Free Group and Recognizability

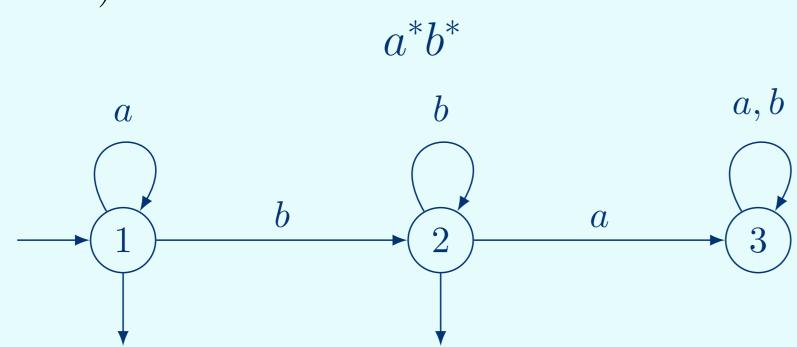
RASKIN Julien

University of Liege

j.raskin@ulg.ac.be

Recognizability

Let Σ be a finite alphabet. A language over Σ is regular or recognizable if it is accepted by a finite automaton (or, equivalently, if it is described by a regular expression).



Theorem. A language $L \subset \Sigma^*$ is recognizable if and only if there exists a finite monoid M, a subset P of M and a homomorphism $h: \Sigma^* \to M$ such that $L = h^{-1}(P)$.

Generalization. If $(A, (f_i)_{i \in I})$ is an algebra of type $\tau = (n_i)_{i \in I}$ (i.e. $f_i:A^{n_i}\to A$), then $L\subset A$ is recognizable if and only if there exists a finite algebra B of type τ , a subset P of B and a homomorphism $h:A\to B$ such that $L = h^{-1}(P)$. This happens if and only if L is saturated by a finite index congruence (first isomorphism theorem).

Free Group

The free group F(X) generated by X is the unique (up to isomorphism) group such that $F(X) = \langle \eta(X) \rangle$ for an injective function $\eta: X \to F(X)$ and such that for all group G and function $f: X \to G$, there exists a unique homomorphism $h: F(X) \to G$ such that $f = h \circ \eta$.

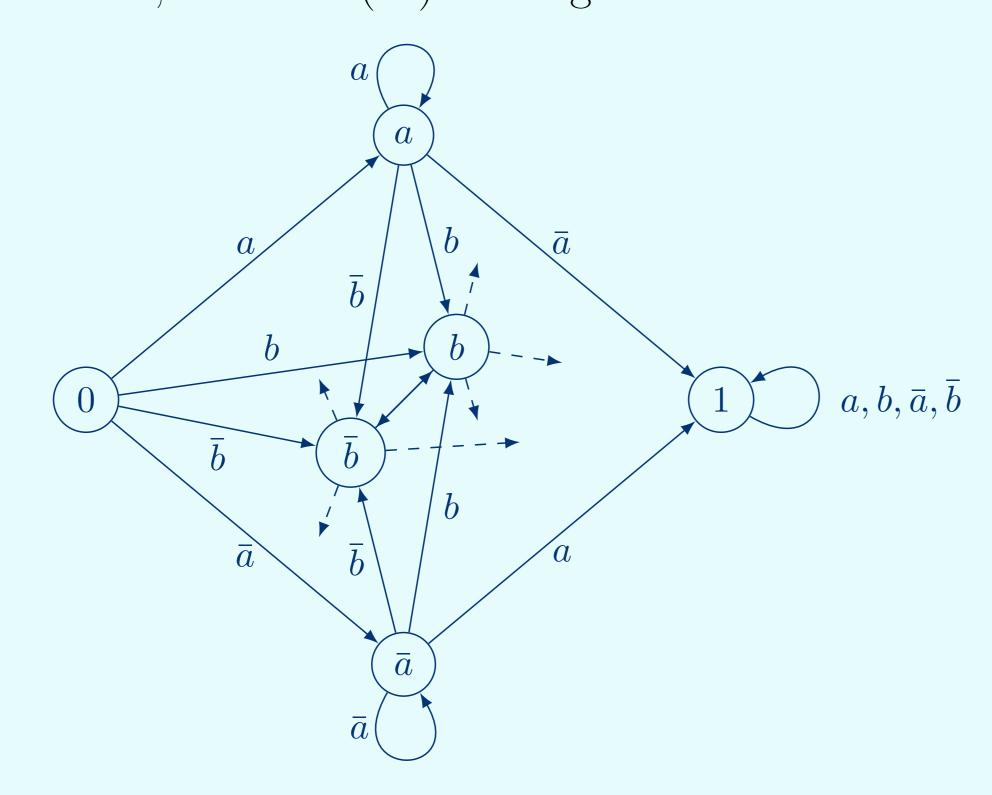
Construction. Let $X = \{x_1, \ldots, x_n\}$ be a finite set, and let \cdot^{-1} be a bijection between X and a set $X' = X^{-1}$ such that $X \cap X' = \emptyset$. By abusing the notation, the inverse bijection is also noted \cdot^{-1} , and we note $\bar{X} = X \cup X'$. A word $w \in \bar{X}^*$ is reduced if it does not contain any factor of the form xx^{-1} , $x \in \bar{X}$. We note r(w) the reduced word obtained from w by deleting factors of the form xx^{-1} while it is possible.

The free group F(X) is the set of reduced words of \bar{X}^* equipped with the operation

$$\times : F(X)^2 \to F(X) : (u, v) \mapsto r(uv).$$

Its identity element is the empty word ε , and the inverse of $x_1 \cdots x_n$ is $x_n^{-1} \cdots x_1^{-1}$.

As a subset of \bar{X}^* , the set F(X) is recognizable.



e-Groups

An e-group is a monoid $(E,\cdot,1)$ endowed with two additional unary operations \cdot^{-1} and r satisfying

- $(xy)^{-1} = y^{-1}x^{-1}$
- $r(xx^{-1}) = r(x^{-1}x) = 1$ $r(x^{-1}) = r(x)^{-1}$
- $\bullet (x^{-1})^{-1} = x$
- r(xr(y)z) = r(xyz)

If $(x \equiv y \Leftrightarrow r(x) = r(y))$, the quotient E/\equiv is a group. It is isomorphic to the group r(E) with multiplication $\times : (x,y) \mapsto r(xy)$. We call r(E)the kernel of E. Note that F(X) is the kernel of \bar{X}^* .

If $(G,\cdot,1,^{-1})$ is a group, then $(G,\cdot,1,^{-1},\mathrm{id}_G)$ is an e-group, and both have the same congruences and thus the same recognizable subsets.

Recognizability in kernels. If $h:A\to A'$ is a surjective homomorphism between two algebras, then $L \subset A'$ is recognizable if and only if $h^{-1}(L)$ is recognizable. Therefore, if $(E, \cdot, 1, ^{-1}, r)$ is an e-group, then $L \subset r(E)$ is recognizable in the kernel group r(E) if and only if $r^{-1}(L)$ is recognizable in E (as r is a homomorphism between E and the e-group $(r(E), \times, 1, ^{-1}, id_{r(E)})$). Furthermore, if $M \subset E$ is such that $M = r^{-1}(r(M))$, then M is recognizable in the e-group $(E, \cdot, 1, ^{-1}, r)$ if and only if it is recognizable in the monoid $(E,\cdot,1)$. This leads us to the following theorem.

Theorem. A subset L of r(E) is recognizable in $(r(E), \times, 1, ^{-1})$ if and only if $r^{-1}(L)$ is recognizable in $(E, \cdot, 1)$.

Corollary. A subset L of F(X) is recognizable if and only if $r^{-1}(L)$ is recognizable in X^* .

e-Automata

An automaton $\mathcal{A} = (Q, q_0, F, \delta)$ over X is an e-automaton over X if $Q\setminus\{q_0\}$ can be partitioned into disjoint sets $(Q_x)_{x\in\bar{X}}, P, N$ such that

- $q \notin N \Rightarrow \delta(q, x) \in Q_x \cup P$
- $q \in Q_x \Rightarrow ((\exists q' \notin N \ \delta(q', x) = q) \text{ and } (\delta(q, x^{-1}) \in P))$
- $P \cap F = \emptyset$ and $p \in P \Rightarrow \delta(p, x) \in P$
- $\delta(q, x) \in P \Rightarrow q \in Q_{x^{-1}} \cup P \cup N$
- \bullet The states of N are unreachable
- $q, q' \notin P \cup N, \delta(q, x) = \delta(q', x) \notin P \Rightarrow \forall w \in \bar{X}^* \left(q \xrightarrow{w} F \Leftrightarrow q' \xrightarrow{w} F \right)$

where $\bar{\mathcal{A}}$ is the non-deterministic automaton $(Q, \{q_0\}, F, \Delta)$ with

 $\Delta = \{(q, x, q') | \delta(q, x) = q^{-1} \text{ or } (q \notin P \text{ and } q' \notin N \text{ and } \delta(q, x^{-1}) = q) \}.$

Theorem. A subset L of F(X) is recognizable if and only if it is accepted by an e-automaton.

