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1 Introduction

The petroleum industry relies on several kilometer long drillstrings to transmit
the axial force and torque necessary to drill the rock formations and reach deep
hydrocarbon reservoirs. The assessment of the energy loss along the drillstring,
known as the torque and drag problem, plays an essential role in well planning
and drilling as the friction appearing at the contacts between the drillstring and
the borehole may dramatically increase the costs or, even, be a limiting factor
in some configurations [1].

The identification of the number of contacts as well as their positions and
extents constitutes the central concern of this question. The nonlinearities asso-
ciated with the large deflection of the drillstring and the non-penetration condi-
tion as well as the a priori unknown number of contacts, however, make the use
of conventional numerical tools rather inefficient. Additionally, the commonly
adopted division of the problem in segments bounded by two contacts [2, 3] re-
quires to solve the governing equations on domains which are initially unknown
and, therefore, leads to the establishment of integral constraints on the unknown
length of a rod forced to go through fixed points in space. Finally, the assessment
of the unilateral contact condition, which requires in principle the comparison of
two curves parameterized by distinct curvilinear coordinates (e.g. the drillstring
and borehole axes), prove to be a rather intensive computational task.

For inextensible drillstrings constrained in the vertical plane, the above-
mentioned difficulties have been circumvented by reformulating the problem
within the Eulerian framework associated with the borehole and by describing
the drillstring deformed configuration by means of its transverse position relative
to the borehole axis [4, 5, 6]. Generalizing these concepts to three-dimensional
configurations, the drillstring is modeled by means of the special Cosserat rod
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Figure 1: (a) Description of the canonical problem, and (b) Decomposition of
the position vector r (s) = R (S) + ∆ (S).

theory, which is reformulated within the Eulerian framework of a, perfectly stiff,
generic conduit. The axis C of this conduit is further assumed to be known and
regular. The proposed Eulerian reformulation hinges on describing the drillstring
deformed configuration by means of its deflection relative to the borehole axis
and expressing the kinematical as well as mechanical quantities pertaining to the
drillstring in terms of the curvilinear coordinate associated with the borehole.

Problem definition. The canonical problem considered in this paper consists
of a segment of drillstring either (i) bounded by two contacts with the borehole
and subjected to a known external loading (e.g. weight, applied torque and ten-
sion at one extremity), or (ii) along a continuous contact with the borehole, see
Figure 1. These two distinct but complementary configurations essentially differ
by the nature of the body force acting on the drillstring. While solely subjected
to its weight in the absence of contact, the drillstring is additionally compelled
to lay on the borehole surface along a continuous contact. Assuming friction-
less interactions, the resulting contact pressure acts as an additional distributed
body force operating normally to the wall of the borehole, its magnitude be-
ing however unknown. The length of the drillstring spanning these elementary
boundary value problems and satisfying the associated boundary conditions is a
priori unknown and, therefore, constitutes an inherent part of the solution.

2 Lagrangian Formulation

To solve this two-point boundary value problem, let us define the right-handed
orthonormal basis {ek} for the Euclidean space E3 and denote by r (s) = xk ek
the position vector of the drillstring axis with curvilinear coordinate s. The pa-
rameter s, which is referred to as the (natural) Lagrangian coordinate, identifies
the drillstring cross section in its unstressed configuration r0 (s). To fully char-
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acterize the spatial configuration of the drillstring, one has to additionally supply
the space curve E , defined by r (s), with a vector characterizing the orientation
of the cross section. Defining a pair of orthonormal vectors d1 (s), d2 (s) along
the principal axes of inertia in the normal cross-section, the drillstring is entirely
defined by the two vector-valued functions

[sa, sb] 3 s 7→ r (s) , d1 (s) ∈ E3, (1)

with sa < sb corresponding to the extremities of the canonical problem and such
that the length of the drillstring, in its unstressed configuration, is ` = sb − sa.

2.1 Governing Equations

The cross section orientation is then described by its normal d3 (s) = d1 × d2

such that the resulting triplet of directors {dk (s)} constitutes an orthonormal
basis for each cross section s. The twist vector u = uk dk, whose components
measure flexure and twist, and the stretch vector v = αd3 are defined such that

ddk
ds

= u× dk,
dr

ds
= v (2)

where the stretch α (s) > 0 measures the rod extension. These strain variables
are naturally related to the components of the internal force F (s) = Fk dk and
moment M (s) = Mk dk through the following constitutive equations

M (s) = EI (u1 d1 + u2 d2) +GJ u3 d3 (3)

F (s) = F1 d1 + F2 d2 + EA (α− 1)d3 (4)

with the bending stiffness EI, the torsional stiffness GJ and the axial stiffness
EA of the drillstring. Finally, the conservation of linear and angular momenta
yields

dF

ds
+ f = 0 (5)

dM

ds
+

dr

ds
× F = 0 (6)

where f (s) is the body force per unit reference length, which embodies the
drillstring weight and the eventual contact pressure along continuous contacts.

2.2 Shortcomings

The system (2-6) constitutes the set of equations that governs the drillstring
deflection under prescribed boundary conditions. The two-point boundary value
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problem under consideration necessitates the imposition of the drillstring loca-
tion at both extremities sa and sb of the domain. However, as the parametric
coordinates of its axis xk (s) in the absolute reference frame {ek} read

xk (s) = xk (sa) +

∫ s

sa

v · ek ds, (7)

these boundary conditions reduce to a set of integral constraints on the unknown
length of the drillstring ` in its unstressed configuration. These stiff isoperimet-
ric constraints result in ill-conditioned equations contributing to the numerical
burden associated with the conventional Lagrangian formulation [5].

As emphasized in the introduction, the assessment of the unilateral contact
condition constitutes a further source of difficulties. To ensure that the drillstring
remains either free of contact or in continuous contact along the boundary value
problem under consideration, this constraint necessitates the evaluation of the
distance between the drillstring E and the borehole axis C . However, these two
curves being naturally parameterized by distinct curvilinear coordinates, the
evaluation of this distance reveals to be computationally intensive.

3 Eulerian Formulation

In the global basis, the position vector of a point lying on the borehole axis C
at S is denoted by R (S) = Xk ek. The arc-length parameter S, referred to as
the Eulerian coordinate in contrast to the Lagrangian coordinate s, identifies
a section along C which consists of all points whose reference positions are on
the plane perpendicular to the borehole axis at S. By analogy with the director
basis, one may arbitrarily define a triplet {Dj (S)} constituting an orthonormal
basis for each cross section S along the borehole axis and such that D3 = dR/dS
is the unit vector tangent to C . The kinematics of this frame can, therefore, be
described by means of the angular velocity U (S) = UkDk as D′j = U ×Dj ,
where the prime denotes differentiation with respect to the Eulerian coordinate.

As presented in Figure 1(b), the position vector for the rod cross section
centroids r (s) = xk ek can, naturally, be expressed as

r (s (S)) = R (S) + ∆ (S) , (8)

where the eccentricity vector ∆ (S) = ∆1D1 + ∆2D2 is a measure of the drill-
string relative deflection in the cross section S [7]. Besides describing the space
curve E with respect to the borehole axis C , this decomposition of the posi-
tion vector r (s) connects the Eulerian and Lagrangian formulations through the
mapping S 7→ s (S).
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Figure 2: (a) An elementary segment of the reference curve (dS) compared to the
corresponding elementary segment of rod in its undeformed (ds) and stretched
configurations (ds̃). (b) Correspondence between these three elementary seg-
ments and relations between the Jacobians of the respective mappings.

3.1 Mappings and Jacobians

The reformulation of the local equilibrium (5-6) within the Eulerian framework
requires to express the natural derivatives d · /ds in terms of Eulerian deriva-
tives d · /dS. While the Jacobian of the mapping s 7→ s̃ (s) from Lagrangian to
stretched (parametrizing the rod in its deformed configuration) coordinates can
be identified as the stretch α = ds̃/ds, the Jacobian of the mapping S 7→ s (S),
from Eulerian to Lagrangian coordinates, is obtained by plugging the decompo-
sition (8) in the definition (2) of the stretch vector and applying the chain rule
differentiation

s′ (S) = ±
∥∥D3 + ∆′

∥∥ / ‖v‖ . (9)

This expression emphasizes that the origin of the drift existing between the
two curvilinear coordinates is two-fold: (i) the eccentricity between the rod and
the reference curve, and (ii) the stretch ‖v‖ = α of the drillstring itself, see
Figure 2(a). Defining the functions J1 (S) = 1/s′ (S) as the Jacobian of the
inverse mapping s 7→ S (s), from Lagrangian to Eulerian coordinates, and J̃1 (S)
as the Jacobian of the mapping s̃ 7→ S (s̃), from stretched to Eulerian coordinates,
provides the circular relation J1 = α J̃1 depicted in Figure 2(b).

3.2 Directors and Strain Variables

Through the introduction of the eccentricity vector, the space curve E character-
izing the drillstring in its deformed configuration is expressed by reference to the
borehole axis C . Differentiating now (8) with respect to the Eulerian coordinate,
the drillstring local inclination reads

d3 (S) = J̃1
(
D3 + ∆′

)
, (10)
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such that the knowledge of the angle ϕ (S) between either director d1 or d2

and a specified direction is sufficient to fully characterize the drillstring spatial
configuration. This rotation of the cross section about d3 can, for instance, be
described with respect to the pair {k1,k2}, defined as the image of {D1,D2}
through the rotation mapping D3 on d3.

The strain variables, which are derived from the kinematic relation (2), can
in turn be reformulated within the Eulerian framework so that the drillstring
configuration, entirely defined by r (s) and d1 (s) in the Lagrangian formulation
(1), reduces to the knowledge of the three Eulerian functions

[Sa, Sb] 3 S 7→∆1 (S) ,∆2 (S) , ϕ (S) ∈ R, (11)

with the boundaries Sa < Sb of the canonical problem corresponding to the
drillstring extremities sa and sb, respectively. While the components ∆1,∆2 of
the eccentricity vector describe the drillstring relative deflection with respect to
the borehole axis, the angle ϕ characterizes the rotation of its cross section about
the director d3.

3.3 Boundary Value Problem

Projecting the conservation of linear and angular momenta (5-6) in the directors
basis, the following mixed order system is obtained

J1 F
′
j + Gj [α,ϕ,∆,F ,U ] + fj = 0, J3

1 ∆′′′j +Hj [α,ϕ,∆,F ,U ] = 0, (12)

J1 α
′ + Gα [α,ϕ,∆,F ,U ] + f3/EA = 0, J2

1 ϕ
′′ +Hϕ [α,ϕ,∆,U ] = 0, (13)

for j = 1, 2; the H and G’s functionals being obtained by plugging the Eulerian
reformulation of the strain variables in the conservation of linear and angular
momenta (5-6). This set of six ODE’s, involving exclusively Eulerian quantities,
is subject to eleven nonlinear boundary conditions of the form

Bi [Si;α,ϕ,∆,F ,U ] = 0, Si ∈ [Sa, Sb] , i = 1, . . . , 11. (14)

Depending on the nature of the problem under consideration, the latter con-
ditions prescribe the eccentricity vector ∆, the inclination of director d3, the
internal force F or moment M at S = Si. As an essential outcome of the
proposed formulation, the isoperimetric constraints, a source of difficulty in the
Lagrangian formulation, disappear and the system of equations (12)-(13) with
the boundary conditions (14) constitute a classical boundary value problem.
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Small Inclination Approximation. The previous developments lead to the
rigorous reformulation of the special Cosserat rod theory within the Eulerian
framework associated with the borehole axis. Although this reformulation hinges
on the description of the drillstring deformed configuration by means of its rela-
tive deflection, no assumptions were made on the magnitude of the eccentricity
vector. The drillstring is however expected to remain within close range of the
borehole axis such that the norm ‖∆‖ be, at most, of the order of the clearance
c (S) = A− a, with A (S) and a the radii of the borehole and drillstring, respec-
tively. It can actually be shown [7] that, for small values of ε = c (S) /L, the
space curve E may be seen as a perturbation of the borehole axis C . Therefore,
provided that the borehole curvature remains reasonably small compared to the
drillstring relative deflection, the distinction between Eulerian and the stretched
coordinates becomes negligible, i.e., J̃1 (S) = 1+O

(
ε2
)

and J1 (S) = α+O
(
ε2
)
,

which results in a substantial simplification of the G’s and H’s functionals.

Numerical Implementation. To solve numerically the resulting nonlinear
boundary value problem, a collocation method has been implemented. Defining
a partition π of [Sa, Sb] constituted of N subintervals, we seek an approximate so-
lution (∆∗, ϕ∗,F ∗) such that ∆∗ ∈ Pk+3,π ∩C2 [Sa, Sb], ϕ

∗ ∈ Pk+2,π ∩C1 [Sa, Sb]
and F ∗ ∈ Pk+1,π∩C0 [Sa, Sb] where k ≥ 3 is the number of collocation points per
subinterval and Pn,π is the set of all piecewise polynomial functions of order n
on the partition π. For reasons of efficiency, stability, and flexibility in order and
continuity, B -splines are chosen as basis functions while collocation is applied
at Gaussian points [8]. The unknown B -spline coefficients are then determined
by solving the nonlinear system of 6 kN collocation equations and imposing the
11 boundary conditions. For the continuous contact problem, the reaction pres-
sure is eliminated from equations (12-a), j = 1, 2, and the system (12-13) is
supplemented by the following equation ∆2

1 + ∆2
2 = c2.

3.4 Applications

The Eulerian reformulation and the small inclination approximation are com-
pared to the classic Lagrangian formulation in Figure 4. For the purpose of the
present example, a fictitious weightless drillstring (OD = 5 in, ID = 4.276 in) is
considered centered at both extremities of a helical borehole, which is character-
ized by its constant axis curvature κ = 1/400 m−1, torsion τ = 1/200 m−1 and
with a length L = π/

√
κ2 + τ2. As expected, both Lagrangian and Eulerian for-

mulations provide the same results, the small inclination approximation leading
to slightly different fields.

Although the same helical borehole is considered in Figure 4, the drill-
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Figure 3: Comparison of the Eulerian reformulation and the small inclination
approximation with the classic Lagrangian formulation ([Fj ] = N, [uj ] = m−1,
δi = ∆i/L, k = 5 and N = 10).

string weight (w = 28.8 kg/m) is now applied and the deformed configura-
tion of the drillstring is computed for three distinct measured depths: L =
100, 200 and 300 m. Both extremities of the drillstring are assumed centered on
the borehole axis and the axial force applied at the bottom is nul, i.e., F3 (L) = 0.

4 Conclusion

The Eulerian reformulation of the equations governing the three-dimensional
deflection of an extensible drillstring has been achieved by (i) introducing the
eccentricity vector ∆ (S) and (ii) expressing of the drillstring local equilibrium
in terms of derivatives with respect to the curvilinear coordinate associated to
the borehole axis. The originality of the proposed formulation, which resolves
in one stroke a series of issues that afflict the classical Lagrangian approach
(isoperimetric constraints and potential contact detection with the wall of a
conduit), lays in the self-feeding character of the resulting system as the length
of the drillstring is subject to self-adjustement in response to the external loading.
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Figure 4: Components of the eccentricity vector and internal efforts for three
distinct measured depths: L = 100, 200 and 300 m (k = 5 and N = 10).
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