and temperature fluctuations on the tin oxide 
sensors responses. Despite this well-known constatation, the consequences for in situ olfactive 
annoyance measurement is not so dramatic then previous suppose. Even with non fixed experimental 
conditions, near the ambient atmosphere, a discrimination of various single odors is possible. 
Furthermore, the six single compounds may be discriminated from each other even if their own 
concentration varies.  
Indeed, we pointed out the importance of using an adapted pattern recognition engine as well as a 
previous data pre-processing. A supervised non-linear technique (ANN, backpropagation) is able to 
classify all the test samples for any experimental conditions. In this case, a good recognition is 
realised despite the humidity influence on the sensors signals. 
However, the in situ olfactive pollution assessment with an SnO2 sensors array and a PARC remains a 
challenge.  
The nature, the number and the concentration of each compounds making up a complex mixture such 
as olfactive pollution can change from day to day depending, for example, of the industrial process. 



But, even if the mixture changes, the source is the same and the annoyance perceived always comes 
from this typical source! How could the sensors array recognise this source? Maybe with a very 
intensive supervised training of the data recognition. Furthermore, for an objective olfactive 
annoyance measurement, they are still other limitations due to the SnO2 sensors itself, e.g. low 
sensitivity compared to the human nose one and the short life time. Nevertheless, these results are 
promising for in situ objective malodors recognition. Further investigations are underway to improve 
in situ measurement always by keeping sensors limitations in mind. There are focused on the data 
analysis (e.g. training with real malodors under various ambient conditions, testing other techniques 
like nonsupervised non-linear techniques Sammon map) and on the experimental conditions 
(e.g. improvement of the temperature regulations). 
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Fig. 1. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from 
28% to 25% (right scale). 
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Fig. 2. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from 
20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity 
value. 
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber 
temperature variations (right scale). 
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses  
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds. 
(water=[(AH-AH0)/AH0], AH:absolute humidity) 
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors 
sensitive to water vapour) to 6 compounds under various humidity levels. 
 
 



Table 1. Target outputs for the network trainingf 
 

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 1.000 0.000 0.000 0.000 0.000 0.000

output 2 0.000 1.000 0.000 0.000 0.000 0.000

output 3 0.000 0.000 1.000 0.000 0.000 0.000

output 4 0.000 0.000 0.000 1.000 0.000 0.000

output 5 0.000 0.000 0.000 0.000 1.000 0.000

output 6 0.000 0.000 0.000 0.000 0.000 1.000  



 
Table 2a. Results of the training with various humidity levels for all compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0.994 0.997 0.996 0.999 0.997 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.005 0.003 0.001 0.000 0.000 0.000 0.0000.000

output 2 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.996 0.994 0.992 0.005 0.000 0.008 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.0010.006

output 3 0.004 0.002 0.003 0.002 0.001 0.000 0.001 0.002 0.000 0.001 0.999 0.994 0.998 0.996 0.997 0.003 0.001 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.005 0.998 0.997 0.998 0.998 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 5 0.001 0.003 0.001 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 0.998 0.999 0.991 0.000 0.006 0.002 0.0000.001

output 6 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.000 0.001 0.000 0.005 0.001 0.000 0.001 0.000 0.001 0.001 0.003 0.000 0.000 0.007 0.999 0.993 0.999 1.0000.995 
 



 
 
Table 2b. Validation results with the "test" compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.

output 1 0.994 0.000 0.063 0.000 0.003 0.000

output 2 0.000 0.991 0.000 0.000 0.000 0.000

output 3 0.003 0.004 0.890 0.002 0.000 0.000

output 4 0.000 0.000 0.000 0.998 0.000 0.000

output 5 0.001 0.000 0.000 0.000 0.996 0.010

output 6 0.000 0.001 0.000 0.000 0.010 0.995

classification
results

butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.
 

 



 
 
Table 3a. Results of the training for compounds with absolute humidity level < 3(g water/kg air) 
 

Network outputs
compounds

outputs butyl acetate n-butanol butylamine methylsulfide decanal 6-methyl-5-hepten-2-one

output1 0.991 0.995 0.996 0.000 0.000 0.010 0.000 0.000 0.000 0.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.992 0.993 0.007 0.004 0.003 0.004 0.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000

output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

output4 0.000 0.000 0.000 0.003 0.004 0.000 0.997 0.998 0.997 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001

output5 0.004 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.993 0.997 0.000 0.000 0.001 0.006

output6 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.999 0.999 0.996 0.999 
 
 



 
Table 3b. Validation results for "test" compounds with absolute humidity level >3 (g water/kg air) 
 

Networks outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output1 0.990 0.983 0.992 0.002 0.000 0.000 0.001 0.014 0.603 0.006 0.605 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.844 0.996 0.903 0.298 0.102 0.000 0.125 0.000 0.996 0.005 0.005 0.004 0.000 0.000 0.783 0.100

output3 0.041 0.166 0.003 0.521 0.942 0.381 0.783 0.999 0.997 0.988 0.787 0.986 0.000 0.000 0.000 0.000 0.000 0.120 0.040

output4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.994 0.994 0.000 0.000 0.000 0.000

output5 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.978 0.015 0.000 0.000

output6 0.000 0.000 0.000 0.000 0.011 0.002 0.001 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.006 0.987 0.425 0.958

classification 
results

butylac. butylac. butylac. false false false false butylam. false butylam. false false met. met. met. decanal false false 6-methyl.
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Abstract 
 
Synthetic mixtures, as well as real industrial emissions sampled in Tedlar® bags, are passed through a 12 
inorganic semiconductors array (Figaro trademark). The experiments are performed in the laboratory in nearly 
field conditions. The influence of external factors, such as humidity content of the malodorous, on the sensors 
signals have been pointed out. Humidity disturbs the results of the pattern recognition techniques. Principal 
component analysis and artificial neural network (ANN) with back-propagation model have been tested. ANN 
allows a good recognition of 6 "test" chemicals even if water content of the mixtures don't remained constant 
during the experiments. The use of SnO2 multisensors for in situ olfactive pollution assessment is still a challenge 
but these results give hope and motivation for intended investigations. 
 
keywords : olfactive pollution detector, tin oxide semiconductor, pattern recognition 
 
1. Introduction  
 
The growing public concern about nasty odors near industrial plants, agricultural installations, landfill 
sites or wastewater facilities gives rise to the implementation of environmental policies in various 
countries, with the aim of safeguarding or restoring the quality of the natural surroundings. In order to 
assess and to monitor the state of the environment in this field, and also to suggest odor abatement 
techniques, it is important to have at one's disposal suitable means of objective measurement and 
inspection of environmental odors. 
Since a few years, an intermediate and very attractive technique is more and more used to identify and 
to monitor odor phenomena : the "electronic nose". Actually, environment is often mentioned among 
the numerous applications of e-noses. However, this type of measurement of odor annoyance in the 
field remains exceptional. 
Applications of this technique are almost restricted to food and agricultural emissions [Nexyad, 1995] 
To date, the running studies related to the use of electronic noses in the environment are focused on 
the detection of some specific compounds, such as carbon monoxide in ambient air, or for domestic 
use [Patissier, 1996] or hydrogen sulfide [Falconer et al., 1990]. 
Most of these studies however concern the sensing devices able to detect the specific compound 
(sometimes non odorous, such as CO), but not really an electronic nose, with an array of sensors, and 
a pattern recognition engine. 
Some other research works involve the use of e-nose for the measurement of a group of compounds, 
such as VOC's [Lorans, 1995] or hazardous organic vapours [Hierlemann et al., 1995], but the authors 
unanimously admit that the problem is complex. 
Finally, very few studies are devoted to environmental applications in the field. All of them are 
restricted to the identification of very specific odors, chiefly at the emission, just near the source. The 
majority of them apply the electronic nose to the detection of hazardous compounds or of olfactive 
nuisance in the agricultural and the breeding sectors [Elliott-Martin, 1994; Persaud et al., 1996]. 
To become a reality, the use of e-nose to assess the odor directly in the environment has first to 
overcome two obstacles, at least : the improvement of sensors sensitivity in order to be able to detect 



the very low concentration levels of odorous compounds in the atmosphere, and the understanding 
and the control of the ambient parameters influence, mainly temperature and humidity. 
The purpose of the present work, indeed, is to examine the potential of e-nose technology for in situ 
monitoring of olfactive pollution in the vicinity of industrial plants. Although being an attractive and 
convenient solution, the use of commercially available electronic noses was discarded for the reason 
that they are not adapted to environmental constraints. More particularly, actual e-nose instruments 
are dedicated to lab applications, and they aren't portable; most of the time, they involve a sample 
preparation technique, such as headspace, but very few are adapted to the handling of gaseous 
atmospheres, on line or by sampling the air directly from the environment; and lastly, although 
measuring external parameters variations (temperature and humidity), they do not take them into 
account in the discrimination procedure. 
 
This paper wonders whether a multisensor array system is able to approach in situ odor assessment, in 
spite of limitations due to ambient humidity and temperature. 
 
2. Materials and methods 
 
Artificial odors are prepared by injection 4 µl of volatile chemicals through the septum of a Tedlar® 
bag filled with 40 l of ambient air. After the evaporation of the liquids (Aldrich®, purity between 
95% and 99.5%), the gaseous mixture is drawn across the sensors chamber by a mini-pump. 
Compounds found in typical olfactive pollution (determined by GC-MS) have been tested. Six 
chemical families are represented : alcohol (n-butanol), ester (butyl acetate), amine (n-butylamine), 
aldehyde (decanal), cetone (6-methyl-5-hepten-2-one) and sulfide (methyl sulfide). 
Real atmosphere from the environment (in this case from animal fat treatment) are sampled in Tedlar® 
bag without direct contact of pumping. 
As the purpose of this experiments is to point out the external parameters influence on the sensors 
signals and on the PARC, we don't control the experimental conditions :  
- mixtures prepared with outside air with humidity content depending on meteorological conditions, 
- laboratory atmosphere close to the real milieu's one (opened windows, no constant room 
 temperature), 
- no temperature regulation of the sensors chamber. 
Only the reference air is a bit more controlled : dry air bubbling into saturated salt water (KCl, in 
melted ice). 
A sensor array consisting of 12 commercial tin oxide gas sensors (Figaro Engineering Inc.) are sealed 
in 6 dm³ perspex cubic chamber. Like the other chemical sensors (conductor polymers 
[Persaud, 1992], SAW and BAW with polymer or lipids active films, electrochemical fuel cells...), tin 
oxide sensors have a lot of disadvantages : poor stability, low sensitivity, short life time, temperature 
and humidity sensitivity, drift, poisoning effects, slow response times... The more important one for 
environmental measurement is the high sensitivity to humidity. 
The choice of the SnO2 sensors results of the best compromise. Their great power consumption is a 
bad point but they are easily available, robust and industrially produced (better interchangeability). 
Among this twelve sensors, two are specific to the humidity sensing (TGS 883 and TGS 2180). 
Moreover, a temperature sensor and a capacitive humidity sensor are mounted into the chamber. 
The sensor resistance is measured by a computer controlled multiplexed system (HP 3421A). A 
constant power voltage is supplied to the sensors heaters. A home-made software written in 
Labwindows provides the data acquisition and display (real time graphic). Two commercial software 
package (Statistica and Matlab) are used to process the data. 
The experimental procedure generally consists in leading alternatively the reference air and the 
gaseous sample into the sensors using a three-way valve, keeping a constant 2000ml/min flow rate. 
The samples were presented in random order during three weeks and at least six replicates were done 
for each compounds. 
 
3. Results and discussion 
 



3.1.Humidity and ambient temperature influence on the sensor signals 
 
The presence of water vapour is known to cause a dramatic decrease of the SnO2 sensors resistance. 
Two mechanisms could explain this influence : the dissociation of the water molecule into hydroxyl 
species which act as electron donors [McAleer et al, 1987 and 1988] and the creation of lattice 
vacancies by the reaction of the hydrogen atoms, produced from the water dissociation, with oxygen 
lattice atoms [Vlachos, 1995]. 
Our goal is not to understand the theory of those mechanisms but only to show the consequences of 
the water influence on an environmental odor response and how to take this effect into account.  
The odorous mixture generated by any industrial source may exhibit a water content ranging from 
near zero to about saturation. Consequently, the semiconductor resistance variation is modified or 
even reversed. Figure 1 and 2 show time - response curves for four sensors for animal fat treatment 
odor. The right scale indicates the relative humidity value. The odor, in the two figures, comes from 
the same source but the sampling date is different and the external conditions as well. 
In this case, the reference air is the lab ambient air. 
With a 28% to 25% relative humidity variation, as shown in figure 1, the signal exhibit a decrease due 
to the animal fat odor, like usual with reducing gases. But with a 20% to 15% relative humidity 
variation (figure 2), the sensors resistance variation for the same odor (same olfactive perception) and 
with same temperature and flow conditions are reversed. This unexpected increase can be explain by 
the humidity value. 
Indeed, in the absence of an odor, a diminution of adsorbed water on the SnO2 ceramics is known to 
increase its resistance. Its appears that the adsorbed moisture can dominate the resistivity behaviour of 
the sensors [Vlachos, 1993]. Precisely, the humidity has a higher negative variation and the final 
value is lower. This experiment proves that it is absolutely necessary to take the water content of the 
samples into account when interpreting the sensors responses data.  
 
The sensors signals are also strongly dependent of the temperature. This parameter is involved in the 
kinetics of the chemical processes on the oxide [Moseley, 1991 ; McAleer et al, 1988 ]. That's why a 
voltage is applied to a inside heater resistance to keep the sensor at a high fixed temperature (around 
400°C). A change of the gas flow or of the surrounding atmosphere temperature can disturb the 
temperature of the semiconductor surface and hence the conductance value. 
Figure 3 shows the sensors signals fluctuations due to the change of the array chamber temperature. 
However, this parameter is not so important than humidity. The temperature control is easier [Jonda, 
1996] than the humidity one because it is a parameter which doesn't depend on the odor quality but 
only to the external conditions. 
For the further experiments, the gas flow is kept at the same fixed level before and during the odor 
sensing. Though, the temperature in the laboratory hangs on the weather. 
 
3.2. Effect of humidity on PARC results 
 
Data preprocessing 
 
The selection of the data preprocessing algorithms is an important stage. Various algorithms have 
been investigated (resistance difference, R0-R, fractional resistance change, (R0-R)/R0, normalised 
fractional resistance change), where R0, R are the resistance's in air or gas respectively. The best 
classification results are obtained with the normalised fractional resistance change : 
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This choice was foreseeable since this parameter is known to nearly remove the gas concentration 
linear dependence [Gardner, 1991; Gardner, 1992]. For the olfactive annoyance recognition, the 
sensors array must be able to differentiate specific emission mixtures even over a range of 
concentrations. However, for most of the odors, the concentration-response curves are non-linear and 
therefore the patterns for individual chemicals may change with concentration [Persaud, 1996].  
Here, the injection of 4µl of liquid chemicals in 40 l bag don't produce the same gaseous 
concentration for each component (various volatility and liquid density) and for the six same samples 
(various lab temperature, injected volume and bag volume errors). 
Furthermore, to perform the pattern recognition, the previous values are scaled (Y-Ymin/Ymax-Ymin) 
so that the response of each sensor has a value between 0 and 1. 
 
Principal component analysis (PCA) 
 
PCA is a well-known linear unsupervised pattern recognition technique [Everitt, 1994]. Due to the use 
of dilute individual components, the assumption of a linear concentration-dependent response can be 
made. The purpose is to reduce the multidimensionality of a problem into two or so dimensions. The 
12 original variables (sensors responses) are combined to find a new group of variables called the 
principal components.  
 
Figures 4a and 4b show the plot of the first two principal components (factor 1 and factor 2) for the 
sensors responses to 3 sets of compounds. 90 % of the variance within the data is contained in the first 
two principal components. 
Plot 4a shows a good separation of data into three distinct groups that corresponds to each of the three 
set of compounds.  
In the next plot b, two other sensors data have been added, namely the responses of TGS 883 and TGS 
2180. This sensors are excessively sensitive to water vapour. In this case the obtained separation does 
not match the expected one. Five groups can be discerned. The previous "sul" group is splitted and a 
new one is formed by "but6-one1-one2". 
In fact, further investigations show that the two additional clusters are due to distinct water 
conditions. The water content is represented by the fractional absolute humidity change ([AH-
AH0]/AH 0 where AH, AH0 are the asolute humidity in the array chamber with the odor or with the 
reference air respectively). 
One sul group has a water range between 0.2 and 0.3 then the other one has a lower water range. The 
three data of the new group (but6-one1-one2) has the same water value. Within the "one3-4-5-6" 
group, one 6 has a positive water value and it is more separated from the three other ones. 
In the end, factor 2 could describe the water parameter : o.1 to the left, 0 in the middle and negative 
value to the right. Although factor 1 (here vertically represented) reflects well the composition 
heterogeneity of samples, the scatter along factor2 seems more due to water content : the water 
parameter varying from 0.1 to negative values from the left to the right of the axis. Indeed, the 
addition of two water sensitive sensors has pointed out the importance of the external conditions on 
the PCA results.  
Consequently, the data separation is not only due to the nature of compounds but also to the range of 
humidity. 
 
An other example proving that the variability of the experimental conditions disturbs the PCA 
classification results is shown in figure 5. Indeed, the PCA on six samples of six compounds (without 
the data of TGS 2180 and TGS 883) under various humidity levels reveals the difficulties in 
separating out the six classes of compounds.  
This expected result is still due to the change of the sensor signal pattern of a given compound when 
external conditions varies.  
 
Artificial neural network (ANN) 
 



Unlike PCA, the neural network is a non linear supervised pattern recognition technique [Baughman 
et al, 1995]. The major advantage of a non linear classification technique is that the data can be non-
linear. It is commonly the case of environmental odors. Furthermore, the second fundamental 
difference is that there is an supervised learning stage.  
A three layer network, using back-propagation of errors learning rule, is built. There are 12 elements 
in the input layer (12 sensors signals), 4 elements in the hidden layer and six elements in the output 
layer representing the six odor classes. The non linear transfer function is log sigmoïd. Training time 
is lowered thanks to an adaptive learning rate of 0.05, a learning increase of 1.05, a learning decrease 
of 0.7 and a momentum term of 0.95.  
A batching operation (all the input vectors simultaneously presented to the network) is applied. For 
the training, there are a maximum of 5 input vectors for each of the six compounds. 
 
During the training stage, the data from known compounds are trained onto target outputs, coded such 
that a "1" is present on a given output only when the corresponding compound is presented to the 
network (e.g. output 1=[1 0 0 0 0 0]) (see table1). The process is continually repeated until the final 
error (the error goal) between the target values and the actual values is less then 0.001. 
 
Table 2a shows the outputs of the network after the training with all 30 input vectors (6 compounds x 
5). In fact, these 30 vectors represent 30 experiments done under uncontrolled external conditions and 
thus under various humidity levels.  
After the network learning step, with a training set of odors signals under any humidity levels, the 
network should be able to recognise new or "test" compounds (6 compounds x 1), this is the 
validation step. Table 2b shows that the compounds are well identified. 
 
The same operation is performed with the previous compound, but this time, the training was done 
only with some of the thirty input vectors (table 3a) : those with an absolute humidity level (AH) 
below 3.  
The "test" compounds are the ones obtained with an humidity level above 3. Table 3b shows the 
unfortunate results of the recognition. A training with a set of odor data obtained in a particular 
condition don't allow a good classification of new odor data obtained in an other particular condition. 
Thus in this case the ANN results are disturbed by the water content. But it worth to be noticed (tables 
2a and 2b) that if the network learns the same odors under a lot of various situations (drift, humidity, 
temperature,...) it can easy recognise an odor under a specific state. This pattern recognition technique 
is more able than the PCA to classify and to recognise odorous mixtures under various external 
conditions. Therefore, ANN seems more suitable for olfactive pollution recognition. But the network 
training with odor from different industrial sources and under various conditions takes a considerable 
amount of time. Furthermore, it assumes that the SnO2 sensors array remains unchanged! 
 
4. Conclusions 
 
These results confirm the bad effect of the humidity and temperature fluctuations on the tin oxide 
sensors responses. Despite this well-known constatation, the consequences for in situ olfactive 
annoyance measurement is not so dramatic then previous suppose. Even with non fixed experimental 
conditions, near the ambient atmosphere, a discrimination of various single odors is possible. 
Furthermore, the six single compounds may be discriminated from each other even if their own 
concentration varies.  
Indeed, we pointed out the importance of using an adapted pattern recognition engine as well as a 
previous data pre-processing. A supervised non-linear technique (ANN, backpropagation) is able to 
classify all the test samples for any experimental conditions. In this case, a good recognition is 
realised despite the humidity influence on the sensors signals. 
However, the in situ olfactive pollution assessment with an SnO2 sensors array and a PARC remains a 
challenge.  
The nature, the number and the concentration of each compounds making up a complex mixture such 
as olfactive pollution can change from day to day depending, for example, of the industrial process. 



But, even if the mixture changes, the source is the same and the annoyance perceived always comes 
from this typical source! How could the sensors array recognise this source? Maybe with a very 
intensive supervised training of the data recognition. Furthermore, for an objective olfactive 
annoyance measurement, they are still other limitations due to the SnO2 sensors itself, e.g. low 
sensitivity compared to the human nose one and the short life time. Nevertheless, these results are 
promising for in situ objective malodors recognition. Further investigations are underway to improve 
in situ measurement always by keeping sensors limitations in mind. There are focused on the data 
analysis (e.g. training with real malodors under various ambient conditions, testing other techniques 
like nonsupervised non-linear techniques Sammon map) and on the experimental conditions 
(e.g. improvement of the temperature regulations). 
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Fig. 1. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from 
28% to 25% (right scale). 
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Fig. 2. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from 
20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity 
value. 
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber 
temperature variations (right scale). 
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses  
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds. 
(water=[(AH-AH0)/AH0], AH:absolute humidity) 
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors 
sensitive to water vapour) to 6 compounds under various humidity levels. 
 
 



Table 1. Target outputs for the network trainingf 
 

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 1.000 0.000 0.000 0.000 0.000 0.000

output 2 0.000 1.000 0.000 0.000 0.000 0.000

output 3 0.000 0.000 1.000 0.000 0.000 0.000

output 4 0.000 0.000 0.000 1.000 0.000 0.000

output 5 0.000 0.000 0.000 0.000 1.000 0.000

output 6 0.000 0.000 0.000 0.000 0.000 1.000  



 
Table 2a. Results of the training with various humidity levels for all compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0.994 0.997 0.996 0.999 0.997 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.005 0.003 0.001 0.000 0.000 0.000 0.0000.000

output 2 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.996 0.994 0.992 0.005 0.000 0.008 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.0010.006

output 3 0.004 0.002 0.003 0.002 0.001 0.000 0.001 0.002 0.000 0.001 0.999 0.994 0.998 0.996 0.997 0.003 0.001 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.005 0.998 0.997 0.998 0.998 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 5 0.001 0.003 0.001 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 0.998 0.999 0.991 0.000 0.006 0.002 0.0000.001

output 6 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.000 0.001 0.000 0.005 0.001 0.000 0.001 0.000 0.001 0.001 0.003 0.000 0.000 0.007 0.999 0.993 0.999 1.0000.995 
 



 
 
Table 2b. Validation results with the "test" compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.

output 1 0.994 0.000 0.063 0.000 0.003 0.000

output 2 0.000 0.991 0.000 0.000 0.000 0.000

output 3 0.003 0.004 0.890 0.002 0.000 0.000

output 4 0.000 0.000 0.000 0.998 0.000 0.000

output 5 0.001 0.000 0.000 0.000 0.996 0.010

output 6 0.000 0.001 0.000 0.000 0.010 0.995

classification
results

butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.
 

 



 
 
Table 3a. Results of the training for compounds with absolute humidity level < 3(g water/kg air) 
 

Network outputs
compounds

outputs butyl acetate n-butanol butylamine methylsulfide decanal 6-methyl-5-hepten-2-one

output1 0.991 0.995 0.996 0.000 0.000 0.010 0.000 0.000 0.000 0.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.992 0.993 0.007 0.004 0.003 0.004 0.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000

output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

output4 0.000 0.000 0.000 0.003 0.004 0.000 0.997 0.998 0.997 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001

output5 0.004 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.993 0.997 0.000 0.000 0.001 0.006

output6 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.999 0.999 0.996 0.999 
 
 



 
Table 3b. Validation results for "test" compounds with absolute humidity level >3 (g water/kg air) 
 

Networks outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output1 0.990 0.983 0.992 0.002 0.000 0.000 0.001 0.014 0.603 0.006 0.605 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.844 0.996 0.903 0.298 0.102 0.000 0.125 0.000 0.996 0.005 0.005 0.004 0.000 0.000 0.783 0.100

output3 0.041 0.166 0.003 0.521 0.942 0.381 0.783 0.999 0.997 0.988 0.787 0.986 0.000 0.000 0.000 0.000 0.000 0.120 0.040

output4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.994 0.994 0.000 0.000 0.000 0.000

output5 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.978 0.015 0.000 0.000

output6 0.000 0.000 0.000 0.000 0.011 0.002 0.001 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.006 0.987 0.425 0.958

classification 
results

butylac. butylac. butylac. false false false false butylam. false butylam. false false met. met. met. decanal false false 6-methyl.
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Abstract 
 
Synthetic mixtures, as well as real industrial emissions sampled in Tedlar® bags, are passed through a 12 
inorganic semiconductors array (Figaro trademark). The experiments are performed in the laboratory in nearly 
field conditions. The influence of external factors, such as humidity content of the malodorous, on the sensors 
signals have been pointed out. Humidity disturbs the results of the pattern recognition techniques. Principal 
component analysis and artificial neural network (ANN) with back-propagation model have been tested. ANN 
allows a good recognition of 6 "test" chemicals even if water content of the mixtures don't remained constant 
during the experiments. The use of SnO2 multisensors for in situ olfactive pollution assessment is still a challenge 
but these results give hope and motivation for intended investigations. 
 
keywords : olfactive pollution detector, tin oxide semiconductor, pattern recognition 
 
1. Introduction  
 
The growing public concern about nasty odors near industrial plants, agricultural installations, landfill 
sites or wastewater facilities gives rise to the implementation of environmental policies in various 
countries, with the aim of safeguarding or restoring the quality of the natural surroundings. In order to 
assess and to monitor the state of the environment in this field, and also to suggest odor abatement 
techniques, it is important to have at one's disposal suitable means of objective measurement and 
inspection of environmental odors. 
Since a few years, an intermediate and very attractive technique is more and more used to identify and 
to monitor odor phenomena : the "electronic nose". Actually, environment is often mentioned among 
the numerous applications of e-noses. However, this type of measurement of odor annoyance in the 
field remains exceptional. 
Applications of this technique are almost restricted to food and agricultural emissions [Nexyad, 1995] 
To date, the running studies related to the use of electronic noses in the environment are focused on 
the detection of some specific compounds, such as carbon monoxide in ambient air, or for domestic 
use [Patissier, 1996] or hydrogen sulfide [Falconer et al., 1990]. 
Most of these studies however concern the sensing devices able to detect the specific compound 
(sometimes non odorous, such as CO), but not really an electronic nose, with an array of sensors, and 
a pattern recognition engine. 
Some other research works involve the use of e-nose for the measurement of a group of compounds, 
such as VOC's [Lorans, 1995] or hazardous organic vapours [Hierlemann et al., 1995], but the authors 
unanimously admit that the problem is complex. 
Finally, very few studies are devoted to environmental applications in the field. All of them are 
restricted to the identification of very specific odors, chiefly at the emission, just near the source. The 
majority of them apply the electronic nose to the detection of hazardous compounds or of olfactive 
nuisance in the agricultural and the breeding sectors [Elliott-Martin, 1994; Persaud et al., 1996]. 
To become a reality, the use of e-nose to assess the odor directly in the environment has first to 
overcome two obstacles, at least : the improvement of sensors sensitivity in order to be able to detect 



the very low concentration levels of odorous compounds in the atmosphere, and the understanding 
and the control of the ambient parameters influence, mainly temperature and humidity. 
The purpose of the present work, indeed, is to examine the potential of e-nose technology for in situ 
monitoring of olfactive pollution in the vicinity of industrial plants. Although being an attractive and 
convenient solution, the use of commercially available electronic noses was discarded for the reason 
that they are not adapted to environmental constraints. More particularly, actual e-nose instruments 
are dedicated to lab applications, and they aren't portable; most of the time, they involve a sample 
preparation technique, such as headspace, but very few are adapted to the handling of gaseous 
atmospheres, on line or by sampling the air directly from the environment; and lastly, although 
measuring external parameters variations (temperature and humidity), they do not take them into 
account in the discrimination procedure. 
 
This paper wonders whether a multisensor array system is able to approach in situ odor assessment, in 
spite of limitations due to ambient humidity and temperature. 
 
2. Materials and methods 
 
Artificial odors are prepared by injection 4 µl of volatile chemicals through the septum of a Tedlar® 
bag filled with 40 l of ambient air. After the evaporation of the liquids (Aldrich®, purity between 
95% and 99.5%), the gaseous mixture is drawn across the sensors chamber by a mini-pump. 
Compounds found in typical olfactive pollution (determined by GC-MS) have been tested. Six 
chemical families are represented : alcohol (n-butanol), ester (butyl acetate), amine (n-butylamine), 
aldehyde (decanal), cetone (6-methyl-5-hepten-2-one) and sulfide (methyl sulfide). 
Real atmosphere from the environment (in this case from animal fat treatment) are sampled in Tedlar® 
bag without direct contact of pumping. 
As the purpose of this experiments is to point out the external parameters influence on the sensors 
signals and on the PARC, we don't control the experimental conditions :  
- mixtures prepared with outside air with humidity content depending on meteorological conditions, 
- laboratory atmosphere close to the real milieu's one (opened windows, no constant room 
 temperature), 
- no temperature regulation of the sensors chamber. 
Only the reference air is a bit more controlled : dry air bubbling into saturated salt water (KCl, in 
melted ice). 
A sensor array consisting of 12 commercial tin oxide gas sensors (Figaro Engineering Inc.) are sealed 
in 6 dm³ perspex cubic chamber. Like the other chemical sensors (conductor polymers 
[Persaud, 1992], SAW and BAW with polymer or lipids active films, electrochemical fuel cells...), tin 
oxide sensors have a lot of disadvantages : poor stability, low sensitivity, short life time, temperature 
and humidity sensitivity, drift, poisoning effects, slow response times... The more important one for 
environmental measurement is the high sensitivity to humidity. 
The choice of the SnO2 sensors results of the best compromise. Their great power consumption is a 
bad point but they are easily available, robust and industrially produced (better interchangeability). 
Among this twelve sensors, two are specific to the humidity sensing (TGS 883 and TGS 2180). 
Moreover, a temperature sensor and a capacitive humidity sensor are mounted into the chamber. 
The sensor resistance is measured by a computer controlled multiplexed system (HP 3421A). A 
constant power voltage is supplied to the sensors heaters. A home-made software written in 
Labwindows provides the data acquisition and display (real time graphic). Two commercial software 
package (Statistica and Matlab) are used to process the data. 
The experimental procedure generally consists in leading alternatively the reference air and the 
gaseous sample into the sensors using a three-way valve, keeping a constant 2000ml/min flow rate. 
The samples were presented in random order during three weeks and at least six replicates were done 
for each compounds. 
 
3. Results and discussion 
 



3.1.Humidity and ambient temperature influence on the sensor signals 
 
The presence of water vapour is known to cause a dramatic decrease of the SnO2 sensors resistance. 
Two mechanisms could explain this influence : the dissociation of the water molecule into hydroxyl 
species which act as electron donors [McAleer et al, 1987 and 1988] and the creation of lattice 
vacancies by the reaction of the hydrogen atoms, produced from the water dissociation, with oxygen 
lattice atoms [Vlachos, 1995]. 
Our goal is not to understand the theory of those mechanisms but only to show the consequences of 
the water influence on an environmental odor response and how to take this effect into account.  
The odorous mixture generated by any industrial source may exhibit a water content ranging from 
near zero to about saturation. Consequently, the semiconductor resistance variation is modified or 
even reversed. Figure 1 and 2 show time - response curves for four sensors for animal fat treatment 
odor. The right scale indicates the relative humidity value. The odor, in the two figures, comes from 
the same source but the sampling date is different and the external conditions as well. 
In this case, the reference air is the lab ambient air. 
With a 28% to 25% relative humidity variation, as shown in figure 1, the signal exhibit a decrease due 
to the animal fat odor, like usual with reducing gases. But with a 20% to 15% relative humidity 
variation (figure 2), the sensors resistance variation for the same odor (same olfactive perception) and 
with same temperature and flow conditions are reversed. This unexpected increase can be explain by 
the humidity value. 
Indeed, in the absence of an odor, a diminution of adsorbed water on the SnO2 ceramics is known to 
increase its resistance. Its appears that the adsorbed moisture can dominate the resistivity behaviour of 
the sensors [Vlachos, 1993]. Precisely, the humidity has a higher negative variation and the final 
value is lower. This experiment proves that it is absolutely necessary to take the water content of the 
samples into account when interpreting the sensors responses data.  
 
The sensors signals are also strongly dependent of the temperature. This parameter is involved in the 
kinetics of the chemical processes on the oxide [Moseley, 1991 ; McAleer et al, 1988 ]. That's why a 
voltage is applied to a inside heater resistance to keep the sensor at a high fixed temperature (around 
400°C). A change of the gas flow or of the surrounding atmosphere temperature can disturb the 
temperature of the semiconductor surface and hence the conductance value. 
Figure 3 shows the sensors signals fluctuations due to the change of the array chamber temperature. 
However, this parameter is not so important than humidity. The temperature control is easier [Jonda, 
1996] than the humidity one because it is a parameter which doesn't depend on the odor quality but 
only to the external conditions. 
For the further experiments, the gas flow is kept at the same fixed level before and during the odor 
sensing. Though, the temperature in the laboratory hangs on the weather. 
 
3.2. Effect of humidity on PARC results 
 
Data preprocessing 
 
The selection of the data preprocessing algorithms is an important stage. Various algorithms have 
been investigated (resistance difference, R0-R, fractional resistance change, (R0-R)/R0, normalised 
fractional resistance change), where R0, R are the resistance's in air or gas respectively. The best 
classification results are obtained with the normalised fractional resistance change : 
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This choice was foreseeable since this parameter is known to nearly remove the gas concentration 
linear dependence [Gardner, 1991; Gardner, 1992]. For the olfactive annoyance recognition, the 
sensors array must be able to differentiate specific emission mixtures even over a range of 
concentrations. However, for most of the odors, the concentration-response curves are non-linear and 
therefore the patterns for individual chemicals may change with concentration [Persaud, 1996].  
Here, the injection of 4µl of liquid chemicals in 40 l bag don't produce the same gaseous 
concentration for each component (various volatility and liquid density) and for the six same samples 
(various lab temperature, injected volume and bag volume errors). 
Furthermore, to perform the pattern recognition, the previous values are scaled (Y-Ymin/Ymax-Ymin) 
so that the response of each sensor has a value between 0 and 1. 
 
Principal component analysis (PCA) 
 
PCA is a well-known linear unsupervised pattern recognition technique [Everitt, 1994]. Due to the use 
of dilute individual components, the assumption of a linear concentration-dependent response can be 
made. The purpose is to reduce the multidimensionality of a problem into two or so dimensions. The 
12 original variables (sensors responses) are combined to find a new group of variables called the 
principal components.  
 
Figures 4a and 4b show the plot of the first two principal components (factor 1 and factor 2) for the 
sensors responses to 3 sets of compounds. 90 % of the variance within the data is contained in the first 
two principal components. 
Plot 4a shows a good separation of data into three distinct groups that corresponds to each of the three 
set of compounds.  
In the next plot b, two other sensors data have been added, namely the responses of TGS 883 and TGS 
2180. This sensors are excessively sensitive to water vapour. In this case the obtained separation does 
not match the expected one. Five groups can be discerned. The previous "sul" group is splitted and a 
new one is formed by "but6-one1-one2". 
In fact, further investigations show that the two additional clusters are due to distinct water 
conditions. The water content is represented by the fractional absolute humidity change ([AH-
AH0]/AH 0 where AH, AH0 are the asolute humidity in the array chamber with the odor or with the 
reference air respectively). 
One sul group has a water range between 0.2 and 0.3 then the other one has a lower water range. The 
three data of the new group (but6-one1-one2) has the same water value. Within the "one3-4-5-6" 
group, one 6 has a positive water value and it is more separated from the three other ones. 
In the end, factor 2 could describe the water parameter : o.1 to the left, 0 in the middle and negative 
value to the right. Although factor 1 (here vertically represented) reflects well the composition 
heterogeneity of samples, the scatter along factor2 seems more due to water content : the water 
parameter varying from 0.1 to negative values from the left to the right of the axis. Indeed, the 
addition of two water sensitive sensors has pointed out the importance of the external conditions on 
the PCA results.  
Consequently, the data separation is not only due to the nature of compounds but also to the range of 
humidity. 
 
An other example proving that the variability of the experimental conditions disturbs the PCA 
classification results is shown in figure 5. Indeed, the PCA on six samples of six compounds (without 
the data of TGS 2180 and TGS 883) under various humidity levels reveals the difficulties in 
separating out the six classes of compounds.  
This expected result is still due to the change of the sensor signal pattern of a given compound when 
external conditions varies.  
 
Artificial neural network (ANN) 
 



Unlike PCA, the neural network is a non linear supervised pattern recognition technique [Baughman 
et al, 1995]. The major advantage of a non linear classification technique is that the data can be non-
linear. It is commonly the case of environmental odors. Furthermore, the second fundamental 
difference is that there is an supervised learning stage.  
A three layer network, using back-propagation of errors learning rule, is built. There are 12 elements 
in the input layer (12 sensors signals), 4 elements in the hidden layer and six elements in the output 
layer representing the six odor classes. The non linear transfer function is log sigmoïd. Training time 
is lowered thanks to an adaptive learning rate of 0.05, a learning increase of 1.05, a learning decrease 
of 0.7 and a momentum term of 0.95.  
A batching operation (all the input vectors simultaneously presented to the network) is applied. For 
the training, there are a maximum of 5 input vectors for each of the six compounds. 
 
During the training stage, the data from known compounds are trained onto target outputs, coded such 
that a "1" is present on a given output only when the corresponding compound is presented to the 
network (e.g. output 1=[1 0 0 0 0 0]) (see table1). The process is continually repeated until the final 
error (the error goal) between the target values and the actual values is less then 0.001. 
 
Table 2a shows the outputs of the network after the training with all 30 input vectors (6 compounds x 
5). In fact, these 30 vectors represent 30 experiments done under uncontrolled external conditions and 
thus under various humidity levels.  
After the network learning step, with a training set of odors signals under any humidity levels, the 
network should be able to recognise new or "test" compounds (6 compounds x 1), this is the 
validation step. Table 2b shows that the compounds are well identified. 
 
The same operation is performed with the previous compound, but this time, the training was done 
only with some of the thirty input vectors (table 3a) : those with an absolute humidity level (AH) 
below 3.  
The "test" compounds are the ones obtained with an humidity level above 3. Table 3b shows the 
unfortunate results of the recognition. A training with a set of odor data obtained in a particular 
condition don't allow a good classification of new odor data obtained in an other particular condition. 
Thus in this case the ANN results are disturbed by the water content. But it worth to be noticed (tables 
2a and 2b) that if the network learns the same odors under a lot of various situations (drift, humidity, 
temperature,...) it can easy recognise an odor under a specific state. This pattern recognition technique 
is more able than the PCA to classify and to recognise odorous mixtures under various external 
conditions. Therefore, ANN seems more suitable for olfactive pollution recognition. But the network 
training with odor from different industrial sources and under various conditions takes a considerable 
amount of time. Furthermore, it assumes that the SnO2 sensors array remains unchanged! 
 
4. Conclusions 
 
These results confirm the bad effect of the humidity and temperature fluctuations on the tin oxide 
sensors responses. Despite this well-known constatation, the consequences for in situ olfactive 
annoyance measurement is not so dramatic then previous suppose. Even with non fixed experimental 
conditions, near the ambient atmosphere, a discrimination of various single odors is possible. 
Furthermore, the six single compounds may be discriminated from each other even if their own 
concentration varies.  
Indeed, we pointed out the importance of using an adapted pattern recognition engine as well as a 
previous data pre-processing. A supervised non-linear technique (ANN, backpropagation) is able to 
classify all the test samples for any experimental conditions. In this case, a good recognition is 
realised despite the humidity influence on the sensors signals. 
However, the in situ olfactive pollution assessment with an SnO2 sensors array and a PARC remains a 
challenge.  
The nature, the number and the concentration of each compounds making up a complex mixture such 
as olfactive pollution can change from day to day depending, for example, of the industrial process. 



But, even if the mixture changes, the source is the same and the annoyance perceived always comes 
from this typical source! How could the sensors array recognise this source? Maybe with a very 
intensive supervised training of the data recognition. Furthermore, for an objective olfactive 
annoyance measurement, they are still other limitations due to the SnO2 sensors itself, e.g. low 
sensitivity compared to the human nose one and the short life time. Nevertheless, these results are 
promising for in situ objective malodors recognition. Further investigations are underway to improve 
in situ measurement always by keeping sensors limitations in mind. There are focused on the data 
analysis (e.g. training with real malodors under various ambient conditions, testing other techniques 
like nonsupervised non-linear techniques Sammon map) and on the experimental conditions 
(e.g. improvement of the temperature regulations). 
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Fig. 1. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from 
28% to 25% (right scale). 
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Fig. 2. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from 
20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity 
value. 
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber 
temperature variations (right scale). 
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses  
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds. 
(water=[(AH-AH0)/AH0], AH:absolute humidity) 
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors 
sensitive to water vapour) to 6 compounds under various humidity levels. 
 
 



Table 1. Target outputs for the network trainingf 
 

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 1.000 0.000 0.000 0.000 0.000 0.000

output 2 0.000 1.000 0.000 0.000 0.000 0.000

output 3 0.000 0.000 1.000 0.000 0.000 0.000

output 4 0.000 0.000 0.000 1.000 0.000 0.000

output 5 0.000 0.000 0.000 0.000 1.000 0.000

output 6 0.000 0.000 0.000 0.000 0.000 1.000  



 
Table 2a. Results of the training with various humidity levels for all compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0.994 0.997 0.996 0.999 0.997 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.005 0.003 0.001 0.000 0.000 0.000 0.0000.000

output 2 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.996 0.994 0.992 0.005 0.000 0.008 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.0010.006

output 3 0.004 0.002 0.003 0.002 0.001 0.000 0.001 0.002 0.000 0.001 0.999 0.994 0.998 0.996 0.997 0.003 0.001 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.005 0.998 0.997 0.998 0.998 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 5 0.001 0.003 0.001 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 0.998 0.999 0.991 0.000 0.006 0.002 0.0000.001

output 6 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.000 0.001 0.000 0.005 0.001 0.000 0.001 0.000 0.001 0.001 0.003 0.000 0.000 0.007 0.999 0.993 0.999 1.0000.995 
 



 
 
Table 2b. Validation results with the "test" compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.

output 1 0.994 0.000 0.063 0.000 0.003 0.000

output 2 0.000 0.991 0.000 0.000 0.000 0.000

output 3 0.003 0.004 0.890 0.002 0.000 0.000

output 4 0.000 0.000 0.000 0.998 0.000 0.000

output 5 0.001 0.000 0.000 0.000 0.996 0.010

output 6 0.000 0.001 0.000 0.000 0.010 0.995

classification
results

butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.
 

 



 
 
Table 3a. Results of the training for compounds with absolute humidity level < 3(g water/kg air) 
 

Network outputs
compounds

outputs butyl acetate n-butanol butylamine methylsulfide decanal 6-methyl-5-hepten-2-one

output1 0.991 0.995 0.996 0.000 0.000 0.010 0.000 0.000 0.000 0.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.992 0.993 0.007 0.004 0.003 0.004 0.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000

output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

output4 0.000 0.000 0.000 0.003 0.004 0.000 0.997 0.998 0.997 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001

output5 0.004 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.993 0.997 0.000 0.000 0.001 0.006

output6 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.999 0.999 0.996 0.999 
 
 



 
Table 3b. Validation results for "test" compounds with absolute humidity level >3 (g water/kg air) 
 

Networks outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output1 0.990 0.983 0.992 0.002 0.000 0.000 0.001 0.014 0.603 0.006 0.605 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.844 0.996 0.903 0.298 0.102 0.000 0.125 0.000 0.996 0.005 0.005 0.004 0.000 0.000 0.783 0.100

output3 0.041 0.166 0.003 0.521 0.942 0.381 0.783 0.999 0.997 0.988 0.787 0.986 0.000 0.000 0.000 0.000 0.000 0.120 0.040

output4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.994 0.994 0.000 0.000 0.000 0.000

output5 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.978 0.015 0.000 0.000

output6 0.000 0.000 0.000 0.000 0.011 0.002 0.001 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.006 0.987 0.425 0.958

classification 
results

butylac. butylac. butylac. false false false false butylam. false butylam. false false met. met. met. decanal false false 6-methyl.
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Abstract 
 
Synthetic mixtures, as well as real industrial emissions sampled in Tedlar® bags, are passed through a 12 
inorganic semiconductors array (Figaro trademark). The experiments are performed in the laboratory in nearly 
field conditions. The influence of external factors, such as humidity content of the malodorous, on the sensors 
signals have been pointed out. Humidity disturbs the results of the pattern recognition techniques. Principal 
component analysis and artificial neural network (ANN) with back-propagation model have been tested. ANN 
allows a good recognition of 6 "test" chemicals even if water content of the mixtures don't remained constant 
during the experiments. The use of SnO2 multisensors for in situ olfactive pollution assessment is still a challenge 
but these results give hope and motivation for intended investigations. 
 
keywords : olfactive pollution detector, tin oxide semiconductor, pattern recognition 
 
1. Introduction  
 
The growing public concern about nasty odors near industrial plants, agricultural installations, landfill 
sites or wastewater facilities gives rise to the implementation of environmental policies in various 
countries, with the aim of safeguarding or restoring the quality of the natural surroundings. In order to 
assess and to monitor the state of the environment in this field, and also to suggest odor abatement 
techniques, it is important to have at one's disposal suitable means of objective measurement and 
inspection of environmental odors. 
Since a few years, an intermediate and very attractive technique is more and more used to identify and 
to monitor odor phenomena : the "electronic nose". Actually, environment is often mentioned among 
the numerous applications of e-noses. However, this type of measurement of odor annoyance in the 
field remains exceptional. 
Applications of this technique are almost restricted to food and agricultural emissions [Nexyad, 1995] 
To date, the running studies related to the use of electronic noses in the environment are focused on 
the detection of some specific compounds, such as carbon monoxide in ambient air, or for domestic 
use [Patissier, 1996] or hydrogen sulfide [Falconer et al., 1990]. 
Most of these studies however concern the sensing devices able to detect the specific compound 
(sometimes non odorous, such as CO), but not really an electronic nose, with an array of sensors, and 
a pattern recognition engine. 
Some other research works involve the use of e-nose for the measurement of a group of compounds, 
such as VOC's [Lorans, 1995] or hazardous organic vapours [Hierlemann et al., 1995], but the authors 
unanimously admit that the problem is complex. 
Finally, very few studies are devoted to environmental applications in the field. All of them are 
restricted to the identification of very specific odors, chiefly at the emission, just near the source. The 
majority of them apply the electronic nose to the detection of hazardous compounds or of olfactive 
nuisance in the agricultural and the breeding sectors [Elliott-Martin, 1994; Persaud et al., 1996]. 
To become a reality, the use of e-nose to assess the odor directly in the environment has first to 
overcome two obstacles, at least : the improvement of sensors sensitivity in order to be able to detect 



the very low concentration levels of odorous compounds in the atmosphere, and the understanding 
and the control of the ambient parameters influence, mainly temperature and humidity. 
The purpose of the present work, indeed, is to examine the potential of e-nose technology for in situ 
monitoring of olfactive pollution in the vicinity of industrial plants. Although being an attractive and 
convenient solution, the use of commercially available electronic noses was discarded for the reason 
that they are not adapted to environmental constraints. More particularly, actual e-nose instruments 
are dedicated to lab applications, and they aren't portable; most of the time, they involve a sample 
preparation technique, such as headspace, but very few are adapted to the handling of gaseous 
atmospheres, on line or by sampling the air directly from the environment; and lastly, although 
measuring external parameters variations (temperature and humidity), they do not take them into 
account in the discrimination procedure. 
 
This paper wonders whether a multisensor array system is able to approach in situ odor assessment, in 
spite of limitations due to ambient humidity and temperature. 
 
2. Materials and methods 
 
Artificial odors are prepared by injection 4 µl of volatile chemicals through the septum of a Tedlar® 
bag filled with 40 l of ambient air. After the evaporation of the liquids (Aldrich®, purity between 
95% and 99.5%), the gaseous mixture is drawn across the sensors chamber by a mini-pump. 
Compounds found in typical olfactive pollution (determined by GC-MS) have been tested. Six 
chemical families are represented : alcohol (n-butanol), ester (butyl acetate), amine (n-butylamine), 
aldehyde (decanal), cetone (6-methyl-5-hepten-2-one) and sulfide (methyl sulfide). 
Real atmosphere from the environment (in this case from animal fat treatment) are sampled in Tedlar® 
bag without direct contact of pumping. 
As the purpose of this experiments is to point out the external parameters influence on the sensors 
signals and on the PARC, we don't control the experimental conditions :  
- mixtures prepared with outside air with humidity content depending on meteorological conditions, 
- laboratory atmosphere close to the real milieu's one (opened windows, no constant room 
 temperature), 
- no temperature regulation of the sensors chamber. 
Only the reference air is a bit more controlled : dry air bubbling into saturated salt water (KCl, in 
melted ice). 
A sensor array consisting of 12 commercial tin oxide gas sensors (Figaro Engineering Inc.) are sealed 
in 6 dm³ perspex cubic chamber. Like the other chemical sensors (conductor polymers 
[Persaud, 1992], SAW and BAW with polymer or lipids active films, electrochemical fuel cells...), tin 
oxide sensors have a lot of disadvantages : poor stability, low sensitivity, short life time, temperature 
and humidity sensitivity, drift, poisoning effects, slow response times... The more important one for 
environmental measurement is the high sensitivity to humidity. 
The choice of the SnO2 sensors results of the best compromise. Their great power consumption is a 
bad point but they are easily available, robust and industrially produced (better interchangeability). 
Among this twelve sensors, two are specific to the humidity sensing (TGS 883 and TGS 2180). 
Moreover, a temperature sensor and a capacitive humidity sensor are mounted into the chamber. 
The sensor resistance is measured by a computer controlled multiplexed system (HP 3421A). A 
constant power voltage is supplied to the sensors heaters. A home-made software written in 
Labwindows provides the data acquisition and display (real time graphic). Two commercial software 
package (Statistica and Matlab) are used to process the data. 
The experimental procedure generally consists in leading alternatively the reference air and the 
gaseous sample into the sensors using a three-way valve, keeping a constant 2000ml/min flow rate. 
The samples were presented in random order during three weeks and at least six replicates were done 
for each compounds. 
 
3. Results and discussion 
 



3.1.Humidity and ambient temperature influence on the sensor signals 
 
The presence of water vapour is known to cause a dramatic decrease of the SnO2 sensors resistance. 
Two mechanisms could explain this influence : the dissociation of the water molecule into hydroxyl 
species which act as electron donors [McAleer et al, 1987 and 1988] and the creation of lattice 
vacancies by the reaction of the hydrogen atoms, produced from the water dissociation, with oxygen 
lattice atoms [Vlachos, 1995]. 
Our goal is not to understand the theory of those mechanisms but only to show the consequences of 
the water influence on an environmental odor response and how to take this effect into account.  
The odorous mixture generated by any industrial source may exhibit a water content ranging from 
near zero to about saturation. Consequently, the semiconductor resistance variation is modified or 
even reversed. Figure 1 and 2 show time - response curves for four sensors for animal fat treatment 
odor. The right scale indicates the relative humidity value. The odor, in the two figures, comes from 
the same source but the sampling date is different and the external conditions as well. 
In this case, the reference air is the lab ambient air. 
With a 28% to 25% relative humidity variation, as shown in figure 1, the signal exhibit a decrease due 
to the animal fat odor, like usual with reducing gases. But with a 20% to 15% relative humidity 
variation (figure 2), the sensors resistance variation for the same odor (same olfactive perception) and 
with same temperature and flow conditions are reversed. This unexpected increase can be explain by 
the humidity value. 
Indeed, in the absence of an odor, a diminution of adsorbed water on the SnO2 ceramics is known to 
increase its resistance. Its appears that the adsorbed moisture can dominate the resistivity behaviour of 
the sensors [Vlachos, 1993]. Precisely, the humidity has a higher negative variation and the final 
value is lower. This experiment proves that it is absolutely necessary to take the water content of the 
samples into account when interpreting the sensors responses data.  
 
The sensors signals are also strongly dependent of the temperature. This parameter is involved in the 
kinetics of the chemical processes on the oxide [Moseley, 1991 ; McAleer et al, 1988 ]. That's why a 
voltage is applied to a inside heater resistance to keep the sensor at a high fixed temperature (around 
400°C). A change of the gas flow or of the surrounding atmosphere temperature can disturb the 
temperature of the semiconductor surface and hence the conductance value. 
Figure 3 shows the sensors signals fluctuations due to the change of the array chamber temperature. 
However, this parameter is not so important than humidity. The temperature control is easier [Jonda, 
1996] than the humidity one because it is a parameter which doesn't depend on the odor quality but 
only to the external conditions. 
For the further experiments, the gas flow is kept at the same fixed level before and during the odor 
sensing. Though, the temperature in the laboratory hangs on the weather. 
 
3.2. Effect of humidity on PARC results 
 
Data preprocessing 
 
The selection of the data preprocessing algorithms is an important stage. Various algorithms have 
been investigated (resistance difference, R0-R, fractional resistance change, (R0-R)/R0, normalised 
fractional resistance change), where R0, R are the resistance's in air or gas respectively. The best 
classification results are obtained with the normalised fractional resistance change : 
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This choice was foreseeable since this parameter is known to nearly remove the gas concentration 
linear dependence [Gardner, 1991; Gardner, 1992]. For the olfactive annoyance recognition, the 
sensors array must be able to differentiate specific emission mixtures even over a range of 
concentrations. However, for most of the odors, the concentration-response curves are non-linear and 
therefore the patterns for individual chemicals may change with concentration [Persaud, 1996].  
Here, the injection of 4µl of liquid chemicals in 40 l bag don't produce the same gaseous 
concentration for each component (various volatility and liquid density) and for the six same samples 
(various lab temperature, injected volume and bag volume errors). 
Furthermore, to perform the pattern recognition, the previous values are scaled (Y-Ymin/Ymax-Ymin) 
so that the response of each sensor has a value between 0 and 1. 
 
Principal component analysis (PCA) 
 
PCA is a well-known linear unsupervised pattern recognition technique [Everitt, 1994]. Due to the use 
of dilute individual components, the assumption of a linear concentration-dependent response can be 
made. The purpose is to reduce the multidimensionality of a problem into two or so dimensions. The 
12 original variables (sensors responses) are combined to find a new group of variables called the 
principal components.  
 
Figures 4a and 4b show the plot of the first two principal components (factor 1 and factor 2) for the 
sensors responses to 3 sets of compounds. 90 % of the variance within the data is contained in the first 
two principal components. 
Plot 4a shows a good separation of data into three distinct groups that corresponds to each of the three 
set of compounds.  
In the next plot b, two other sensors data have been added, namely the responses of TGS 883 and TGS 
2180. This sensors are excessively sensitive to water vapour. In this case the obtained separation does 
not match the expected one. Five groups can be discerned. The previous "sul" group is splitted and a 
new one is formed by "but6-one1-one2". 
In fact, further investigations show that the two additional clusters are due to distinct water 
conditions. The water content is represented by the fractional absolute humidity change ([AH-
AH0]/AH 0 where AH, AH0 are the asolute humidity in the array chamber with the odor or with the 
reference air respectively). 
One sul group has a water range between 0.2 and 0.3 then the other one has a lower water range. The 
three data of the new group (but6-one1-one2) has the same water value. Within the "one3-4-5-6" 
group, one 6 has a positive water value and it is more separated from the three other ones. 
In the end, factor 2 could describe the water parameter : o.1 to the left, 0 in the middle and negative 
value to the right. Although factor 1 (here vertically represented) reflects well the composition 
heterogeneity of samples, the scatter along factor2 seems more due to water content : the water 
parameter varying from 0.1 to negative values from the left to the right of the axis. Indeed, the 
addition of two water sensitive sensors has pointed out the importance of the external conditions on 
the PCA results.  
Consequently, the data separation is not only due to the nature of compounds but also to the range of 
humidity. 
 
An other example proving that the variability of the experimental conditions disturbs the PCA 
classification results is shown in figure 5. Indeed, the PCA on six samples of six compounds (without 
the data of TGS 2180 and TGS 883) under various humidity levels reveals the difficulties in 
separating out the six classes of compounds.  
This expected result is still due to the change of the sensor signal pattern of a given compound when 
external conditions varies.  
 
Artificial neural network (ANN) 
 



Unlike PCA, the neural network is a non linear supervised pattern recognition technique [Baughman 
et al, 1995]. The major advantage of a non linear classification technique is that the data can be non-
linear. It is commonly the case of environmental odors. Furthermore, the second fundamental 
difference is that there is an supervised learning stage.  
A three layer network, using back-propagation of errors learning rule, is built. There are 12 elements 
in the input layer (12 sensors signals), 4 elements in the hidden layer and six elements in the output 
layer representing the six odor classes. The non linear transfer function is log sigmoïd. Training time 
is lowered thanks to an adaptive learning rate of 0.05, a learning increase of 1.05, a learning decrease 
of 0.7 and a momentum term of 0.95.  
A batching operation (all the input vectors simultaneously presented to the network) is applied. For 
the training, there are a maximum of 5 input vectors for each of the six compounds. 
 
During the training stage, the data from known compounds are trained onto target outputs, coded such 
that a "1" is present on a given output only when the corresponding compound is presented to the 
network (e.g. output 1=[1 0 0 0 0 0]) (see table1). The process is continually repeated until the final 
error (the error goal) between the target values and the actual values is less then 0.001. 
 
Table 2a shows the outputs of the network after the training with all 30 input vectors (6 compounds x 
5). In fact, these 30 vectors represent 30 experiments done under uncontrolled external conditions and 
thus under various humidity levels.  
After the network learning step, with a training set of odors signals under any humidity levels, the 
network should be able to recognise new or "test" compounds (6 compounds x 1), this is the 
validation step. Table 2b shows that the compounds are well identified. 
 
The same operation is performed with the previous compound, but this time, the training was done 
only with some of the thirty input vectors (table 3a) : those with an absolute humidity level (AH) 
below 3.  
The "test" compounds are the ones obtained with an humidity level above 3. Table 3b shows the 
unfortunate results of the recognition. A training with a set of odor data obtained in a particular 
condition don't allow a good classification of new odor data obtained in an other particular condition. 
Thus in this case the ANN results are disturbed by the water content. But it worth to be noticed (tables 
2a and 2b) that if the network learns the same odors under a lot of various situations (drift, humidity, 
temperature,...) it can easy recognise an odor under a specific state. This pattern recognition technique 
is more able than the PCA to classify and to recognise odorous mixtures under various external 
conditions. Therefore, ANN seems more suitable for olfactive pollution recognition. But the network 
training with odor from different industrial sources and under various conditions takes a considerable 
amount of time. Furthermore, it assumes that the SnO2 sensors array remains unchanged! 
 
4. Conclusions 
 
These results confirm the bad effect of the humidity and temperature fluctuations on the tin oxide 
sensors responses. Despite this well-known constatation, the consequences for in situ olfactive 
annoyance measurement is not so dramatic then previous suppose. Even with non fixed experimental 
conditions, near the ambient atmosphere, a discrimination of various single odors is possible. 
Furthermore, the six single compounds may be discriminated from each other even if their own 
concentration varies.  
Indeed, we pointed out the importance of using an adapted pattern recognition engine as well as a 
previous data pre-processing. A supervised non-linear technique (ANN, backpropagation) is able to 
classify all the test samples for any experimental conditions. In this case, a good recognition is 
realised despite the humidity influence on the sensors signals. 
However, the in situ olfactive pollution assessment with an SnO2 sensors array and a PARC remains a 
challenge.  
The nature, the number and the concentration of each compounds making up a complex mixture such 
as olfactive pollution can change from day to day depending, for example, of the industrial process. 



But, even if the mixture changes, the source is the same and the annoyance perceived always comes 
from this typical source! How could the sensors array recognise this source? Maybe with a very 
intensive supervised training of the data recognition. Furthermore, for an objective olfactive 
annoyance measurement, they are still other limitations due to the SnO2 sensors itself, e.g. low 
sensitivity compared to the human nose one and the short life time. Nevertheless, these results are 
promising for in situ objective malodors recognition. Further investigations are underway to improve 
in situ measurement always by keeping sensors limitations in mind. There are focused on the data 
analysis (e.g. training with real malodors under various ambient conditions, testing other techniques 
like nonsupervised non-linear techniques Sammon map) and on the experimental conditions 
(e.g. improvement of the temperature regulations). 
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Fig. 1. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from 
28% to 25% (right scale). 
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Fig. 2. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from 
20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity 
value. 
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber 
temperature variations (right scale). 
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses  
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds. 
(water=[(AH-AH0)/AH0], AH:absolute humidity) 
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors 
sensitive to water vapour) to 6 compounds under various humidity levels. 
 
 



Table 1. Target outputs for the network trainingf 
 

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 1.000 0.000 0.000 0.000 0.000 0.000

output 2 0.000 1.000 0.000 0.000 0.000 0.000

output 3 0.000 0.000 1.000 0.000 0.000 0.000

output 4 0.000 0.000 0.000 1.000 0.000 0.000

output 5 0.000 0.000 0.000 0.000 1.000 0.000

output 6 0.000 0.000 0.000 0.000 0.000 1.000  



 
Table 2a. Results of the training with various humidity levels for all compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0.994 0.997 0.996 0.999 0.997 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.005 0.003 0.001 0.000 0.000 0.000 0.0000.000

output 2 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.996 0.994 0.992 0.005 0.000 0.008 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.0010.006

output 3 0.004 0.002 0.003 0.002 0.001 0.000 0.001 0.002 0.000 0.001 0.999 0.994 0.998 0.996 0.997 0.003 0.001 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.005 0.998 0.997 0.998 0.998 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 5 0.001 0.003 0.001 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 0.998 0.999 0.991 0.000 0.006 0.002 0.0000.001

output 6 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.000 0.001 0.000 0.005 0.001 0.000 0.001 0.000 0.001 0.001 0.003 0.000 0.000 0.007 0.999 0.993 0.999 1.0000.995 
 



 
 
Table 2b. Validation results with the "test" compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.

output 1 0.994 0.000 0.063 0.000 0.003 0.000

output 2 0.000 0.991 0.000 0.000 0.000 0.000

output 3 0.003 0.004 0.890 0.002 0.000 0.000

output 4 0.000 0.000 0.000 0.998 0.000 0.000

output 5 0.001 0.000 0.000 0.000 0.996 0.010

output 6 0.000 0.001 0.000 0.000 0.010 0.995

classification
results

butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.
 

 



 
 
Table 3a. Results of the training for compounds with absolute humidity level < 3(g water/kg air) 
 

Network outputs
compounds

outputs butyl acetate n-butanol butylamine methylsulfide decanal 6-methyl-5-hepten-2-one

output1 0.991 0.995 0.996 0.000 0.000 0.010 0.000 0.000 0.000 0.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.992 0.993 0.007 0.004 0.003 0.004 0.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000

output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

output4 0.000 0.000 0.000 0.003 0.004 0.000 0.997 0.998 0.997 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001

output5 0.004 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.993 0.997 0.000 0.000 0.001 0.006

output6 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.999 0.999 0.996 0.999 
 
 



 
Table 3b. Validation results for "test" compounds with absolute humidity level >3 (g water/kg air) 
 

Networks outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output1 0.990 0.983 0.992 0.002 0.000 0.000 0.001 0.014 0.603 0.006 0.605 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.844 0.996 0.903 0.298 0.102 0.000 0.125 0.000 0.996 0.005 0.005 0.004 0.000 0.000 0.783 0.100

output3 0.041 0.166 0.003 0.521 0.942 0.381 0.783 0.999 0.997 0.988 0.787 0.986 0.000 0.000 0.000 0.000 0.000 0.120 0.040

output4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.994 0.994 0.000 0.000 0.000 0.000

output5 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.978 0.015 0.000 0.000

output6 0.000 0.000 0.000 0.000 0.011 0.002 0.001 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.006 0.987 0.425 0.958

classification 
results

butylac. butylac. butylac. false false false false butylam. false butylam. false false met. met. met. decanal false false 6-methyl.
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Abstract 
 
Synthetic mixtures, as well as real industrial emissions sampled in Tedlar® bags, are passed through a 12 
inorganic semiconductors array (Figaro trademark). The experiments are performed in the laboratory in nearly 
field conditions. The influence of external factors, such as humidity content of the malodorous, on the sensors 
signals have been pointed out. Humidity disturbs the results of the pattern recognition techniques. Principal 
component analysis and artificial neural network (ANN) with back-propagation model have been tested. ANN 
allows a good recognition of 6 "test" chemicals even if water content of the mixtures don't remained constant 
during the experiments. The use of SnO2 multisensors for in situ olfactive pollution assessment is still a challenge 
but these results give hope and motivation for intended investigations. 
 
keywords : olfactive pollution detector, tin oxide semiconductor, pattern recognition 
 
1. Introduction  
 
The growing public concern about nasty odors near industrial plants, agricultural installations, landfill 
sites or wastewater facilities gives rise to the implementation of environmental policies in various 
countries, with the aim of safeguarding or restoring the quality of the natural surroundings. In order to 
assess and to monitor the state of the environment in this field, and also to suggest odor abatement 
techniques, it is important to have at one's disposal suitable means of objective measurement and 
inspection of environmental odors. 
Since a few years, an intermediate and very attractive technique is more and more used to identify and 
to monitor odor phenomena : the "electronic nose". Actually, environment is often mentioned among 
the numerous applications of e-noses. However, this type of measurement of odor annoyance in the 
field remains exceptional. 
Applications of this technique are almost restricted to food and agricultural emissions [Nexyad, 1995] 
To date, the running studies related to the use of electronic noses in the environment are focused on 
the detection of some specific compounds, such as carbon monoxide in ambient air, or for domestic 
use [Patissier, 1996] or hydrogen sulfide [Falconer et al., 1990]. 
Most of these studies however concern the sensing devices able to detect the specific compound 
(sometimes non odorous, such as CO), but not really an electronic nose, with an array of sensors, and 
a pattern recognition engine. 
Some other research works involve the use of e-nose for the measurement of a group of compounds, 
such as VOC's [Lorans, 1995] or hazardous organic vapours [Hierlemann et al., 1995], but the authors 
unanimously admit that the problem is complex. 
Finally, very few studies are devoted to environmental applications in the field. All of them are 
restricted to the identification of very specific odors, chiefly at the emission, just near the source. The 
majority of them apply the electronic nose to the detection of hazardous compounds or of olfactive 
nuisance in the agricultural and the breeding sectors [Elliott-Martin, 1994; Persaud et al., 1996]. 
To become a reality, the use of e-nose to assess the odor directly in the environment has first to 
overcome two obstacles, at least : the improvement of sensors sensitivity in order to be able to detect 



the very low concentration levels of odorous compounds in the atmosphere, and the understanding 
and the control of the ambient parameters influence, mainly temperature and humidity. 
The purpose of the present work, indeed, is to examine the potential of e-nose technology for in situ 
monitoring of olfactive pollution in the vicinity of industrial plants. Although being an attractive and 
convenient solution, the use of commercially available electronic noses was discarded for the reason 
that they are not adapted to environmental constraints. More particularly, actual e-nose instruments 
are dedicated to lab applications, and they aren't portable; most of the time, they involve a sample 
preparation technique, such as headspace, but very few are adapted to the handling of gaseous 
atmospheres, on line or by sampling the air directly from the environment; and lastly, although 
measuring external parameters variations (temperature and humidity), they do not take them into 
account in the discrimination procedure. 
 
This paper wonders whether a multisensor array system is able to approach in situ odor assessment, in 
spite of limitations due to ambient humidity and temperature. 
 
2. Materials and methods 
 
Artificial odors are prepared by injection 4 µl of volatile chemicals through the septum of a Tedlar® 
bag filled with 40 l of ambient air. After the evaporation of the liquids (Aldrich®, purity between 
95% and 99.5%), the gaseous mixture is drawn across the sensors chamber by a mini-pump. 
Compounds found in typical olfactive pollution (determined by GC-MS) have been tested. Six 
chemical families are represented : alcohol (n-butanol), ester (butyl acetate), amine (n-butylamine), 
aldehyde (decanal), cetone (6-methyl-5-hepten-2-one) and sulfide (methyl sulfide). 
Real atmosphere from the environment (in this case from animal fat treatment) are sampled in Tedlar® 
bag without direct contact of pumping. 
As the purpose of this experiments is to point out the external parameters influence on the sensors 
signals and on the PARC, we don't control the experimental conditions :  
- mixtures prepared with outside air with humidity content depending on meteorological conditions, 
- laboratory atmosphere close to the real milieu's one (opened windows, no constant room 
 temperature), 
- no temperature regulation of the sensors chamber. 
Only the reference air is a bit more controlled : dry air bubbling into saturated salt water (KCl, in 
melted ice). 
A sensor array consisting of 12 commercial tin oxide gas sensors (Figaro Engineering Inc.) are sealed 
in 6 dm³ perspex cubic chamber. Like the other chemical sensors (conductor polymers 
[Persaud, 1992], SAW and BAW with polymer or lipids active films, electrochemical fuel cells...), tin 
oxide sensors have a lot of disadvantages : poor stability, low sensitivity, short life time, temperature 
and humidity sensitivity, drift, poisoning effects, slow response times... The more important one for 
environmental measurement is the high sensitivity to humidity. 
The choice of the SnO2 sensors results of the best compromise. Their great power consumption is a 
bad point but they are easily available, robust and industrially produced (better interchangeability). 
Among this twelve sensors, two are specific to the humidity sensing (TGS 883 and TGS 2180). 
Moreover, a temperature sensor and a capacitive humidity sensor are mounted into the chamber. 
The sensor resistance is measured by a computer controlled multiplexed system (HP 3421A). A 
constant power voltage is supplied to the sensors heaters. A home-made software written in 
Labwindows provides the data acquisition and display (real time graphic). Two commercial software 
package (Statistica and Matlab) are used to process the data. 
The experimental procedure generally consists in leading alternatively the reference air and the 
gaseous sample into the sensors using a three-way valve, keeping a constant 2000ml/min flow rate. 
The samples were presented in random order during three weeks and at least six replicates were done 
for each compounds. 
 
3. Results and discussion 
 



3.1.Humidity and ambient temperature influence on the sensor signals 
 
The presence of water vapour is known to cause a dramatic decrease of the SnO2 sensors resistance. 
Two mechanisms could explain this influence : the dissociation of the water molecule into hydroxyl 
species which act as electron donors [McAleer et al, 1987 and 1988] and the creation of lattice 
vacancies by the reaction of the hydrogen atoms, produced from the water dissociation, with oxygen 
lattice atoms [Vlachos, 1995]. 
Our goal is not to understand the theory of those mechanisms but only to show the consequences of 
the water influence on an environmental odor response and how to take this effect into account.  
The odorous mixture generated by any industrial source may exhibit a water content ranging from 
near zero to about saturation. Consequently, the semiconductor resistance variation is modified or 
even reversed. Figure 1 and 2 show time - response curves for four sensors for animal fat treatment 
odor. The right scale indicates the relative humidity value. The odor, in the two figures, comes from 
the same source but the sampling date is different and the external conditions as well. 
In this case, the reference air is the lab ambient air. 
With a 28% to 25% relative humidity variation, as shown in figure 1, the signal exhibit a decrease due 
to the animal fat odor, like usual with reducing gases. But with a 20% to 15% relative humidity 
variation (figure 2), the sensors resistance variation for the same odor (same olfactive perception) and 
with same temperature and flow conditions are reversed. This unexpected increase can be explain by 
the humidity value. 
Indeed, in the absence of an odor, a diminution of adsorbed water on the SnO2 ceramics is known to 
increase its resistance. Its appears that the adsorbed moisture can dominate the resistivity behaviour of 
the sensors [Vlachos, 1993]. Precisely, the humidity has a higher negative variation and the final 
value is lower. This experiment proves that it is absolutely necessary to take the water content of the 
samples into account when interpreting the sensors responses data.  
 
The sensors signals are also strongly dependent of the temperature. This parameter is involved in the 
kinetics of the chemical processes on the oxide [Moseley, 1991 ; McAleer et al, 1988 ]. That's why a 
voltage is applied to a inside heater resistance to keep the sensor at a high fixed temperature (around 
400°C). A change of the gas flow or of the surrounding atmosphere temperature can disturb the 
temperature of the semiconductor surface and hence the conductance value. 
Figure 3 shows the sensors signals fluctuations due to the change of the array chamber temperature. 
However, this parameter is not so important than humidity. The temperature control is easier [Jonda, 
1996] than the humidity one because it is a parameter which doesn't depend on the odor quality but 
only to the external conditions. 
For the further experiments, the gas flow is kept at the same fixed level before and during the odor 
sensing. Though, the temperature in the laboratory hangs on the weather. 
 
3.2. Effect of humidity on PARC results 
 
Data preprocessing 
 
The selection of the data preprocessing algorithms is an important stage. Various algorithms have 
been investigated (resistance difference, R0-R, fractional resistance change, (R0-R)/R0, normalised 
fractional resistance change), where R0, R are the resistance's in air or gas respectively. The best 
classification results are obtained with the normalised fractional resistance change : 
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where n is the number of sensors. 
 



This choice was foreseeable since this parameter is known to nearly remove the gas concentration 
linear dependence [Gardner, 1991; Gardner, 1992]. For the olfactive annoyance recognition, the 
sensors array must be able to differentiate specific emission mixtures even over a range of 
concentrations. However, for most of the odors, the concentration-response curves are non-linear and 
therefore the patterns for individual chemicals may change with concentration [Persaud, 1996].  
Here, the injection of 4µl of liquid chemicals in 40 l bag don't produce the same gaseous 
concentration for each component (various volatility and liquid density) and for the six same samples 
(various lab temperature, injected volume and bag volume errors). 
Furthermore, to perform the pattern recognition, the previous values are scaled (Y-Ymin/Ymax-Ymin) 
so that the response of each sensor has a value between 0 and 1. 
 
Principal component analysis (PCA) 
 
PCA is a well-known linear unsupervised pattern recognition technique [Everitt, 1994]. Due to the use 
of dilute individual components, the assumption of a linear concentration-dependent response can be 
made. The purpose is to reduce the multidimensionality of a problem into two or so dimensions. The 
12 original variables (sensors responses) are combined to find a new group of variables called the 
principal components.  
 
Figures 4a and 4b show the plot of the first two principal components (factor 1 and factor 2) for the 
sensors responses to 3 sets of compounds. 90 % of the variance within the data is contained in the first 
two principal components. 
Plot 4a shows a good separation of data into three distinct groups that corresponds to each of the three 
set of compounds.  
In the next plot b, two other sensors data have been added, namely the responses of TGS 883 and TGS 
2180. This sensors are excessively sensitive to water vapour. In this case the obtained separation does 
not match the expected one. Five groups can be discerned. The previous "sul" group is splitted and a 
new one is formed by "but6-one1-one2". 
In fact, further investigations show that the two additional clusters are due to distinct water 
conditions. The water content is represented by the fractional absolute humidity change ([AH-
AH0]/AH 0 where AH, AH0 are the asolute humidity in the array chamber with the odor or with the 
reference air respectively). 
One sul group has a water range between 0.2 and 0.3 then the other one has a lower water range. The 
three data of the new group (but6-one1-one2) has the same water value. Within the "one3-4-5-6" 
group, one 6 has a positive water value and it is more separated from the three other ones. 
In the end, factor 2 could describe the water parameter : o.1 to the left, 0 in the middle and negative 
value to the right. Although factor 1 (here vertically represented) reflects well the composition 
heterogeneity of samples, the scatter along factor2 seems more due to water content : the water 
parameter varying from 0.1 to negative values from the left to the right of the axis. Indeed, the 
addition of two water sensitive sensors has pointed out the importance of the external conditions on 
the PCA results.  
Consequently, the data separation is not only due to the nature of compounds but also to the range of 
humidity. 
 
An other example proving that the variability of the experimental conditions disturbs the PCA 
classification results is shown in figure 5. Indeed, the PCA on six samples of six compounds (without 
the data of TGS 2180 and TGS 883) under various humidity levels reveals the difficulties in 
separating out the six classes of compounds.  
This expected result is still due to the change of the sensor signal pattern of a given compound when 
external conditions varies.  
 
Artificial neural network (ANN) 
 



Unlike PCA, the neural network is a non linear supervised pattern recognition technique [Baughman 
et al, 1995]. The major advantage of a non linear classification technique is that the data can be non-
linear. It is commonly the case of environmental odors. Furthermore, the second fundamental 
difference is that there is an supervised learning stage.  
A three layer network, using back-propagation of errors learning rule, is built. There are 12 elements 
in the input layer (12 sensors signals), 4 elements in the hidden layer and six elements in the output 
layer representing the six odor classes. The non linear transfer function is log sigmoïd. Training time 
is lowered thanks to an adaptive learning rate of 0.05, a learning increase of 1.05, a learning decrease 
of 0.7 and a momentum term of 0.95.  
A batching operation (all the input vectors simultaneously presented to the network) is applied. For 
the training, there are a maximum of 5 input vectors for each of the six compounds. 
 
During the training stage, the data from known compounds are trained onto target outputs, coded such 
that a "1" is present on a given output only when the corresponding compound is presented to the 
network (e.g. output 1=[1 0 0 0 0 0]) (see table1). The process is continually repeated until the final 
error (the error goal) between the target values and the actual values is less then 0.001. 
 
Table 2a shows the outputs of the network after the training with all 30 input vectors (6 compounds x 
5). In fact, these 30 vectors represent 30 experiments done under uncontrolled external conditions and 
thus under various humidity levels.  
After the network learning step, with a training set of odors signals under any humidity levels, the 
network should be able to recognise new or "test" compounds (6 compounds x 1), this is the 
validation step. Table 2b shows that the compounds are well identified. 
 
The same operation is performed with the previous compound, but this time, the training was done 
only with some of the thirty input vectors (table 3a) : those with an absolute humidity level (AH) 
below 3.  
The "test" compounds are the ones obtained with an humidity level above 3. Table 3b shows the 
unfortunate results of the recognition. A training with a set of odor data obtained in a particular 
condition don't allow a good classification of new odor data obtained in an other particular condition. 
Thus in this case the ANN results are disturbed by the water content. But it worth to be noticed (tables 
2a and 2b) that if the network learns the same odors under a lot of various situations (drift, humidity, 
temperature,...) it can easy recognise an odor under a specific state. This pattern recognition technique 
is more able than the PCA to classify and to recognise odorous mixtures under various external 
conditions. Therefore, ANN seems more suitable for olfactive pollution recognition. But the network 
training with odor from different industrial sources and under various conditions takes a considerable 
amount of time. Furthermore, it assumes that the SnO2 sensors array remains unchanged! 
 
4. Conclusions 
 
These results confirm the bad effect of the humidity and temperature fluctuations on the tin oxide 
sensors responses. Despite this well-known constatation, the consequences for in situ olfactive 
annoyance measurement is not so dramatic then previous suppose. Even with non fixed experimental 
conditions, near the ambient atmosphere, a discrimination of various single odors is possible. 
Furthermore, the six single compounds may be discriminated from each other even if their own 
concentration varies.  
Indeed, we pointed out the importance of using an adapted pattern recognition engine as well as a 
previous data pre-processing. A supervised non-linear technique (ANN, backpropagation) is able to 
classify all the test samples for any experimental conditions. In this case, a good recognition is 
realised despite the humidity influence on the sensors signals. 
However, the in situ olfactive pollution assessment with an SnO2 sensors array and a PARC remains a 
challenge.  
The nature, the number and the concentration of each compounds making up a complex mixture such 
as olfactive pollution can change from day to day depending, for example, of the industrial process. 



But, even if the mixture changes, the source is the same and the annoyance perceived always comes 
from this typical source! How could the sensors array recognise this source? Maybe with a very 
intensive supervised training of the data recognition. Furthermore, for an objective olfactive 
annoyance measurement, they are still other limitations due to the SnO2 sensors itself, e.g. low 
sensitivity compared to the human nose one and the short life time. Nevertheless, these results are 
promising for in situ objective malodors recognition. Further investigations are underway to improve 
in situ measurement always by keeping sensors limitations in mind. There are focused on the data 
analysis (e.g. training with real malodors under various ambient conditions, testing other techniques 
like nonsupervised non-linear techniques Sammon map) and on the experimental conditions 
(e.g. improvement of the temperature regulations). 
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Fig. 1. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from 
28% to 25% (right scale). 
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Fig. 2. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from 
20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity 
value. 
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber 
temperature variations (right scale). 
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses  
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds. 
(water=[(AH-AH0)/AH0], AH:absolute humidity) 
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors 
sensitive to water vapour) to 6 compounds under various humidity levels. 
 
 



Table 1. Target outputs for the network trainingf 
 

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 1.000 0.000 0.000 0.000 0.000 0.000

output 2 0.000 1.000 0.000 0.000 0.000 0.000

output 3 0.000 0.000 1.000 0.000 0.000 0.000

output 4 0.000 0.000 0.000 1.000 0.000 0.000

output 5 0.000 0.000 0.000 0.000 1.000 0.000

output 6 0.000 0.000 0.000 0.000 0.000 1.000  



 
Table 2a. Results of the training with various humidity levels for all compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0.994 0.997 0.996 0.999 0.997 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.005 0.003 0.001 0.000 0.000 0.000 0.0000.000

output 2 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.996 0.994 0.992 0.005 0.000 0.008 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.0010.006

output 3 0.004 0.002 0.003 0.002 0.001 0.000 0.001 0.002 0.000 0.001 0.999 0.994 0.998 0.996 0.997 0.003 0.001 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.005 0.998 0.997 0.998 0.998 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 5 0.001 0.003 0.001 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 0.998 0.999 0.991 0.000 0.006 0.002 0.0000.001

output 6 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.000 0.001 0.000 0.005 0.001 0.000 0.001 0.000 0.001 0.001 0.003 0.000 0.000 0.007 0.999 0.993 0.999 1.0000.995 
 



 
 
Table 2b. Validation results with the "test" compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.

output 1 0.994 0.000 0.063 0.000 0.003 0.000

output 2 0.000 0.991 0.000 0.000 0.000 0.000

output 3 0.003 0.004 0.890 0.002 0.000 0.000

output 4 0.000 0.000 0.000 0.998 0.000 0.000

output 5 0.001 0.000 0.000 0.000 0.996 0.010

output 6 0.000 0.001 0.000 0.000 0.010 0.995

classification
results

butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.
 

 



 
 
Table 3a. Results of the training for compounds with absolute humidity level < 3(g water/kg air) 
 

Network outputs
compounds

outputs butyl acetate n-butanol butylamine methylsulfide decanal 6-methyl-5-hepten-2-one

output1 0.991 0.995 0.996 0.000 0.000 0.010 0.000 0.000 0.000 0.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.992 0.993 0.007 0.004 0.003 0.004 0.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000

output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

output4 0.000 0.000 0.000 0.003 0.004 0.000 0.997 0.998 0.997 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001

output5 0.004 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.993 0.997 0.000 0.000 0.001 0.006

output6 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.999 0.999 0.996 0.999 
 
 



 
Table 3b. Validation results for "test" compounds with absolute humidity level >3 (g water/kg air) 
 

Networks outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output1 0.990 0.983 0.992 0.002 0.000 0.000 0.001 0.014 0.603 0.006 0.605 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.844 0.996 0.903 0.298 0.102 0.000 0.125 0.000 0.996 0.005 0.005 0.004 0.000 0.000 0.783 0.100

output3 0.041 0.166 0.003 0.521 0.942 0.381 0.783 0.999 0.997 0.988 0.787 0.986 0.000 0.000 0.000 0.000 0.000 0.120 0.040

output4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.994 0.994 0.000 0.000 0.000 0.000

output5 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.978 0.015 0.000 0.000

output6 0.000 0.000 0.000 0.000 0.011 0.002 0.001 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.006 0.987 0.425 0.958

classification 
results

butylac. butylac. butylac. false false false false butylam. false butylam. false false met. met. met. decanal false false 6-methyl.
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Abstract 
 
Synthetic mixtures, as well as real industrial emissions sampled in Tedlar® bags, are passed through a 12 
inorganic semiconductors array (Figaro trademark). The experiments are performed in the laboratory in nearly 
field conditions. The influence of external factors, such as humidity content of the malodorous, on the sensors 
signals have been pointed out. Humidity disturbs the results of the pattern recognition techniques. Principal 
component analysis and artificial neural network (ANN) with back-propagation model have been tested. ANN 
allows a good recognition of 6 "test" chemicals even if water content of the mixtures don't remained constant 
during the experiments. The use of SnO2 multisensors for in situ olfactive pollution assessment is still a challenge 
but these results give hope and motivation for intended investigations. 
 
keywords : olfactive pollution detector, tin oxide semiconductor, pattern recognition 
 
1. Introduction  
 
The growing public concern about nasty odors near industrial plants, agricultural installations, landfill 
sites or wastewater facilities gives rise to the implementation of environmental policies in various 
countries, with the aim of safeguarding or restoring the quality of the natural surroundings. In order to 
assess and to monitor the state of the environment in this field, and also to suggest odor abatement 
techniques, it is important to have at one's disposal suitable means of objective measurement and 
inspection of environmental odors. 
Since a few years, an intermediate and very attractive technique is more and more used to identify and 
to monitor odor phenomena : the "electronic nose". Actually, environment is often mentioned among 
the numerous applications of e-noses. However, this type of measurement of odor annoyance in the 
field remains exceptional. 
Applications of this technique are almost restricted to food and agricultural emissions [Nexyad, 1995] 
To date, the running studies related to the use of electronic noses in the environment are focused on 
the detection of some specific compounds, such as carbon monoxide in ambient air, or for domestic 
use [Patissier, 1996] or hydrogen sulfide [Falconer et al., 1990]. 
Most of these studies however concern the sensing devices able to detect the specific compound 
(sometimes non odorous, such as CO), but not really an electronic nose, with an array of sensors, and 
a pattern recognition engine. 
Some other research works involve the use of e-nose for the measurement of a group of compounds, 
such as VOC's [Lorans, 1995] or hazardous organic vapours [Hierlemann et al., 1995], but the authors 
unanimously admit that the problem is complex. 
Finally, very few studies are devoted to environmental applications in the field. All of them are 
restricted to the identification of very specific odors, chiefly at the emission, just near the source. The 
majority of them apply the electronic nose to the detection of hazardous compounds or of olfactive 
nuisance in the agricultural and the breeding sectors [Elliott-Martin, 1994; Persaud et al., 1996]. 
To become a reality, the use of e-nose to assess the odor directly in the environment has first to 
overcome two obstacles, at least : the improvement of sensors sensitivity in order to be able to detect 



the very low concentration levels of odorous compounds in the atmosphere, and the understanding 
and the control of the ambient parameters influence, mainly temperature and humidity. 
The purpose of the present work, indeed, is to examine the potential of e-nose technology for in situ 
monitoring of olfactive pollution in the vicinity of industrial plants. Although being an attractive and 
convenient solution, the use of commercially available electronic noses was discarded for the reason 
that they are not adapted to environmental constraints. More particularly, actual e-nose instruments 
are dedicated to lab applications, and they aren't portable; most of the time, they involve a sample 
preparation technique, such as headspace, but very few are adapted to the handling of gaseous 
atmospheres, on line or by sampling the air directly from the environment; and lastly, although 
measuring external parameters variations (temperature and humidity), they do not take them into 
account in the discrimination procedure. 
 
This paper wonders whether a multisensor array system is able to approach in situ odor assessment, in 
spite of limitations due to ambient humidity and temperature. 
 
2. Materials and methods 
 
Artificial odors are prepared by injection 4 µl of volatile chemicals through the septum of a Tedlar® 
bag filled with 40 l of ambient air. After the evaporation of the liquids (Aldrich®, purity between 
95% and 99.5%), the gaseous mixture is drawn across the sensors chamber by a mini-pump. 
Compounds found in typical olfactive pollution (determined by GC-MS) have been tested. Six 
chemical families are represented : alcohol (n-butanol), ester (butyl acetate), amine (n-butylamine), 
aldehyde (decanal), cetone (6-methyl-5-hepten-2-one) and sulfide (methyl sulfide). 
Real atmosphere from the environment (in this case from animal fat treatment) are sampled in Tedlar® 
bag without direct contact of pumping. 
As the purpose of this experiments is to point out the external parameters influence on the sensors 
signals and on the PARC, we don't control the experimental conditions :  
- mixtures prepared with outside air with humidity content depending on meteorological conditions, 
- laboratory atmosphere close to the real milieu's one (opened windows, no constant room 
 temperature), 
- no temperature regulation of the sensors chamber. 
Only the reference air is a bit more controlled : dry air bubbling into saturated salt water (KCl, in 
melted ice). 
A sensor array consisting of 12 commercial tin oxide gas sensors (Figaro Engineering Inc.) are sealed 
in 6 dm³ perspex cubic chamber. Like the other chemical sensors (conductor polymers 
[Persaud, 1992], SAW and BAW with polymer or lipids active films, electrochemical fuel cells...), tin 
oxide sensors have a lot of disadvantages : poor stability, low sensitivity, short life time, temperature 
and humidity sensitivity, drift, poisoning effects, slow response times... The more important one for 
environmental measurement is the high sensitivity to humidity. 
The choice of the SnO2 sensors results of the best compromise. Their great power consumption is a 
bad point but they are easily available, robust and industrially produced (better interchangeability). 
Among this twelve sensors, two are specific to the humidity sensing (TGS 883 and TGS 2180). 
Moreover, a temperature sensor and a capacitive humidity sensor are mounted into the chamber. 
The sensor resistance is measured by a computer controlled multiplexed system (HP 3421A). A 
constant power voltage is supplied to the sensors heaters. A home-made software written in 
Labwindows provides the data acquisition and display (real time graphic). Two commercial software 
package (Statistica and Matlab) are used to process the data. 
The experimental procedure generally consists in leading alternatively the reference air and the 
gaseous sample into the sensors using a three-way valve, keeping a constant 2000ml/min flow rate. 
The samples were presented in random order during three weeks and at least six replicates were done 
for each compounds. 
 
3. Results and discussion 
 



3.1.Humidity and ambient temperature influence on the sensor signals 
 
The presence of water vapour is known to cause a dramatic decrease of the SnO2 sensors resistance. 
Two mechanisms could explain this influence : the dissociation of the water molecule into hydroxyl 
species which act as electron donors [McAleer et al, 1987 and 1988] and the creation of lattice 
vacancies by the reaction of the hydrogen atoms, produced from the water dissociation, with oxygen 
lattice atoms [Vlachos, 1995]. 
Our goal is not to understand the theory of those mechanisms but only to show the consequences of 
the water influence on an environmental odor response and how to take this effect into account.  
The odorous mixture generated by any industrial source may exhibit a water content ranging from 
near zero to about saturation. Consequently, the semiconductor resistance variation is modified or 
even reversed. Figure 1 and 2 show time - response curves for four sensors for animal fat treatment 
odor. The right scale indicates the relative humidity value. The odor, in the two figures, comes from 
the same source but the sampling date is different and the external conditions as well. 
In this case, the reference air is the lab ambient air. 
With a 28% to 25% relative humidity variation, as shown in figure 1, the signal exhibit a decrease due 
to the animal fat odor, like usual with reducing gases. But with a 20% to 15% relative humidity 
variation (figure 2), the sensors resistance variation for the same odor (same olfactive perception) and 
with same temperature and flow conditions are reversed. This unexpected increase can be explain by 
the humidity value. 
Indeed, in the absence of an odor, a diminution of adsorbed water on the SnO2 ceramics is known to 
increase its resistance. Its appears that the adsorbed moisture can dominate the resistivity behaviour of 
the sensors [Vlachos, 1993]. Precisely, the humidity has a higher negative variation and the final 
value is lower. This experiment proves that it is absolutely necessary to take the water content of the 
samples into account when interpreting the sensors responses data.  
 
The sensors signals are also strongly dependent of the temperature. This parameter is involved in the 
kinetics of the chemical processes on the oxide [Moseley, 1991 ; McAleer et al, 1988 ]. That's why a 
voltage is applied to a inside heater resistance to keep the sensor at a high fixed temperature (around 
400°C). A change of the gas flow or of the surrounding atmosphere temperature can disturb the 
temperature of the semiconductor surface and hence the conductance value. 
Figure 3 shows the sensors signals fluctuations due to the change of the array chamber temperature. 
However, this parameter is not so important than humidity. The temperature control is easier [Jonda, 
1996] than the humidity one because it is a parameter which doesn't depend on the odor quality but 
only to the external conditions. 
For the further experiments, the gas flow is kept at the same fixed level before and during the odor 
sensing. Though, the temperature in the laboratory hangs on the weather. 
 
3.2. Effect of humidity on PARC results 
 
Data preprocessing 
 
The selection of the data preprocessing algorithms is an important stage. Various algorithms have 
been investigated (resistance difference, R0-R, fractional resistance change, (R0-R)/R0, normalised 
fractional resistance change), where R0, R are the resistance's in air or gas respectively. The best 
classification results are obtained with the normalised fractional resistance change : 
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This choice was foreseeable since this parameter is known to nearly remove the gas concentration 
linear dependence [Gardner, 1991; Gardner, 1992]. For the olfactive annoyance recognition, the 
sensors array must be able to differentiate specific emission mixtures even over a range of 
concentrations. However, for most of the odors, the concentration-response curves are non-linear and 
therefore the patterns for individual chemicals may change with concentration [Persaud, 1996].  
Here, the injection of 4µl of liquid chemicals in 40 l bag don't produce the same gaseous 
concentration for each component (various volatility and liquid density) and for the six same samples 
(various lab temperature, injected volume and bag volume errors). 
Furthermore, to perform the pattern recognition, the previous values are scaled (Y-Ymin/Ymax-Ymin) 
so that the response of each sensor has a value between 0 and 1. 
 
Principal component analysis (PCA) 
 
PCA is a well-known linear unsupervised pattern recognition technique [Everitt, 1994]. Due to the use 
of dilute individual components, the assumption of a linear concentration-dependent response can be 
made. The purpose is to reduce the multidimensionality of a problem into two or so dimensions. The 
12 original variables (sensors responses) are combined to find a new group of variables called the 
principal components.  
 
Figures 4a and 4b show the plot of the first two principal components (factor 1 and factor 2) for the 
sensors responses to 3 sets of compounds. 90 % of the variance within the data is contained in the first 
two principal components. 
Plot 4a shows a good separation of data into three distinct groups that corresponds to each of the three 
set of compounds.  
In the next plot b, two other sensors data have been added, namely the responses of TGS 883 and TGS 
2180. This sensors are excessively sensitive to water vapour. In this case the obtained separation does 
not match the expected one. Five groups can be discerned. The previous "sul" group is splitted and a 
new one is formed by "but6-one1-one2". 
In fact, further investigations show that the two additional clusters are due to distinct water 
conditions. The water content is represented by the fractional absolute humidity change ([AH-
AH0]/AH 0 where AH, AH0 are the asolute humidity in the array chamber with the odor or with the 
reference air respectively). 
One sul group has a water range between 0.2 and 0.3 then the other one has a lower water range. The 
three data of the new group (but6-one1-one2) has the same water value. Within the "one3-4-5-6" 
group, one 6 has a positive water value and it is more separated from the three other ones. 
In the end, factor 2 could describe the water parameter : o.1 to the left, 0 in the middle and negative 
value to the right. Although factor 1 (here vertically represented) reflects well the composition 
heterogeneity of samples, the scatter along factor2 seems more due to water content : the water 
parameter varying from 0.1 to negative values from the left to the right of the axis. Indeed, the 
addition of two water sensitive sensors has pointed out the importance of the external conditions on 
the PCA results.  
Consequently, the data separation is not only due to the nature of compounds but also to the range of 
humidity. 
 
An other example proving that the variability of the experimental conditions disturbs the PCA 
classification results is shown in figure 5. Indeed, the PCA on six samples of six compounds (without 
the data of TGS 2180 and TGS 883) under various humidity levels reveals the difficulties in 
separating out the six classes of compounds.  
This expected result is still due to the change of the sensor signal pattern of a given compound when 
external conditions varies.  
 
Artificial neural network (ANN) 
 



Unlike PCA, the neural network is a non linear supervised pattern recognition technique [Baughman 
et al, 1995]. The major advantage of a non linear classification technique is that the data can be non-
linear. It is commonly the case of environmental odors. Furthermore, the second fundamental 
difference is that there is an supervised learning stage.  
A three layer network, using back-propagation of errors learning rule, is built. There are 12 elements 
in the input layer (12 sensors signals), 4 elements in the hidden layer and six elements in the output 
layer representing the six odor classes. The non linear transfer function is log sigmoïd. Training time 
is lowered thanks to an adaptive learning rate of 0.05, a learning increase of 1.05, a learning decrease 
of 0.7 and a momentum term of 0.95.  
A batching operation (all the input vectors simultaneously presented to the network) is applied. For 
the training, there are a maximum of 5 input vectors for each of the six compounds. 
 
During the training stage, the data from known compounds are trained onto target outputs, coded such 
that a "1" is present on a given output only when the corresponding compound is presented to the 
network (e.g. output 1=[1 0 0 0 0 0]) (see table1). The process is continually repeated until the final 
error (the error goal) between the target values and the actual values is less then 0.001. 
 
Table 2a shows the outputs of the network after the training with all 30 input vectors (6 compounds x 
5). In fact, these 30 vectors represent 30 experiments done under uncontrolled external conditions and 
thus under various humidity levels.  
After the network learning step, with a training set of odors signals under any humidity levels, the 
network should be able to recognise new or "test" compounds (6 compounds x 1), this is the 
validation step. Table 2b shows that the compounds are well identified. 
 
The same operation is performed with the previous compound, but this time, the training was done 
only with some of the thirty input vectors (table 3a) : those with an absolute humidity level (AH) 
below 3.  
The "test" compounds are the ones obtained with an humidity level above 3. Table 3b shows the 
unfortunate results of the recognition. A training with a set of odor data obtained in a particular 
condition don't allow a good classification of new odor data obtained in an other particular condition. 
Thus in this case the ANN results are disturbed by the water content. But it worth to be noticed (tables 
2a and 2b) that if the network learns the same odors under a lot of various situations (drift, humidity, 
temperature,...) it can easy recognise an odor under a specific state. This pattern recognition technique 
is more able than the PCA to classify and to recognise odorous mixtures under various external 
conditions. Therefore, ANN seems more suitable for olfactive pollution recognition. But the network 
training with odor from different industrial sources and under various conditions takes a considerable 
amount of time. Furthermore, it assumes that the SnO2 sensors array remains unchanged! 
 
4. Conclusions 
 
These results confirm the bad effect of the humidity and temperature fluctuations on the tin oxide 
sensors responses. Despite this well-known constatation, the consequences for in situ olfactive 
annoyance measurement is not so dramatic then previous suppose. Even with non fixed experimental 
conditions, near the ambient atmosphere, a discrimination of various single odors is possible. 
Furthermore, the six single compounds may be discriminated from each other even if their own 
concentration varies.  
Indeed, we pointed out the importance of using an adapted pattern recognition engine as well as a 
previous data pre-processing. A supervised non-linear technique (ANN, backpropagation) is able to 
classify all the test samples for any experimental conditions. In this case, a good recognition is 
realised despite the humidity influence on the sensors signals. 
However, the in situ olfactive pollution assessment with an SnO2 sensors array and a PARC remains a 
challenge.  
The nature, the number and the concentration of each compounds making up a complex mixture such 
as olfactive pollution can change from day to day depending, for example, of the industrial process. 



But, even if the mixture changes, the source is the same and the annoyance perceived always comes 
from this typical source! How could the sensors array recognise this source? Maybe with a very 
intensive supervised training of the data recognition. Furthermore, for an objective olfactive 
annoyance measurement, they are still other limitations due to the SnO2 sensors itself, e.g. low 
sensitivity compared to the human nose one and the short life time. Nevertheless, these results are 
promising for in situ objective malodors recognition. Further investigations are underway to improve 
in situ measurement always by keeping sensors limitations in mind. There are focused on the data 
analysis (e.g. training with real malodors under various ambient conditions, testing other techniques 
like nonsupervised non-linear techniques Sammon map) and on the experimental conditions 
(e.g. improvement of the temperature regulations). 
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Fig. 1. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale) and relative humidity variation from 
28% to 25% (right scale). 
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Fig. 2. Effect of moisture. 
Responses of 4 sensors to animal fat treatment odour (left scale). Relative humidity variation from 
20% to 15% (right scale). An unexpected increase of the signals is observed due to the humidity 
value. 
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Fig. 3. Fluctuation of the base resistance of 3 sensors (left scale)due to the array chamber 
temperature variations (right scale). 
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Fig. 4. Results of principal components analysis of 10 sensors responses (a) and 12 sensors responses  
(b) (10 previous sensors + 2 sensors sensitive to water vapour) to 3 compounds. 
(water=[(AH-AH0)/AH0], AH:absolute humidity) 
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Fig. 5. Results of principal components analysis of 10 sensors responses (without the 2 sensors 
sensitive to water vapour) to 6 compounds under various humidity levels. 
 
 



Table 1. Target outputs for the network trainingf 
 

compounds
outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 1.000 0.000 0.000 0.000 0.000 0.000

output 2 0.000 1.000 0.000 0.000 0.000 0.000

output 3 0.000 0.000 1.000 0.000 0.000 0.000

output 4 0.000 0.000 0.000 1.000 0.000 0.000

output 5 0.000 0.000 0.000 0.000 1.000 0.000

output 6 0.000 0.000 0.000 0.000 0.000 1.000  



 
Table 2a. Results of the training with various humidity levels for all compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output 1 0.994 0.997 0.996 0.999 0.997 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.005 0.003 0.001 0.000 0.000 0.000 0.0000.000

output 2 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.996 0.994 0.992 0.005 0.000 0.008 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.0010.006

output 3 0.004 0.002 0.003 0.002 0.001 0.000 0.001 0.002 0.000 0.001 0.999 0.994 0.998 0.996 0.997 0.003 0.001 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.005 0.998 0.997 0.998 0.998 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000

output 5 0.001 0.003 0.001 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 0.998 0.999 0.991 0.000 0.006 0.002 0.0000.001

output 6 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.000 0.001 0.000 0.005 0.001 0.000 0.001 0.000 0.001 0.001 0.003 0.000 0.000 0.007 0.999 0.993 0.999 1.0000.995 
 



 
 
Table 2b. Validation results with the "test" compounds 
 

Network outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.

output 1 0.994 0.000 0.063 0.000 0.003 0.000

output 2 0.000 0.991 0.000 0.000 0.000 0.000

output 3 0.003 0.004 0.890 0.002 0.000 0.000

output 4 0.000 0.000 0.000 0.998 0.000 0.000

output 5 0.001 0.000 0.000 0.000 0.996 0.010

output 6 0.000 0.001 0.000 0.000 0.010 0.995

classification
results

butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hep.
 

 



 
 
Table 3a. Results of the training for compounds with absolute humidity level < 3(g water/kg air) 
 

Network outputs
compounds

outputs butyl acetate n-butanol butylamine methylsulfide decanal 6-methyl-5-hepten-2-one

output1 0.991 0.995 0.996 0.000 0.000 0.010 0.000 0.000 0.000 0.003 0.001 0.006 0.000 0.000 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.992 0.993 0.007 0.004 0.003 0.004 0.000 0.000 0.000 0.000 0.004 0.001 0.000 0.000

output3 0.004 0.003 0.004 0.007 0.007 0.989 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

output4 0.000 0.000 0.000 0.003 0.004 0.000 0.997 0.998 0.997 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001

output5 0.004 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.998 0.993 0.997 0.000 0.000 0.001 0.006

output6 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.999 0.999 0.996 0.999 
 
 



 
Table 3b. Validation results for "test" compounds with absolute humidity level >3 (g water/kg air) 
 

Networks outputs
compounds

outputs butyl acetate n-butanol n-butylamine methyl sulfide decanal 6-methyl-5-hepten-2-one

output1 0.990 0.983 0.992 0.002 0.000 0.000 0.001 0.014 0.603 0.006 0.605 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

output2 0.000 0.000 0.000 0.844 0.996 0.903 0.298 0.102 0.000 0.125 0.000 0.996 0.005 0.005 0.004 0.000 0.000 0.783 0.100

output3 0.041 0.166 0.003 0.521 0.942 0.381 0.783 0.999 0.997 0.988 0.787 0.986 0.000 0.000 0.000 0.000 0.000 0.120 0.040

output4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.994 0.994 0.000 0.000 0.000 0.000

output5 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.978 0.015 0.000 0.000

output6 0.000 0.000 0.000 0.000 0.011 0.002 0.001 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.006 0.987 0.425 0.958

classification 
results

butylac. butylac. butylac. false false false false butylam. false butylam. false false met. met. met. decanal false false 6-methyl.
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