Eulerian Formulation of the Torque and Drag Problem

Nonlinear Dynamics and Control of Deep Drilling Systems

Alexandre Huynen, Emmanuel Detournay, and Vincent Denoël

Constrained Rod - Inside

- Engineering applications
 - Petroleum, mining, gas, geothermal, etc.

Drillstring length ~ 5 km

- Medical applications
 - Endoscopic examination of internal organs
 - Endovascular procedures

Constrained Rod - Inside

- Engineering applications
 - Petroleum, mining, gas, geothermal, etc.

Drillstring length ~ 5 km

- Medical applications
 - Endoscopic examination of internal organs
 - Endovascular procedures

Constrained Rod - Outside

Twining plants

 $1 \sec = 4 h$

DNA wrapping

Constrained Rod - Outside

Twining plants

 $1 \sec = 4 h$

DNA wrapping

Segmentation Strategy (Chen & Li 2007, Denoël 2008)

- Division of the problem in rod segments bounded by two contacts
 - Solve the sequence of problems
 - Check the validity of the contact pattern

Segmentation Strategy (Chen & Li 2007, Denoël 2008)

- Division of the problem in rod segments bounded by two contacts
 - Solve the sequence of problems
 - Check the validity of the contact pattern

Lagrangian vs. Eulerian

- Segmentation drawbacks
 - Initially unknown domain
 - Evaluation of the distance rod/conduit axis

- Eulerian formulation (Denoël & Detournay, 2011)
 - Rod *relative* deflection $\Delta(S)$
 - ullet Problem length L

Canonical Problem

- Rod configuration between contacts $(s \in [s_a, s_b])$
 - Known extremities positions and inclinations $x_{j}\left(s_{a,b}\right), x_{j}'\left(s_{a,b}\right)$
 - Known axial force $oldsymbol{F}_b$ and torque $oldsymbol{M}_b$
 - → Boundary value problem
- Unknowns
 - Rod length $\,\ell = s_b s_a$, axial force $m{F}_a$ and torque $m{M}_a$

Lagrangian Formulation (Antman, 2005)

Rod definition

- Centroid $r(s) = x_k e_k$
 - → Space curve &
- Directors $\{d_k(s)\}$
 - → Section orientation

Equilibrium

$$\frac{\mathrm{d}\boldsymbol{F}}{\mathrm{d}s} + \boldsymbol{f} = 0$$

$$\frac{\mathrm{d}\boldsymbol{M}}{\mathrm{d}s} + \frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}s} \times \boldsymbol{F} + \boldsymbol{m} = 0$$

Kinematics

$$\frac{\mathrm{d}\boldsymbol{d}_k}{\mathrm{d}s} = \boldsymbol{u} \times \boldsymbol{d}_k$$
$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}s} = \alpha \, \boldsymbol{d}_3$$

Constitutive equations

$$F_3 = EA\left(\alpha - 1\right)$$

$$M_{1,2} = EI u_{1,2}$$

$$M_3 = GJ u_3$$

Issues with Lagrangian Formulation (Chen & Li, 2007)

Boundary conditions:

- ightharpoonup Integral constraints on the *unknown length* $\ell = s_b s_a$ of the rod
- Ill-conditioning of the governing equations when $EI/w\,\ell^3\ll 1$
- · Parasitic solutions with curling

- Contact detection: comparison of two curves parameterized by distinct curvilinear coordinates
 - Conduit axis: $X_j(S)$ (Eulerian coordinate)
 - Rod axis: $x_j(s)$ (Lagrangian coordinate)

Eulerian Formulation

• Orthonormal frame $\{D_j(S)\}$ attached to the reference curve \mathscr{C}

Eccentricity vector

$$\begin{cases} \mathbf{r}(s) = \mathbf{R}(S) + \mathbf{\Delta}(S) \\ \frac{\mathrm{d}\mathbf{R}}{\mathrm{d}S} \cdot \mathbf{\Delta} = 0 \end{cases}$$

 \hookrightarrow Contact detection $\|\Delta\| \le c$

Jacobian of the mapping

$$S(s) \longrightarrow \frac{\mathrm{d} \cdot}{\mathrm{d} s} = \left[\frac{\mathrm{d} S}{\mathrm{d} s}\right] \frac{\mathrm{d} \cdot}{\mathrm{d} S}$$

Mappings: 3 Curvilinear Coordinates

Lagrangian

Reference config.

Stretched

Deformed config.

Eulerian

Reference curve

Jacobian of the Mapping

$$\frac{\mathbf{r}(s(S)) = \mathbf{R}(S) + \mathbf{\Delta}(S)}{\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}s} = \alpha \, \mathbf{d}_3} \qquad \qquad \qquad \alpha \, \mathbf{d}_3 = (\mathbf{R}' + \mathbf{\Delta}') \, \frac{\mathrm{d}S}{\mathrm{d}s}$$

- \rightarrow Drift between S and s:
 - Eccentricity between the rod and the reference curve
 - Stretch of the rod

Jacobian of the Mapping

$$\frac{\mathbf{r}(s(S)) = \mathbf{R}(S) + \mathbf{\Delta}(S)}{\frac{d\mathbf{r}}{ds} = \alpha \, \mathbf{d}_{3}}$$

$$J_1 = \frac{\mathrm{d}S}{\mathrm{d}s} = \pm \frac{\alpha}{\|\mathbf{R}' + \mathbf{\Delta}'\|}$$

- \rightarrow Drift between S and s:
 - Eccentricity between the rod and the reference curve
 - Stretch of the rod

Jacobian of the Mapping

$$r(s(S)) = R(S) + \Delta(S)$$

$$\frac{d\mathbf{r}}{ds} = \alpha \mathbf{d}_3$$

$$J_1 = \frac{\mathrm{d}S}{\mathrm{d}s} = \pm \frac{\alpha}{\|\mathbf{R}' + \mathbf{\Delta}'\|}$$

 \hookrightarrow Drift between S and s:

- Podgornik, 2002
- Eccentricity between the rod and the reference curve
- Stretch of the rod

Rod Attitude

• Orientation of the rod directors $\{d_j(s)\}$

$$d_1(S) = \cos \varphi \, \mathbf{k}_1 - \sin \varphi \, \mathbf{k}_2$$
$$d_2(S) = \sin \varphi \, \mathbf{k}_1 + \cos \varphi \, \mathbf{k}_2$$
$$d_3(S) = J_1 \left(\mathbf{D}_3 + \mathbf{\Delta}' \right) / \alpha$$

where k_1 and k_2 are the images of D_1 and D_2 through the rotation mapping D_3 on d_3

Strain variables

$$u_k = u_k (\alpha, \varphi, \boldsymbol{\Delta}, \boldsymbol{U})$$

Curvature and torsion

$$\kappa^{2} = \tilde{J}_{1}^{4} \left(\mathcal{K}^{2} + 2 \boldsymbol{D}_{3}^{\prime} \cdot \boldsymbol{\Delta}^{\prime\prime} + \left\| \boldsymbol{\Delta}^{\prime\prime} \right\|^{2} \right) - \tilde{J}_{1}^{\prime 2}$$

Rod Attitude

• Orientation of the rod directors $\{d_j(s)\}$

$$d_1(S) = \cos \varphi \, \mathbf{k}_1 - \sin \varphi \, \mathbf{k}_2$$
$$d_2(S) = \sin \varphi \, \mathbf{k}_1 + \cos \varphi \, \mathbf{k}_2$$
$$d_3(S) = J_1 \left(\mathbf{D}_3 + \mathbf{\Delta}' \right) / \alpha$$

where ${m k}_1$ and ${m k}_2$ are the images of ${m D}_1$ and ${m D}_2$ through the rotation mapping ${m D}_3$ on ${m d}_3$

Strain variables

$$u_k = u_k (\alpha, \varphi, \boldsymbol{\Delta}, \boldsymbol{U})$$

Curvature and torsion

 D_2

 d_2

 $oldsymbol{k}_2$

$$\kappa^{2} = \tilde{J}_{1}^{4} \left(\mathcal{K}^{2} + 2 \boldsymbol{D}_{3}^{\prime} \cdot \boldsymbol{\Delta}^{\prime\prime} + \left\| \boldsymbol{\Delta}^{\prime\prime} \right\|^{2} \right) - \tilde{J}_{1}^{\prime2}$$

Numerical Implementation

Mixed order nonlinear BVP

$$J_{1} F'_{j} + G_{j} [\alpha, \varphi, \boldsymbol{\Delta}, \boldsymbol{F}, \boldsymbol{U}] + f_{j} = 0$$

$$J_{1} \alpha' + G_{\alpha} [\alpha, \varphi, \boldsymbol{\Delta}, \boldsymbol{F}, \boldsymbol{U}] + f_{3} = 0$$

$$J_{1}^{3} \Delta'''_{j} + H_{j} [\alpha, \varphi, \boldsymbol{\Delta}, \boldsymbol{F}, \boldsymbol{U}] + m_{j} = 0$$

$$J_{1}^{2} \varphi'' + H_{\varphi} [\alpha, \varphi, \boldsymbol{\Delta}, \boldsymbol{U}] + m_{3} = 0$$

$$B_{i} [S_{i}; \alpha, \varphi, \boldsymbol{\Delta}, \boldsymbol{F}, \boldsymbol{U}] = 0, \qquad S_{i} \in [S_{a}, S_{b}], i = 1, \dots, 11$$

Numerical solution: collocation method (Ascher et al., 1979)

$$\boldsymbol{\Delta}^* \in \mathcal{P}_{k+3,\pi} \cap C^2 \left[S_a, S_b \right]$$
$$\varphi^* \in \mathcal{P}_{k+2,\pi} \cap C^1 \left[S_a, S_b \right]$$
$$\boldsymbol{F}^* \in \mathcal{P}_{k+1,\pi} \cap C^0 \left[S_a, S_b \right]$$

where $k \geq 3$ is the number of collocation points per subinterval and $\mathcal{P}_{n,\pi}$ is the set of all piecewise polynomial functions (*B*-splines) of order n

Continuous Contact

- Eccentricity vector Δ (S)
 - Magnitude $\|\Delta\| = c$ (known)

$$\Delta_1(S) = c \cos \beta$$

$$\Delta_2(S) = c \sin \beta$$

Direction

$$\beta(S) = \arctan \frac{\Delta_2}{\Delta_1}$$
 (unknown)

- Contact pressure p(S)
 - Magnitude $\|\boldsymbol{p}\| = p$ (unknown)

Direction (no friction)

$$\Delta \times p = 0$$
 (known)

Modified BVP (differential algebraic system)

$$J_1 F_j' + G_j \left[\alpha, \varphi, \beta, \mathbf{F}, \mathbf{U}\right] + f_j + p_j = 0$$

$$J_1 \alpha' + G_\alpha \left[\alpha, \varphi, \beta, \mathbf{F}, \mathbf{U}\right] + f_3 + p_3 = 0$$

$$J_1^3 \Delta_j''' + H_j \left[\alpha, \varphi, \beta, \mathbf{F}, \mathbf{U}\right] + m_j = 0$$

$$J_1^2 \varphi'' + H_\varphi \left[\alpha, \varphi, \beta, \mathbf{U}\right] + m_3 = 0$$

Comparison

Comparison

Comparison

Computation Time

Eulerian ~ 0.1 sec

Lagrangian

~ 5 sec

Self-feeding

Application: Planar Configuration

Application: Planar Configuration

Conclusion

- 3-D reformulation of the problem within the Eulerian formalism
 - Introduction of the eccentricity vector Δ (S)
 - Description of the rod deformed configuration with respect to a reference curve
 - Fields seen as functions of the curvilinear coordinate associated to a reference curve
- Suppression of the integrals constraints (isoperimetric)
- Improvement of the governing equations conditioning
- Constrained problem
 - Simplification of the contact detection
 - Disregard parasitic solutions with curling
 - Applicable to the continuous contact problem

Thank you