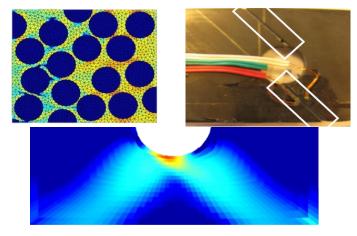
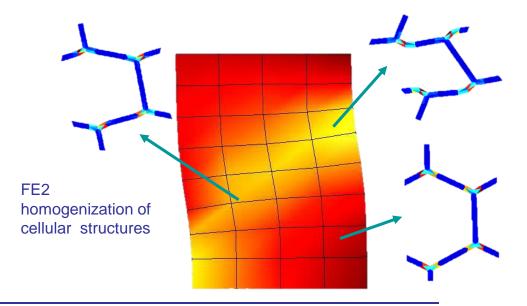
Muti-scale methods with strain-softening: damage-enhanced MFH for composite materials and computational homogenization for cellular materials with micro-buckling

L. Wu, V.-D. Nguyen, L. Adam (e-Xstream)

I. Doghri (UCL), L. Noels



Non-local damage mean-field-homogenization



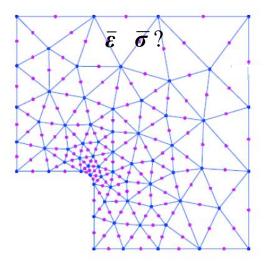
Content

- Introduction
 - Finite element multi-scale modelling
 - Strain softening issues
- Non-local damage-enhanced mean-field-homogenization

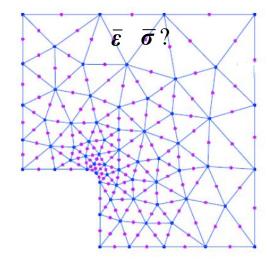
Computational homogenization for cellular materials

Conclusions

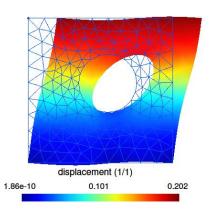
- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought



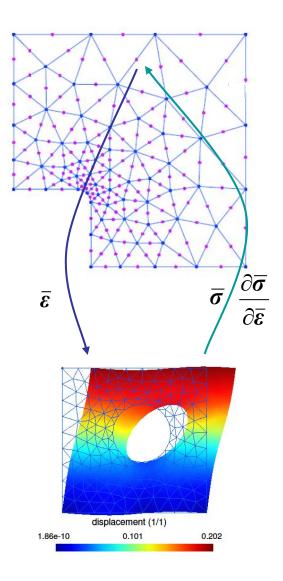
- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought



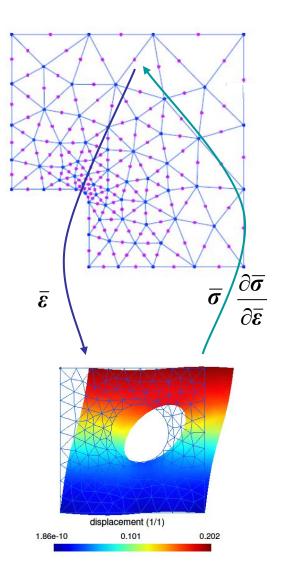
- Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions



- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
 - Transition
 - Downscaling: $\overline{\epsilon}$ is used to define the BCs
 - Upscaling: $\overline{\sigma}$ is known from the reaction forces
 - Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions

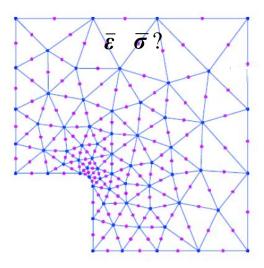


- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
 - Transition
 - Downscaling: $\overline{\epsilon}$ is used to define the BCs
 - Upscaling: $\overline{\sigma}$ is known from the reaction forces
 - Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions
 - Advantages
 - Accuracy
 - Generality
 - Drawback
 - Computational time



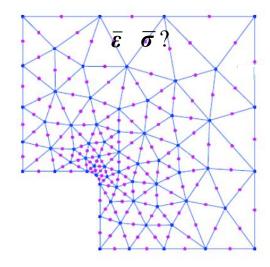
Ghosh S et al. 95, Kouznetsova et al. 2002, Geers et al. 2010, ...

- Mean-Field Homogenization
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought

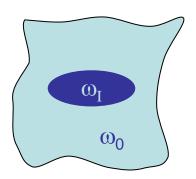


Mean-Field Homogenization

- Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought

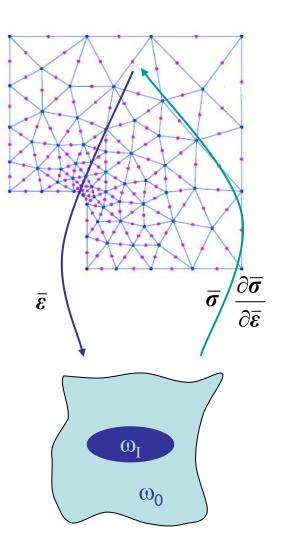


- Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models



Mean-Field Homogenization

- Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
- Transition
 - Downscaling: ε is used as input of the MFH model
 - Upscaling: $\overline{\sigma}$ is the output of the MFH model
- Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models



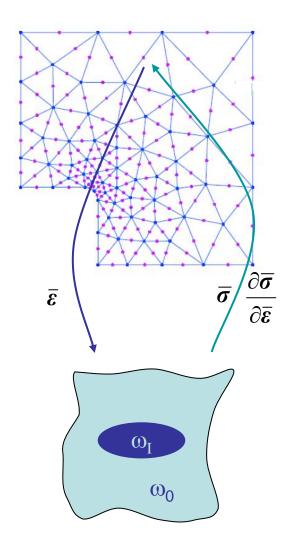
Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, ...

Mean-Field Homogenization

- Macro-scale
 - FE model
 - At one integration point $\overline{\varepsilon}$ is know, $\overline{\sigma}$ is sought
- Transition
 - Downscaling: ε is used as input of the MFH model
 - Upscaling: $\overline{\sigma}$ is the output of the MFH model
- Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models
- Advantages
 - Computationally efficient
 - Easy to integrate in a FE code (material model)
- Drawbacks

June 2014 -

- Difficult to formulate in an accurate way
 - Geometry complexity
 - Material behaviours complexity



Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, ...

Strain softening of the microscopic response

- Finite element solutions for strain softening problems suffer from:
 - Loss of solution uniqueness and strain localization
 - Mesh dependence

June 2014 -

Homogeneous unique solution

Loss of solution

uniqueness

Strain localization

The numerical results change with the size of mesh and direction of mesh

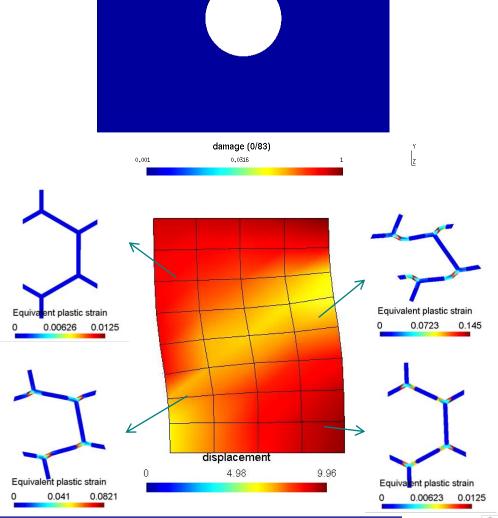
The numerical results change without convergence

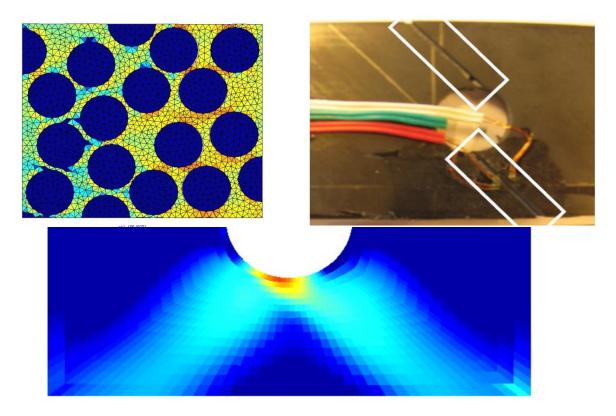
Requires a non-local formulation of the macro-scale problem

Multi-scale simulations with strain softening

- Two cases considered
 - Composite materials
 - Mean-field homogenization
 - Non-local damage formulation

- Honeycomb structures
 - Computational homogenization
 - Second-order FE2
 - Micro-buckling





L. Wu (ULg), L. Noels (ULg), L. Adam (e-Xstream), I. Doghri (UCL)

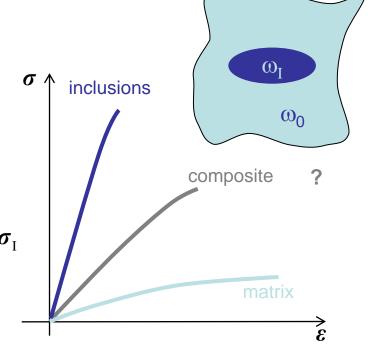
SIMUCOMP The research has been funded by the Walloon Region under the agreement no 1017232 (CT-EUC 2010-10-12) in the context of the ERA-NET +, Matera + framework.

- Semi analytical Mean-Field Homogenization
 - Based on the averaging of the fields

$$\langle a \rangle = \frac{1}{V} \int_{V} a(\mathbf{X}) dV$$

- Meso-response
 - From the volume ratios ($v_0 + v_1 = 1$)

$$\begin{cases}
\overline{\boldsymbol{\sigma}} = \langle \boldsymbol{\sigma} \rangle = v_0 \langle \boldsymbol{\sigma} \rangle_{\omega_0} + v_I \langle \boldsymbol{\sigma} \rangle_{\omega_I} = v_0 \boldsymbol{\sigma}_0 + v_I \boldsymbol{\sigma}_I \\
\overline{\boldsymbol{\varepsilon}} = \langle \boldsymbol{\varepsilon} \rangle = v_0 \langle \boldsymbol{\varepsilon} \rangle_{\omega_0} + v_I \langle \boldsymbol{\varepsilon} \rangle_{\omega_I} = v_0 \boldsymbol{\varepsilon}_0 + v_I \boldsymbol{\varepsilon}_I
\end{cases}$$



One more equation required

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{0}$$

Difficulty: find the adequate relations

$$\begin{cases} \boldsymbol{\sigma}_{\mathrm{I}} = f(\boldsymbol{\varepsilon}_{\mathrm{I}}) \\ \boldsymbol{\sigma}_{0} = f(\boldsymbol{\varepsilon}_{0}) \\ \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{0} \end{cases}$$

$$\boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{0}$$

- Mean-Field Homogenization for different materials
 - Linear materials
 - Materials behaviours

$$\left\{egin{array}{l} oldsymbol{\sigma}_{ ext{I}} = oldsymbol{\overline{C}}_{ ext{I}} : oldsymbol{arepsilon}_{0} = oldsymbol{\overline{C}}_{0} : oldsymbol{arepsilon}_{0} \end{array}
ight.$$

- Mori-Tanaka assumption $\boldsymbol{\varepsilon}^{\infty} = \boldsymbol{\varepsilon}_0$
- Use Eshelby tensor

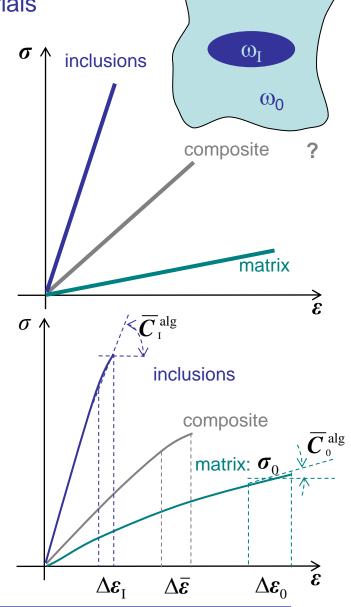
$$\mathbf{\mathcal{E}}_{\mathrm{I}} = \mathbf{\mathcal{B}}^{\varepsilon} \left(\mathbf{I}, \overline{\mathbf{C}}_{0}, \overline{\mathbf{C}}_{\mathrm{I}} \right) : \mathbf{\mathcal{E}}_{0}$$

with $\mathbf{\mathcal{B}}^{\varepsilon} = \left[\mathbf{I} + \mathbf{S} : \overline{\mathbf{C}}_{0}^{-1} : (\overline{\mathbf{C}}_{1} - \overline{\mathbf{C}}_{0}) \right]^{-1}$

Non-linear materials

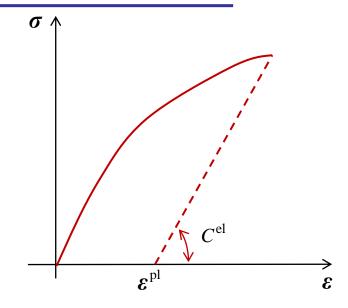
- Define a Linear Comparison Composite
- Common approach: incremental tangent

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} \right) : \Delta \boldsymbol{\varepsilon}_{0}$$



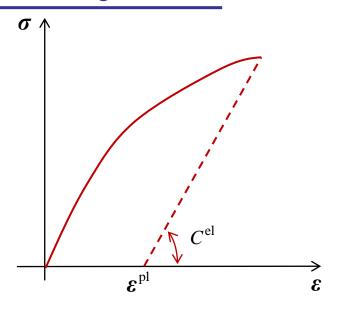
Material models

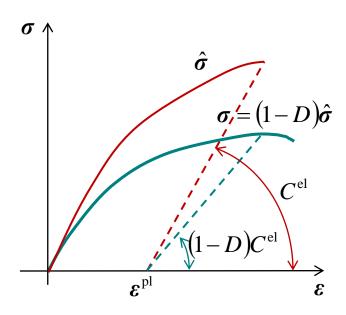
- Elasto-plastic material
 - Stress tensor $\sigma = C^{\text{el}} : (\varepsilon \varepsilon^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \boldsymbol{\varepsilon}^{\mathrm{pl}} = \Delta p \boldsymbol{N}$ & $\boldsymbol{N} = \frac{\partial f}{\partial \boldsymbol{\sigma}}$
 - Linearization $\delta \boldsymbol{\sigma} = \boldsymbol{C}^{\operatorname{alg}} : \delta \boldsymbol{\varepsilon}$



Material models

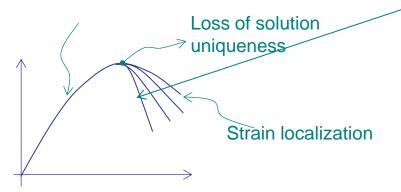
- Elasto-plastic material
 - Stress tensor $\sigma = C^{\text{el}} : (\varepsilon \varepsilon^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \leq 0$
 - Plastic flow $\Delta oldsymbol{arepsilon}^{
 m pl} = \Delta p oldsymbol{N}$ & $oldsymbol{N} = rac{\partial f}{\partial oldsymbol{\sigma}}$
 - Linearization $\delta \boldsymbol{\sigma} = \boldsymbol{C}^{\mathrm{alg}} : \delta \boldsymbol{\varepsilon}$
- Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1-D)\hat{\boldsymbol{\sigma}}$
 - · Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta p)$



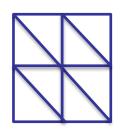


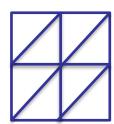
- Finite element solutions for strain softening problems suffer from:
 - Loss of solution uniqueness and strain localization
 - Mesh dependence

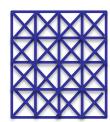
Homogeneous unique solution



The numerical results change with the size of mesh and direction of mesh







The numerical results change without convergence

- Implicit non-local approach [Peerlings et al 96, Geers et al 97, ...]
 - A state variable is replaced by a non-local value reflecting the interaction between neighboring material points

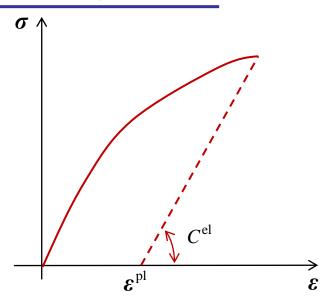
$$\widetilde{a}(\mathbf{x}) = \frac{1}{V_C} \int_{V_C} a(\mathbf{y}) w(\mathbf{y}; \mathbf{x}) dV$$

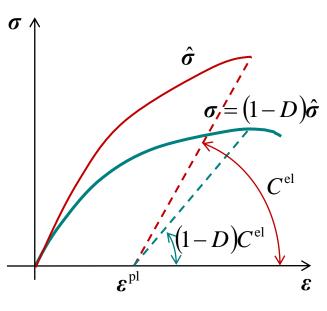
- Use Green functions as weight w(y; x)

Material models

- Elasto-plastic material
 - Stress tensor $\sigma = C^{\mathrm{el}} : (\varepsilon \varepsilon^{\mathrm{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{r} R(p) \le 0$
 - Plastic flow $\Delta {m arepsilon}^{
 m pl} = \Delta p {m N}$ & ${m N} = \frac{\partial f}{\partial {m \sigma}}$
 - Linearization $\delta \boldsymbol{\sigma} = \boldsymbol{C}^{\mathrm{alg}} : \delta \boldsymbol{\varepsilon}$
- Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1-D)\hat{\boldsymbol{\sigma}}$
 - · Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta p)$
- Non-Local damage model
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta \widetilde{p})$
 - Anisotropic governing equation $\widetilde{p} \nabla \cdot (c_{\mathrm{g}} \cdot \nabla \widetilde{p}) = p$
 - Linearization

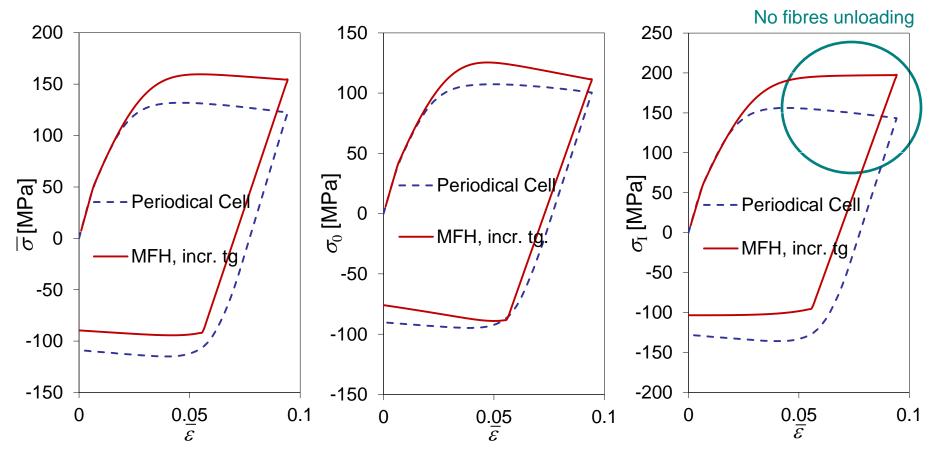
$$\delta \boldsymbol{\sigma} = \left[(1 - D) \boldsymbol{C}^{\text{alg}} - \hat{\boldsymbol{\sigma}} \otimes \frac{\partial F_D}{\partial \boldsymbol{\varepsilon}} \right] : \delta \boldsymbol{\varepsilon} - \hat{\boldsymbol{\sigma}} \frac{\partial F_D}{\partial \tilde{\boldsymbol{p}}} \delta \tilde{\boldsymbol{p}}$$





- Limitation of the incremental tangent method
 - Fictitious composite material
 - 50%-UD fibres

- Elasto-plastic matrix with damage
- Due to the incremental formalism, stress in fibres cannot decrease during loading



Problem

- We want the fibres to get unloaded during the matrix damaging process
 - For the incremental-tangent approach

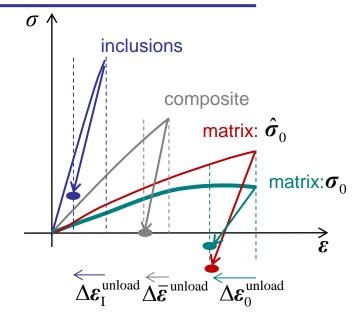
$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \Big(\mathrm{I}, (1 - D) \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} \Big) : \Delta \boldsymbol{\varepsilon}_{0}$$

- To unload the fibres ($m{\varepsilon}_{\rm I} < 0$) with such approach would require $\, \overline{m{C}}_{\scriptscriptstyle \rm I}^{\rm \, alg} < 0$
- We cannot use the incremental tangent MFH
- We need to define the LCC from another stress state



Idea

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components



Idea

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components
 - Apply MFH from unloaded state
 - New strain increments (>0)

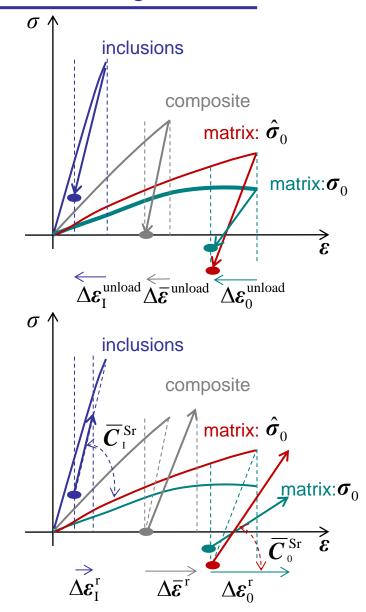
$$\Delta \boldsymbol{\varepsilon}_{\text{I/0}}^{\text{r}} = \Delta \boldsymbol{\varepsilon}_{\text{I/0}} + \Delta \boldsymbol{\varepsilon}_{\text{I/0}}^{\text{unload}}$$

Use of secant operators

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, (1-D) \overline{\boldsymbol{C}}_{0}^{\mathrm{Sr}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_{0}^{\mathrm{r}}$$

Possibility of have unloading

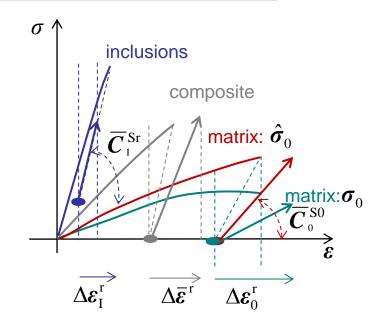
$$\begin{cases} \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} > 0 \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}} < 0 \end{cases}$$



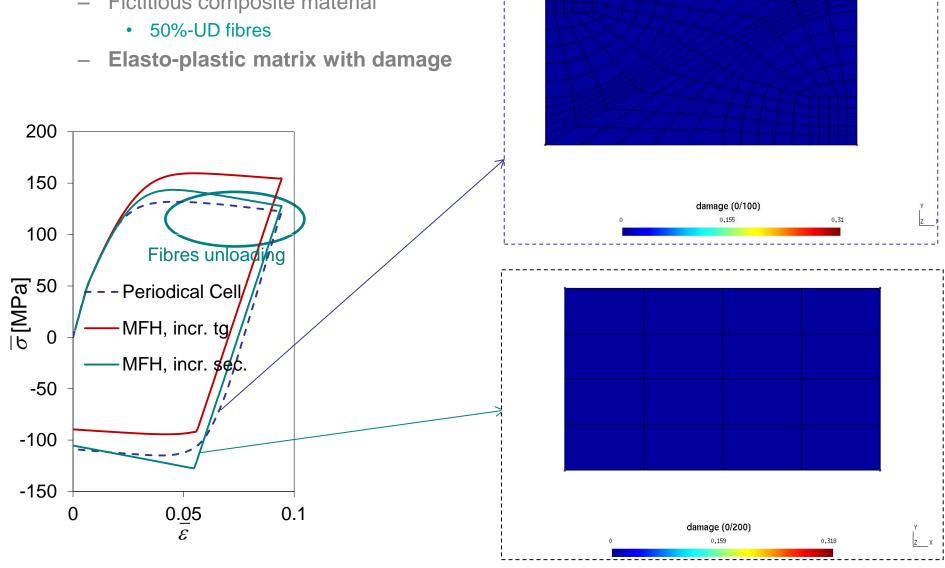
- Zero incremental-secant approach
 - For soft matrix response
 - Remove residual stress in matrix
 - Avoid adding spurious internal energy
 - Solve iteratively the system

$$\begin{cases}
\Delta \bar{\boldsymbol{\varepsilon}}^{(r)} = v_0 \Delta \boldsymbol{\varepsilon}_0^{(r)} + v_1 \Delta \boldsymbol{\varepsilon}_1^{(r)} \\
\Delta \boldsymbol{\varepsilon}_1^r = \Delta \boldsymbol{\varepsilon}_1 + \Delta \boldsymbol{\varepsilon}_1^{\text{unload}} \\
\Delta \boldsymbol{\varepsilon}_0^r = \Delta \boldsymbol{\varepsilon}_0 + \Delta \boldsymbol{\varepsilon}_0^{\text{unload}} \\
\Delta \boldsymbol{\varepsilon}_1^r = \boldsymbol{B}^{\varepsilon} \left(\mathbf{I}, (1 - D) \overline{\boldsymbol{C}}_0^{\text{S0}}, \overline{\boldsymbol{C}}_1^{\text{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_0^r
\end{cases}$$

$$\begin{cases}
\overline{\boldsymbol{\sigma}} = v_0 \boldsymbol{\sigma}_0 + v_I \boldsymbol{\sigma}_I \\
\boldsymbol{\sigma}_I = \boldsymbol{\sigma}_I^{\text{res}} + \overline{\boldsymbol{C}}_I^{\text{Sr}} : \Delta \boldsymbol{\varepsilon}_I^{\text{r}} \\
\boldsymbol{\sigma}_0 = (1 - D) \overline{\boldsymbol{C}}_0^{\text{S0}} : \Delta \boldsymbol{\varepsilon}_0^{\text{r}}
\end{cases}$$



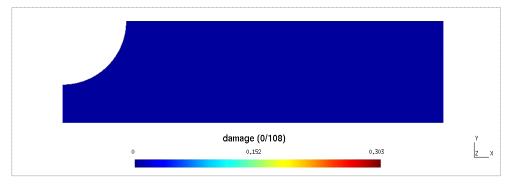
- New results for damage
 - Fictitious composite material

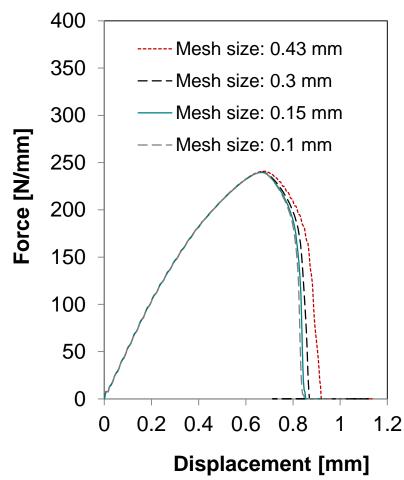


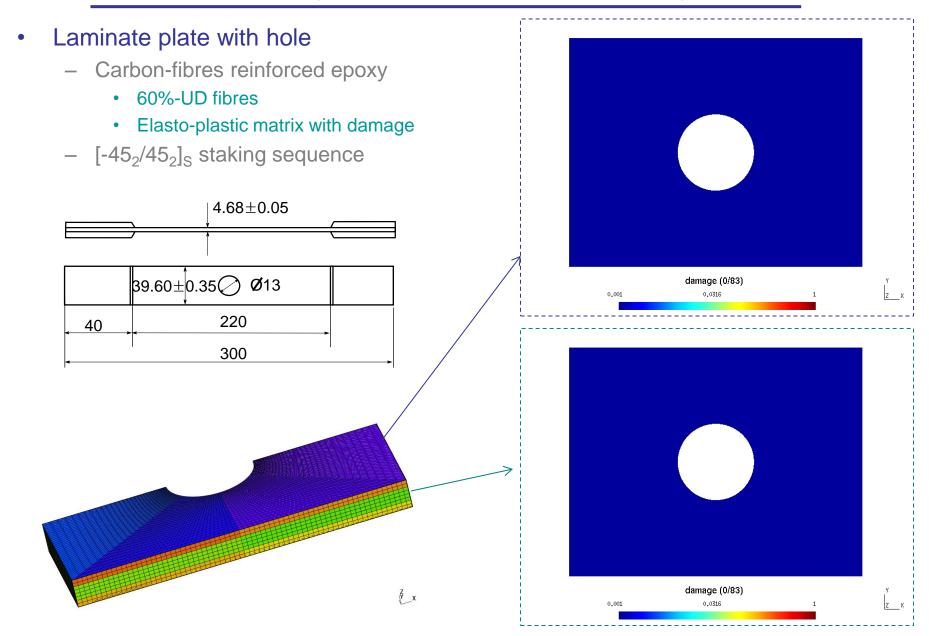
Mesh-size effect

- Fictitious composite material
 - 30%-UD fibres

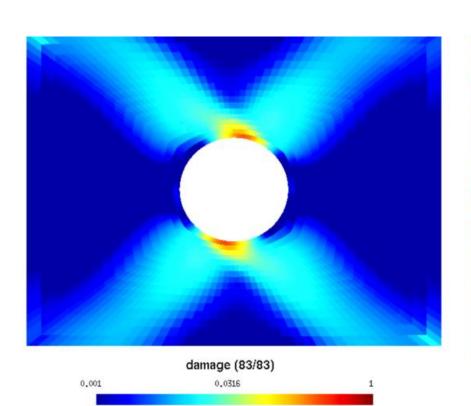
- Elasto-plastic matrix with damage
- Notched ply

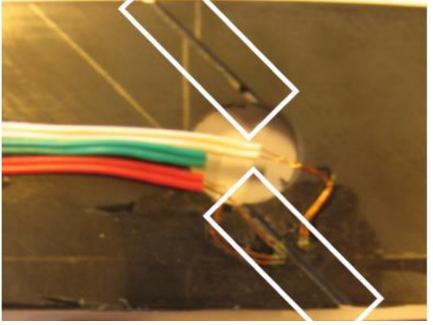


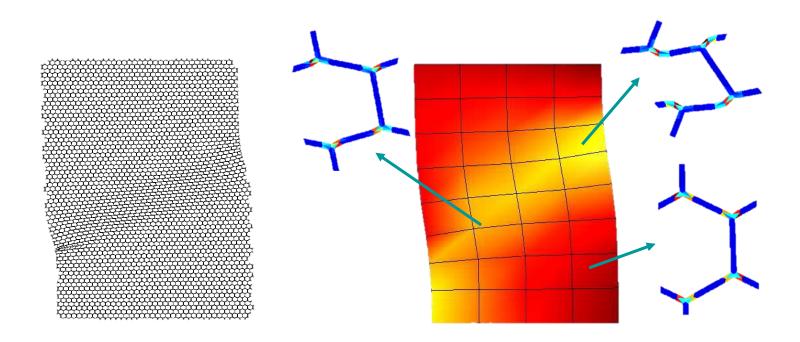




- Laminate plate with hole (2)
 - Carbon-fibres reinforced epoxy
 - 60%-UD fibres
 - Elasto-plastic matrix with damage
 - [-45₂/45₂]_S staking sequence







Computational homogenization for cellular materials

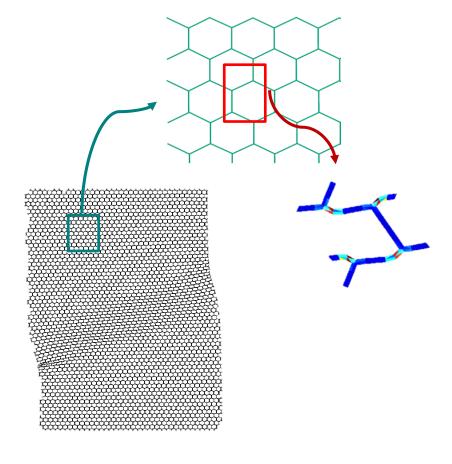
V.-D. Nguyen (ULg), L. Noels (ULg)

Les recherches ont été financées grâce à la subvention "Actions de recherche concertées ARC 09/14-02 BRIDGING- From imaging to geometrical modelling of complex micro structured materials: Bridging computational engineering and material science

Challenges

Micro-structure

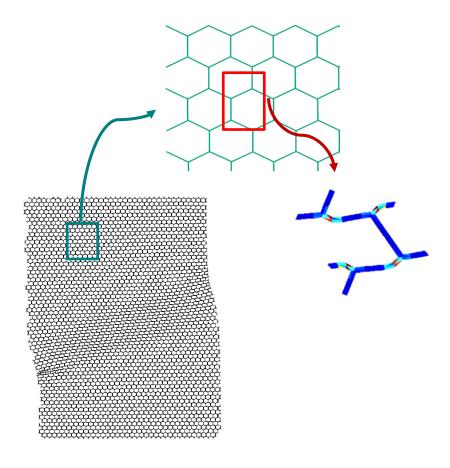
- Not perfect with non periodic mesh
- How to constrain the periodic boundary conditions?



Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 - Thin components

- Experiences micro-buckling
- How to capture the instability?

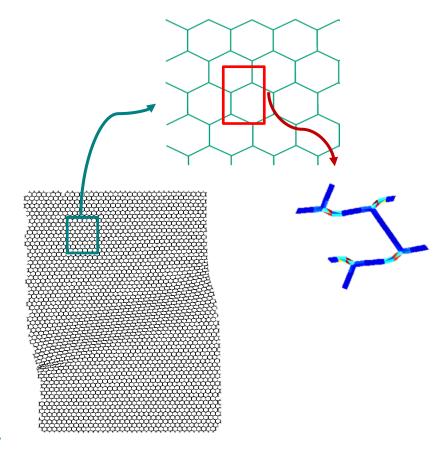


Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 - Thin components
 - Experiences micro-buckling
 - How to capture the instability?
- Transition
 - Homogenized tangent not always elliptic
 - Localization bands

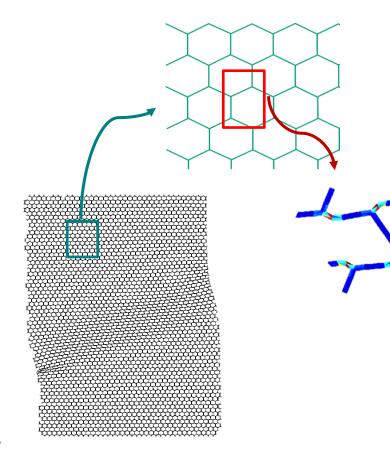
June 2014 -

How can we recover the solution unicity at the macro-scale?



Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 - Thin components
 - **Experiences micro-buckling**
 - How to capture the instability?
- **Transition**
 - Homogenized tangent not always elliptic
 - Localization bands
 - How can we recover the solution unicity at the macro-scale?
- Macro-scale
 - Localization bands
 - How to remain computationally efficient
 - How to capture the instability?



- Recover solution unicity: second-order FE²
 - Macro-scale
 - High-order Strain-Gradient formulation

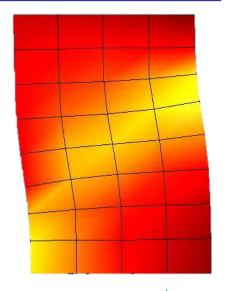
$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

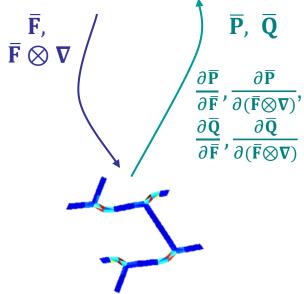
Partitioned mesh (//)

- Gauss points on different processors
- Each Gauss point is associated to one mesh and one solver

Usual continuum

$$P(X) \cdot \nabla_0 = 0$$

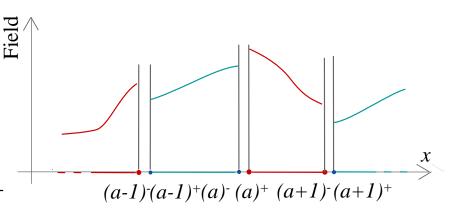




- Discontinuous Galerkin (DG) implementation of the second order continuum
 - Finite-element discretization
 - · Same discontinuous polynomial approximations for the
 - **Test** functions φ_h and
 - Trial functions $\delta \varphi$

Jump operator: [⋅] =

Mean operator: $\langle \cdot \rangle = \frac{\cdot^+ + \cdot^-}{2}$



- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - · Has the optimal convergence rate
- Can be used to weakly enforce higher discontinuities

Second-order FE2 method

Macro-scale second order continuum

$$\overline{\mathbf{P}}(\overline{\mathbf{X}}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{\mathbf{X}}) : (\nabla_0 \otimes \nabla_0) = 0$$

- Requires C¹ shape functions on the mesh
- The C¹ can be weakly enforced using the DG method

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = b(\delta \overline{\boldsymbol{u}})$$

Second-order FE2 method

Macro-scale second order continuum

$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

- Requires C¹ shape functions on the mesh
- The C¹ can be weakly enforced using the DG method

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = b(\delta \overline{\boldsymbol{u}})$$

Usual volume terms

$$a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \int_{\overline{V}} [\overline{\mathbf{P}}(\overline{\boldsymbol{u}}): (\delta \overline{\boldsymbol{u}} \otimes \nabla_{\mathbf{0}}) + \overline{\mathbf{Q}}(\overline{\boldsymbol{X}}) : (\delta \overline{\boldsymbol{u}} \otimes \nabla_{\mathbf{0}} \otimes \nabla_{\mathbf{0}})] dV$$

Second-order FE2 method

Macro-scale second order continuum

$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

- Requires C¹ shape functions on the mesh
- The C¹ can be weakly enforced using the DG method

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = b(\delta \overline{\boldsymbol{u}})$$

- Weak enforcement of the C⁰
 - Continuity
 - Consistency
 - Stability

June 2014 -

between the finite elements

$$a^{\mathrm{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \int_{\partial_{I} \overline{V}} \left[\begin{bmatrix} \llbracket \delta \overline{\boldsymbol{u}} \rrbracket \cdot \langle \overline{\mathbf{P}} - \overline{\mathbf{Q}} \cdot \nabla_{0} \rangle \cdot \overline{\boldsymbol{N}} + \llbracket \overline{\boldsymbol{u}} \rrbracket \cdot \langle \overline{\mathbf{P}} (\delta \overline{\boldsymbol{u}}) - \overline{\mathbf{Q}} (\delta \overline{\boldsymbol{u}}) \cdot \nabla_{0} \rangle \cdot \overline{\boldsymbol{N}} + \right] dV$$

Allows efficient parallelization as elements are disjoint

Second-order FE2 method

Macro-scale second order continuum

$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

- Requires C¹ shape functions on the mesh
- The C¹ can be weakly enforced using the DG method

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = b(\delta \overline{\boldsymbol{u}})$$

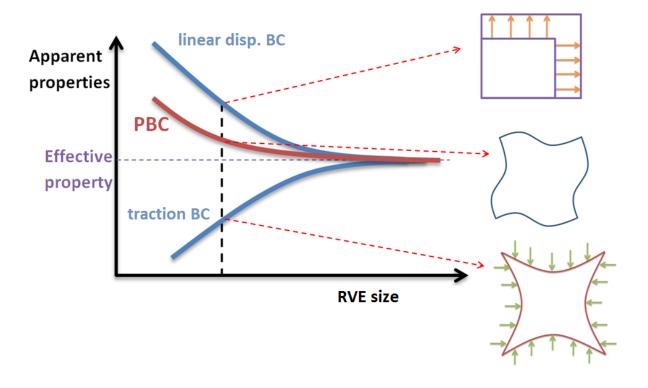
- Weak enforcement of the C¹
 - Continuity
 - Consistency
 - Stability

between the finite elements

$$a^{\mathrm{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \int_{\partial_{I} \overline{V}} \left[\begin{bmatrix} \llbracket \delta \overline{\boldsymbol{u}} \otimes \boldsymbol{\nabla}_{\mathbf{0}} \rrbracket \cdot \langle \overline{\mathbf{Q}} \rangle \cdot \overline{\boldsymbol{N}} + \llbracket \overline{\boldsymbol{u}} \otimes \boldsymbol{\nabla}_{\mathbf{0}} \rrbracket \cdot \langle \overline{\mathbf{Q}} (\delta \overline{\boldsymbol{u}}) \rangle \cdot \overline{\boldsymbol{N}} + \right] dV$$

Allows efficient parallelization as elements are disjoint

- Micro-scale periodic boundary conditions
 - Convergence in terms of RVE size



- Periodic boundary condition is the optimum choice for periodic structures
- Periodic boundary condition remains the optimum choice for non-periodic structures

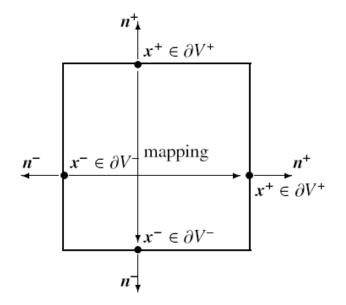
- Micro-scale periodic boundary conditions (2)
 - Defined from the fluctuation field

$$w = u - (\overline{F} - I) \cdot X + \frac{1}{2} (\overline{F} \otimes \nabla_0) : (X \otimes X)$$

Stated on opposite RVE sizes

$$\begin{cases} w(X^+) = w(X^-) \\ \int_{\partial V^-} w(X) d\partial V = 0 \end{cases}$$

Can be achieved by constraining opposite nodes



- Foamed materials
 - Usually random meshes
 - Important voids on the boundaries
- Honeycomb structures

June 2014 -

Not periodic due to the imperfections



- Micro-scale periodic boundary conditions (2)
 - New interpolant method

$$w(X^{-}) = \sum_{k} N(X)w^{k}$$

$$w(X^{+}) = \sum_{k} N(X)w^{k}$$

$$\int_{\partial V^{-}} \left(\sum_{k} N(X)w^{k}\right) d\partial V = 0$$
• Boundary node
• Control node

- Use of Lagrange, cubic spline .. interpolations
- Fits for
 - Arbitrary meshes

June 2014 -

- · Important voids on the RVE sides
- Results in new constraints in terms of the boundary and control nodes displacements

$$\widetilde{\boldsymbol{c}} \ \widetilde{\boldsymbol{u}}_b - \boldsymbol{g}(\overline{\boldsymbol{\mathsf{F}}}, \overline{\boldsymbol{\mathsf{F}}} \otimes \boldsymbol{\nabla_0}) = 0$$

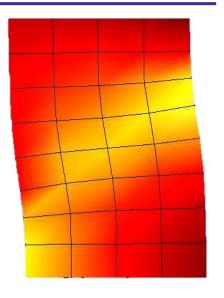
Capturing instabilities

- Macro-scale: localization bands
 - Path following method on the applied loading

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \bar{\mu} b(\delta \overline{\boldsymbol{u}})$$

Arc-length constraint on the load increment

$$\bar{h}(\Delta \bar{\boldsymbol{u}}, \Delta \bar{\mu}) = \frac{\Delta \bar{\boldsymbol{u}} \cdot \Delta \bar{\boldsymbol{u}}}{\bar{X}_0^2} + \Delta \bar{\mu}^2 - \Delta L^2 = 0$$



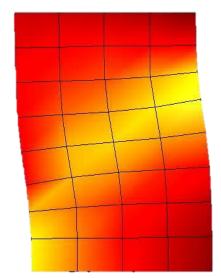
Capturing instabilities

- Macro-scale: localization bands
 - Path following method on the applied loading

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \bar{\mu} b(\delta \overline{\boldsymbol{u}})$$

Arc-length constraint on the load increment

$$\bar{h}(\Delta \bar{\boldsymbol{u}}, \Delta \bar{\mu}) = \frac{\Delta \bar{\boldsymbol{u}} \cdot \Delta \bar{\boldsymbol{u}}}{\bar{X}_0^2} + \Delta \bar{\mu}^2 - \Delta L^2 = 0$$



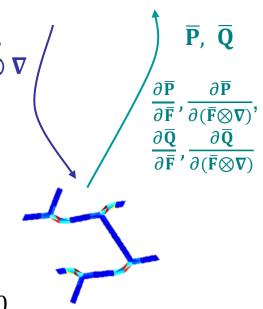
- Micro-scale
 - Path following method on the applied boundary conditions

$$\widetilde{\boldsymbol{C}} \ \widetilde{\boldsymbol{u}}_{b} - \boldsymbol{g}(\overline{\mathbf{F}}, \overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}}) = 0$$

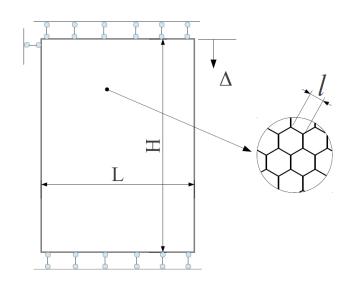
$$\begin{cases}
\overline{\mathbf{F}} = \overline{\mathbf{F}}_{0} + \mu \, \Delta \overline{\mathbf{F}} \\
\overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}} = (\overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}})_{0} + \mu \, \Delta (\overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}})
\end{cases}$$

Arc-length constraint on the load increment

$$h(\Delta \boldsymbol{u}, \Delta \mu) = \frac{\Delta \boldsymbol{u} \cdot \Delta \boldsymbol{u}}{X_0^2} + \Delta \mu^2 - \Delta l^2 = 0$$



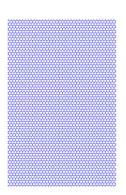
- Compression of an hexagonal honeycomb
 - Elasto-plastic material



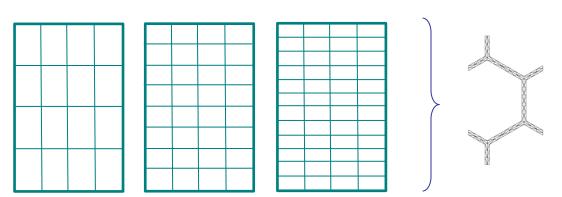
Comparison of different solutions

Full direct simulation



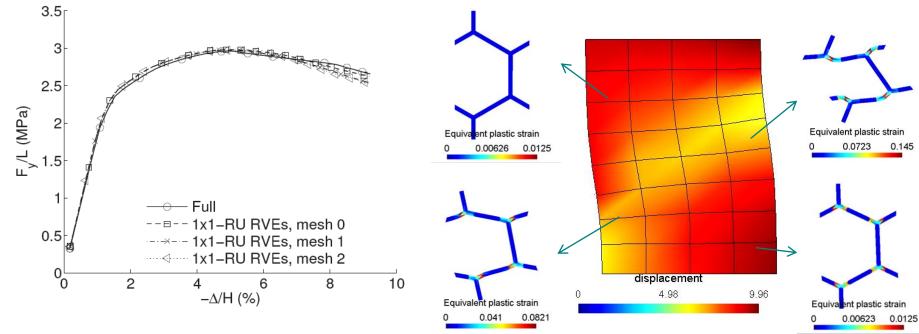


June 2014 -

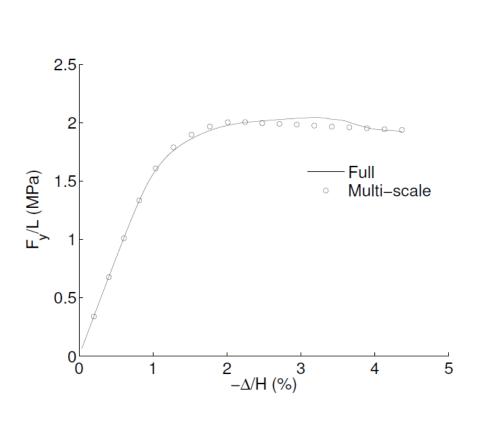


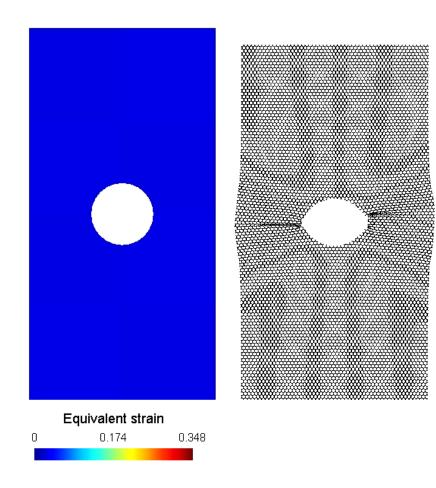
- Compression of an hexagonal honeycomb (2)
 - Captures of the softening onset
 - Captures the softening response
 - No macro-mesh size effect

June 2014 -



- Compression of an hexagonal honeycomb plate with a centered hole
 - Results given by full and multi-scale models are comparable





Conclusions

Non-local damage-enhanced mean-field-homogenization

- MFH with damage model for the matrix material
- Non-local implicit formulation
- Can capture the strain softening
- More in
 - 10.1016/j.ijsolstr.2013.07.022
 - 10.1016/j.ijplas.2013.06.006
 - 10.1016/j.cma.2012.04.011
 - 10.1007/978-1-4614-4553-1_13

Computational homogenization for foamed materials

- Second-order FE² method
- Micro-buckling propagation
- General way of enforcing PBC
- More in
 - 10.1016/j.cma.2013.03.024
 - 10.1016/j.commatsci.2011.10.017
 - 10.1016/j.ijsolstr.2014.02.029

Open-source software

Implemented in GMSH

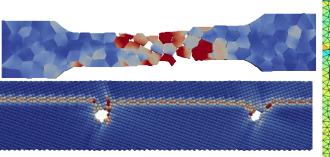
June 2014 -

http://geuz.org/gmsh/

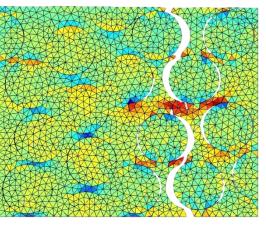
Computational & Multiscale Mechanics of Materials

CM3

www.ltas-cm3.ulg.ac.be



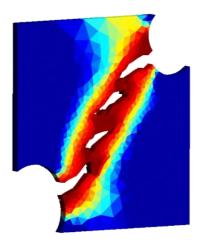
QC method for grain-boundary sliding



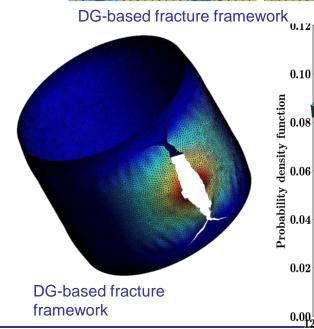
Ludovic Noels, G. Becker, L. Homsi, V. Lucas, S. Mulay, V.-D. Nguyen, V. Péron-Lührs, V.-H. Truong, F. Wan, L. Wu

SVE size effect on meso-scale properties

2 grains



Damage to crack transition



0.10
uoi 11 grains
— 11 grains
— 15 grains
— 19 grains

0.02
0.02
0.00
0.00
130
140
150
160
170
180
190

Young modulus [GPa]