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ABSTRACT—We investigated the effects of a dual thromboxane (TX)A, synthase inhibitor and TXA, receptor antagonist
(BM-573) on right ventricular-arterial coupling in a porcine model of endotoxic shock. Thirty minutes before the onset of
0.5 mg/kg endotoxin infusion, six pigs (Endo group) received an infusion with a placebo solution, and six other pigs (Anta
group) with BM-573. Right ventricular pressure—volume loops were obtained by the conductance catheter technique. The
slope (E,s) of the end-systolic pressure—volume relationship and its volume intercept at 25 mmHg were calculated as
measures of right ventricular systolic function. RV afterload was quantified by pulmonary arterial elastance (E,), and
E./E, ratio represented right ventricular-arterial coupling. Mechanical efficiency was defined as the ratio of stroke work
and pressure-volume area. In this model of endotoxic shock, BM-573 blunted the early phase of pulmonary hypertension,
improved arterial oxygenation, and prevented a decrease in right ventricular myocardial efficiency and right ventricular
dilatation. However, the drug could not prevent the loss of homeometric regulation and alterations in right ventricular-
arterial coupling. In conclusion, dual TXA, synthase inhibitor and receptor antagonists such as BM-573 have potential

therapeutic applications, improving right ventricular efficiency and arterial oxygenation in endotoxic shock.
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INTRODUCTION

Despite tremendous advances in supportive care, septic
shock remains one of the leading causes of death in critically
ill patients. Among the numerous complications, right heart
failure is certainly of the most life-threatening ones (1). In
septic shock, impaired right ventricular (RV) function results
from an inappropriate matching between the ventricular inotro-
pic state and pulmonary vascular impedance, with secondary
altered ventricular—vascular coupling (2).

Thromboxane A, (TXA,) has been reported to be partially
responsible for the increase in pulmonary vascular resistance
after endotoxin administration (3, 4) leading to ventricular—
vascular coupling mismatch (5, 6). To restore coupling, one
may aim to increase RV contractility. However, inhibition of
TXA, in an attempt to blunt the increase in pulmonary vascular
resistance seems a more appropriate approach.

Up to now, most studies focused on testing either inhibitors
of TXA, synthase (6, 7) or receptor antagonists of TXA, inde-
pendently (8, 9). In those studies, TXA, synthase inhibitors
appeared less effective than anticipated not only because of an
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incomplete blockage of TXA, synthase at the dosage used but
also because TXA, synthase inhibition induces an accumula-
tion of endoperoxide H, (PGH,), which is a TXA, precursor,
chemically more stable than TXA, itself and with similar
biological effects (10). On the other hand, specific inhibitors of
TXA, synthase are also responsible for increased generation of
prostanoids such as prostaglandin I, (PGI,), which is known to
possibly exert beneficial effects such as attenuation of platelet
activation and decrease in vascular resistance and leukotriene
release (6, 8, 10). Nevertheless, it has become clear from these
studies that efforts to modulate the actions of TXA, should
focus on agents able to (a) block the biosynthesis of TXA, and
(b) to simultaneously antagonize both PGH, and TXA, at their
common receptor.

Torasemide, a loop diuretic, has been shown to have a weak
TXA, antagonist activity on dog coronary artery (11). Since
then, several molecules, chemically related to torasemide, have
been designed and studied for their TXA, antagonism.
Recently, it was demonstrated that BM-573 { N-terbutyl-N'-[2-
(4'-methylphenylamino)-5-nitro-benzenesulfonyl]urea}, a
torasemide-related molecule, has a high affinity for the human
platelet TXA, receptor. It was shown that BM-573 was able to
relax a rat aorta that was precontracted with U-46619, a TXA,
agonist. Moreover, BM-573 prevented human platelet aggre-
gation induced by arachidonic acid and completely inhibited
TXA, synthase (12). As such, it appears that BM-573
combines both the TXA, synthase inhibition and TXA, recep-
tor antagonism properties.

The primary aim of this study was to evaluate the effects of
this novel TXA, antagonist, BM-573, on RV performance in a
porcine model of endotoxic shock. In addition, however, our
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study may also yield new insights in RV ventricular-arterial
coupling in septic shock because only few studies have
correctly evaluated RV function in these conditions. In most of
these studies, RV systolic function was quantified by RV ejec-
tion fraction (1, 6) or RV pressure—length relationship (13-16).
In the present work, we make use of the robust and highly
sensitive indices of ventricular function described earlier: the
slope of the end-systolic pressure—volume (PV) relationship
(ESPVR) and its intercept with the volume axis (17, 18).
Pulmonary arterial elastance (E,) was used to describe the load
that the RV chamber is facing (13).

MATERIALS AND METHODS

All experimental procedures and protocols used in this investigation were
reviewed and approved by the Ethics Committee of the Medical Faculty of the
University of Liege. They were performed in accordance with the principles of
laboratory animal care (NIH publication No. 86-23, revised 1985).

Surgical preparation

Experiments were performed on 12 healthy pure pietran pigs of either sex weigh-
ing from 20 to 30 kg. The animals were premedicated with intramuscular admin-
istration of ketamine (20 mg/kg) and diazepam (1 mg/kg). Anesthesia was then
induced and maintained by a continuous infusion of sufentanil (0.5 wg/kg/h) and
pentobarbital (5 mg/kg/h). Spontaneous movements were prevented by pancuro-
nium bromide (0.2 mg/kg). After endotracheal intubation through a cervical trache-
ostomy, the pigs were connected to a volume-cycled ventilator (Evita 2, Dréger,
Liibeck, Germany) set to deliver a tidal volume of 10 mL/kg with a FiO, of 0.4 and
at a respiratory rate of 20 breaths/min. End-tidal CO, measurements (Capnomac,
Datex, Helsinki, Finland) were used to monitor the adequacy of ventilation. Respi-
ratory settings were adjusted to maintain end-tidal CO, between 30 and 35 mmHg.

The pulmonary trunk was exposed by means of medial sternotomy. A micro-
manometer-tipped catheter (Sentron pressure-measuring catheter, Cordis, Miami,
FL) was inserted into the main pulmonary artery through a stab wound in the RV
outflow tract. A 14-mm diameter perivascular flow probe (Transonic Systems,
Ithaca, NY) was closely adjusted around the main pulmonary artery 2 cm down-
stream of the pulmonary valve. The micromanometer-tipped catheter was manipu-
lated so that the pressure sensor was positioned closely to the flow probe.

Left atrial pressure was measured with a micromanometer-tipped catheter
inserted into the cavity through the left atrial appendage. Systemic blood pressure
(BP) was monitored with a micromanometer-tipped catheter inserted into the
descending thoracic aorta through the right femoral artery.

A TF, 12-electrode (8-mm interelectrode distance) conductance micromanome-
ter-tipped catheter (CD Leycom, Zoetermeer, The Netherlands) was inserted
through the RV infundibulum into the right ventricle and positioned so that all
electrodes were in the RV cavity.

A 6F Fogarty balloon catheter (Baxter Healthcare Corp., Oakland, CA) was
advanced into the inferior vena cava through a right femoral venotomy. Inflation of
this balloon produced a gradual preload reduction.

Experimental protocol

After a 30-min stabilization period (T,), 12 animals were randomly divided in
two groups. Both groups received a 0.5 mg/kg endotoxin (lipopolysaccharide from
Escherichia coli serotype 0127:B8; Sigma Chemical, St Louis, MO) infusion over
30 min (from Ty, to Tg). In the first group (Endo group, n = 6), the animals were
infused with placebo, and in the second group (Anta group, n = 6), they received
a 10 mg/kg/h infusion of BM-573 from T, to T, to achieve a steady-state concen-
tration of 14.11 + 3.34 pg/mL. At this concentration, BM-573 completely blocked
TXA, receptor activation by U-46619, a TXA, agonist (unpublished data).

This compound was obtained from the Laboratory of Medicinal Chemistry of our
University. It was dissolved in propylene glycol and water to achieve a drug stock
solution of 20 mg/mL.

Hemodynamic data included pulmonary artery pressure (PAP) wave, pulmonary
blood flow (Q) wave, left atrial pressure, BP, heart rate (HR), RV pressure, RV
volume, and RV PV loops. These parameters were recorded every 30 min from T,
to T, during a short apneic phase and stored for subsequent analysis. All analog
signals were continuously converted to digital form with an appropriate system
(Codas, DataQ Instruments Inc., Akron, OH). PAP, Q, left atrial pressure, BP, HR,
RV volume, RV pressure, and RV PV loops were also monitored on line throughout
the experiment. Left atrial pressure was maintained stable throughout the experi-
ment by Ringer-lactate infusion as needed.
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RV PV loops were also recorded every 30 min from T to T, during a transient
occlusion of the inferior vena cava using the Fogarty balloon (Fig. 1).

Arterial blood was collected every 60 min to measure pH, PO,, PCO,, base
excess, and bicarbonate standard (288 Blood Gas System, CIBA-Corning, CA).

Data analysis
Pulmonary circulation—E, which reflects RV afterload, was calculated using the
following equation (13):

E, = R, +Ry)/ [T, + RyC(l-e %,

where T, and T, are the systolic and diastolic time intervals, respectively.

A lumped parameter model, namely the four-element windkessel model, was
used to calculate R, R,, and C using an original analytic procedure described
previously (19). In this model, R, represents the characteristic impedance of the
pulmonary circulation, R, pulmonary vascular resistance, and C pulmonary artery
compliance (20).

Right ventricular function—RV PV loops were obtained using the conductance
catheter method as previously described (18).

Before each measurement, parallel conductance was determined with the saline
method by injecting 3 mL of NaCl 10% into inferior vena cava (18).

During a rapid inferior vena cava occlusion maneuver, the slope of the ESPVR
curve (end-systolic elastance, E.,) was determined (18). A volume intercept at a
fixed pressure of 25 mmHg (V ,5) to quantify the position of the ESPVR was also
used. E and V5 represent load-independent measures of RV contractile perfor-
mance. An increased E,, a leftward shift indicated by a decreased V 5 or both
represent an improved systolic function (17, 18).
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Fig. 1. Typical example of right ventricular (RV) pressure-volume
loops and end-systolic pressure—volume relationship during inferior
vena cava occlusion in one animal at T, in the Endo (A) and in the Anta

group (B). Open circles are end-systolic points.
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Stroke work was calculated as the integrated area of each PV loop.

The specific area in the PV plane bounded by the end-systolic and end-diastolic
pressure—volume lines and the systolic segment of the PV loop (pressure—volume
area, PVA) serves as a reliable predictor of myocardial oxygen consumption (13,
21).

RV efficiency was calculated as the ratio of stroke work to PVA (13, 22).

Ejection fraction was calculated as the ratio of stroke volume to end-diastolic
volume (EDV).

Additionally, to assess right ventricular—vascular coupling, we examined the
E./E, ratio. Under normal operating conditions, the right ventricle operates at a
maximum efficiency and a submaximal stroke work (E./E, > 1). The maximal
stroke work is obtained when E_/E, = 1, and uncoupling occurs when E_/E, is
lower than 1 (13).

Statistical analysis

Data are presented as mean + standard error of the mean (SEM).

A two-way ANOVA for repeated measures during early (T;,—T,) and late (from
To,) phases of endotoxic shock gives P value for time, group, and time—group
interaction (Statistica®, Statsoft Inc, Tulsa, OK).

P < 0.05 was considered statistically significant.

RESULTS

Conventional hemodynamic data

As shown in Figure 2, the time evolution of BP, Q, and HR
values did not differ between Endo and Anta groups.

Mean PAP in the Endo group reached a first maximum at
Teo (P < 0.05) (i.e., 30 min after the onset of endotoxin infu-
sion). In the Anta group, in contrast, mean PAP values at Ty,
were not different from their basal values. The difference in
mean PAP values between the two groups was statistically
significant at Tgy (P < 0.05). After To,, mean PAP increased
progressively (P < 0.05) and similarly in the two groups.

Right ventricular volumes

The evolution in time of RV EDV is depicted in Figure 3. In
the Endo group, EDV increased from 53 + 6 mL (T,) to 64 +
11 mL (P < 0.05) at the end of endotoxin infusion (Ty,) and
further remained unchanged throughout the experiment. In the
Anta group, EDV was lower than in the Endo group at Ty, and
thereafter (P < 0.05). Ejection fraction progressively decreased
in both groups throughout the experiment (P < 0.05). However,
ejection fraction remained higher in the Anta than in the Endo
group (P < 0.05) (Fig. 3).

Derived hemodynamic data

E, and R, in the Endo group expressed a profile similar to
the time evolution of PAP (Fig. 4). As was found for PAP, E,
and R, did not significantly increase between Ts, and T, in
the Anta group. From Ty, until the end of the experimental
protocol, there was no difference in E, and R, values between
the two groups (Fig. 4).

R, increased rapidly from 0.033 + 0.006 to 0.055 + 0.010
mmHg - s - ml™" after the onset of endotoxin infusion and
remained unchanged during the late phase of endotoxic shock.
C decreased rapidly from 1.5 £ 0.2 to 0.7 = 0.1 mL/mmHg
after the start of endotoxin infusion and then remained
unchanged until the end of the experimental period. The evolu-
tion of R, and C in the Anta group paralleled that observed in
the Endo group. There were no statistically significant differ-
ences in the evolution of R, and C between the two groups.

During the early phase of endotoxic shock, E increased
from 1.0 + 0.1 mmHg/mL (T,) to 2.9 + 0.4 mmHg/mL (Tg,)

(P <0.05) in the Endo group and was significantly higher than
Copyright © Lippincott Williams & Wlf,k
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FiGg. 2. Time course of mean systemic arterial pressure (BP), mean
pulmonary arterial pressure (PAP), heart rate (HR), and cardiac output
(Q) in the Endo (W) and Anta groups (UJ). Data are presented as mean +
SEM. P values for time, group, and time—group interaction are given by a
two-way ANOVA for repeated measures: *P < 0.05 for time effect. 8P < 0.05
for group effect. #P < 0.05 for time—group interaction.

E., in the Anta group (P < 0.05). During the late endotoxic
phase, E_, remained unchanged and similar in both groups
(Fig. 5).

Vpos decreased from a basal value of 20 £ 8 mL to 2 +2 mL
at T¢o (P < 0.05) in the Endo group, but it remained uncharclfged
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Fic. 3. Time course of end-diastolic volume (EDV) (A) and right
ventricular ejection fraction (EF) (B) in the Endo (M) and Anta groups
(). Data are presented as mean + SEM. P values for time, group, and
time—group interaction are given by a two-way ANOVA for repeated
measures: *P < 0.05 for time effect. $P < 0.05 for group effect.

in the Anta group. During the late phase of endotoxic shock,
V.55 remained constant in both groups.

During the early phase of endotoxic shock, E./E, remained
at an optimal level of 2 from T, to Ty in both groups. During
the late phase of endotoxic shock, right ventricular—arterial
coupling deteriorated progressively in both groups (P < 0.05)
(Fig. 5).

RV efficiency remained unchanged in both groups during
the early phase of endotoxic shock. In contrast, during the late
phase of endotoxic shock, RV efficiency in the Endo group
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Fic. 4. Time course of pulmonary arterial elastance (E,) in the Endo
(M) and Anta groups ([J). Data are presented as mean + SEM. P values for
time, group, and time—group interaction are given by a two-way ANOVA for
repeated measures: *P < 0.05 for time effect. $P < 0.05 for group effect. *P
< 0.05 for time—group interaction.

decreased significantly (P < 0.05) and differed from the value
calculated in the Anta group (Fig. 6).

PO, decreased from 131 + 21 mmHg (T,) to 74 + 12 mmHg
(T5p0) (P < 0.05) in the Endo group (Fig. 7), while PO,
progressively increased from 140 + 88 mmHg (T,) to 241 + 31
mmHg (T5,) in the Anta group. The difference between the
Endo and Anta groups reached statistical significance (P <
0.05) during the late phase of endotoxic shock.

Arterial pH, arterial PCO,, ionogram, and hematocrit
remained within the normal range in both groups throughout
the experimental period.

DISCUSSION

Our data show that, in a porcine model of endotoxic shock,
administration of BM-573 blunts the early phase of pulmonary
hypertension, improves arterial oxygenation, and preserves
right ventricular efficiency. During the early phase of endo-
toxic shock, beneficial effects are obtained by a decrease in
right ventricular afterload, and in the later phase BM-573
mainly results in an improved arterial oxygenation.

The effects of endotoxin infusion on pulmonary hemody-
namics and right ventricular—vascular coupling have been
previously studied in our laboratory (2, 19). It has been
suggested that the early changes in PAP resulting from endo-
toxin insult are associated with the release of TXA,, whereas
later changes could be related to injury of the vascular wall and
subsequent decrease in NO production (2, 3,23, 24). Our present
study confirms that TXA, is indeed responsible for the early
vasopressive response of the pulmonary circulation during
endotoxin infusion, as evidenced by the prevention of the
abrupt increase in R, by BM-573 infusion.

Theoretically, blocking the action of TXA, can be achieved
by two different types of molecules: TXA, synthase inhibitors
(blocking the production of TXA,) and TXA, receptor antago-
nists (preventing its action). It was earlier demonstrated in a
sheep model that inhibition of TXA, synthase still led to an
increase in PAP 30 min after endotoxin infusion, although PAP
values during the first 2 h of the experiment were significantly

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Fic. 5. Time course of end-systolic elastance of the right ventricle
(E.s) (A) and right ventricular-vascular coupling (E../E,) (B) in the Endo
(M) and Anta groups (). Data are presented as mean + SEM. P values for
time, group, and time—group interaction are given by a two-way ANOVA for
repeated measures: *P < 0.05 for time effect. $P < 0.05 for group effect. *P
< 0.05 for time—group interaction.

lower than in a control group subjected only to endotoxin insult
(6). However, pulmonary vascular resistance showed a similar
increase in both groups during the following 3- to 6-h period.
Using a TXA, receptor antagonist during Escherichia coli
challenge, Jesmok et al. showed that the acute pulmonary
hypertensive phase could indeed be inhibited, although the
drug did not affect the development of septic shock and subse-
quent death (9). Accordingly, TXA, receptor antagonists could
seem more effective than TXA, synthase inhibitors in attenu-
ating the early pulmonary response to endotoxin insult.
However, these results were not confirmed by the study of
Iglesias et al. (25). These authors compared TXA, synthase
inhibition and TXA, receptor antagonism in a porcine burn-
injury sepsis model and did not find a significant difference
between the two drugs in preventing the occurrence of pulmo-
nary hypertension (25). Moreover, TXA, receptor antagonist is
associated with cardiac index decrease and pulmonary vaso-
constriction in response to PGI, blockade. In fact, using only
TXA, synthase inhibitors increases plasma PGH, to levels

h(i%h enough to stimulate the TXA, receptors, whereas using
opyright © Lippincott Wilfi
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Fic. 7. Time course of PO, in the Endo (H) and Anta groups (CJ). Data
are presented as mean + SEM. P values for time, group, and time—group
interaction are given by a two-way ANOVA for repeated measures: P < 0.05
for group effect.

TXA, receptor antagonists reduces PGI, blood levels. As such,
drugs should aim to combine both TXA, synthase inhibition
and TXA, receptor antagonism.

RV adaptation to an increase in its afterload can be obtained
by two different, but complementary, mechanisms: heteromet-
ric and homeometric regulation. During heterometric regula-
tion, stroke volume is maintained because of changes in RV
preload (i.e., EDV), while contractility, as such, remains
unchanged (the Frank-Starling mechanism). In contrast, during
homeometric regulation, RV contractility (i.e., E.,) increases to
maintain stroke volume, while EDV remains unchanged. It has
been suggested in previous studies in a sheep model of sepsis
that the RV response to acute pressure overload consists of
both enhanced contractility and the Frank-Starling mechanism
(26). In newborn lambs, however, RV output in the face of
increased afterload, is regulated only through homeometric
regulation (17, 27). In the present study, RV adaptation during
the early phase of endotoxin-induced pulmonary hypertension
(Teo) was obtained by both homeometric and hetereometric
regulation. Indeed, both E., and EDV increased, and right
ventricular—vascular coupling was maintained at a maximum

efficiency. Surprisingly, 1 h later (Tllzo)_, facing the same
e is prohibited.
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increased afterload (E,), the right ventricle failed to maintain
its contractility to such an elevated level. As a consequence,
right ventricular—vascular coupling decreased from values
higher than 2 to values below 1. This confirms earlier findings
of D’Orio et al. in endotoxic dogs, which found that the deficit
in cardiovascular performance is caused by inappropriate
matching between ventricular inotropic state and RV afterload,
with secondary altered ventricular-vascular coupling (2).

In the animals of the Anta group, E_, did not increase at T,
and right ventricular—vascular coupling remained intact
because the early pulmonary vasopressive response of the
pulmonary circulation was offset by BM-573. However, later
in the experiment (T,,,), E., could not increase enough to
maintain right ventricular-vascular coupling at an optimal
level, similar to what happened in the Endo group. These
results suggest that, 1 h after the end of the endotoxin infusion
(T}50), homeometric regulation is impaired. This impairment is
not prevented by TXA, inhibitors because the evolution of
right ventricular—vascular coupling is similar in both groups.
However, although EDV increased progressively in the Endo
group, it remained near basal values in the Anta group. Such an
increase in RV EDV and decrease in ejection fraction are
hemodynamic signs indicating a decrease in RV mechanical
efficiency.

When left ventricular afterload is increased, homeometric
regulation can partially be explained by an augmentation in
coronary perfusion secondary to the increased aortic pressure.
However, in our study, because of systemic hypotension, RV
homeometric regulation cannot be induced by increased coro-
nary perfusion. It could rather be explained by mechanisms
such as mechanical stretch-activated channels, release of
endogenous catecholamines, or release of stimulating factors
from the endocardial endothelium (27). The precise mecha-
nism by which homeometric regulation appears to be reduced
during endotoxin infusion needs further investigation. There is,
however, growing evidence that coronary circulation in sepsis
is susceptible to maldistribution of regional blood flow (28)
and that myocardial blood flow could be unable to augment in
response to higher oxygen demands (29). These abnormalities
in cardiac performance are largely attributed to TXA, forma-
tion (28). It is probable that by inhibiting these deleterious
effects of TXA, on myocardial perfusion, but also by improv-
ing arterial oxygenation, the decrease in RV efficiency during
endotoxin shock is prevented by BM-573. Nevertheless,
because the loss of homeometric regulation was similar in both
control (Endo) and treated (Anta) groups, the progressive
myocardial depression is not attributable only to the effects of
TXA,.

We estimated ventricular performance by the slope and
intercept of the ESPVR, which is obtained by fitting a straight
line through the end-systolic PV points. However, these points
could show some nonlinearity, and ESPVR is calculated by
linear regression. The intercept of ESPVR with the volume
axis at zero pressure is thus the result of extrapolating a line far
beyond the actual pressure range where the ESPVR could be
considered as quasilinear. We therefore used a volume inter-
cept at a fixed pressure, within the pressure range encountered,
to quantify the position of ESPVR. Then, the slope of ESPVR,

Copyright Ct%
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E., and its volume position, V s, represent relatively load-
independent indices of ventricular contractility. An increase in
E,, a decrease in V 5, or both suggest an improved contractile
state (27).

Our results also demonstrated that the use of BM-573
improves arterial oxygenation during endotoxin infusion. In
the Endo group, PO, decreased throughout the experiment,
whereas it increased slightly in the Anta group with a signifi-
cant difference between the two groups during the late phase of
endotoxic shock. These results appear in contradiction with
those of Suchner et al., who found that in acute respiratory
deficiency syndrome (ARDS), TXA, may improve oxygen-
ation by amplifying the efficacy of hypoxic pulmonary vaso-
constriction (30). Elevated plasma levels of TXA, have been
clinically observed in patients with acute lung injury, suggest-
ing that TXA, is an important mediator in acute lung injury
(31). TXA, stimulates platelet activation, promoting the adhe-
sion of platelets to damaged vascular endothelium. Platelet
adhesion and degranulation lead to a release of mediators,
helping to perpetuate a vicious cycle as granulocyte—
endothelial cell adhesion and granulocyte-induced cytotoxicity
become enhanced. In turn, activated leukocytes play an impor-
tant role in acute lung injury through the release of oxygen
free-radical species and proteolytic enzymes (32). Our results
suggest that inhibition of TXA, improves oxygenation by
reducing pulmonary vascular inflammatory reactions. Schuster
et al. found that inhibition of TXA, decreased venous resis-
tance of the pulmonary vascular bed and, hence, pulmonary
capillary pressure (33). Imidazole, a TXA, inhibitor, has also
been suggested to reduce capillary permeability and alveolo-
arterial oxygen difference in a model of endotoxic shock in
dogs (34). In this way, TXA, receptor inhibitors could also
diminish the generation of pulmonary edema (33, 35).

In conclusion, BM-573 blunts the early phase of pulmonary
hypertension, improves arterial oxygenation, and prevents
decrease in RV myocardial efficiency and RV dilatation in a
porcine model of endotoxic shock. However, further studies
are needed to understand the true mechanism of oxygenation
improvement and to test the potential therapeutic benefit of this
molecule in septic shock.
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