
SOMMAIRE

INTRODUCTION ... 1

CHAPITRE 1

INTRODUCTION AUX RÉSEAUX DE NEURONES ... 3

1. Introduction .. 3

2. Historique .. 4

3. Un neurone artificiel .. 4

3.1. Le modèle de McCulloch et Pitts .. 4

3.2. Généralisation ... 6

4. Les réseaux .. 6

5. La mise à jour des poids .. 7

6. Apprentissage et adaptation ... 7

7. Le Perceptron à plusieurs couches ... 8

7.1. Description .. 8

7.2. Apprentissage par rétropropagation d'erreurs. .. 10

8. Mise en oeuvre ... 11

9. Conclusions .. 12

9.1. Des propriétés ... 12

9.2. Des limites .. 13

9.3. Nos prétraitements .. 13

CHAPITRE 2

LES RESSOURCES MISES EN OEUVRE ... 15

1. Introduction .. 15

2. Utilisation de SIRENE ... 15

3. Le programme .. 17

3.1. Présentation ... 17

3.2. Création d'un fichier d'instructions type .. 18

3.3. Modification du nombre de sorties et fichier d'utilisation 18

3.4. Analyse des résultats ... 18

4. Les phases du sommeil .. 19

4.1. Description du problème ... 19

4.2. Description des données ... 20

4.3. Résultats sans compression ... 20

5. Les caractères manuscrits de la poste allemande ... 23

5.1. Description du problème et des données... 23

5.2. Résultats sans compression ... 23

6. Les véhicules .. 24

6.1. Description du problème et des données... 24

6.2. Résultats sans compression ... 25

6.3. Comparaisons avec des résultats officiels ... 26

7. Données corrélées .. 28

8. Conclusions .. 28

CHAPITRE 3

LA MÉTHODE DE KARHUNEN-LOÈVE ... 29

1. Introduction .. 29

2. La méthode .. 29

2.1. Description formelle ... 29

2.2. Signification géométrique ... 32

3. Le programme .. 34

3.1. Vecteurs propres ... 34

3.2. Matrice de transformation ... 35

3.3. Création du fichier compressé... 35

4. Analyse des phases du sommeil ... 35

4.1. Introduction ... 35

4.2. Compression à 20 .. 36

4.3. Compression à 10 .. 38

5. Reconnaissance des caractères manuscrits .. 40

5.1. Introduction ... 40

5.2. Compression à 40 et recentrage .. 40

5.3. Compression à 20 et recentrage .. 43

5.4. Autres tentatives de compression .. 45

5.5. Comparaisons avec des résultats officiels ... 46

6. Reconnaissance des véhicules ... 47

6.1. Introduction ... 47

6.2. Compression à 10. ... 47

6.3. Compressions inférieures à 10 .. 49

7. Conclusions .. 50

CHAPITRE 4

LA MÉTHODE LPC ... 52

1. Introduction .. 52

2. La méthode .. 52

3. Le programme .. 57

4. Analyse des phases du sommeil ... 57

4.1. Introduction ... 57

4.2. Compression à 20 .. 57

4.3. Compression à 10 .. 60

5. Reconnaissance des caractères manuscrits .. 62

5.1. Introduction ... 62

5.2. Compression à 40 .. 62

5.3. Autres tentatives .. 64

6. Reconnaissance des véhicules ... 65

7. Conclusions .. 66

CHAPITRE 5

LA MÉTHODE NLPCA ... 67

1. Introduction .. 67

2. La méthode .. 67

2.1. Le principe .. 67

2.2. Recherche des vecteurs de fonctions G et H ... 68

2.3. L'apprentissage des réseaux .. 70

2.4. Détermination de la taille des couches .. 72

2.5. Remarques sur les couches cachées .. 73

3. Le programme .. 73

3.1. Conversion des données au format NLPCA. .. 74

3.2. Sélection des premières couches d'un réseau. ... 74

3.3. Modification du nombre de sorties et utilisation type 74

3.4. Récupération des sorties d'un réseau ... 75

4. Les traitements ... 75

5. Les phases du sommeil et les caractères manuscrits .. 77

6. Reconnaissance des véhicules ... 77

6.1. Introduction ... 77

6.2. Compression à 10 .. 78

6.3. Compression à 8 .. 81

6.4. Autres compressions ... 83

7. Données corrélées .. 84

7.1. Présentation ... 84

7.2. Résultats .. 85

8. Conclusions .. 85

CHAPITRE 6

LA MÉTHODE LSP .. 87

1. Introduction .. 87

2. La méthode .. 87

3. Objections à son implémentation ... 89

4. Conclusions .. 90

CHAPITRE 7

COMPARAISONS DES MÉTHODES .. 91

1. Introduction .. 91

2. Les résultats ... 91

3. Conclusions .. 94

CONCLUSIONS ... 95

BIBLIOGRAPHIE

ANNEXES

A. Les menus de SIRENE

B. Les menus de notre programme

C. Code source du programme

REMERCIEMENTS

Avant de présenter notre travail, nous tenons à remercier tous ceux qui, de

loin ou de près, ont participé à sa réalisation.

Nos remerciements vont tout d'abord à Monsieur Destiné qui a patronné ce

travail et à Monsieur Fombellida qui nous a conseillé et guidé.

Nous tenons également à exprimer notre reconnaissance à Mme Haesbroeck

pour la relecture minutieuse de notre texte et les conseils qu'elle nous a donnés.

Beaucoup d'autres personnes devraient être mentionnées ici. Citons entre

autres : notre famille, Gentiane et ses parents, les habitués de la salle IA, ainsi que tous

les utilisateurs du réseau d'ordinateurs qui n'ont pas protesté contre la surcharge de leur

machine durant nos nombreuses simulations neurales.

UNIVERSITÉ DE LIÈGE

Faculté des Sciences Appliquées

PRÉTRAITEMENT DE DONNÉES
EN RECONNAISSANCE DE FORMES

PAR RNA

 Travail de fin d'études présenté par

 Michaël SCHYNS

 en vue de l'obtention du grade de

 Licencié en Informatique

 Année académique 1992-1993

SOMMAIRE

INTRODUCTION

CHAPITRE 1

Introduction aux réseaux de neurones

1. Introduction

2. Historique

3. Un neurone artificiel

3.1. Le modèle de McCulloch et Pitts

3.2. Généralisation

4. Les réseaux

5. La mise à jour des poids

6. Apprentissage et adaptation

7. Le Perceptron à plusieurs couches

7.1. Description

7.2. Apprentissage par rétropropagation d'erreurs

8. Mise en oeuvre

9. Conclusions

9.1. Des propriétés

9.2. Des limites

9.3. Nos prétraitements

CHAPITRE 2

Les ressources mises en oeuvre

1. Introduction

2. Utilisation de SIRENE

3. Le programme

3.1. Présentation

3.2. Création d'un fichier d'instructions type

3.3. Modification du nombre de sorties et fichier d'utilisation

3.4. Analyse des résultats

4. Les phases du sommeil

4.1. Description du problème

4.2. Description des données

4.3. Résultats sans compression

5. Les caractères de la poste allemande

5.1. Description du problème et des données

5.2. Résultats sans compression

6. Les véhicules

6.1. Description du problème et des données

6.2. Résultats sans compression

6.3. Comparaisons avec des résultats officiels

7. Données corrélées

8. Conclusions

CHAPITRE 3

La méthode de Karhunen-Loève

1. Introduction

2. La méthode

2.1. Description formelle

2.2. Signification géométrique

3. Le programme

3.1. Vecteurs propres

3.2. Matrice de transformation

3.3. Création du fichier compressé

4. Analyse des phases du sommeil

4.1. Introduction

4.2. Compression à 20

4.3. Compression à 10

5. Reconnaissance des caractères manuscrits

5.1. Introduction

5.2. Compression à 40 et recentrage

5.3. Compression à 20 et recentrage

5.4. Autres tentatives de compression

5.5. Comparaisons avec des résultats officiels

6. Reconnaissance des véhicules

6.1. Introduction

6.2. Compression à 10

6.3. Compressions inférieures à 10

7. Conclusions

CHAPITRE 4

La méthode LPC
(Linear Predictive Coding)

1. Introduction

2. La méthode

3. Le programme

4. Analyse des phases du sommeil

4.1. Introduction

4.2. Compression à 20

4.3. Compression à 10

5. Reconnaissance des caractères manuscrits

5.1. Introduction

5.2. Compression à 40

5.3. Autres tentatives

6. Reconnaissance des véhicules

7. Conclusions

CHAPITRE 5

La méthode NLPCA
(NonLinear Principal Component Analysis)

1. Introduction

2. La méthode

2.1. Le principe

2.2. Recherche des vecteurs de fonctions G et H

2.3. L'apprentissage des réseaux

2.4. Détermination de la taille des couches

2.5. Remarques sur les couches cachées

3. Le programme

3.1. Conversion des données au format NLPCA

3.2. Sélection des premières couches d'un réseau

3.3. Modification du nombre de sorties et utilisation type

3.4. Récupération des sorties d'un réseau

4. Les traitements

5. Les phases du sommeil et les caractères manuscrits

6. Reconnaissance des véhicules

6.1. Introduction

6.2. Compression à 10

6.3. Compression à 8

6.4. Autres compressions

7. Données corrélées

7.1. Présentation

7.2. Résultats

8. Conclusions

CHAPITRE 6

La méthode LSP
(Line Spectral Pair)

1. Introduction

2. La méthode

3. Objections à son implémentation

4. Conclusions

CHAPITRE 7

Comparaisons des méthodes

1. Introduction

2. Les résultats

3. Conclusions

CONCLUSIONS

BIBLIOGRAPHIE

ANNEXES

A. Présentation des menus de SIRENE

B. Présentation des menus de notre programme

C. Code source de notre programme

- 1 -

INTRODUCTION

Depuis des siècles, les hommes développent des machines pour simplifier

leur vie. Le début de cette ère de construction commença avec la découverte de

machines simples telles que le levier, la roue et la poulie. De nos jours, ingénieurs et

scientifiques essayent de développer des machines intelligentes. Parmi elles, on trouve

les réseaux de neurones artificiels (RNA).

Les hommes et les animaux sont bien meilleurs et plus rapides pour

reconnaître des images que le plus avancé des ordinateurs. Les réseaux de neurones

artificiels (RNA) tentent d'imiter leur comportement c'est-à-dire apprendre par

expériences et être ensuite capable de prendre rapidement de bonnes décisions. Ces

capacités sont basées sur le fait que nous pouvons reproduire certaines des

caractéristiques du cerveau humain à l'aide de moyens artificiels. Un réseau de

neurones est réalisé par un maillage de noeuds fonctionnels, appelés neurones, et de

connexions entre eux. Ils opèrent collectivement et simultanément sur la plus grande

partie ou sur toutes les données et entrées. Nous présenterons dans ce travail le modèle

le plus couramment utilisé et déterminerons ses nombreuses qualités.

Les réseaux de neurones n'ont malheureusement pas que des avantages.

Leur taille croît avec la quantité et la complexité des données à traiter. Or le principal

inconvénient du RNA est lié à sa complexité. Plus elle est grande, plus le RNA sera

difficile et coûteux à implémenter physiquement et plus son temps d'apprentissage sera

grand. Pour résoudre ce problème, une solution est de prétraiter les données pour

diminuer leur taille.

Il nous a dès lors été demandé d'analyser trois méthodes de compression

applicables au traitement par RNA : la méthode de Karhunen-Loève, la méthode LPC

(Linear Predictive Coding) et la méthode NLPCA (Non Linear Principal Composant

Analysis). Nous en avons ajouté une : la méthode LSP (Line Spectral Pair). Les

chapitres qui y sont consacrés tenteront de convaincre le lecteur de l'efficacité de ces

procédés. Nous déterminerons également comment choisir la méthode à utiliser pour

un problème de classification posé à un RNA. Pour ce faire, deux analyses sont

réalisées. La première consiste en un développement théorique de la méthode. La

seconde, plus importante, est son application à des ensembles de données représentatifs,

correspondant à des problèmes commerciaux et industriels complexes. On analysera

Prétraitement de données en reconnaissance de formes par RNA

- 2 -

ensuite les résultats de classification d'un réseau de neurones à partir de ces données

prétraitées. Il y aura également des comparaisons avec les résultats sans prétraitement.

Trois problèmes de reconnaissance de formes seront envisagés. Le premier

demande à un RNA de reconnaître des phases du sommeil à partir d'enregistrements

polygraphiques. Le second est un problème de reconnaissance de caractères manuscrits

digitalisés. Le dernier est un problème de distinction de silhouettes de véhicules. Ces

données ont été choisies pour mettre en valeur certains prétraitements par rapport aux

autres. De plus, l'utilisation d'exemples réels montre que les réseaux de neurones sont

déjà applicables. Ce travail prouve leur utilité et leur efficacité au niveau commercial et

industriel.

Nous espérons vous convaincre de l'utilité des réseaux de neurones et des

prétraitements et nous vous souhaitons une bonne lecture.

- 3 -

CHAPITRE 1
INTRODUCTION AUX RÉSEAUX DE
NEURONES

1. Introduction

Différents modèles de réseaux de neurones ont déjà été présentés. Leur

caractéristique commune est de vouloir imiter certaines des propriétés du cerveau

humain en reproduisant une partie de ses structures élémentaires.

Dans l'état actuel de nos connaissances dans le domaine de l'intelligence

artificielle et plus généralement de l'informatique, nous ne disposons pas toujours

d'algorithmes efficaces pour résoudre des problèmes complexes tels que :

- permettre à un robot de conduire un véhicule dans un environnement

variable.

- réaliser la lecture automatique d'un texte manuscrit produit par

n'importe quelle personne.

- reconnaître la parole quelle que soit la personne qui parle.

- reconnaître des visages d'individu indépendamment de l'angle sous

lequel ils sont présentés.

- ...

Les ordinateurs sont extrêmement rapides et précis pour exécuter des

séquences d'instructions qui ont été formulées pour eux. Malheureusement, les

problèmes cités nécessitent la considération simultanée d'un très grand nombre de

contraintes, parfois mal définies. Il est donc difficile de leur trouver une formulation

informatique. De plus, le système de traitement humain de l'information est composé

de neurones qui travaillent à des vitesses à peu près un million de fois plus lentes que

les circuits d'un ordinateur. Cependant, les humains sont beaucoup plus efficaces pour

résoudre des problèmes complexes comme ceux mentionnés plus haut. L'organisation

du cerveau humain semble donc une des clefs du problème. Malheureusement, la

compréhension des systèmes neuraux biologiques n'est pas encore très avancée. Nous

devons donc nous limiter à des modèles très simplifiés. On peut dès lors supposer que

Introduction aux réseaux de neurones

- 4 -

cette technique ne pourra que se développer avec l'amélioration de nos connaissances

sur le cerveau.

Cette capacité de traitement théorique et les premiers résultats obtenus dans

la pratique méritent dès lors que l'on s'intéresse aux réseaux de neurones. Nous

décrirons donc brièvement un modèle généralement utilisé : le perceptron à plusieurs

couches. Nous en déduirons quelques autres avantages des réseaux de neurones par

rapport à la programmation traditionnelle, mais aussi certains inconvénients. Cette

étude permettra de comprendre la nécessité de méthodes de prétraitements et des

conditions de leur implémentation, sujet de ce travail.

2. Historique

La première modélisation d'un neurone date de 1943. Elle a été présentée

par McCulloch et Pitts. L'interconnexion de ces neurones permet le calcul de plusieurs

fonctions logiques. En 1949, Hebb propose le premier mécanisme d'évolution des

connections, appelées par analogie des synapses. L'association de ces deux méthodes

permit à Rosenblatt en 1958 de décrire le premier modèle opérationnel de réseaux de

neurones : le perceptron. Celui-ci est capable d'apprendre à calculer un grand nombre

de fonctions booléennes, mais pas toutes. Ses limites théoriques furent mises en

évidence par Minsky et Papert en 1969. Depuis 1985, de nouveaux modèles

mathématiques ont permis de les dépasser. Cela a donné naissance au perceptron

multicouches que nous étudierons plus particulièrement.

3. Un neurone artificiel

3.1. Le modèle de McCulloch et Pitts

La première définition formelle d'un neurone artificiel basée sur le modèle

biologique a été formulée par McCulloch et Pitts. Une représentation en est donnée à la

figure 1.1a. Les entrées Xi (i=1, 2, ..., n) sont booléennes (présence ou absence

d'impulsion à l'instant k). La sortie est identifiée par le symbole O. Wi est le poids

associé à la connexion. La fonction calculée par le neurone est définie comme suit :

Introduction aux réseaux de neurones

- 5 -

k1

O 

1 si iw i

k

x
i1

n

  T

0 si iw i

k

x
i1

n

  T









Notons qu'un poids négatif inhibe une connexion, au contraire d'un poids

positif qui la renforce. C'est le choix des valeurs de ces poids qui permettra de réaliser

la fonction recherchée. La figure 1.1 montre comment on peut construire des portes

élémentaires grâce à ces "coefficients synaptiques". On peut en déduire que ce modèle

simpliste permet déjà la réalisation d'un ordinateur digital de complexité arbitraire.

T

w

w

w

1

2

n

1

2

n
x

x

x

o

w = ±1
i = 1, 2, …, n

i

1.1.a

T=0 oT=1 -1

1

1

1

1

2
x

x

3x

1.1.b

(NOR)

T=1

1

1

1

o

T=0

T=0

T=0

-1

-1

-1

1

2
x

x

3x

1.1.c

T=1

-1

1

1

Excitation

Inhibition
(NAND)

(CELLULE
MÉMOIRE)

o = x

1.1.d

k+1 k

Figure 1.1

Introduction aux réseaux de neurones

- 6 -

3.2. Généralisation

Le précédent modèle a plusieurs inconvénients. Il est binaire et statique.

Les coefficients et les seuils  sont fixés définitivement. Il est assez simple de résoudre

ces problèmes. La figure 1.2 représente la nouvelle forme du neurone.

w

w

w

1

2

n

1

2

n
x

x

x

oƒ(w x)t

Synapses

Poids
multiplicatifs

Noeud
de calcul

Figure 1.2

Chaque neurone consiste en un élément de traitement (processeur) de

plusieurs entrées et calculant une seule sortie. Les poids synaptiques sont représentés

par un vecteur W dont les éléments sont modifiables. La sortie est calculée par une

fonction d'activation f. Différentes fonctions sont envisageables. Les plus courantes

sont la fonction sigmoïde et la fonction signe. Notons que le seuil du modèle de

McCulloch et Pitts est implicitement représenté par une connexion dont le poids est -1

et l'entrée .

4. Les réseaux

Une fois la structure d'un neurone établie, la définition d'un réseau est

immédiate : un réseau de neurones est une interconnexion de neurones telle que leur

sortie est connectée, avec un poids synaptique, aux entrées d'autres neurones. Le choix

des neurones connectés entre eux détermine l'architecture du réseau. Différents

modèles existent : multicouches, Hopfield, Kohonen, Boltzmann. Chacun a ses propres

techniques d'apprentissage et s'applique plus particulièrement à certains domaines.

Introduction aux réseaux de neurones

- 7 -

Disposant d'une bonne méthode d'apprentissage pour les réseaux multicouches et ceux-

ci répondant à nos besoins, nous laisserons le loisir au lecteur intéressé de consulter les

ouvrages de références pour les autres modèles.

5. La mise à jour des poids

Il existe essentiellement trois modes possibles pour l'évolution de l'état du

réseau :

a) Mode séquentiel : les neurones réévaluent leur sortie l'un après

l'autre dans un ordre déterminé.

b) Mode aléatoire asynchrone : chaque neurone réévalue sa sortie à

des intervalles de temps aléatoires.

c) Mode parallèle : tous les neurones réévaluent leur sortie

périodiquement et simultanément.

6. Apprentissage et adaptation

L'apprentissage consiste à trouver le réseau qui fourni la meilleure solution

au problème qu'il doit résoudre, pour un ensemble de données dites d'apprentissage.

Cela est réalisé en adaptant, grâce à certaines règles, les vecteurs de poids. Ce concept

d'apprentissage n'est vraiment intéressant que si le réseau possède des capacités de

généralisation, c'est-à-dire qu'il est capable de fournir une bonne solution pour d'autres

données.

De nombreuses règles d'adaptation des poids existent : loi de Hebb

(renforcer une connexion entre deux neurones actifs), règle du Perceptron (modifier les

poids en fonction de l'erreur entre la sortie souhaitée et celle obtenue), loi delta, de

Widrow-Hoff, de corrélation, ou encore du type "le gagnant prend tout". Plus

généralement, on peut répartir ces méthodes d'adaptation en deux classes :

1) Les apprentissages supervisés ou avec professeur. Dans cette catégorie, on

suppose que chaque fois qu'une entrée est appliquée au réseau, la sortie désirée

est fournie par le professeur. Celui-ci pourra alors récompenser ou punir le

réseau selon l'erreur commise en ajustant les poids. Cette grande classe

Introduction aux réseaux de neurones

- 8 -

d'algorithmes peut se subdiviser en trois sous-catégories : auto-association,

hétéro-association et classification.

2) Les apprentissages non supervisés. Dans cette catégorie, la réponse désirée est

inconnue. Le réseau est alors supposé découvrir lui-même la meilleure

représentation de l'information fournie.

Il est important de remarquer que c'est l'ensemble des poids ainsi obtenus

qui détermine le réseau résolvant le problème posé. La dégradation accidentelle d'un de

ces poids n'aura en général que peu d'influence sur le résultat final; les autres assurant la

convergence vers la solution.

7. Le Perceptron à plusieurs couches

7.1. Description

Ce type de Perceptron est un réseau multicouches non récurrent. Sa

structure est définie par :

a) L'ensemble des neurones du réseau peut être divisé en N≥3 sous-ensembles

disjoints. Chacun de ces ensembles s'appelle une couche.

b) Il existe une numérotation de 1 à N de ces couches telle que :

- deux neurones appartenant à des couches différentes ne peuvent être

directement connectés que si ces deux couches sont adjacentes; c'est-à-dire

si leur indice diffère d'une unité.

- la couche 1 s'appelle la couche d'entrée et est la seule dont les neurones ont

leur état directement influencé par l'environnement. En réalité, ces

neurones sont fictifs et se contentent de jouer le rôle d'interface entre le

réseau et l'environnement.

- la couche N s'appelle la couche de sortie et est la seule qui fournisse

directement une réponse à l'environnement.

- les autres couches sont appelées couches cachées et ne peuvent

communiquer directement avec l'environnement.

Introduction aux réseaux de neurones

- 9 -

- les réseaux non récurrents ne possèdent pas de cycle; c'est-à-dire que les

connexions se font toujours d'un neurone vers un autre de la couche

immédiatement supérieure.

Un exemple d'un tel réseau est représenté à la figure 1.3. Ici, l'information

progresse de couche en couche en partant de celle d'entrée pour arriver à celle de sortie

où elle représente alors la réponse fournie par le système à l'environnement.

Y Y Y1 2 m

I I I1 2 m

Sorties

Couche

de sortie

Deuxième

couche cachée

Première

couche cachée

Couche

d'entrée

Entrées

Figure 1.3

Il peut être montré que pour n'importe quel problème de classification, il

existe un réseau non récurrent à trois couches qui résout ce problème. Cependant, il

n'est pas sans intérêt d'utiliser un plus grand nombre de couches intermédiaires. En

effet, cet accroissement du nombre de couches s'accompagne généralement d'une

Introduction aux réseaux de neurones

- 10 -

amélioration des capacités de généralisation, d'une plus grande résistance aux

dommages et d'une meilleure efficacité quant à la représentation interne construite par

le réseau pour stocker les données lors de l'apprentissage.

7.2. Apprentissage par rétropropagation d'erreurs.

L'algorithme de la rétropropagation d'erreurs est actuellement la procédure

d'apprentissage la plus utilisée. Cette popularité est une conséquence des résultats

généralement bons qu'elle permet d'obtenir pour un grand nombre de problèmes

différents et cela en réalisant des simulations sur machines séquentielles, en des temps

raisonnables vis-à-vis de ceux requis par d'autres algorithmes tel que, par exemple,

celui du recuit simulé. Cette règle est en fait une généralisation de la loi delta et pour

cette raison est souvent appelée loi delta généralisée.

Dans cet algorithme, de même que l'on est capable de propager un signal

provenant des neurones d'entrée, on peut, en suivant le chemin inverse, rétropropager

l'erreur commise en sortie vers les couches internes et modifier en conséquence les

poids. Cette minimisation de l'erreur permet de mémoriser la relation définie entre

l'entrée et la sortie désirée. Ce schéma est appliqué à chaque paire entrée-sortie de

l'ensemble d'apprentissage et recommencé plusieurs fois jusqu'à l'obtention d'une erreur

globale acceptable. Le nombre d'itérations nécessaires n'est malheureusement pas

estimable.

Nous donnons ici une formalisation sommaire de cet algorithme. Pour un

exemple à apprendre donné, on note X le vecteur des entrées et Y le vecteur des sorties

désirées. Si le réseau comporte n neurones en entrée et m en sortie, on a donc :

X = (X1, X2, …, Xn) et Y = (Y1, Y2, …, Ym)

On note S = (S1, S2, …, Sm) le vecteur des sorties obtenues à l'issue de la

propagation avant de l'exemple X dans le réseau. On cherche à minimiser l'erreur

quadratique entre les sorties désirées et les sorties obtenues, cette erreur étant

considérée comme une fonction des poids des connexions :

E w   Yi  Si 
2

i1

m



Introduction aux réseaux de neurones

- 11 -

La règle de modification des poids à la présentation numéro k de l'exemple

X est :

Wij(k) = Wij(k-1) - e(k) . dj . Oj

où di est calculé de proche en proche de la couche de sortie à la couche d'entrée :

(1) di = 2 . (Si - Yi) . f'(Ii) pour la couche de sortie

(2) di = ∑h dh . Whi . f'(Ii) pour les couches cachées.

où h parcourt les neurones vers lesquels le neurone i envoie une connexion.

f est une fonction d'activation dérivable (sigmoïde).

Oj est la sortie du neurone j.

Ii est l'entrée du neurone i, Ii = ∑j Wij . Oj

e(k) est le pas du gradient à l'étape k.

Cet algorithme a l'avantage d'être local, c'est-à-dire que la plupart des

calculs d'apprentissage peuvent être effectués au niveau de chaque neurone

indépendamment (avec un minimum de contrôle global).

Une règle à respecter pour faciliter la convergence est d'utiliser un ensemble

d'apprentissage contenant au moins dix fois plus de vecteurs de données, souvent

appelés patterns, que de synapses dans le réseau.

8. Mise en oeuvre

Les réseaux de neurones sont actuellement réalisés de nombreuses manières

différentes. Pour ce travail, nous utilisons un simulateur sur un ordinateur séquentiel

conventionnel. Cependant, pour obtenir les meilleurs résultats, il est nécessaire de les

implémenter physiquement en tenant compte qu'ils sont massivement parallèles :

chaque neurone peut être vu comme un processeur indépendant, aux fonctions très

simples. Le problème auquel on est confronté actuellement est celui des connexions. Il

est très coûteux de réaliser un circuit à très forte connectivité en VLSI. Cependant, des

études montrent que des implémentations électroniques des réseaux sont réalisables et

prometteuses.

Introduction aux réseaux de neurones

- 12 -

En attendant les résultats de ce développement technique, on utilise des

simulateurs sur des ordinateurs digitaux. Ces derniers sont généralement dénommés

neuro-ordinateurs programmables. Les plus performants étant bien entendu ceux qui

peuvent travailler en parallèle. Malgré cela et d'autres améliorations comme des cartes

accélératrices, ces neuro-ordinateurs ne peuvent rivaliser avec une implémentation

spécifique.

9. Conclusions

9.1. Des propriétés

L'intérêt porté aujourd'hui aux réseaux de neurones tient sa justification

dans les quelques propriétés fascinantes qu'ils possèdent. Citons les plus importantes :

le parallélisme, la capacité d'adaptation, la mémoire distribuée, la capacité de

généralisation et sa facilité de construction.

Le parallélisme se situe à la base de l'architecture des réseaux de neurones

considérés comme ensembles d'entités élémentaires qui travaillent simultanément. Le

parallélisme permet une rapidité de calcul supérieure, mais exige de penser et de poser

différemment les problèmes à résoudre.

La capacité d'adaptation permet au réseau de tenir compte de nouvelles

contraintes ou de nouvelles données du monde extérieur. Cette capacité présente un

intérêt déterminant pour tous les problèmes évolutifs. Il faut, pour les résoudre, pouvoir

tenir compte de situations non encore connues.

Dans les réseaux de neurones, la "mémoire" d'un fait correspond à une carte

d'activation de l'ensemble des neurones. Cela permet une meilleure résistance au bruit.

La perte d'un élément ne correspond pas à la perte d'un fait mémorisé, mais à une

dégradation, d'autant plus faible qu'il y a de synapses. De plus, la recherche d'un fait ne

nécessite pas la connaissance de l'endroit de stockage, le réseau entier se chargeant de le

restituer.

Introduction aux réseaux de neurones

- 13 -

La capacité de généralisation est essentielle. Elle assure que le réseau

donnera une bonne solution pour une entrée ne figurant pas dans l'ensemble

d'apprentissage. Nombre de problèmes résolus par des experts le sont de façon plus ou

moins intuitive, ce qui rend difficile l'exposé explicite des connaissances et des règles

nécessaires à leur solution. Le réseau adopte une démarche semblable à celle de

l'expert.

Le principe des réseaux de neurones et leur structure sont assez simples. La

simulation informatique ne nécessite qu'un temps de développement assez court.

9.2. Des limites

Un des principaux reproches fait aux réseaux de neurones est l'impossibilité

d'expliquer les résultats qu'ils fournissent. Les réseaux se présentent comme des boîtes

noires dont les règles de fonctionnement sont inconnues. Ils créent eux-mêmes leur

représentation lors de l'apprentissage. La qualité de leurs performances ne peut être

mesurée que par des méthodes statistiques, ce qui amène parfois une certaine méfiance

de la part des utilisateurs potentiels.

Le second problème a déjà été invoqué : la mise en oeuvre physique. Les

réseaux de neurones seront optimums quand ils auront leur propre support. Différentes

solutions ont été envisagées pour faciliter ce problème; notamment diminuer le nombre

de neurones (par complexification de leur structure, par prétraitements…).

9.3. Nos prétraitements

Étant donné les qualités des réseaux de neurones, il est intéressant d'essayer

de supprimer un maximum de leurs défauts. Nous présenterons dans ce travail

quelques idées pour diminuer la complexité des réseaux.

Nos prétraitements visent à réduire la taille d'un pattern d'entrée et donc la

taille du réseau. L'importance d'une telle démarche découle de ce qui vient d'être dit.

Outre le fait qu'un réseau avec peu de connexions sera plus facilement implémentable et

à meilleur marché qu'un réseau complexe, on obtient surtout un gain appréciable de

traitement. Un exemple illustrera bien ce point. Le premier problème que nous avons

Introduction aux réseaux de neurones

- 14 -

du manipuler dans ce travail est la classification de signaux physiologiques en 3 classes.

Initialement, un réseau de 3 couches était utilisé : 100 neurones en entrée, 20 en couche

cachée et 3 en sortie. On dispose d'un ensemble d'apprentissage de 5 400 patterns.

D'après l'algorithme de la rétropropagation, on doit donc évaluer pour chaque pattern

123 fonctions lors de la propagation et 2060 lors de la rétropropagation (100 * 20 + 20

* 3 synapses). Chaque itération nécessite donc près de 12 millions d'évaluations.

Celle-ci étant reproduite jusqu'à minimisation de l'erreur. Aussi puissant que soit notre

ordinateur séquentiel, la consommation de CPU et de temps a été énorme, inacceptable.

A l'aide d'un prétraitement, la taille des patterns d'entrée a été ramenée de 100 à 10. Le

réseau choisi comprenait 10 neurones en couche d'entrée, 5 en couche cachée et 3 en

sortie. Chaque itération de 5 400 patterns ne nécessite plus que 450 000 évaluations.

De plus, l'apprentissage est facilité car maintenant on dispose d'un ensemble

d'apprentissage 83 fois plus important que le nombre de synapses. Le nombre

d'itérations permettant la convergence en est diminué.

Ce premier chapitre visait à montrer l'intérêt des réseaux de neurones. On

déduit également de cette brève présentation, l'importance de prétraitements à réaliser.

C'est pourquoi quatre méthodes seront décrites et analysées dans les chapitres suivants.

- 15 -

CHAPITRE 2
LES RESSOURCES MISES EN OEUVRE

1. Introduction

Il nous a été demandé d'analyser les résultats de trois méthodes de

compression : Karhunen-Loève, Linear Predictive code (LPC) et NLPCA. La partie la

plus importante de notre travail consistait à tester la qualité de ces prétraitements sur

différents types et ensembles de données. Nous avons comparé les capacités de réseaux

de neurones à reconnaître ces données sans et avec prétraitements.

Ce second chapitre a pour objectif de présenter les ressources mises en

oeuvre : les données, les programmes et les ordinateurs. Il contient également les

principaux résultats concernant la classification des réseaux de neurones sans

prétraitement. Chacun des trois chapitres suivants étudiera les qualités d'une méthode

de compression sur les mêmes ensembles de données.

2. Utilisation de SIRENE

Tous nos prétraitements ont pour objectif de fournir des ensembles de

données utilisables, plus facilement, par un réseau de neurones. Pour tester la qualité de

nos compressions, nous devons comparer les résultats du réseau sans et avec

prétraitements. Pour obtenir ces résultats, nous avons utilisé le programme SIRENE1.

Nous disposions de la version 1 release 9. On trouvera en annexe une présentation des

menus principaux de ce programme.

La première étape est la définition du réseau; c'est-à-dire son type, le

nombre de couches, le nombre de neurones par couche, les fonctions des neurones,

l'algorithme d'apprentissage, les critères de réussite et un ensemble de petits paramètres

contrôlant l'apprentissage. La table 2.1 indique un choix que nous avons couramment

pratiqué. Ces définitions ne sont pas innées. C'est le problème des réseaux de

1 SIRENE est un SImulateur de REseaux de NEurones. Il a été écrit par M. Fombellida dans le cadre de sa

thèse de doctorat à l'université de Liège, service de Micro-électronique.

Les ressources mises en oeuvre

- 16 -

neurones : on ne peut pas dire à priori quelle est la meilleure configuration. Nous avons

donc procédé à différents essais avant d'obtenir de bons résultats (les meilleurs ?).

La seconde étape est la définition des données à traiter. Nous fournissions

trois fichiers de données à SIRENE. Le premier, le plus gros, est le fichier

d'apprentissage. Le réseau l'utilise pour modifier ses poids. Le second, le plus petit, est

le fichier de validation croisée. Il suit l'apprentissage et est utilisé par le réseau pour

détecter un sur-apprentissage c'est-à-dire le moment où le réseau se spécialiserait trop :

il étudie les données de l'apprentissage et n'est plus capable de généraliser à d'autres

exemples. C'est ce critère qui détermine le meilleur réseau à conserver. Le dernier

fichier est un ensemble test; il n'est pas utilisé pour entraîner le réseau. Après chaque

étape de mise à jour des poids, il est présenté à l'entrée du réseau et on calcule les

sorties que l'on obtiendrait si on arrêtait l'apprentissage à ce moment. Il permet de

connaître le comportement du réseau pour un fichier de données quelconque (il est clair

que les résultats sont meilleurs pour le fichier qui a servi à l'apprentissage). Notons

qu'il est préférable que les fichiers d'apprentissage et de validation croisée n'aient pas de

parties communes; cela fausserait le critère de sur-apprentissage. De plus, comme nous

le montrerons plus loin, il a été parfois nécessaire de prétraiter ces fichiers pour en

recentrer les données dans l'intervalle [-1,1].

Type de réseau : Perceptron multicouches

Nombre de couches : 3

Nombre de neurones : En fonction du problème

Fonction d'un neurone : Tangente hyperbolique

Algorithme d'apprentissage : Quasi-Newton

Critère de succès : Small composite error

Fonction d'apprentissage : Total sum squared error + min. weights

Fonction de validation : Classification error (%) (Maximum

criteria)

Fonction de test : Classification error (%) (Maximum

criteria)

Paramètres : Overlearning detection and backtracking

Table 2.1

La structure du réseau et les données à traiter connues et placées dans un

fichier d'instructions, nous pouvions exécuter le programme SIRENE. Nos simulations

ont tourné sur différentes machines SUN. Quatre fichiers sont générés. Trois

concernent les résultats de l'apprentissage et le quatrième contient la définition du

Les ressources mises en oeuvre

- 17 -

réseau qui a donné les meilleurs résultats jusqu'à ce moment. Étant donné le temps

d'apprentissage le plus souvent très long, les simulations étaient lancées en tâches de

fond. Une fois le job en cours, nous n'avions donc plus de contrôle si ce n'est sa

suppression radicale. Il ne restait qu'à espérer que le réseau sauve des (bons) résultats,

car nous ne pouvions plus l'y forcer. Nous devions également espérer que la machine

utilisée ne soit pas réinitialisée, comme cela a été plusieurs fois le cas. En même temps

que SIRENE, nous utilisions la commande TIME pour connaître les différents temps

d'exécution de la simulation. Il est important de signaler qu'étant donné que nous

n'étions pas les seuls à utiliser les machines SUN et que SIRENE est gourmand en

CPU, nos simulations tournaient avec un degré de priorité inférieur (nice). Le temps

réel d'exécution en est augmenté.

Enfin, une fois l'apprentissage réalisé, les ensembles de données sont à

nouveau présenté au réseau et SIRENE calcule les résultats pour chaque pattern; c'est-à-

dire les sorties obtenues, les erreurs sur ces sorties et le résultat de la classification

(correcte ou incorrecte). Il reste à analyser ces résultats.

3. Le programme

3.1. Présentation

Notre programme est composé de quatre parties. Trois concernent les

méthodes de compression et seront développées dans les chapitres respectifs. La

quatrième partie est un module de fonctions complémentaires pour SIRENE. Elles ne

sont pas indispensables, mais simplifient souvent la vie à l'utilisateur. Dans ce travail,

elles étaient d'une grande utilité. En annexe, nous présentons tous les menus du

programme.

 +++ OUTILS POUR L'UTILISATION DE SIRENE +++

 0. Aide

 1. Creation d'un fichier d'instructions type

 2. Modification du nombre de sorties d'un fichier de donnees

 3. Utilisation type d'un reseau de SIRENE

Les ressources mises en oeuvre

- 18 -

 4. Analyse des resultats

 9. Retour au menu principal

3.2. Création d'un fichier d'instructions type

Les paramètres de configuration de la table 2.1 ont toujours donné de bons

résultats. Dans notre cas, nous avons utilisé SIRENE plus de quarante fois et la plupart

du temps avec ces mêmes paramètres. Pour ne pas les redéfinir à chaque utilisation et

ne pas devoir passer par les nombreux sous-menus de SIRENE, le sous-progamme 1

crée un fichier d'instructions type les contenant, ainsi que d'autres données nécessaires à

la bonne exécution de SIRENE. L'utilisateur doit juste entrer le nom des fichiers de

données. Le résultat est un fichier texte nommé "sirene.instr". Pour l'utiliser, il suffit

de faire une redirection d'entrées : sirene <sirene.instr.

3.3. Modification du nombre de sorties et fichier d'utilisation

Pour utiliser SIRENE, il faut toujours lui fournir un fichier comprenant les

sorties attendues et les entrées correspondantes. Le nombre de valeurs de sortie du

fichier doit correspondre au nombre de sorties du réseau utilisé sous peine d'être ignoré.

Lorsque l'apprentissage du réseau est terminé et qu'on veut l'utiliser pour un

nouvel ensemble de données, les sorties souhaitées ne sont bien entendu pas

disponibles, ni nécessaires. Cependant, le format standard de SIRENE impose de

trouver dans le fichier une zone sorties correspondant au nombre de neurones de la

dernière couche du réseau. Si ce n'est pas le cas, le deuxième sous-menu permet de

faire du "bourrage" dans le fichier à traiter, de manière à obtenir ce format standard. Le

troisième sous-menu apporte un degré de liberté supplémentaire. L'utilisateur indique

le nom du réseau et du fichier de données à traiter. L'utilisation du programme

provoque la conversion, si nécessaire, du fichier de données dans le format adéquat et la

création d'un fichier type d'instructions permettant à SIRENE d'utiliser le réseau. Cette

fonction a été indispensable pour la méthode de prétraitements NLPCA (cfr. chapitre 5).

3.4. Analyse des résultats

Les ressources mises en oeuvre

- 19 -

Comme nous l'avons dit précédemment, une fois l'apprentissage réalisé, les

ensembles de données sont à nouveau présenté au réseau et SIRENE calcule les

résultats pour chaque pattern; c'est-à-dire les sorties obtenues, les erreurs sur ces sorties

et le résultat de la classification (correcte ou incorrecte).

Le quatrième sous-programme de ce module interprète ces résultats selon le

critère du maximum. Pour chaque pattern, le numéro de la sortie maximale du réseau

correspond à la classe obtenue. Le numéro de la sortie maximale des sorties souhaitées

du fichier de données correspond à la classe désirée. Le premier résultat du programme

est un tableau reprenant pour chaque classe désirée, le nombre de patterns fournis, la

classification de SIRENE, c'est-à-dire le nombre de patterns placés dans chaque classe,

et le pourcentage de classification correcte. On obtient également le pourcentage global

de classification correcte, le pourcentage global de classification impossible (plusieurs

sorties maximales égales ou non respect de critères supplémentaires énoncés après) et le

pourcentage global de classification incorrecte.

L'utilisateur peut également fournir des critères de décidabilité

supplémentaires. Un critère couramment utilisé est la distance minimale. Si les deux

plus grandes sorties obtenues du réseau sont trop proches, on considère que le risque de

classification incorrecte est trop grand et le pattern est considéré comme inclassifiable.

C'est l'utilisateur qui choisit les distances qu'il considère représentatives. Un second

critère est la différence entre la sortie obtenue et la sortie souhaitée. Si cette différence

est trop grande, on pourrait considérer que le réseau n'a pas reconnu le pattern et n'a

donc pas fourni la sortie correspondante ou que le résultat n'est pas réutilisable. Ici

encore, c'est l'utilisateur qui indique les différences tolérées. Pour chaque critère

supplémentaire, le tableau défini au paragraphe précédent est affiché.

4. Les phases du sommeil

4.1. Description du problème

Une application importante des réseaux de neurones est le traitement des

signaux physiologiques de sommeil. Ce problème, plus complexe qu'il n'y paraît de

prime abord, ne manque certes pas d'intérêt. En effet, pour une nuit, les enregistrements

polygraphiques (électro-encéphalogramme, électro-oculogramme et électro-

Les ressources mises en oeuvre

- 20 -

myogramme) représentent quelques mille pages et il faut une journée entière à un expert

pour en extraire le contenu intéressant et le mettre sous une forme utile. Dans ce

contexte, la réalisation d'un analyseur automatique fiable représenterait un gain de

temps considérable et une aide réelle au diagnostic pour un certain nombre de maladies.

Outre l'aspect éthique d'une telle recherche, il faut noter qu'approximativement une

personne sur cent est confrontée au problème de l'apnée du sommeil. On juge donc de

l'utilité d'une telle recherche.

Cette recherche a été menée par M. Latour dans le cadre du programme

FIRST. Il a montré qu'un réseau de neurones de trois couches permet de classifier un

vecteur de données correspondant à une époque d'analyse en une des trois phases du

sommeil. Ce réseau fournit des résultats d'un même niveau de performances que

d'autres méthodes plus complexes et plus difficiles à mettre en oeuvre.

4.2. Description des données

Dans ce travail, nous avons réutilisé les ensembles de données de

M. Latour : trois fichiers de trois mille patterns de données et sorties associées. Une

époque du sommeil (un pattern) est défini par cent nombres compris entre -1 et 1. Les

sorties associées sont trois nombres : une seule sortie est activée et correspond à la

classe. Les deux autres sont nulles. Pour chaque fichier, il y a mille exemples de

chaque classe.

4.3. Résultats sans compression

Ne disposant pas des résultats complets de M. Latour, nous avons

recommencé la simulation neurale. Cela était de toute manière nécessaire pour pouvoir

comparer ultérieurement aux résultats avec compression, qui ont été obtenus par une

version plus récente de SIRENE et des conditions d'utilisation différentes. La

modification la plus importante est la définition des ensembles de données. Nous

disposions, comme dit précédemment, de trois fichiers de taille identique. M. Latour

utilisait le premier comme ensemble d'apprentissage et les deux autres comme ensemble

test. Dans nos expérimentations, nous avons recomposé les deux premiers, pour obtenir

un fichier d'apprentissage de 5 400 patterns (1 800 de chaque classe) et un fichier de

validation croisée de 600 patterns (200 de chaque classe). Nous avons gardé le

troisième tel quel pour le test. Cette redistribution fournit plus d'exemples au réseau

pour l'apprentissage et donc facilite sa généralisation. Les phases du sommeil sont le

Les ressources mises en oeuvre

- 21 -

seul ensemble de données pour lequel nous n'avons pas utilisé les paramètres de la table

2.1. Nous avons conservé ceux choisis par Monsieur Latour, qui a étudié ce sujet plus

en détail. Nous avons dès lors utilisé des fonctions sinus et sigmoïdes pour les

neurones, 20 neurones en couche cachée, l'algorithme du gradient conjugué de Polak et

Ribière et la fonction somme des carrés des erreurs pour l'apprentissage.

Le premier fichier retourné par SIRENE décrit, pour chaque itération de

l'apprentissage, l'évolution du réseau. C'est ce qui est représenté graphiquement à la

figure 2.1. Trois courbes sont présentes : une pour la fonction d'apprentissage (échelle

de gauche en unité), la fonction de validation (échelle de gauche en unité) et la fonction

de test (échelle de droite en pourcentage d'erreur). L'apprentissage s'est arrêté après

2000 itérations. Les trois fonctions passent d'abord par une phase de décroissance

rapide. Le réseau corrige ses premières erreurs. Après 1 405 itérations, il a obtenu sa

meilleure configuration. Cela est indiqué par le minimum de la courbe de validation.

Ensuite, il y a sur-apprentissage et les résultats se dégradent. La fonction

d'apprentissage passe de 3 787 à 56. Elle continuera à descendre jusque 25. La

fonction de validation débute à 419 et a pour minimum 23. Le pourcentage d'erreur de

la fonction test décroît de 65% à 1.7%.

Les ressources mises en oeuvre

- 22 -

Phases du sommeil

Itérations

A
p

p
re

n
ti

s
s
a

g
e
 e

t

v
a

li
d

a
ti

o
n

0

500

1000

1500

2000

2500

3000

3500

4000

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

0

10

20

30

40

50

60

70

80

T
e

s
t

Apprentissage

Validation

Test

Minimum

1405

Figure 2.1

Pour réaliser les 2 000 itérations, le programme a travaillé pendant 21 jours.

Plus précisément, le temps écoulé était de 484 heures et 25 minutes et le temps CPU de

442 heures et 48 minutes. Nous ne pouvions arrêter l'apprentissage après la 1 405ème

itération, car nous ne pouvions savoir s'il s'agissait d'un minimum local ou d'un

minimum global.

Pour le réseau calculé en 1 405 itérations, nous avons obtenu les résultats

des tables 2.2 et 2.3. Pour l'ensemble d'apprentissage, 1 789 patterns sur les 1 800 de la

classe numéro un ont été classifiés correctement; soit 99.4%. 11 patterns ont été mis à

tort dans la classe deux. Il n'y a pas eu d'erreur avec la classe trois. Le principe est le

même pour les autres classes attendues. Au total, pour le critère du maximum simple,

la classification correcte est de 99.7% pour l'ensemble d'apprentissage et un peu moins

pour l'ensemble de test : 98.3%. Cela est normal, vu que le réseau est optimisé par et

pour l'ensemble d'apprentissage.

Commentaire [1]: la différence est le
temps pour les I/O et pour les autres prg

Les ressources mises en oeuvre

- 23 -

Table 2.2

Table 2.3

On constate ici la réelle capacité des réseaux de neurones à s'adapter à ce

problème de classification des phases du sommeil. Une fois l'apprentissage réalisé, ces

résultats exceptionnels, sont obtenus en moins d'une minute. Il paraît difficile de faire

mieux. Il n'est même pas certain que le spécialiste qui aurait passé sa journée à analyser

les enregistrements polygraphiques puisse toujours obtenir une aussi bonne

classification.

Deux critères supplémentaires ont été utilisés lors de l'analyse des résultats.

Le premier impose que la différence entre les deux plus grandes sorties du réseau soit

au moins de deux dixièmes. Le second critère réclame que la différence entre la sortie

attendue et celle souhaitée soit au maximum de cinq dixièmes. Ces valeurs ont été

choisies arbitrairement en tenant compte que les sorties sont comprises entre -1 et 1. La

répartition des patterns pour ces deux critères n'étant pas fondamentale, elle n'a pas été

décrite par un tableau séparé, mais uniquement par les résultats globaux. Comme on

Phases du sommeil - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 1789 11 0 0 1800 99.4

2 5 1794 1 0 1800 99.7

3 1 0 1799 0 1800 99.9

Classification Libre Distance 0.2 Différence 0.5

Correcte : 99.7% 99.6% 99.4%

Indécidable : 0% 0.2% 0.3%

Incorrecte : 0.3% 0.2% 0.3%

Phases du sommeil - Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 969 31 0 0 1000 96.9

2 0 986 14 0 1000 98.6

3 0 7 993 0 1000 99.3

Classification Libre Distance 0.2 Différence 0.5

Correcte : 98.3% 98.1% 98.0

Indécidable : 0% 0.4% 0.3%

Incorrecte : 1.7% 1.5% 1.7%

Les ressources mises en oeuvre

- 24 -

peut le voir dans les tables 2.2 et 2.3, ces deux critères n'ont pas joué un grand rôle; les

résultats sont stables.

5. Les caractères manuscrits de la poste allemande

5.1. Description du problème et des données

Le but recherché ici est la classification d'images de 16 pixels sur 16 comme

étant un des chiffres 0 à 9. L'ensemble de données que nous avons reçu comprend

18 000 chiffres digitalisés en niveau de gris (allant de 0 (blanc) à 256 (noir)) au format

16 X 16. Ces chiffres ont été réunis à partir des codes postaux des lettres passant par le

service postal de l'ex-République Fédérale d'Allemagne.

Les données fournies sont réparties en deux ensembles de données :

apprentissage et test. Chacun des deux ensembles est constitué de 10 fichiers

comprenant chacun 900 représentations d'un chiffre. Un vecteur chiffre se compose des

256 pixels de l'image, lue de gauche à droite et de haut en bas.

5.2. Résultats sans compression

La première étape est la création des fichiers de données au format de

SIRENE. A chaque caractère, on associe un vecteur de sorties de 10 nombres. Un seul

est à un et sa position correspond au chiffre. Les autres sont à zéro. Les fichiers

d'apprentissage sont fusionnés de manière à obtenir un fichier SIRENE d'apprentissage

de 8 100 patterns (810 pour chaque chiffre) et un fichier SIRENE de validation croisée

de 900 patterns (90 pour chaque chiffre). Les fichiers de test sont assemblés, mais deux

tiers sont supprimés faute de place sur le disque à notre disposition. Ceci n'a pas de

conséquence importante, puisque ce fichier n'est pas utilisé pour l'apprentissage.

Nous n'avons pas réalisé la simulation neurale sans compression. En effet,

la taille des données et la taille du réseau qu'elles impliquent posent des problèmes.

Expliquons. Définissons d'abord le réseau qui serait nécessaire. Il comprend 256

entrées et 10 sorties. Pour déterminer le nombre de neurones en couche cachées, il faut

faire plusieurs essais, jusqu'à l'obtention de bons résultats. Selon la règle des 10%,

idéalement nous devrions avoir :

Les ressources mises en oeuvre

- 25 -

(256 entrées 10 sorties)* nbre_ cachés  nbre_ synapses

nbre_ synapses*10  8100 patterns

 nbre_ cachés  3

Cette règle ne pourra pas être respectée. Trois neurones ne peuvent généraliser 256

données en 10 sorties. Un nombre envisageable de neurones en couche cachée serait

par exemple 100. Il y aurait alors 26 600 poids ((256+10)*100) à modifier à chaque

itération en fonction de seulement 8 100 exemples. On peut douter de la capacité du

réseau à s'adapter. Un tel apprentissage serait long et difficile. Il faudrait de plus le

recommencer avec d'autres valeurs que 100 pour améliorer les résultats. Quand on

constate le temps qui a été nécessaire à l'apprentissage du réseau, beaucoup plus petit,

analysant les phases du sommeil, on comprend que cette démarche n'est pas acceptable.

De plus, les données étaient volumineuses et occupaient toute la place disponible sur le

disque. Il n'était pas possible de monopoliser un tel espace disque et une machine SUN

durant un si grand laps de temps. Notons pour terminer qu'à notre connaissance,

personne n'a travaillé sur l'ensemble initial des données. Tout le monde en a fait des

compressions par différentes méthodes.

6. Les véhicules

6.1. Description du problème et des données

On cherche à reconnaître une silhouette comme étant celle d'un type de

véhicule parmi quatre. On utilise pour cela un ensemble de caractéristiques extraites de

la silhouette du véhicule vu sous différents angles. Les quatre types de véhicules sont :

un bus à impériale, un van chevrolet, une Saab 9000 et une Opel Manta 400. Il y a 18

attributs réels par véhicule et 846 représentations sont disponibles.

6.2. Résultats sans compression

Cette fois-ci, nous n'avons pas du préparer les données. Nous les avons

reçues directement au format de SIRENE. Le réseau choisi pour l'apprentissage utilise

les paramètres de la table 2.1. Son architecture comprend 18 neurones en entrée, 5 en

couche cachée et 4 pour les sorties. C'est la structure qui a donné les meilleurs résultats

et qui était proposée dans la littérature. Cependant, les résultats ne sont pas

exceptionnels. Cela est essentiellement du au faible nombre de patterns disponibles

Les ressources mises en oeuvre

- 26 -

pour l'apprentissage. Pour respecter la règle des dix pourcents, le nombre de neurones

en couche cachée aurait du être inférieur ou égale à 3 (18 * 3 + 3 * 4 <= 846 / 10).

Le graphe 2.2 illustre la phase d'étude du réseau. Le meilleur réseau est

obtenu après 59 itérations. La fonction d'apprentissage passe de 2 870 à 504. La

fonction de validation atteint un pourcentage d'erreurs de 16%, lorsque la fonction de

test reste à 17%.

Véhicules

Itérations

A
p

p
re

n
ti

s
s
a

g
e

0

500

1000

1500

2000

2500

3000

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

0

10

20

30

40

50

60

70

80

90

V
a
li

d
a
ti

o
n

 e
t

te
s
t

Apprentissage

Validation

Test

Minimum

59

Figure 2.2

1 heure et 29 minutes ont été nécessaires pour réaliser ces 444 itérations. Il

y correspond un temps CPU de 1 heure et 22 minutes. Il faut noter ici encore que le

meilleur réseau est obtenu bien avant l'arrêt de l'apprentissage. Les meilleurs résultats

sont reproduits dans les tables 2.4 et 2.5.

Les ressources mises en oeuvre

- 27 -

Table 2.4

Table 2.5

6.3. Comparaisons avec des résultats officiels

Nous pouvons comparer nos résultats avec ceux du projet ESPRIT StatLog.

Son but est l'évaluation des performances de différents algorithmes de classification

(statistique, machine intelligente et réseau de neurones) pour des problèmes

commerciaux et industriels complexes. Parmi eux, nous trouvons les caractères

allemands et les véhicules. La table 2.6 reprend les comparaisons pour le cas des

véhicules.

Algorithme Type Source Exactitude (%) Temps (sec.)

 Appr. Test Appr. Test

Quadra Stat. Strath 91.4 84.9 28 29

Alloc80 Stat. Leeds 100.0 82.7 30 10

Véhicules - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 128 37 2 1 0 168 76.1

2 26 136 6 0 0 168 80.9

3 0 2 164 2 0 168 97.6

4 1 2 1 150 0 154 97.4

Classification Libre Distance 0.2 Différence 0.5

Correcte : 88% 86.6% 74.4%

Indécidable : 0% 2.4% 21.6%

Incorrecte : 12% 11.0% 4.0%

Véhicules - Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 18 5 1 0 0 24 75.0

2 5 16 2 1 0 24 66.6

3 0 1 23 0 0 24 95.8

4 0 1 0 23 0 24 95.8

Classification Libre Distance 0.2 Différence 0.5

Correcte : 83.3% 82.2% 67.8%

Indécidable : 0% 1.4% 28.7%

Incorrecte : 16.7% 16.4% 3.5%

Les ressources mises en oeuvre

- 28 -

LogReg Stat. Strath 83.3 80.9 601 5

Backpropag Neur. Strath 83.2 79.3 14 400 4

Discriminant Stat. Strath 79.8 78.4 13 5

SMART Stat. Leeds 93.8 78.3 2 502 1

C4.5 Mach. Turing 93.5 73.4 174 2

k-N-N Stat. Leeds 100.0 72.5 164 23

CART Mach. Granada 76.5 71.6 25 1

CN2 Mach. Daimler 98.2 70.7 95 1

AC2 Mach. Isoft - 70.4 5 525 213

NewID Mach. Daimler 99.0 70.3 20 2

INDCART Mach. Strath 95.3 70.2 83 1

Radial Neur. Strath 90.2 69.3 1 700 12

ITrule Mach. Brainwr - 67.6 985

Kohonen Neur. Luebeck 88.5 66.0 5 692 50

Cal5 Mach. Fraunhofer 70.1 64.9 39.6 1

Castle Stat. Granada 49.5 45.0 3 3

Bayes Stat. Strath 47.7 44.2 2 1

Table 2.6

En quatrième position, nous trouvons l'algorithme de rétropropagation.

C'est le seul qui utilise un réseau de type Perceptron comme nous. Nous ne disposons

malheureusement pas d'informations sur la structure utilisée. Avec le réseau décrit dans

le paragraphe précédent, nous obtenons de meilleurs résultats (88.1% et 83.1%), en

encore moins de temps (4 920 secondes pour l'apprentissage et 1 seconde pour le test).

Nous sommes donc en seconde position. Nous avons réalisé une autre simulation avec

un réseau beaucoup plus grand (18-10-4). Dans ce cas, en 27 660 secondes et

1 726 itérations, nous n'obtenions pas de meilleurs résultats : classification correcte à

97.5% pour l'apprentissage, mais 80.4% pour le test. On constate que le réseau a très

bien appris son ensemble d'exemples. Par contre, il n'a pas réussi à les généraliser aussi

bien à d'autres présentations. Cela confirme que le nombre d'exemples d'apprentissage

était trop faible pour ce réseau (658 exemples pour 220 synapses).

7. Données corrélées

Les ressources mises en oeuvre

- 29 -

Il ne s'agit pas ici d'un problème de classification. Cet ensemble de données

a été créé de toutes pièces pour illustrer la méthode de compression NLPCA. Nous

attendrons donc ce chapitre pour le présenter.

8. Conclusions

Nous avons présenté les ressources que nous utiliserons tout au long de ce

travail : les données, les programmes et les ordinateurs. La séquence d'opérations est

toujours la même : utilisation de notre programme pour réaliser les prétraitements,

utilisation de SIRENE pour simuler un réseau de neurones de reconnaissance de formes

et analyse des résultats. Pour faciliter ces manipulations, un module d'outils a été écrit.

Nous avons également décrit la classification sans prétraitement des

ensembles de données à notre disposition. Les réseaux de neurones ont montré leur

capacité à s'adapter aux problèmes posés. Cependant, les temps d'apprentissage qui ont

été nécessaires sont énormes. Pour le problème de la reconnaissance des caractères

manuscrits, nous n'avons même pas pu réaliser une simulation. Des méthodes doivent

absolument être développées pour pouvoir utiliser d'importants ensembles de données

dans des réseaux de neurones. Les chapitres suivants décrivent de tels procédés.

- 30 -

CHAPITRE 3
LA MÉTHODE DE KARHUNEN-LOÈVE

1. Introduction

La méthode de Karhunen-Loève est une technique pour représenter un

échantillon d'une fonction générée par un processus aléatoire. Il a été montré qu'elle

minimisait l'erreur au sens des moindres carrés. La méthode de Karhunen-Loève extrait

donc un ensemble de caractéristiques qui est optimal pour représenter un pattern dont la

source est aléatoire.

Ce chapitre est constitué de trois parties. La première décrit la méthode de

Karhunen-Loève. La seconde présente notre implémentation. Enfin, la troisième

comprend les principaux résultats de son application sur nos ensembles de données.

2. La méthode

2.1. Description formelle

La méthode de Karhunen-Loève est une méthode d'approximation d'un

ensemble de fonctions continues de temps par un développement en série. Soit

l'ensemble de fonctions i(t) (i 1,2,, N) , le résultat est une combinaison

linéaire de fonctions de base,  j (t) (j  1,2,) de la forme :

 i (t)   ij j (t)
j1



 (1)

Les fonctions de base sont obtenues par résolution de l'équation suivante :

 j j (t)  R(t ,)  j () d




 (2)

où R(t,) est la fonction d'autocorrélation des ƒ(t) et est donnée par :

R(t ,)  E
i
[ i (t) f i ()], (3)

La méthode de Karhunen-Loève

- 31 -

où E[.] est la moyenne sur les N fonctions de l'ensemble. On obtient ensuite les

coefficients ij par :

 ij   i (t) j (t) dt






Dans notre cas, nous voulons transformer un vecteur de données (un

pattern) en un autre de taille plus petite. Les éléments d'un vecteur peuvent être vus

comme un échantillonnage d'une fonction continue. Le nombre de points d'échantillon,

n, étant choisi de manière à retenir suffisamment d'informations. Nous devons donc

adapter les définitions précédentes au cas discret. Nos fonctions peuvent alors être

représentées par les vecteurs colonnes :

Fi 

 i (t1)

 i (t2)

 i (tn)



















(i  1, 2,, N) (4)

L'équation (1) devient alors la somme finie

Fi   ij  j
j1

n

 (5)

où j est la représentation vectorielle de la jème fonction de base :

 j 

 j (t1)

 j (t2)

 j (tn)



















(j  1, 2,, n) (6)

De même, (2) et (3) sont remplacés par

 j  j  S  j (7)

et

S  E
i
[FiFi

T
], (8)

La méthode de Karhunen-Loève

- 32 -

Les équations (7) et (8) montrent que S est une matrice d'autocorrélation et

que j et j sont les jème valeur propre et vecteur propre de S. Puisque les fonctions

de base sont des vecteurs propres, elles sont orthogonales; c'est-à-dire :

 j
T
 i 

1 pour i  j

0 pour i  j





 (9)

Dès lors, les coefficients ij de l'expression peuvent être obtenus par :

 ij   j
T

Fi (10)

ou, en notation matricielle,

Ai  B
T
Fi

avec

Ai 

 i1

 i2

 in



















et B  12 n 

Quand les n fonctions de base sont utilisées, les Fi sont obtenus sans erreur.

Par contre, si nous en sélectionnons moins, l'expansion de Karhunen-Loève devient une

approximation. L'erreur au sens des moindres carrés est calculée directement par :


2
 E

i
Fi   ij j

j1

k












T

Fi   ij j
j1

k


























 (11)

Par (9) et (10), on peut simplifier :


2
  j

T
E
i
[Fi Fi

T
] j

j k1

n

 , (12)

La méthode de Karhunen-Loève

- 33 -

et on obtient par (8) que


2
  j

j k1

n

 (13)

Si les vecteurs propres sont rangés par ordre de valeur propre décroissante, on minimise

ainsi l'erreur moyenne au sens des moindres carrés. On voit de plus, que plus le nombre

de vecteurs propres conservés est grand, moins l'erreur sera grande et même nulle si il

n'y a pas de réduction.

La matrice A ainsi obtenue est l'ensemble des nouveaux patterns d'entrées

pour le réseau de neurones. Notons que la matrice B n'est utilisée que pour le calcul de

A et n'est pas conservée. A étant une corrélation de B et des patterns originaux, elle

devrait suffire au réseau de neurones. Cependant, l'erreur calculée précédemment par

les formules (11), (12) et (13) ne peut plus être celle liée à l'utilisation du réseau étant

donné que ces formules utilisent la matrice B. L'erreur sera mesurée par comparaisons

avec les résultats obtenus sans prétraitement.

2.2. Signification géométrique

Dans cette méthode, on part d'un tableau de données F où chacune des N

lignes correspond à un individu et chacune des n colonnes correspond à une

caractéristique.

La première opération réalisée est le recentrage du tableau. Pour chaque

caractéristique j, la moyenne mj des N individus est calculée :

m j 
1

N
Fij

i1

N



On obtient alors le tableau recentré par l'opération suivante :

F ij  Fij m j

La méthode de Karhunen-Loève

- 34 -

A chaque ligne i de F , on peut associer le point Pi de coordonnées F ij

pour 1≤ j ≤ n. Le résultat est un nuage de N points.

Le but de la méthode est de représenter le plus simplement possible les

corrélations entre les n caractéristiques. Pour cela, soit D une droite dans IRn de

direction u avec ||u || = 1. Soit Hi la projection orthogonale de Pi sur D. On cherche u

qui minimise :

Hi Pi



i 1

N


2

O

D

u

H1
H

H

HH

2

3

45

P

P

P
P

P

1

2

3

4

5

On a :

OH i



 (OPi



|u


) u


,

où

(OPi



|u


)  F iju j
j1

n

 ,

donc :

OH i

 2

i 1

N

  (OPi



| u


)
2

i 1

N



La méthode de Karhunen-Loève

- 35 -

Les Pi étant donnés, chercher u qui minimise Hi Pi



i 1

N


2

 est équivalent,

d'après le théorème de Pythagore, à chercher u qui maximise OHi

 2

i 1

N

 . D'après un

théorème de Courant-Fischer, cela revient à chercher le vecteur propre u 1

correspondant à la plus grande valeur propre 1 de F T F . En déterminant les vecteurs

propres correspondant aux valeurs propres suivantes, on obtient une représentation plus

complète.

3. Le programme

Tous les programmes ont été écrits à l'aide du langage C. Le code de la

méthode de Karhunen est fourni en annexe.

L'implémentation est tirée directement de la théorie. L'exécution comprend

trois étapes : la recherche des vecteurs propres, la détermination des vecteurs qui

appartiendront à la matrice de transformation et la phase de compression proprement

dite.

+++ KARHUNEN - LOEVE +++

 0. Aide

 1. Vecteurs propres

 2. Matrice de transformation

 3. Creation fichier compresse

 9. Retour au menu principal

3.1. Vecteurs propres

L'utilisateur a le choix entre calculer la matrice des vecteurs propres

d'un nouvel ensemble de données, enregistrer une nouvelle matrice ou charger

une ancienne.

La méthode de Karhunen-Loève

- 36 -

3.2. Matrice de transformation

L'utilisateur a les mêmes possibilités : création, enregistrement ou

chargement. Pour la création d'une nouvelle matrice de transformation, trois

critères de sélection du nombre de vecteurs propres à utiliser sont possibles :

constant, selon les valeurs propres, selon les valeurs propres avec limite

maximale.

En utilisant chaque fois la matrice de transformation de l'ensemble

d'apprentissage pour les deux autres ensembles de données, on augmente la

corrélation entre l'apprentissage et l'utilisation du réseau. Cela améliore les

résultats.

3.3. Création du fichier compressé

L'utilisateur peut décider en plus de calculer l'erreur moyenne

(définie comme précédemment) pour chaque pattern ou globalement. Il peut

également demander que les sorties soient comprises dans l'intervalle [-1,1]; ce

qui est très pratique lors de l'utilisation d'un réseau de neurones dont les

fonctions habituelles imposent cette condition. Cette borne est obtenue par

division des vecteurs propres par une constante adéquate.

4. Analyse des phases du sommeil

4.1. Introduction

Les données du sommeil, présentées dans le chapitre 2, sont le premier

ensemble qui a été prétraité par la méthode de Karhunen. Nous ne pouvions prédire le

nombre de vecteurs propres à conserver, c'est-à-dire l'importance de la compression,

pour conserver une classification valable. Nous avons donc procédé par essais. Nous

présentons ici les deux résultats les plus significatifs : une compression de 100 données

à 20 et une de 100 à 10.

La méthode de Karhunen-Loève

- 37 -

4.2. Compression à 20

 L'ensemble de données initial a été prétraité par Karhunen pour lui donner

un taille des entrées de 20 au lieu de 100. A partir de ces données comprimées, un

nouveau réseau a du réaliser la classification en phases du sommeil. L'architecture

choisie emploie les mêmes paramètres que le réseau utilisé sans compression préalable.

Le réseau comprend 20 neurones en entrée, 9 en couche cachée et 3 en sortie. Ce choix

respecte largement la règle des dix pourcents (20 * 3 + 3 * 9 << 8 100 / 10) et a donné

de bons résultats.

La figure 3.1 décrit l'apprentissage de ce réseau. Les premières erreurs sont

rapidement corrigées. La fonction de validation démarre à la valeur 595 pour atteindre

très vite, après seulement 651 itérations, son minimum à la valeur 117. A ce moment,

la fonction d'apprentissage a diminué de 5 345 à 731 et la fonction de test est passée de

67% d'erreurs à 11%. Après la 651ème itération, les résultats se dégradent pour

l'ensemble de test qui atteint 16% d'erreurs à la fin de la simulation.

Phases du sommeil : Karhunen 20

Itérations

A
p

p
re

n
ti

s
s
a

g
e
 e

t

v
a

li
d

a
ti

o
n

0

1000

2000

3000

4000

5000

6000

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

0

10

20

30

40

50

60

70
T

e
s
t

Apprentissage

Validation

TestMinimum

651

Figure 3.1

Pour réaliser les 1 550 itérations de cette simulation, un ordinateur a été

occupé pendant cinq jours : le temps réel est de 109 heures et 31 minutes, mais le temps

La méthode de Karhunen-Loève

- 38 -

CPU n'est que de 54 heures et 4 minutes. Rappelons cependant que les derniers

résultats sauvés par SIRENE l'ont été bien avant cela. Ils étaient déjà utilisables à partir

de l'itération 651.

Pour le réseau optimum, les résultats détaillés sont reproduits dans les

tables 3.1 et 3.2. La simulation permet de reconnaître relativement bien et avec une

même certitude chaque classe de l'ensemble d'apprentissage. 91.2% de classifications

correctes est un résultat honorable. On constate de plus, et avec plaisir, que le réseau

arrive à généraliser sa classification à d'autres exemples qu'il ne connaissait pas. Dans

ce cas, il obtient toujours une classification correcte à 89.5%.

Table 3.1

Table 3.2

Ici encore, la classification est aisée. Les deux critères de décision

supplémentaires ne modifient pratiquement pas les résultats : les sorties sont nettes.

Phases du sommeil

Karhunen 20 - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 1587 211 2 0 1800 88.2

2 16 1714 70 0 1800 95.2

3 9 168 1623 0 1800 90.2

Classification Libre Distance 0.2 Différence 0.5

Correcte : 91.2% 90.1% 90.5%

Indécidable : 0% 2.6% 1.5%

Incorrecte : 8.8% 7.3% 8.0%

Phases du sommeil

Karhunen 20 - Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 820 180 0 0 1000 82.0

2 0 963 37 0 1000 96.3

3 8 91 901 0 1000 90.1

Classification Libre Distance 0.2 Différence 0.5

Correcte : 89.5% 88.7% 89.0%

Indécidable : 0% 2.2% 0.8%

Incorrecte : 10.5% 9.1% 10.2%

La méthode de Karhunen-Loève

- 39 -

4.3. Compression à 10

Une compression à 20 donnant toujours des résultats acceptables, nous

avons poussé la compression jusqu'à 10 pour en fixer les limites. Cela permettra de

plus des comparaisons avec d'autres méthodes de compression qui supportent une telle

diminution du nombre des caractéristiques.

Les données prétraitées ont été présentées à un nouveau réseau définit

similairement à ceux des autres analyses des phases du sommeil. Seule sa structure

change; il comprend 10 neurones en entrée, 5 en couche cachée et 3 en sortie.

La figure 3.2 représente son apprentissage. Les résultats sont nettement

moins bons. La fonction d'apprentissage part de 4 976 pour atteindre sa valeur finale de

2 088. Le réseau n'arrive plus à obtenir de meilleurs résultats et arrête son étude. La

fonction de validation, débutant de 552, permettra de sauver juste avant le meilleur

réseau qu'elle a trouvé. Son minimum se situe à l'itération 486 avec une valeur de 236.

Le pourcentage d'erreurs pour l'ensemble de test s'est stabilisé à 27%.

Phases du sommeil : Karhunen 10

Itérations

A
p

p
re

n
ti

s
s
a

g
e
 e

t

v
a

li
d

a
ti

o
n

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

20

30

40

50

60

70

80

T
e

s
t

Apprentissage

Validation

Test
Minimum

486

Figure 3.2

La méthode de Karhunen-Loève

- 40 -

Ces résultats ont été obtenus beaucoup plus vite. En temps réel, ces 492

itérations ont nécessité 30 heures et 23 minutes. En temps CPU, cela a demandé 8

heures et 10 minutes. Notons ici que même si le réseau obtenu a été sauvé à l'itération

486, un réseau sauvé dès l'itération 150 aurait donné des résultats très proches : les

courbes sont régulières.

Il est intéressant de regarder la classification détaillée du réseau. Elle est

présentée dans les tables 3.3 et 3.4. On constate que le réseau généralise parfaitement

son apprentissage au fichier test. Les résultats sont identiques : classification correcte

d'environ 71% dans les deux cas. On découvre également la source d'erreurs.

L'apprentissage a échoué pour la classe deux, alors qu'il est valable pour les autres

catégories. Cet échec se propage dès lors à l'ensemble test.

Table 3.3

Table 3.4

Phases du sommeil

Karhunen 10 - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 1551 235 14 0 1800 86.2

2 1027 652 121 0 1800 36.2

3 50 130 1620 0 1800 90.0

Classification Libre Distance 0.2 Différence 0.5

Correcte : 70.8% 58.2% 53.8%

Indécidable : 0% 20.0% 29.7%

Incorrecte : 29.2% 21.8% 16.5%

Phases du sommeil

Karhunen 10 - Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 918 82 0 0 1000 91.8

2 504 379 117 0 1000 37.9

3 40 70 890 0 1000 89.0

Classification Libre Distance 0.2 Différence 0.5

Correcte : 72.9% 59.7% 56.5%

Indécidable : 0% 19.6% 27.5%

Incorrecte : 27.1% 20.7% 16.0%

La méthode de Karhunen-Loève

- 41 -

Une compression jusqu'à dix par la méthode de Karhunen n'est donc pas

acceptable. Le résultat est une incapacité du réseau à reconnaître la classe deux, qu'il

confond essentiellement avec la classe un. Une compression jusqu'à vingt entrées

apparaît comme la limite.

5. Reconnaissance des caractères manuscrits

5.1. Introduction

Pour ce problème, nous avons d'abord du décider de la composition des

réseaux à essayer. Avec 8 100 patterns d'apprentissage, cette architecture devait de

préférence être limitée à 810 synapses; ce qui est peu pour un problème original de 256

entrées. Dans la littérature, nous avons trouvé des tentatives de classification de ce

problème à partir de données réduites à la taille de 40. Nous avons donc d'abord testé

cette valeur.

Cela n'a pas abouti. En effet, nos données originales étaient en nuances de

gris (valeurs de 0 à 255). Cependant, notre fonction tangente hyperbolique n'est

vraiment efficace qu'autour de l'origine. Plus on s'en éloigne, moins la fonction varie.

Nous avons donc retraité nos données pour les recentrer dans l'intervalle [-1,1]. Pour

cela, nous utilisions une fonction de conversion de SIRENE. Les résultats ont

directement suivi.

Nous ne nous sommes pas limité à une compression à 40. Nous avons

essayé d'aller plus loin, jusque 20. Nous présentons maintenant en détail ces deux

simulations. Nous montrerons ensuite brièvement la différence pour d'autres valeurs

recentrées ou non et nous terminerons par une comparaison avec les résultats de la

littérature : le projet StatLog.

5.2. Compression à 40 et recentrage

Comme annoncé, nous avons d'abord réduit nos ensembles de données par

la méthode de Karhunen et nous les avons ensuite recentrés, grâce à SIRENE, dans

l'intervalle [-1,1]. Il faut signaler qu'il a été obligatoire d'utiliser la même matrice de

transformation de Karhunen et de centrage pour les trois fichiers. Dans le cas contraire,

l'apprentissage s'arrête après quelques itérations et avec un pourcentage d'erreurs

énorme.

La méthode de Karhunen-Loève

- 42 -

Le réseau créé pour vérifier la capacité de classification après compression,

comprend 40 neurones en entrée et en sortie, 1 pour chaque classe. L'importance de la

couche cachée a été décidée selon le critère des dix pourcents. Le maximum est dès

lors de 16 neurones (40 * 16 + 16 * 10 = 800 < 8 100 / 10). Étant donné les excellents

résultats obtenus, il n'a pas été nécessaire d'essayer d'autres valeurs.

Lors de notre simulation, nous n'avions pas assez d'espace disque pour

utiliser l'ensemble test de 9 000 patterns au complet. Nous en avons extrait un tiers.

Cependant, pour permettre des comparaisons avec le projet StatLog qui emploie le

fichier entier, nous avons après calculé les résultats détaillés pour les 9 000 patterns de

test.

L'évolution de l'apprentissage est expliquée par la figure 3.3. Cela a été très

rapide. En 53 itérations, la fonction de validation a atteint le minimum de 8% d'erreurs.

Pour les 3 000 exemples, la fonction de test indique à ce moment une erreur de 7%. La

fonction d'apprentissage est partie de 87 796 pour tomber à 2 046. Après la 53ème

itération, les erreurs recommencent à augmenter progressivement. Après 580 itérations,

les résultats ne pouvant plus s'améliorer, nous avons décidé d'arrêter nous-mêmes

l'apprentissage et de libérer l'ordinateur.

Caractères : Karhunen 40 recentré

Itérations

A
p

p
re

n
ti

s
s
a

g
e

900

2900

4900

6900

8900

10900

12900

14900

16900

18900

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

0

5

10

15

20

25

30

35

40

45

50

V
a
li

d
a
ti

o
n

 e
t

te
s
t

Apprentissage

Validation

Test

Minimum

53

Figure 3.3

La méthode de Karhunen-Loève

- 43 -

Une dizaine d'heures ont été nécessaires pour obtenir le meilleur réseau.

Nous avons arrêté l'apprentissage à la 580ème itération après 87 heures et 20 minutes

réelles et 86 heures et 31 minutes CPU.

La table 3.5 détaille les résultats de la classification de l'ensemble

d'apprentissage. Les pourcentages spécifiques et globaux de classification sont tous

similaires et très élevés. Les erreurs sont équitablement réparties dans chaque classe, il

ne s'agit pas d'un problème de classification de caractères se ressemblant, mais d'une

limite du réseau. Avec 96.3% d'exactitude, on peut parler de réussite.

Caractères - Karhunen 40 recentré - Ensemble d'apprentissage

Clas Classe obtenue ∑ %

se 1 2 3 4 5 6 7 8 9 10 ?

1 769 4 2 0 4 1 2 3 17 8 0 810 94.9

2 10 792 0 0 0 0 0 1 2 5 0 810 97.7

3 0 0 788 5 0 3 1 1 5 7 0 810 97.3

4 0 0 9 769 0 7 3 1 9 12 0 810 94.9

5 3 1 0 0 791 1 10 1 2 1 0 810 97.6

6 1 0 0 13 1 765 6 2 8 14 0 810 94.4

7 1 0 0 1 3 6 795 0 4 0 0 810 98.1

8 8 2 1 1 6 2 0 785 2 3 0 810 96.9

9 1 3 4 1 0 6 9 2 768 16 0 810 94.8

10 4 0 4 5 7 4 1 2 5 778 0 810 96.0

Classification Libre Distance 0.2 Différence 0.5

Correcte : 96.3% 95.9% 93.4%

Indécidable : 0% 1.1% 5.2%

Incorrecte : 3.7% 3% 1.4%

Caractères - Karhunen 40 recentré - Ensemble de test

Clas Classe obtenue ∑ %

se 1 2 3 4 5 6 7 8 9 10 ?

1 824 24 1 0 7 0 10 4 25 5 0 900 91.6

2 9 871 0 3 0 1 0 7 3 6 0 900 96.8

3 2 3 824 12 0 16 6 4 19 14 0 900 91.6

4 0 0 24 814 0 15 0 10 15 22 0 900 90.4

5 14 4 2 0 845 2 9 6 11 7 0 900 93.9

6 5 0 9 24 0 815 17 4 9 17 0 900 90.6

7 6 0 1 1 9 10 869 0 2 2 0 900 96.6

8 6 7 3 0 6 2 0 854 15 7 0 900 94.9

9 5 1 11 3 0 15 13 4 825 23 0 900 91.7

10 4 8 3 12 8 11 0 14 14 826 0 900 91.8

Classification Libre Distance 0.2 Différence 0.5

Correcte : 93% 92.1% 89.9%

La méthode de Karhunen-Loève

- 44 -

Indécidable : 0% 2.3% 6.7%

Incorrecte : 7% 5.6% 3.4%

Table 3.5 et 3.6

L'ensemble complet de test (9 000 patterns) a été utilisé pour vérifier

l'exactitude de la classification. La table 3.6 montre ces résultats. Ils sont semblables à

ceux de l'ensemble réduit testé lors de l'apprentissage. Le pourcentage de classification

correcte est de 93%. Les résultats sont précis. Les deux critères supplémentaires ne

modifient pas énormément les pourcentages. Notons qu'en utilisant ces critères, on peut

diminuer le taux d'erreur en augmentant le taux d'incertitude. Les éléments non

classifiables peuvent être donnés à une autre procédure de décision.

5.3. Compression à 20 et recentrage

Les mêmes opérations ont été réalisées pour obtenir 20 valeurs entre -1 et 1

pour chaque pattern de données. Ces valeurs ont été présentées à un réseau de 20

neurones en entrée et 10 en sortie. Nous avons décidé d'utiliser 16 neurones en couche

cachée comme pour le réseau précédent. Le nombre d'exemples disponibles nous le

permet et cela facilitera la généralisation.

La figure 3.4 décrit l'apprentissage. Les courbes de validation et de test se

superposent et décroissent durant une longue période. La fonction d'apprentissage suit

la même direction. Elle part de 94 000 pour atteindre

La méthode de Karhunen-Loève

- 45 -

Caractères : Karhunen 20 recentré

Itérations

A
p

p
re

n
ti

s
s
a

g
e

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

0

10

20

30

40

50

60

70

80

90

V
a
li

d
a
ti

o
n

 e
t

te
s
t

Apprentissage

Validation

Test

Figure 3.4

Cet apprentissage a été beaucoup plus long : 1 097 itérations ont été

nécessaires pour obtenir le meilleur réseau. Nous avons arrêté volontairement

l'apprentissage après 1 500 itérations, soit 291 heures et 42 minutes réelles (12 jours) ou

285 heures et 44 minutes de CPU. Le taux de classification aurait peut-être pu encore

diminuer de quelques dixièmes de pourcent, mais le temps d'apprentissage, excessif,

suffit à déclarer cette taille de compression comme inadaptée. Nous avons donc libéré

l'ordinateur de cette charge de travail.

Les tables 3.7 et 3.8 reprennent les résultats. Ici aussi, ils sont excellents.

La méthode de Karhunen-Loève permet des compressions très importantes. Pour une

compression à 20, le pourcentage de classification correcte de l'ensemble de test est de

91%. Lorsque le réseau se trompe, la classe deux est plus souvent choisie.

Caractères - Karhunen 20 recentré - Ensemble d'apprentissage

Clas Classe obtenue ∑ %

se 1 2 3 4 5 6 7 8 9 10 ?

1 775 17 2 0 7 0 2 1 3 3 0 810 95.7

2 6 788 1 0 10 0 0 5 0 0 0 810 97.3

3 2 22 754 1 2 2 9 3 7 2 6 810 93.1

La méthode de Karhunen-Loève

- 46 -

4 0 10 5 777 1 1 0 2 1 12 1 810 95.9

5 2 17 0 0 775 0 5 2 0 9 0 810 95.7

6 1 5 0 1 2 791 4 2 0 4 0 810 97.7

7 1 7 1 0 7 8 783 0 3 0 0 810 96.7

8 3 17 4 2 7 0 0 774 0 3 0 810 95.6

9 2 13 6 3 1 6 7 1 759 8 4 810 93.7

10 2 24 0 9 14 1 1 4 8 742 5 810 91.6

Classification Libre Distance 0.2 Différence 0.5

Correcte : 95.3% 94.8% 93.1%

Indécidable : 0.2% 2.6% 5.0%

Incorrecte : 4.5% 2.6% 1.9%

Table 3.7

Bien que ces résultats soient excellents, cette taille de compression ne peut

nous satisfaire. En effet, notre objectif est de réduire la dimension des vecteurs pour

accélérer l'apprentissage des réseaux de neurones. Une compression plus importante

n'implique pas forcément un temps d'apprentissage plus court. C'est le cas ici, la taille

de compression de 40, bien que moins importante, permet un apprentissage plus rapide.

Caractères - Karhunen 20 recentré - Ensemble de test

Clas Classe obtenue ∑ %

se 1 2 3 4 5 6 7 8 9 10 ?

1 269 15 0 0 6 0 0 1 7 0 2 300 89.7

2 2 292 0 0 1 0 0 2 1 2 0 300 97.3

3 0 8 271 4 1 1 1 3 2 1 8 300 90.3

4 0 6 4 276 0 5 0 0 0 5 4 300 92.0

5 2 10 0 0 271 2 5 1 0 9 0 300 90.3

6 0 8 0 2 2 283 2 0 1 1 1 300 94.3

7 2 3 1 0 4 3 286 0 1 0 0 300 95.3

8 3 8 1 1 3 1 0 277 1 3 2 300 92.3

9 1 14 5 4 1 2 7 1 260 2 3 300 86.7

10 2 20 0 7 6 3 2 1 3 254 2 300 84.7

Classification Libre Distance 0.2 Différence 0.5

Correcte : 91.3% 89.8% 88.9%

Indécidable : 0.7% 5.4% 7.1%

Incorrecte : 8.0% 4.8% 4.0%

Table 3.8

La méthode de Karhunen-Loève

- 47 -

5.4. Autres tentatives de compression

Nous présentons ici les résultats globaux obtenus pour d'autres tailles de

compression. La table 3.9 reprend pour chacune, le numéro de la meilleure itération, le

pourcentage de classification correcte pour les deux ensembles de données à ce

moment, le nombre d'itérations avant l'arrêt de l'apprentissage et les différents temps

qui correspondent à la simulation entière. Ces dernières informations doivent être

interprétées pour estimer le temps nécessaire à l'obtention des meilleurs résultats. Pour

cela, il suffit de savoir que chaque étape nécessite une même durée. Le temps estimatif

pour les données comprimées à 40 et recentrées est donc d'environ 8 heures.

Méthode Itération Exactitude

apprentis.

Exactitude

test

Nombre

itérations

Temps

réel

Temps

CPU

40 recentré 53 95.0% 93.0% 580 87h 20' 86h 31'

30 recentré 2 861 98.1% 94.4% 3 000 400h 44' 394h 08'

20 recentré 1 097 95.3% 91.3% 1 498 291h 42' 285h 44'

40 213 46.0% 45.0% 249 40h 21' 38h 09'

30 131 40.0% 38.0% 134 29h 27' 18h 12'

Table 3.9

La compression par la méthode de Karhunen à une taille de 40, suivie d'un

recentrage par SIRENE, donne d'excellents résultats et les meilleurs pour nos essais.

Les autres tailles recentrées donnent aussi de bons résultats, mais en beaucoup plus de

temps; ce qui va à l'encontre de notre objectif.

5.5. Comparaisons avec des résultats officiels

Dans le cadre du projet ESPRIT StatLog, le problème de classification des

caractères manuscrits a été traité. Leurs données ont été préalablement compressées par

la méthode de Karhunen. Les caractéristiques ont été ramenées à une taille de 40. Ces

données ont alors été présentées aux 19 algorithmes de la table 3.10.

Algorithme Type Source Exactitude (%) Temps (sec.)

 Appr. Test Appr. Test

k-N-N Stat. Leeds 100.0 98.0 6 706

Quadra Stat. Strath 98.7 97.9 930 863

La méthode de Karhunen-Loève

- 48 -

Alloc80 Stat. Leeds 100.0 97.6 - 23 279

Backpropag Neur. Strath 95.9 95.1 129600 2 400

Radial Neur. Strath 95.2 94.5 1 700 580

SMART Stat. Leeds 95.7 94.3 174965 58

Discriminant Stat. Strath 93.0 92.5 87 54

Castle Stat. Granada 87.4 86.5 4 535 56 053

NewID Mach. Daimler 100.0 83.8 779 109

AC2 Mach. Isoft 100.0 83.2 15 155 14 086

INDCART Mach. Strath 99.7 83.0 3508 47

CN2 Mach. Daimler 96.4 82.0 2 902 100

C4.5 Mach. Turing 95.0 82.0 1 437 35

Bayes Stat. Strath 79.5 77.7 65 76

Cal5 Mach. Fraunhofer 75.2 66.9 3 053 64

LogReg Stat. Strath Échec Échec Échec Échec

ITrule Mach. Brainwr - - - -

Cart Mach. Granada - - - -

Kohonen Neur. Luebeck - - - -

Pour les trois derniers algorithmes, les résultats n'ont pas été communiqués.

Table 3.10

Nos résultats sont légèrement inférieurs à l'algorithme de la

rétropropagation, mais restent fort proches. Nous nous classons en 6ème position sur

les 20 méthodes. Les résultats étant proches, nous pouvons considérer notre méthode

comme compétitive.

6. Reconnaissance des véhicules

6.1. Introduction

Le dernier problème que nous avons traité par Karhunen est celui de la

reconnaissance des silhouettes de véhicules. En réalité, avec 18 entrées, ce problème

n'a pas besoin d'être réduit pour être traité par un réseau de neurones. Nous ne l'avons

fait que dans un but de comparaison avec la méthode de prétraitement NLPCA que nous

verrons plus loin. Trois tailles de compression ont été tentées : 10, 8 et 4. Nous allons

détailler les deux premières : la compression à 10 car elle donne les meilleurs résultats

et la compression à 8 car nous la comparerons ultérieurement aux résultats de la

méthode NLPCA. La compression à 4 sera résumée. Rappelons que nous possédions

des résultats de références et qu'ils sont reproduits dans le chapitre 2.

La méthode de Karhunen-Loève

- 49 -

6.2. Compression à 10.

Les données réduites de la taille 18 à 10 par Karhunen, ont été présentées à

un réseau de 10 entrées, 4 sorties et 8 neurones en couche cachée. Son apprentissage

est décrit à la figure 3.4. La fonction d'apprentissage part de 2 941 pour atteindre 590 à

l'itération 61. Cette itération correspond au minimum de la fonction d'apprentissage :

17% d'erreurs. A ce moment, la fonction test équivaut à 24% d'erreurs. Comme on

peut le voir sur le graphique, ces valeurs restent stationnaires après. Il était inutile de

poursuivre la simulation jusqu'à l'itération 975. Le temps réel d'utilisation de

l'ordinateur a été de 3 heures et 9 minutes et le temps CPU a été de 2 heures et 57

minutes.

Véhicules : Karhunen 10

Itérations

A
p

p
re

n
ti

s
s
a

g
e

400

600

800

1000

1200

1400

1600

1800

2000

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

10

15

20

25

30

35

40

45

50

V
a
li

d
a
ti

o
n

 e
t

te
s
t

Apprentissage

Validation

Test

Mimimum

61

Figure 3.4

Les tables 3.11 et 3.12 décrivent les résultats obtenus lors de l'utilisation de

ce réseau. Ils sont nettement moins bons que ceux obtenus sans prétraitement, mais

restent honorables par rapport aux tailles de compression inférieures.

La méthode de Karhunen-Loève

- 50 -

Table 3.11

Table 3.12

6.3. Compressions inférieures à 10

Nous détaillons uniquement les résultats de la classification suite à une

compression à 8, pour permettre une comparaison ultérieure avec la méthode NLPCA.

Suite à l'application de la méthode de Karhunen, les tables 3.13 et 3.14 indiquent qu'il

n'y a plus assez d'informations pour permettre au réseau de classer correctement les

véhicules. La compression à 10 est une limite pour ce problème. En dessous, les

résultats sont très mauvais; c'est pourquoi nous n'entrerons pas plus dans les détails.

Des informations complémentaires sont reprises dans la table 3.15.

Véhicules - Karhunen 10 - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 130 31 2 5 0 168 77.3

2 43 118 4 3 0 168 70.2

3 0 3 164 1 0 168 97.6

4 1 2 1 150 0 154 97.4

Classification Libre Distance 0.2 Différence 0.5

Correcte : 85.7% 83.5% 68.0%

Indécidable : 0% 4.7% 27.4%

Incorrecte : 14.3% 11.8% 4.6%

Véhicules - Karhunen 10 -Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 16 5 1 2 0 24 66.6

2 7 14 1 2 0 24 58.3

3 2 0 22 0 0 24 91.6

4 0 1 2 21 0 24 87.5

Classification Libre Distance 0.2 Différence 0.5

Correcte : 76% 73.9% 62.1%

Indécidable : 0% 3.2% 30.9%

Incorrecte : 24% 22.9% 7.0%

La méthode de Karhunen-Loève

- 51 -

Table 3.13

Table 3.14

Réduction

à

Itération Exactitude

apprentis.

Exactitude

test

Nombre

itérations

Temps

réel

Temps

CPU

8 4 48.2% 40.6% 404 1h 07' 1h 00'

4 7 34.6% 34.1% 249 51' 25'

Table 3.15

7. Conclusions

Parmi les méthodes de décorrélation linéaire, une des transformations qui

préservent l'information de manière optimale est la méthode de Karhunen-Loève. Les

Véhicules - Karhunen 8 - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 73 32 33 30 0 168 43.4

2 48 53 34 33 0 168 31.5

3 1 26 117 24 0 168 69.6

4 0 4 76 74 0 154 48.0

Classification Libre Distance 0.2 Différence 0.5

Correcte : 48.2% 33.5% 0.1%

Indécidable : 0% 32.5% 99.8%

Incorrecte : 51.8% 34.0% 0.1%

Véhicules - Karhunen 8 - Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 12 5 3 4 0 24 50.0

2 8 6 4 6 0 24 25.0

3 3 6 12 3 0 24 50.0

4 1 0 14 9 0 24 37.5

Classification Libre Distance 0.2 Différence 0.5

Correcte : 40.6% 30.2% 0%

Indécidable : 0% 26.6% 100%

Incorrecte : 59.4% 43.2% 0%

La méthode de Karhunen-Loève

- 52 -

variables caractéristiques, également appelées facteurs, de cette méthode sont des

combinaisons linéaires des variables originales du problème. Les coefficients de cette

transformation linéaire sont tels que si la transformation est appliquée à l'ensemble de

données et ensuite inversée, il y aura une différence minimale (au sens des moindres

carrés) entre les données originales et les données reconstruites.

Comme le montre nos essais, les données n'ont pas besoin de remplir

certaines conditions pour être prétraitées. La méthode de Karhunen-Loève est valable

quelle que soit la description des données. Nos simulations neurales montrent qu'elle

est une solution à notre problème. Après prétraitements, les résultats de nos réseaux de

neurones opérant les classifications sont toujours très fiables, mais avec un temps

d'obtention nettement inférieur. Les vecteurs de données ont été réduits

significativement sans perdre trop d'informations et les réseaux les utilisant ont pu

diminuer leur complexité.

Bien entendu, les temps de simulation dépendent de l'importance de la

compression. Si elle est faible, le réseau disposera de suffisamment de caractéristiques

pour reconnaître correctement les patterns. Cependant, le nombre de neurones

nécessaires impliquera un apprentissage long. Si la compression est importante, le

réseau disposera de moins d'informations pour classer les vecteurs et aura un taux

d'erreurs supérieur. De plus, bien que sa taille soit plus petite, le temps d'apprentissage

ne le sera pas forcément. En effet, les itérations prendront chacune moins de temps,

mais il en faudra peut-être beaucoup plus pour que le réseau arrive à se créer, c'est-à-

dire à essayer de corriger ses erreurs. Il faut donc trouver le juste milieu.

Malheureusement, il n'y a pas de règle pour le découvrir. L'expérience personnelle est

importante.

- 53 -

CHAPITRE 4
LA MÉTHODE LPC

1. Introduction

La méthode LPC (Linear Predictive Coding) est utilisée pour compresser un

signal échantillonné de sorte qu'il puisse être stocké sous une forme plus compacte. La

forme originale devrait être exactement récupérable à partir de la version compressée.

La méthode se base sur le fait que s'il y a redondance dans le signal, il est prédicable,

avec une erreur minimale, à partir de ses valeurs précédentes et d'un petit nombre de

coefficients LP. C'est l'origine du nom de cette méthode.

En réalité, nous n'utiliserons pas la méthode LPC dans sa définition

première. Elle ne nous apporterait rien car la compression ne porte pas sur la réduction

de la taille des patterns, dans ce cas les échantillons du signal, mais dans la réduction de

la taille des valeurs contenues dans ces patterns. Cependant, nous allons montrer que

les coefficients LP qu'elle utilise et choisis en nombre quelconque, sont idéaux pour

représenter les signaux.

2. La méthode

Les coefficients LPC (Linear Predictive Code) sont en réalité avant tout une

représentation de la puissance spectrale d'un signal.

Il existe différents estimateurs de la puissance totale d'un signal. Dans le

cas discret qui nous intéresse et pour une fonction de temps, elle peut être représentée

par :

La méthode LPC

- 54 -

c j

2

j 0

N1

 (sum squared amplitude)

1

N
c j

2

j0

N1

 (mean squared amplitude)

 c j

2

j 0

N1

 (time  integral squared amplitude)

où notre fonction c(t) a été échantillonnée tous les intervalles de temps ∆ pour obtenir

les N valeurs c0…cN-1.

Dans le domaine fréquentiel, cette estimation peut être obtenue par la

somme des puissances suivantes :

P(f0) 
1

N 2
C0

2

P(fk) 
1

N 2 Ck

2
 CNk

2  k  1,2,, N
2  1 

P(f N / 2)
1

N
2 CN / 2

2

 (1)

où les ƒk sont définis pour les fréquences :

fk 
k

N
k  0,1,, N / 2

et les coefficients Ck sont obtenus par la transformée de Fourier :

Ck  c j e
2ijk / N

j 0

N1

 k  0,, N  1

Pour se rendre compte de cette équivalence, il suffit d'appliquer la forme

discrète du théorème de Parseval qui dit que :

hk

2

k0

N1

 
1

N
Hn

2

n0

N1



Commentaire [2]: ce qui correspond à
l'intervalle significatif de Nyquist

La méthode LPC

- 55 -

où H est la transformée de Fourier de h.

Nous avons obtenu une fonction d'estimation de la puissance spectrale d'un

processus par transformée de Fourier. Ce n'est pas la seule méthode, ni forcément la

meilleure. En partant de celle-ci, nous en présentons maintenant une autre.

Si nous travaillons dans le plan z, en partant de (1) et en simplifiant les

notations, par la relation z  e
2if

 l'estimateur FFT peut être écrit :

P(f)  ck z
k

k N /2

N /21


2

 (2)

Ce modèle possède plusieurs noms : "direct method", "moving average

(MA) model" et "all-zero model" . Cette dernière dénomination vient du fait que le

modèle peut avoir des zéros, mais pas de pôles. Cela nous amène à proposer une autre

définition qui aurait les caractéristiques opposées :

P(f) 
1

bkz k

kM /2

M /2


2 

a0

1 akz
k

k1

M


2

 (3)

Les différences entre les approximations (2) et (3) ne sont pas juste

cosmétiques. Ce sont des approximations possédant des caractères très différents. La

propriété la plus importante est que l'estimateur (3) peut avoir des pôles, correspondant

à une puissance spectrale infinie ou a un pic. A l'inverse, l'estimateur (2), qui ne peut

avoir que des zéros, ne pourra que donner une approximation des pics par un polynôme.

L'approximation (3) est appelée : "all-poles model", "maximum entropy method

(MEM)" ou "autoregressive model (AR)".

Il reste cependant à déterminer les coefficients ai à partir d'un ensemble de

données, pour pouvoir calculer l'estimation spectrale.

Considérons l'autocorrélation à l'étape j de la fonction échantillonnée ck,

soit :

La méthode LPC

- 56 -

 j  E
i

cici j  j 3, 2,1,0,1,2,3 (4)

où E
i
  représente la fonction moyenne sur i. Pour un nombre fini d'échantillons c0 à

cN, l'estimation la plus naturelle de (4) est :

 j   j 
1

N 1 j
c ici  j

i0

N j

 j  0,, N (5)

En d'autres termes, à partir de N+1 points de données, on peut estimer l'autocorrélation

à N+1 différents niveaux.

Le théorème de Wiener-Khinchin dit que :

Corr (g,g) G f 
2

On peut en déduire que la transformée de Fourier de l'autocorrélation est égale à la

puissance spectrale. L'équation qui doit dès lors être satisfaite par les coefficients de

l'équation (5) est :

a0

1 ak zk

k1

M


2   j z

j

jM

M

 (6)

Il faut noter que M, le nombre de coefficients dans l'approximation à

gauche du signe, peut être n'importe quel entier, supérieur, inférieur ou égal à N, le

nombre total d'autocorrélations disponibles. M est appelé : "ordre" ou "nombre de

pôles d'approximation".

Quelle que soit la valeur M choisie, la série du membre de gauche définit

une sorte d'extrapolation de la fonction d'autocorrélation aux valeurs supérieures à M et

même supérieures à N; c'est-à-dire plus grand que l'ensemble de données peut

actuellement mesurer. Il peut être montré que cette méthode d'extrapolation particulière

a parmi toutes les autres méthodes d'extrapolation l'entropie maximale; d'où

l'appellation MEM (Maximum Entropy Method).

La méthode LPC

- 57 -

Étant donné que les coefficients ak représentent très bien l'information et

qu'ils peuvent être choisis en nombre quelconque, ils sont idéaux pour compresser les

données de signaux.

Revenons au calcul des termes ak. Il faut pour cela résoudre le système (6).

Les termes d'autocorrélations sont calculables à partir de la fonction à représenter. Bien

que cela ne soit pas évident à première vue, l'équation (6) implique un ensemble linéaire

de relations entre les termes d'autocorrélations et les coefficients a0 et ak. En fait, les

coefficients doivent satisfaire l'équation matricielle suivante :

 0 1 2  M

1  0 1  M1

 2 1 0  M2

    

M M1 M2  0























1

a1

a2



aM

























a0

0

0



0





















 (7)

La première matrice de (7) est une matrice de Toeplitz symétrique; c'est-à-

dire une dont les éléments sont constants le long de la diagonale. En choisissant un

algorithme de résolution efficace de (7), on obtiendra alors les données demandées;

dans notre cas : une compression préservant un maximum d'informations.

Dans la fin de cette section, nous allons expliquer brièvement pourquoi ces

coefficients portent le nom de coefficients LPC.

Posons :

yn  d j yn j  xn
j1

N

 (8)

L'équation (8) est une filtre récursif linéaire prédisant la valeur yn suivante à partir des

N précédentes valeurs yn-j, j = 1, …, N. xn est la divergence de la prédiction pour

l'étape n; c'est-à-dire la quantité qui doit être ajoutée à la valeur prédite pour obtenir la

valeur correcte de yn. Si les valeurs prédites sont d'elles-mêmes assez bonnes, alors la

correction à apporter sera, en moyenne, faible; c'est-à-dire :

xn

2

n

  yn

2

n



La méthode LPC

- 58 -

L'idéal étant d'avoir xn  yn pour tous les n.

Pour avoir utilité du filtre (8), il est nécessaire de trouver de bons

coefficients prédictifs linéaires (LP) d1, …,dn. Il apparaît alors qu'il y a une forte

relation entre la prédiction linéaire et la méthode du maximum d'entropie (MEM). Les

coefficients ai calculés par MEM sont les coefficients LP; d'où leur nom.

3. Le programme

Le programme est très simple. Il n'y a pas d'options envisageables. Une

fois les noms du fichier à compresser et du fichier résultat connus, ainsi que la taille de

la compression, les termes d'autocorrélations sont calculés et l'équation matricielle (6)

est résolue par l'algorithme de Burg qui tire profit du caractère symétrique de la matrice.

4. Analyse des phases du sommeil

4.1. Introduction

Avec la méthode de Karhunen, nous avons obtenu un taux de classification

valable jusqu'à une compression de la taille des entrées à 20. A priori, puisque la

méthode LPC est définie pour des signaux, une diminution à 20 semblait envisageable

pour elle aussi. Nous ne nous sommes pas limité à cette taille et avons essayé des

valeurs inférieures. Les deux prochaines sections décrivent les résultats.

4.2. Compression à 20

Les données prétraitées et réduites de la taille 100 à la taille 20 par la

méthode LPC, ont été présentées à un perceptron. Celui-ci utilise toujours les mêmes

paramètres que ceux choisis pour nos autres études des phases du sommeil. Il

comprend 20 neurones en entrée, 9 en couche cachée et 3 en sortie. Il est identique au

réseau utilisé après prétraitement par Karhunen. Le nombre d'exemples pour

l'apprentissage est largement suffisant par rapport à sa taille.

La méthode LPC

- 59 -

La simulation est représentée à la figure 4.1. L'apprentissage est très rapide.

141 itérations sont nécessaires pour obtenir la convergence. La fonction d'apprentissage

passe de 4 771 à 40. La fonction de validation chute de 526 à 7. A ce moment la

fonction de test indique qu'il n'y a plus classification erronée qu'à moins de 2%.

Phases du sommeil : LPC 20

Itérations

A
p

p
re

n
ti

s
s
a

g
e
 e

t

v
a

li
d

a
ti

o
n

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

0

10

20

30

40

50

60

70

T
e

s
t

Apprentissage

Validation

Test

Minimum

141

Figure 4.1

Un SUN a travaillé pendant 23 heures et 13 minutes pour obtenir ces 141

itérations. En temps CPU, cela n'a pris que 5 heures et 49 minutes. De plus, notons la

facilité du réseau à s'adapter; les principales variations se sont produites dans les 20

premières itérations.

Le meilleur réseau a été sauvé à la fin de la simulation. Son utilisation nous

a fourni les résultats des tables 4.1 et 4.2. L'apprentissage n'aurait pu mieux se passer.

Pour les exemples, un résultat de 99.7% de classification correcte est exceptionnel. La

classe la moins bien reconnue, la classe deux, l'est quand même à 99.5%. La classe un

atteint le maximum de 100% de reconnaissance!

La méthode LPC

- 60 -

Table 4.1

Pour l'ensemble de test, les résultats restent exceptionnels : 98.1% de

classification correcte. Ils sont bien entendus légèrement inférieurs à ceux des données

d'apprentissage, mais de peu. On peut remarquer que les classes un et trois sont

reconnues parfaitement. Seule la classe deux donne des résultats inférieurs avec 94.2%.

Une solution pour tenter de remédier à ce problème serait d'augmenter le nombre

d'exemples de la classe deux dans les données d'apprentissage. Mais même ainsi, notre

réseau est fiable.

Table 4.2

Avec un taux de réussite aussi élevé, on n'est pas étonné que les critères

plus restrictifs de classification (distance et différence) sont inutilisables. Les résultats

sont fiables.

Phases du sommeil - LPC 20 - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 1800 0 0 0 1800 100.0

2 0 1791 9 0 1800 99.5

3 0 7 1793 0 1800 99.6

Classification Libre Distance 0.2 Différence 0.5

Correcte : 99.7% 99.6% 99.7%

Indécidable : 0% 0.2% 0.1%

Incorrecte : 0.3% 0.2% 0.2%

Phases du sommeil - LPC 20 -Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 1000 0 0 0 1000 100.0

2 1 942 57 0 1000 94.2

3 0 0 1000 0 1000 100.0

Classification Libre Distance 0.2 Différence 0.5

Correcte : 98.1% 98.0% 97.9%

Indécidable : 0% 0.8% 0.2%

Incorrecte : 1.9% 1.2% 1.9%

La méthode LPC

- 61 -

4.3. Compression à 10

Étant donné les excellents résultats d'une compression à 20 par la méthode

LPC, nous avons essayé d'aller plus loin. Nous avons réduit nos vecteurs initiaux par la

même méthode jusqu'à la taille 10. Nous les avons ensuite présentés au même réseau

que celui utilisé après compression à 10 par Karhunen; c'est-à-dire une architecture de

10 entrées, 5 neurones en couche cachée et 3 sorties. Les autres définitions du réseau

restant semblables à celles utilisées jusqu'à maintenant.

La figure 4.2 décrit l'apprentissage de ce réseau. Le résultat est surprenant.

Le réseau est toujours parfaitement capable d'apprendre la différence entre les phases du

sommeil. Il y a convergence en 992 itérations. La fonction d'apprentissage est passée

de 3 975 à 39. La fonction de validation, partant de 441, atteint la valeur 8. Le

pourcentage d'erreur sur l'ensemble test est de 2.6% à la fin de la simulation.

Phases du sommeil : LPC 10

Itérations

A
p

p
re

n
ti

s
s
a

g
e
 e

t

v
a

li
d

a
ti

o
n

0

100

200

300

400

500

600

700

800

900

1000

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

0

10

20

30

40

50

60

70

80

90

T
e

s
t

Apprentissage

Validation

Test

Mimimum

992

Figure 4.2

Cependant, cette taille de compression n'est pas intéressante selon nos

critères de temps. En effet, le réseau a beaucoup plus de mal à apprendre la distinction

La méthode LPC

- 62 -

des classes. 992 itérations ont été nécessaires. Notre ordinateur a du calculé pendant

52 heures et 44 minutes. En temps CPU, les 17 heures et 30 minutes restent énormes

par rapport aux résultats de la compression à 20. Remarquons cependant qu'ici aussi,

une vingtaine d'itérations suffisent déjà à donner un réseau classant très bien l'ensemble

de test.

Pour le réseau optimum, les résultats détaillées sont repris dans les tables

4.3 et 4.4. Les pourcentages de classification correcte pour chaque classe restent

pratiquement identiques à ceux obtenus pour une compression à 20. Ils sont toujours

aussi fiable. Seule la classe deux se dégrade encore un peu, tout en restant acceptable.

La structure du réseau ayant changé, on peut supposer que le problème vient bien d'un

manque d'exemples pour cette classe. Augmenter leur nombre ne peut qu'améliorer les

choses.

Table 4.3

D'autres essais ont été réalisés avec des tailles de compression inférieures.

Cependant, même avec beaucoup de temps, le réseau n'est plus capable de s'adapter. La

réduction à la dimension 10 est une limite.

Table 4.4

Phases du sommeil - LPC 10 - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 1800 0 0 0 1800 100.0

2 0 1788 12 0 1800 99.3

3 0 8 1792 0 1800 99.6

Classification Libre Distance 0.2 Différence 0.5

Correcte : 99.6% 99.6% 99.6%

Indécidable : 0% 0.1% 0.1%

Incorrecte : 0.4% 0.3% 0.3%

Phases du sommeil - LPC 10 - Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 ? /classe correct

1 1000 0 0 0 1000 100.0

2 0 923 77 0 1000 92.3

3 0 1 999 0 1000 99.9

Classification Libre Distance 0.2 Différence 0.5

Correcte : 97.4% 97.3% 97.1%

Indécidable : 0% 0.3% 0.3%

Incorrecte : 2.6% 2.4% 2.6%

La méthode LPC

- 63 -

5. Reconnaissance des caractères manuscrits

5.1. Introduction

Nous nous sommes basé sur les résultats obtenus par la méthode de

Karhunen et par les algorithmes du projet StatLog. Notre première simulation a donc

débuté avec des vecteurs de données réduits à la taille 40. Peu d'autres essais ont été

réalisés étant donné les premiers résultats obtenus.

5.2. Compression à 40

Une fois les données ramenées à 40 composantes, elles ont été présentées à

un réseau traditionnel de 3 couches de neurones : 40 en entrée, 16 en couche cachée et

10 en sortie. Les paramètres sont à nouveau ceux de la table 2.1. Ce réseau est

identique à celui utilisé après compression à 40 par Karhunen.

On voit dans la figure 4.3 la stabilité, mais aussi la limite de l'apprentissage.

La fonction de validation atteint son minimum à l'itération 1 184 avec la valeur de 22%

d'erreurs. La fonction de test indique alors 25%. La fonction d'apprentissage a eu le

temps de chuter de 29 687 à 3 360. Le réseau s'entraîne encore pendant 89 itérations

avant d'atteindre sa limite. La fonction d'apprentissage ne peut descendre en dessous de

3 358.

Ces résultats ont été obtenus après 11 jours de simulation, soit un temps réel

de 263 heures et 12 minutes et un temps CPU de 170 heures et 31 minutes. Les courbes

sont très régulières. Après 300 itérations, elles sont toutes les trois déjà pratiquement

parallèles à l'axe des abscisses.

La méthode LPC

- 64 -

Caractères : LPC 40

Itérations

A
p

p
re

n
ti

s
s
a

g
e

0

5000

10000

15000

20000

25000

30000

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

0

10

20

30

40

50

60

70

80

90

100

V
a
li

d
a
ti

o
n

 e
t

te
s
t

Apprentissage

Validation

Test

Minimum

1 184

Figure 4.3

La classification détaillée obtenue à partir du meilleur réseau et reproduite

dans les tables 4.5 et 4.6, indique que cette compression est uniformément mauvaise

pour toutes les classes. La méthode LPC ne donne pas d'aussi bons résultats que pour

nos ensembles de signaux. Avec 25% d'erreurs sur un ensemble test, ce réseau n'est pas

fiable. Cela n'est pas du à un problème d'incapacité de généralisation, puisque le taux

d'erreur sur l'ensemble d'apprentissage est sensiblement le même. Le taux de

compression est trop élevé.

Remarquons qu'ici les critères de sélection supplémentaires sont plus actifs.

Le réseau n'a pas réussi à tirer des conclusions très précises de l'ensemble

d'apprentissage qu'il a du étudier.

La méthode LPC

- 65 -

Caractères - LPC 40 - Ensemble d'apprentissage

Clas Classe obtenue ∑ %

se 1 2 3 4 5 6 7 8 9 10 ?

1 702 23 2 0 25 0 22 2 12 22 0 810 86.7

2 17 755 2 1 27 0 3 4 1 0 0 810 93.2

3 66 1 402 47 14 31 111 38 38 62 0 810 49.6

4 0 0 15 654 0 59 12 6 22 42 0 810 80.7

5 26 3 6 0 694 10 12 42 4 13 0 810 85.7

6 2 0 2 45 10 685 6 20 10 30 0 810 84.6

7 37 2 38 11 14 11 517 9 50 121 0 810 63.8

8 5 0 24 5 65 57 15 634 2 3 0 810 78.3

9 18 3 3 36 3 2 30 0 681 34 0 810 84.1

10 33 0 14 28 34 23 116 11 41 510 0 810 63.0

Classification Libre Distance 0.2 Différence 0.5

Correcte : 77% 66.7% 58.6%

Indécidable : 0% 21.8% 34.5%

Incorrecte : 23% 11.5% 6.9%

Table 4.5

Caractères - LPC 40 - Ensemble de test

Clas Classe obtenue ∑ %

se 1 2 3 4 5 6 7 8 9 10 ?

1 260 9 1 0 9 0 5 1 6 9 0 300 86.7

2 13 278 0 0 7 0 1 0 1 0 0 300 92.7

3 22 0 133 21 6 19 49 16 11 23 0 300 44.3

4 0 0 9 234 0 26 1 5 6 19 0 300 78.0

5 8 2 4 0 251 2 5 21 3 4 0 300 83.7

6 0 0 3 26 7 232 2 14 2 14 0 300 77.3

7 13 1 16 4 8 6 187 4 13 48 0 300 62.3

8 4 0 6 4 25 19 4 236 0 2 0 300 78.7

9 11 2 2 8 1 0 7 0 245 24 0 300 81.7

10 8 0 1 15 9 7 41 8 19 192 0 300 64.0

Classification Libre Distance 0.2 Différence 0.5

Correcte : 74.9% 64.9% 57.3%

Indécidable : 0% 22.4% 34.8%

Incorrecte : 25.1% 12.7% 7.9%

Table 4.6

5.3. Autres tentatives

La méthode LPC

- 66 -

Nous avons étudié deux autres types de compression : la compression à 40

suivie d'un recentrage et la compression à 30. Les simulations utilisant ces données

n'ont pas eu un comportement encourageant; c'est pourquoi nous ne les avons pas laissé

se terminer. Nous sommes convaincu que le temps n'aurait pas permis d'améliorer cet

apprentissage. Les courbes étaient devenus pratiquement planes. La table 4.7, indique

les résultats obtenus lors de l'interruption.

Méthode Itération Exactitude

apprentis.

Exactitude

test

Nombre

itérations

Temps

réel

Temps

CPU

40 recentré 150 67.0% 151 47h 36' 46h 52'

30 779 64.0% 782 247h 38' 223h 12'

Table 4.7

6. Reconnaissance des véhicules

Trois compressions par la méthode LPC ont été essayées pour le problème

de la reconnaissance des véhicules. Rappelons qu'avec 18 entrées, le réseau utilisant les

données originales fournit rapidement les résultats. Une compression n'est pas

nécessaire. Le but de nos tentatives est de mesurer les capacités de la transformation

LPC et d'établir des comparaisons avec les autres méthodes.

Comme le montre la table 4.8, aucun de nos essais n'a été concluant. LPC

n'est pas efficace pour ce type de données. Une autre méthode est nécessaire si on

désire réduire la taille du réseau. Nous n'étudierons donc pas plus en détail ces

résultats.

Méthode Itération Exactitude

apprentis.

Exactitude

test

Nombre

itérations

Temps

réel

Temps

CPU

10 87 54.6% 44.7% 331 1h 49' 1h 48'

8 62 57.3% 54.1% 610 3h 03' 1h 31'

4 120 48.3% 47.2% 254 28' 26'

Table 4.8

La méthode LPC

- 67 -

7. Conclusions

Les coefficients LP sont idéaux pour extrapoler des signaux. Ils possèdent

cette propriété car ils correspondent à une représentation de la puissance spectrale du

signal. Quelques coefficients seulement suffisent à capturer les informations. De

nouveau, il n'est pas possible à priori de déterminer le meilleur nombre. L'expérience

montre que des vecteurs de taille 1 000 ou 10 000 peuvent être réduits à la taille 10, 20

ou 50 selon les besoins.

Dans nos problèmes de classification, nous disposions d'un ensemble de

données de type signal : les analyses du sommeil. On constate que les résultats que

nous avons obtenus pour ce problème sont optimaux. La reconnaissance des caractères

et des véhicules n'a pas été aussi bonne.

Comme pour le chapitre précédent, nous constatons qu'il faut trouver un

juste milieu pour l'importance de la compression. Si elle trop faible, les itérations du

réseau seront longues. Si elle est trop forte, le réseau reconnaîtra moins bien et

réclamera peut-être plus d'itérations pour son apprentissage. Dans le cadre de la

reconnaissance des phases du sommeil, des réductions à 20 et à 10 étaient acceptables

pour la méthode LPC. Cependant, notre problème de classification préfère la

compression la moins importante à 20, car elle permet de réduire la complexité du

réseau ainsi que le nombre d'itérations nécessaires à son apprentissage.

- 68 -

CHAPITRE 5
LA MÉTHODE NLPCA

1. Introduction

Dans le chapitre trois, nous avons présenté une méthode de compression

linéaire : celle de Karhunen-Loève. Elle consistait en un mapping linéaire d'un vecteur

de données Y en un vecteur réduit T par une matrice de transformation P :

T  Y P

La différence principale entre la méthode de Karhunen et NLPCA (Non

Linear Principal Composant Analysis) est que cette dernière permet des

transformations non linéaires entre l'espace original et l'espace réduit. Si des

corrélations non linéaires existent entre les variables, NLPCA décrira les données avec

une plus grande précision et/ou avec moins de facteurs que Karhunen, pour autant qu'il

y ait des données en suffisance pour utiliser ce mapping plus complexe.

Cette dernière remarque est importante. Notre objectif dans ce travail est

de réduire la taille des données pour pouvoir utiliser un réseau plus petit et plus facile à

entraîner. Comme nous le verrons, la méthode NLPCA a un effet contraire. Sa mise en

oeuvre nécessite un réseau de neurones plus complexe que celui utilisé sans

compression préalable, pour traiter le problème posé. Cette méthode n'est applicable

que pour de petits problèmes. Étant donné sa réputation, nous la décrivons quand

même.

2. La méthode

2.1. Le principe

Dans la méthode NLPCA, les transformations vers l'espace des

caractéristiques est généralisé pour autoriser les relations non linéaires. Cela peut être

représenté par la transformation suivante :

La méthode NLPCA

- 69 -

T  G(Y) (1)

où Y est le vecteur de données dont on cherche les caractéristiques, T est le vecteur

résultat compressé et G = {G1, G2, …, Gƒ} est un vecteur de ƒ fonctions non linéaires

tel que si Ti est le ième élément de T,

Ti Gi (Y) (2)

La transformation inverse, restaurant la dimension originale des données,

est implémentée par un second vecteur de fonctions non linéaires H = {H1, H2, …,

Hm} :

Yj
'
 H j (T) (3)

La perte d'information est mesurée par E = Y - Y', et on doit donc chercher

des fonctions G et H qui minimisent ||E||. Cela correspond au critère optimal de la

méthode de Karhunen.

2.2. Recherche des vecteurs de fonctions G et H

Pour générer G et H, une approche fonctionnelle de base est utilisée.

Cybenko, en 1989, a montré que des fonctions de la forme

vk  wjk 2 (wij1ui  j1)
i1

N1


j1

N2

 (4)

où (x) est une fonction quelconque continue et monotone croissante telle que (x)1

lorsque x et (x)0 lorsque xsont capables de s'ajuster pour représenter

n'importe quelle fonction non linéaire v = ƒ(u) et avec un degré de précision arbitraire.

Une fonction  couramment choisie est la sigmoïde, définie par :

 (x)
1

1 ex (5)

La méthode NLPCA

- 70 -

Comme nous l'avons vu au chapitre 1, l'expression (4) correspond à un

perceptron à trois couches :

- La couche 1, comportant N1 neurones et dont le seul rôle est l'interfaçage entre

le réseau et l'environnement, est la couche fictive d'entrée.

- La couche 2, la couche cachée, comporte N2 neurones qui calculent

o j 2   (wij1oi1   j1)
i1

N1



 où olm est la sortie du neurone l de la couche m, avec dans ce cas oi1 = ui et

wijk est le poids de la connexion allant du neurone i de la couche k au neurone j

de la couche k+1.

- La couche 3, comportant pour chaque k un neurone calculant la somme de ses

entrées par

ok3  wjk 2o j 2
j1

N2



 avec dans ce cas vk = ok3, est la couche de sortie.

En pratique, deux modifications sont souvent apportées. Premièrement,

plutôt que d'utiliser une fonction linéaire en sortie, on utilise des fonctions limitant les

sorties à un certain intervalle fixé et fini. Deuxièmement, la fonction sigmoïde peut

changer d'échelle ou être translatée sans perte de généralité pour le réseau. Ceci est

utile car les ensembles de données à traiter que l'on rencontre sont souvent centrés.

Dans ce travail, nous avons dès lors utilisé, pour tous nos apprentissages, la fonction

tangente hyperbolique qui répond à ces conditions et qui a fait ses preuves.

On peut maintenant facilement définir les fonctions G et H. Ce sont des

réseaux tels qu'on vient de les définir. Définissons G. Si m est la taille du vecteur

original Y et f la taille du vecteur T des caractéristiques, N1 vaut m et il y a f neurones

en sortie (k varie de 1 à f). Étant donné que la couche cachée est là pour capturer les

relations non linéaires, pour obtenir f caractéristiques indépendantes, N2 ne doit pas être

inférieur au nombre f. La fonction Gk, représentant le kème facteur non linéaire, est

alors définie par la formule (4). Le réseau G est représenté à la figure 5.1.a.

La méthode NLPCA

- 71 -



























Y

Y

…

Y

1

2

m



























T

…

Tf

1
T

…

Tf

1

Y

Y

…

Y

1

2

m

(a)

"mapping"

(b)

"demapping"

'

'

'

Figure 5.1

H s'obtient similairement. La couche d'entrée reçoit les f caractéristiques

(N1 = f) et dans la couche de sortie, pour retrouver les m Yi originaux, il y a m neurones

de sortie Y'i. La couche de "demapping" contient les N2 neurones (N2 > f) à fonctions

sigmoïdes. Le réseau type de demapping est présenté à la figure 5.1.b.

La capacité de ces réseaux à s'ajuster à une fonction non linéaire provient de

la présence de fonctions d'activations non linéaires en couche cachée. En effet, sans la

présence de neurones non linéaires en couche cachée, ces réseaux seraient seulement

capables de produire des combinaisons linéaires des entrées à la sortie, ce qui n'est pas

suffisant pour notre problème.

Pour pouvoir utiliser les fonctions G et H, deux conditions sont à remplir. Il

faut décider du nombre de neurones dans les couches cachées. Pour éviter les

ambiguïtés, rebaptisons le N2 du réseau G en M1 (M pour Mapping) et le N2 du réseau

H en M2. Malheureusement, il n'y a pas de loi précise permettant de fixer le nombre de

neurones dans les couches cachées d'un réseau. Dans notre cas de compression, nous ne

pourrons que fixer des bornes et une estimation. Nous devons également découvrir les

meilleurs coefficients Wijk de la formule (4). Cela revient à réaliser l'apprentissage de

nos réseaux.

2.3. L'apprentissage des réseaux

Commentaire [3]: cette position de
sigma permet la compression non linéaire

Une autre position ou l'absence de sigma
implique une relation linéaire

La méthode NLPCA

- 72 -

Il y a un problème. En effet, pour réaliser l'apprentissage, on doit fournir au

réseau des vecteurs d'entrées et les vecteurs de sorties correspondants.

Malheureusement, dans le cas du réseau G, on connaît les entrées (Yi), mais pas les

sorties et dans le cas du réseau H, on connaît les sorties souhaitées (Yi), mais pas les

entrées. Pour résoudre ce problème, il suffit de se rendre compte que les entrées de H

sont les sorties de G. En combinant les deux réseaux, on en obtient un dont les entrées

et les sorties sont connues. On peut donc réaliser son apprentissage. Ce réseau

correspond à la fonction identité. Il est représenté à la figure 5.2.



























Y

Y

…

Y

1

2

m





















Y

Y

…

Y

1

2

m

Figure 5.2

Le réseau de la figure 5.2 comprend trois couches cachées : la couche de

mapping de G, la couche centrale dont les sorties correspondent aux caractéristiques T

et la couche de demapping de H. La seconde couche cachée est appelée couche de

compression à cause de sa dimensionnalité inférieure.

Lors de l'apprentissage, les poids sont modifiés de manière à minimiser la

différences entre les sorties obtenues Y'i et les sorties attendues Yi pour tous les

vecteurs présentés. L'apprentissage est terminé lorsque E, la somme des carrés des

erreurs, est minimum; c'est-à-dire pour n vecteurs de données :

E  min
w jkl

Yi  Yi
' 

p

2

i1

m


p1

n

 (6)

La méthode NLPCA

- 73 -

E est le carré de ||matrice d'erreurs||, le critère d'optimalité de la méthode de Karhunen.

Dès lors, minimiser E durant l'apprentissage résulte en une minimisation de la perte

d'information au même sens que Karhunen.

Après l'apprentissage, le réseau combiné n'est plus nécessaire et peut être

désagrégé en deux réseaux : G et H. G est la fonction d'intérêt. Les données sont

propagées à travers G pour projeter les données dans l'espace de dimensionnalité

inférieur des caractéristiques.

2.4. Détermination de la taille des couches

Dans le réseau combiné, il y a m noeuds d'entrées et de sorties et f noeuds

dans la couche de compression. Cependant, il n'existe pas de méthode définitive pour

décider à priori de la dimension des couches de mapping et de demapping (nous les

appellerons parfois les deux couches de mapping).

Le nombre de noeuds de mapping est lié à la complexité des fonctions

linéaires qui peuvent être générées par le réseau. S'il y a trop peu de noeuds de

mapping, l'ajustement risque d'être faible à cause de la capacité de représentation faible

du réseau. Cependant, si ce nombre de noeuds est trop élevé, le réseau risque

d'apprendre les variations stochastiques des données plutôt que les fonctions sous-

jacentes.

L'approche la plus simple à ce problème consiste dès lors à limiter le

nombre de poids dans le réseau à une fraction du nombre de contraintes imposées par

les données. Pour chaque vecteur de données, une contrainte séparée est imposée par

chaque noeud de sortie. Le nombre de paramètres ajustables doit donc être inférieur à

n*m. Pour le réseau combiné, en assumant que tous les noeuds ont des bias (le

paramètre ), le nombre de paramètres ajustables vaut (m+f+1)*(M1+M2)+m+f. Ces

deux constatations impliquent les inégalités uivantes :

m  f 1  M1  M2  m  f  mn

 M1  M2 
m n  f 
m  f  1

 (7)

Commentaire [4]: m*M1+M1*f+f*M2
+M2*m
= (m+f) (M1+M2)
= nombre de poids w

M1+f+M2+m
= nombre de bias

+ -> = (m+f+1) (M1+M2) + m + f

La méthode NLPCA

- 74 -

Pour un petit nombre de facteurs (f << m et n), cette expression peut être approximée

par :

M1  M2  n (8)

De plus, si le nombre de noeuds de mapping ou de demapping autorisé par

les inégalités (7) et (8) est inférieur à f, alors il n'y a pas assez de données pour

supporter l'extraction de f facteurs non linéaires, puisque la couche de compression

apparaît, par définition, dans la seconde couche cachée du réseau combiné, entre les

deux couches de mapping.

Rappelons enfin la règle des 10%. Un apprentissage est facilité s'il y a au

moins dix fois plus de vecteurs de données que de synapses dans le réseau; c'est-à-dire :

n 10 m  f  M1  M2  (9)

2.5. Remarques sur les couches cachées

On a vu qu'un réseau combiné de trois couches cachées permettait la

construction d'un réseau de compression. Est-ce que trois couches sont nécessaires ?

Imaginons que l'on supprime les couches de mapping; ne laissant que la couche de

compression. Si les fonctions de cette couche sont linéaires, le réseau correspond en

fait à la méthode de Karhunen. Cela a été montré par Sanger en 1989. Si les fonctions

sont des sigmoïdes, les fonctions G et H sont fortement restreintes; seules des

combinaisons linéaires des entrées, compressées par la sigmoïde dans son intervalle de

variation, peuvent être présentées. Dès lors, les résultats ne sont pas souvent meilleurs

que ceux obtenus par la méthode de Karhunen.

La structure à cinq couches dont trois cachées est donc la meilleure.

3. Le programme

Comme il vient d'être dit, la méthode NLPCA consiste en l'apprentissage

d'un réseau de neurones. Nous avons donc utilisé le simulateur de réseaux de neurones

de Monsieur Fombellida. Cependant, différents outils supplémentaires ont été

nécessaires. Nous avons donc programmé un module supplémentaire.

La méthode NLPCA

- 75 -

Le menu général se présente comme suit :

+++ OUTILS POUR LA METHODE DE COMPRESSION NLPCA +++

0. Aide

1. Conversion des donnees au format NLPCA

2. Selection des premieres couches d'un reseau

3. Modification du nombre de sorties d'un fichier de donnees

4. Utilisation type d'un reseau de SIRENE

5. Recuperation des sorties d'un reseau

9. Retour au menu principal

3.1. Conversion des données au format NLPCA.

La première étape dans la méthode NLPCA est de construire le réseau

combiné et de réaliser son apprentissage. Lorsque sa structure est définie, il faut fournir

au simulateur un fichier de données tel que, pour chaque pattern, les sorties souhaitées

soient identiques aux entrées.

Le premier sous-menu réalise la conversion d'un fichier d'apprentissage au

format standard de SIRENE en un fichier "identité" au même format.

3.2. Sélection des premières couches d'un réseau.

Lorsque l'apprentissage du réseau combiné est terminé, on n'a plus besoin

que des premières couches, celles qui correspondent au réseau de compression G.

Le second sous-menu transforme le réseau sauvé par SIRENE lors de

l'apprentissage, de manière à récupérer les X premières couches et obtenir un réseau de

compression utilisable dans SIRENE.

3.3. Modification du nombre de sorties et utilisation type

Ces commandes sont déjà présentes dans le module d'outils décrit au

chapitre deux. Elles réapparaissent ici, car la méthode NLPCA nécessite plusieurs

La méthode NLPCA

- 76 -

utilisations du réseau de compression et souvent avec des fichiers de données qui n'ont

pas à l'origine le bon format.

3.4. Récupération des sorties d'un réseau

Dans notre cas, la méthode NLPCA n'est qu'un prétraitement. Les vecteurs

comprimés seront réutilisés par un autre réseau de neurones dans un but à déterminer.

Il faut donc que ces premiers résultats soient utilisables par SIRENE, c'est-à-dire qu'ils

soient écrits dans un fichier au format standard.

Le quatrième sous-menu récupère les sorties du réseau de compression à

partir du fichier "use.txt" généré par SIRENE, ainsi que les sorties souhaitées associées

aux vecteurs non comprimés. Le résultat est un fichier standard d'apprentissage.

4. Les traitements

La démarche comporte plusieurs étapes :

1. Convertir les fichiers de données au format NLPCA.

2. Réaliser un apprentissage avec ces données.

3. Récupérer les premières couches du meilleur réseau obtenu.

4. Utiliser le nouveau réseau pour les trois ensembles de données.

5. Récupérer les résultats de "use.txt" et les convertir en fichier de données SIRENE.

6. Réaliser un apprentissage d'un nouveau réseau avec ces derniers fichiers pour

résoudre le problème posé.

7. Analyser les résultats.

 Détaillons ces étapes. Pour réaliser l'apprentissage du réseau combiné, il

faut fournir des fichiers de données tels que les vecteurs des sorties souhaitées soient

identiques aux vecteurs des entrées. La première étape est donc la conversion de nos

fichiers originaux à ce format. Cela est réalisé par la première commande de notre

programme.

Il suit ensuite l'apprentissage de ce réseau. L'utilisateur est libre de choisir

ses paramètres, mais il peut aussi utiliser le fichier type de commandes créé dans le

module "outils" de notre travail.

La méthode NLPCA

- 77 -

L'apprentissage réalisé, le réseau combiné n'est plus nécessaire. On ne doit

plus conserver que la première moitié : celle qui correspond à la compression. Cette

opération est réalisée par la deuxième commande du programme.

Une fois le réseau de compression disponible, on doit l'utiliser pour obtenir

les vecteurs réduits de données. Un problème se pose. Le fichier nécessaire lors de

cette utilisation doit contenir des vecteurs de sorties comprenant autant de valeurs qu'il

y a de sorties au réseau. Cela pour respecter les normes de SIRENE. Cela n'est en

général pas le cas, car les fichiers à notre disposition comprennent une valeur de sortie

par classe et il n'y a pas de rapport entre la taille de la compression (le nombre de sorties

du réseau) et le nombre de classes. Il est donc la plupart du temps nécessaire de

modifier la taille des vecteurs de sorties des fichiers. On peut le réaliser avec la

troisième ou la quatrième commande de notre menu. La quatrième à l'avantage de ne

faire cette modification que si nécessaire et de fournir un fichier type d'instructions pour

l'utilisation du réseau. La simulation peut avoir lieu.

On obtient un fichier "use.txt" comprenant tous les résultats de l'utilisation

du réseau. Ce fichier n'est pas un fichier de données pouvant servir à l'apprentissage, la

validation ou le test. Pour pouvoir utiliser les vecteurs comprimés dans un réseau de

neurones, il faut récupérer ces vecteurs dans "use.txt" et les vecteurs des sorties

attendues correspondantes dans les fichiers de départ. Le résultat doit être au format de

SIRENE. Cette opération est réalisée par la cinquième commande de notre module.

Ceci clôture la phase de compression.

Il ne reste plus qu'à utiliser nos nouveaux ensembles de données pour

résoudre le problème posé et à analyser les résultats obtenus.

Comme on peut le voir, il y a beaucoup d'options envisageables. Il n'était

pas possible de réaliser une commande unique s'occupant de toute la compression

NLPCA. Notre programme laisse toute sa liberté à l'utilisateur, mais lui offre de

nombreux raccourcis.

Nous pouvons maintenant passer à l'application de cette méthode pour les

problèmes décrits au chapitre deux.

La méthode NLPCA

- 78 -

5. Les phases du sommeil et les caractères manuscrits

Le but de ce travail est de trouver des méthodes pour diminuer la taille des

réseaux et accélérer leur apprentissage. L'algorithme de compression NLPCA nécessite,

comme on l'a vu, un réseau de neurones d'au moins 5 couches et comportant autant de

sorties et d'entrées qu'il y a de données dans un vecteur du problème. Son apprentissage

est inimaginable pour des vecteurs de données de grande taille.

Pour le problème de la reconnaissance des caractères, la méthode de

Karhunen a donné de bons résultats pour une taille réduite à 40. Pour obtenir ce taux de

compression par NLPCA, il faudrait un réseau comprenant au grand minimum 5 320

synapses (256 * 10 + 10 * 10 + 10 * 10 + 10 * 256). Pour respecter la règle des dix

pourcents, nous devrions également disposer d'au moins 53 200 exemples

d'apprentissage. Malheureusement, nous n'en avons que 8 100. Même si nous

supposions avoir assez d'exemples, le temps que nécessiterait l'apprentissage d'un tel

réseau serait phénoménal. Notons de plus que le problème de classification sans

prétraitement n'a besoin que d'un réseau plus petit (au minimum de 2 660 synapses).

C'est le même problème pour les phases du sommeil. Avec des vecteurs de 100

données, la méthode NLPCA n'est pas applicable. Elle nécessite trop de ressources.

6. Reconnaissance des véhicules

6.1. Introduction

Le problème de la reconnaissance des véhicules est envisageable par la

méthode NLPCA. Avec 18 données par pattern, le réseau combiné à créer reste

réalisable. Notons cependant dès maintenant que le peu de patterns disponibles sera

une limite à son utilisation.

Comme précédemment, les réductions à 10, 8 et 4 ont été envisagées. Les

réseaux combinés ont été testés avec différents nombres de neurones en couches

cachées.

La méthode NLPCA

- 79 -

6.2. Compression à 10

Nous avons réalisé chacune des étapes décrites dans la section 4. Pour le

réseau combiné, nous avons choisi une architecture de cinq couches comprenant par

ordre de propagation 18, 12, 10, 12 et 18 neurones. Il y a donc 672 synapses. Les

paramètres utilisés sont les mêmes que d'habitude : ceux de la table 2.1.

L'apprentissage du réseau combiné à partir des 658 exemples de l'ensemble

de données, est illustré par la figure 5.3. La fonction d'apprentissage débute à 3 103 et

converge vers la valeur 24. Cela nécessite 85 itérations. En ce court laps de temps, la

fonction de validation atteint un minimum d'erreurs de 26.6%. La fonction de test

indique 13.8%. Le réseau a donc parfaitement réussi à compresser les données

d'apprentissage, mais n'a pas réussi à généraliser parfaitement ses résultats. Ce n'est pas

étonnant, vu le faible nombre d'exemples présentés (658) comparé au nombre de

synapses (672). Nous sommes loin de la règle des dix pourcents.

La méthode NLPCA

- 80 -

NLPCA 12/10 (véhicules)

Itérations

A
p

p
re

n
ti

s
s
a

g
e

0

500

1000

1500

2000

2500

3000

3500

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

0

10

20

30

40

50

60

70

80

90

100

V
a
li

d
a
ti

o
n

 e
t

te
s
t

Apprentissage

Validation

Test

Minimum

85

Figure 5.3

La phase de compression a nécessité 3 heures et 36 minutes. En temps

CPU, cela a pris 1 heure et 42 minutes. Les courbes ont toujours la même allure que

d'habitude, mais étant donné le faible nombre d'itérations avant la convergence, on a

l'impression que les courbes de test et de validation n'ont pas eu le temps d'atteindre

leur minimum. Il serait intéressant de recommencer cette simulation avec plus

d'exemples d'apprentissage.

Une fois les vecteurs réduits récupérés, ils ont été présentés au réseau se

chargeant de la reconnaissance des véhicules. Ce réseau comportait 10 neurones en

entrée, 7 en couche cachée et 4 en sortie. Les paramètres restent les mêmes. Cette fois-

ci, on dispose de 658 exemples pour 98 synapses. L'équilibre se rétablit presque.

La figure 5.4 représente l'étude du réseau. La fonction de validation atteint

son minimum très vite : 23% d'erreurs. 24 itérations ont été nécessaires. Après, elle et

la fonction de test ne varient presque plus. La fonction de test indique 22% d'erreurs.

La fonction d'apprentissage part de 3 037, mais ne converge pas. À la 24ième itération,

elle a atteint la valeur de 937.

La méthode NLPCA

- 81 -

Véhicules : NLPCA 12/10

Itérations

A
p

p
re

n
ti

s
s
a

g
e

0

500

1000

1500

2000

2500

3000

3500

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

0

10

20

30

40

50

60

70

80

V
a
li

d
a
ti

o
n

 e
t

te
s
t

Apprentissage

Validation

Test

Minimum

24

Figure 5.4

3 heures et 53 minutes ont été nécessaires pour réaliser cet apprentissage de

623 itérations. En temps CPU, la machine a travaillé durant 1 heure et 56 minutes.

Cependant, après 150 itérations, nous aurions pu conclure avoir les meilleurs résultats

et arrêter la simulation. L'apprentissage aurait alors duré moins d'une demi heure en

temps CPU.

Les tables 5.1 et 5.2 reprennent les résultats détaillés de la classification

réalisée par ce réseau. On constate que ce sont les classes une et deux qui détériorent

les résultats. Les autres sont très bien reconnues. Étant donné les mauvaises conditions

d’apprentissage, nous pouvons considérer que le réseau a atteint correctement son

objectif. La compression NLPCA est réussie.

La méthode NLPCA

- 82 -

Table 5.1

Table 5.2

6.3. Compression à 8

Les résultats d’une réduction à 10 étant acceptables, nous avons examiné la

compression à 8. Le réseau combiné NLPCA créé pour cela, comprenait cinq couches

de 18, 12, 8, 12 et 18 neurones. Nos 658 exemples doivent donc déterminer un réseau

de 624 synapses. La règle des dix pourcents n’est toujours pas respectée.

La figure 5.5 décrit le premier apprentissage. La fonction d'apprentissage

converge vers 27. Lors de l'arrêt de la simulation, les taux d'erreurs de la fonction test

et de la fonction de validation sont respectivement de 16% et 27%.

Véhicules - NLPCA 12/10 - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 88 61 9 10 0 168 52.3

2 36 113 11 8 0 168 67.2

3 2 3 162 1 0 168 96.4

4 1 1 3 149 0 154 96.7

Classification Libre Distance 0.2 Différence 0.5

Correcte : 78.2% 74.8% 53.4%

Indécidable : 0% 7.4% 42.2%

Incorrecte : 21.8% 17.8% 4.4%

Véhicules - NLPCA 12/10 - Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 14 7 1 2 0 24 58.3

2 5 14 3 2 0 24 58.3

3 1 1 22 0 0 24 91.6

4 1 1 1 21 0 24 87.5

Classification Libre Distance 0.2 Différence 0.5

Correcte : 74% 71.4% 48.5%

Indécidable : 0% 7.5% 43.6%

Incorrecte : 26% 21.1% 7.9%

La méthode NLPCA

- 83 -

NLPCA 12/8 (véhicules)

Itérations

A
p

p
re

n
ti

s
s
a

g
e

0

500

1000

1500

2000

2500

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0
0

10

20

30

40

50

60

70

80

90

100

V
a
li

d
a
ti

o
n

 e
t

te
s
t

Apprentissage

Validation

Test

Mimimum

102

Figure 5.5

1 heure et 59 minutes (1 heure et 55 minutes en temps CPU) ont été

nécessaires pour obtenir ces résultats.

L’ensemble comprimé a été récupéré comme expliqué précédemment et

fourni au réseau de classification. Ce dernier était constitué de 10 neurones en entrée, 6

en couche cachée et 4 en sortie; cela correspond à 84 synapses. Il y a presque assez

d’exemples pour le second apprentissage.

La figure 5.6 montre que son étude a été plus tumultueuse. Le meilleur

réseau a été obtenu à l'itération 360, lorsque la fonction de validation indiquait un taux

minimum d'erreurs de 20%. Le taux associé de la fonction test est de 25% La fonction

d'apprentissage a eu le temps de décroître de 2 612 à 750. La non convergence et l'arrêt

sont déclarés à l'itération 491.

La méthode NLPCA

- 84 -

Véhicules : NLPCA 12/8

Itérations

A
p

p
re

n
ti

s
s
a

g
e

500

1000

1500

2000

2500

3000

0

4
0

8
0

1
2

0

1
6

0

2
0

0

2
4

0

2
8

0

3
2

0

3
6

0

4
0

0

4
4

0

4
8

0

10

20

30

40

50

60

70

V
a
li

d
a
ti

o
n

 e
t

te
s
t

Apprentissage

Validation

Test

Minimum

360

Figure 5.6

Les résultats détaillés des tables 5.3 et 5.4 ont été obtenus après 1 heure et

15 minutes de simulation. Ces tables indiquent que la classe un est mal reconnue, alors

que les autres le sont facilement. Les pourcentages globaux indiquant l’exactitude de la

classification sont inférieurs à ceux d’une compression NLPCA moins importante, mais

excellents relativement aux autres méthodes de réduction : Karhunen et LPC.

Table 5.3

Véhicules - NLPCA 12/8 - Ensemble d'apprentissage

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 67 92 3 6 0 168 39.8

2 27 133 5 3 0 168 79.1

3 1 1 165 1 0 168 98.2

4 1 4 1 148 0 154 96.1

Classification Libre Distance 0.2 Différence 0.5

Correcte : 78.3% 63.9% 56.3%

Indécidable : 0% 26.7% 41.6%

Incorrecte : 21.7% 9.4% 2.1%

La méthode NLPCA

- 85 -

Notons aussi l’utilité d’un critère comme la distance. Ici, les résultats ne

sont pas nets. Pour la perfection, il faudrait que les sorties obtenues soient toutes à 0

excepté une seule à 1. Le critère de la distance indique qu’il y a environ 27% des

patterns dont les deux plus grandes sorties sont différentes de moins de deux dixièmes,

au lieu de 1. C’était une grande source d’erreurs. En appliquant ce critère de sélection,

le taux d’erreurs pour l’apprentissage est tombé de 12.9% et pour le test de 18%. Une

autre procédure de décision peut être appliquée à ces patterns écartés.

Table 5.4

6.4. Autres compressions

Nous indiquons maintenant les résultats globaux obtenus pour d’autres

réseaux NLPCA de compression. Ils ne sont pas suffisamment significatifs pour faire

chacun l’objet d’un paragraphe séparé. La table 5.5 résume nos études. Deux lignes

sont associées à chaque tentative : la première décrit l’apprentissage du réseau combiné

et la seconde celui du réseau de classification.

Réseau Itération Exactitude

apprentis.

Exactitude

test

Nombre

itérations

Temps

réel

Temps

CPU

18/10/8/10/18 124 2 499 -> 27 88.3% 125 2h 15' 2h 03'

8/6/4 38 73.5% 72.9% 472 2h 37' 1h 14'

18/10/4/10/18 2 144 2 189 -> 59 74.5% 3 000 57h 24' 30h 49'

4/4/4 122 60.2% 64.5% 236 25' 25'

18/8/4/8/18 1 947 1 846 -> 81 69.2% 2 309 39h 18' 21h 37'

4/4/4 300 60.7% 60.2% 375 39' 39'

18/6/4/6/18 650 1 738 -> 96 66.0% 1 418 13h 28' 11h 20'

4/4/4 169 57.6% 49.6% 229 26' 26'

Table 5.5

Véhicules - NLPCA 12/8 - Ensemble de test

Classe Classe obtenue ∑ %

désirée 1 2 3 4 ? /classe correct

1 9 14 0 1 0 24 37.5

2 4 18 1 1 0 24 75.0

3 0 1 23 0 0 24 95.8

4 1 1 0 22 0 24 91.6

Classification Libre Distance 0.2 Différence 0.5

Correcte : 75% 64.1% 54.2%

Indécidable : 0% 28.7% 42.6%

Incorrecte : 25% 7.2% 3.2%

La méthode NLPCA

- 86 -

7. Données corrélées

7.1. Présentation

Le problème de la reconnaissance des véhicules a montré les possibilités de

la méthode NLPCA. Cependant, comme cet ensemble de données n’était pas

suffisamment important, les résultats ne sont pas exceptionnels. C’est pourquoi nous

présentons maintenant l’utilisation de cette méthode sur un ensemble de données créé

de toutes pièces de manière à pouvoir être traité efficacement.

Ce problème est un cas d’école très simple. Des vecteurs de deux variables

y1 et y2 ont été construits. Ils ont été obtenus par la règle suivante :

y1  0.9 sin x 

y2  0.9 cos x 





x  0,2 

Pour l'ensemble d'apprentissage, 400 valeurs de x ont été choisies

aléatoirement. L'ensemble de validation comprend 40 vecteurs et l'ensemble de test

400.

Notre objectif est de montrer qu'un réseau NLPCA est capable de retenir

parfaitement ces informations dans un seul neurone.

7.2. Résultats

Quatre réseaux combinés ont été envisagés. Chacun a un nombre différent

de neurones en couche de mapping, mais ils utilisent tous les mêmes paramètres

descriptifs (cfr. table 2.1). Le nombre d'éléments dans le fichier d'apprentissage a été

choisi pour respecter largement la règle des dix pourcents. Le plus gros réseau utilisé

comporte 36 synapses; c'est-à-dire moins que 400 / 10. Les simulations ont été

réalisées par SIRENE à partir des trois ensembles de données. On constate dans la table

5.6 que le neurone de la couche centrale de compression a chaque fois été capable de

résumer l'information des deux entrées. Augmenter le nombre de neurones en couches

de mapping n'a pas ici amélioré les résultats.

La méthode NLPCA

- 87 -

Réseau Itération Exactitude

apprentis.

Exactitude

test

Nombre

itérations

Temps

réel

Temps

CPU

2-6-1-6-2 78 427 -> 25 98% 80 12' 10'

2-4-1-4-2 73 571 -> 25 98% 73 37' 7'

2-3-1-3-2 73 329 -> 26 98% 73 7' 6'

2-2-1-2-2 39 378 -> 33 100% 64 4' 4'

Table 5.6

8. Conclusions

La méthode NLPCA utilise un réseau de neurones pour trouver les

caractéristiques non linéaires des données. Le réseau est d'un type conventionnel à

propagation : le perceptron. L'architecture particulière utilisée emploie trois couches

cachées, incluant une couche intérieure de compression. Ce réseau effectue un

apprentissage où l'entrée doit être reproduite à la sortie. En mettant moins de neurones

dans la couche de compression que dans la couche d'entrée, le réseau est obligé de

trouver des valeurs représentatives dans la couche centrale pour réaliser sa fonction :

reproduire son entrée à la sortie. Le fait d'utiliser des fonctions de transfert sigmoïdales

ou linéaires pour les neurones de compression, permet au réseau de tenir compte des

corrélations non linéaires dans les entrées.

Pour notre objectif de minimisation du temps d'apprentissage, il est clair

que la méthode de compression NLPCA est totalement inefficace. Étant donné la

complexité du réseau nécessaire, la phase de compression est susceptible de prendre

plus de temps à elle seule que la phase de classification sans compression préalable.

Cette méthode ne peut dès lors être appliquée qu'à de petits ensembles de données. De

plus, pour ceux-ci, le nombre d'exemples pour l'apprentissage doit être suffisamment

élevé. Pour obtenir de bons résultats, il faut de préférence respecter la règle des dix

pourcents. Cela n'est pas toujours évident vu le nombre élevé de synapses dans un

réseau combiné NLPCA. Si toutes ces conditions sont respectées, alors la compression

NLPCA est intéressante. Ses résultats devraient être meilleurs que ceux obtenus par la

méthode de Karhunen, car cette dernière pourrait être implémentée selon le même

principe, mais en utilisant uniquement des fonctions d'activation linéaires pour les

neurones. La méthode NLPCA est une amélioration de la méthode de Karhunen-Loève.

- 88 -

CHAPITRE 6
LA MÉTHODE LSP

1. Introduction

Les coefficients LSP (Line Spectral Pair) ont été créés pour représenter les

signaux de la parole. Ils sont constitués de paires de valeurs. Les tailles de

compression possibles doivent donc également être paires. Ces paramètres sont une

autre présentation des coefficients LPC.

On ne nous avait pas demandé d'analyser cette méthode. Nous en avions

entendu parler et avons décidé de l'étudier. Nous ne l'avons cependant pas appliquée

aux problèmes décrits dans le chapitre deux. Nous expliquerons pourquoi dans la

seconde section.

2. La méthode

Dans le chapitre 4, nous avons présenté les coefficients LP. Les coefficients

LSP ne sont qu'une réécriture de ceux-ci. Nous avions défini une représentation de la

puissance spectrale d'un signal par :

P(f) 
a0

1 ak zk

k1

M


2 (1)

où les ai sont les M coefficients LP à calculer et z  e
2if

.

Si nous définissons maintenant :

Ap z   1 ai z
i

i1

p

 (2)

(1) peut se réécrire 1/|AM(z)|2.

La méthode LSP

- 89 -

Nous pouvons également poser :

P(z 1)  Ap z 1  z
 p1 Ap (z)

 1 (a1  ap)z 1(ap  a1)z p  z  p1 

Q(z 1)  Ap z 1  z
 p1 Ap (z)

 1 (a1  ap)z 1(ap  a1)z p  z
 p1 

 (3)

c'est-à-dire deux polynômes de degré p+1. Ces polynômes ont une propriété

intéressante. Il a été démontré que tous leurs zéros se situent sur le disque unitaire et

alternent. De plus, si e
i

 est un de leurs zéros, e
 i

 en est un autre. Remarquons

aussi que les polynômes P et Q ont respectivement un zéro en 1 et -1.

A (z)

P (z)

Q (z)

p

p+1

p+1

 i i

-1

-1

-1

En calculant les M coefficients LP, on peut construire les coefficients des

polynômes P et Q. Les zéros 1 et -1 ne nous intéressent pas. Quel que soit le signal,

ces zéros seront présents et n'apportent donc aucune information supplémentaire. Dans

l'implémentation, les polynômes P et Q sont factorisés en deux polynômes P' et Q' d'un

degré inférieur et possédant les mêmes zéros à l'exception de -1 et 1. En résolvant P' et

Q', on obtient 2M zéros. Cependant, on peut en éliminer la moitié : ceux dont la partie

imaginaire est négative. En effet, on a vu qu'il y a toujours un e
 i

 correspondant à

e
i

 . Ces zéros ne contiennent aucune information supplémentaire. A partir des M

coefficients LP, on a donc obtenu M zéros. Étant donné que z = cos ()+ i sin (, on

peut associer à Q, M/2 angles iet à P, M/2 anglesi. Par définition, leurs valeurs sont

La méthode LSP

- 90 -

comprises dans l'intervalle [0,π]. Mathématiquement, en utilisant les paires (i , i), P

et Q peuvent être factorisés en :

P(z 1)  1 z 1  1 2 cos iz
1  z 2 

i1

p/2



Q(z 1)  1 z1  1 2cosi z
1  z 2 

i 1

p /2



Il faut remarquer que

Ap z
1 

P z1 Q z1 
2

dès lors, les paires (i , i) en sont une représentation et peuvent être utilisées en lieu et

place des coefficients LP. On les appelle les coefficients LSP (Line Spectral Pair).

3. Objections à son implémentation

Cette méthode a été imaginée dans le cadre du codage de la parole. Ces

coefficients sont préférés aux paramètres LPC, car ils sont en plus étroite relation avec

le signal de la parole2. Dans ce cas, la valeur de p est généralement 4.

Le premier problème que nous avons rencontré en utilisant cette méthode

est la complexité des calculs. Pour chaque pattern de l'ensemble de données à traiter, il

faut résoudre deux équations polynomiales dont le degré est égal à la taille de

compression. Pour la reconnaissance des phases du sommeil et une taille de

compression de 20, nous devions donc résoudre 36 000 équations de degré 20! De plus,

il était nécessaire que tous les zéros se trouvent sur le disque unitaire.

Malheureusement, que cela soit à l'aide de nos programmes ou de programmes

professionnels tels que Mathematica ou Matlab, il y avait souvent un zéro qui ne

respectait pas cette condition. Nous n'obtenions donc pas à chaque fois un vecteur

réduit entier. Nous supposons que les erreurs proviennent d'imprécisions de calcul.

Nous avons essayé de remédier à ce problème avec des spécialistes de Mons, mais sans

2 N. SUGAMURA, F. ITAKURA, "Speech Analysis and Synthesis Methods Developed at ECL in NTT -

from LPC to LSP -",Speech Communication 5, Elsevier Science Publishers B.V., North-Holland, 1986.

La méthode LSP

- 91 -

succès. Ils n'utilisent pas des valeurs de p aussi grandes. Notons aussi que d'autres

méthodes de calcul ont été proposées. Celles qui nous ont été montrées procédaient par

approximations successives des coefficients. Cependant, elles nous ont été

déconseillées, car les algorithmes d'amélioration de ces paramètres dépendent souvent

des types de signaux. Notre objectif étant une méthode générale de compression, nous

avons abandonné cette voie.

Outre ce problème de forme, il y en a un de fond. Les coefficients LSP sont

avantageux pour représenter des échantillons de parole. Nous ne sommes pas

convaincu que les calculs complexes que nécessite cette méthode, se justifie dans notre

cas. En effet, les coefficients LSP sont obtenus par des manipulations des coefficients

LPC. À priori, un réseau de neurones ne devrait pas être très sensible à ces

modifications et devrait même être capable de les représenter. De plus, à un coefficient

LPC correspond une paire de coefficients LSP. Pour représenter la même quantité

d'informations, il faudra deux fois plus de paramètres. Le gain apporté par les

coefficients LSP, s'il existe, ne devrait pas être important. Rappelons aussi que les

paramètres LPC donnent déjà d'excellents résultats et qu'il n'est pas évident de pouvoir

les améliorer.

4. Conclusions

Nous avons présenté le calcul des coefficients LSP. Différentes méthodes

sont possibles pour les obtenir. Celle que nous avons étudiée transforme les

coefficients LPC pour obtenir les LSP. Ces derniers se présentent sous forme de paires

d'angles compris entre 0 et π.

Nous nous sommes rendus compte de la difficulté de calculer ces

paramètres. Cela nécessite énormément de calculs complexes. De plus, le gain apporté

par leur utilisation dans un réseau de neurones à la place des coefficients LPC n'est pas

évident. Nous sommes convaincus du contraire. Pour ces raisons, nous n'avons pas

intégré notre implémentation dans notre programme.

- 92 -

CHAPITRE 7
COMPARAISONS DES MÉTHODES

1. Introduction

Dans ce chapitre, nous allons rassembler nos principaux résultats et les

comparer. Notre but est de déterminer quand et comment utiliser chaque méthode, pour

quelles raisons et pour quels résultats.

2. Les résultats

La table 7.1 reprend les principaux résultats obtenus dans notre travail. Ils

sont classés par ensembles de données et par ordre décroissant de pourcentage de

classification exacte de l'ensemble test. Les renseignements qui sont fournis sont : la

méthode de prétraitement, le nombre minimum d'itérations pour obtenir le meilleur

réseau, pour celui-ci le pourcentage d'exactitude sur l'ensemble d'apprentissage et sur

l'ensemble de test, le nombre d'itérations avant l'arrêt de la simulation, le temps réel et

CPU qu'elle a nécessité, ainsi que le temps CPU estimatif qui a été nécessaire pour

obtenir la meilleure itération.

Pour analyser ces résultats, nous devons d'abord définir nos critères de

réussite. Ce qui nous importe le plus est que pour un fichier de données quelconque

prétraité, puis présenté au réseau de neurones déjà entraîné, le pourcentage de

classification correcte soit le plus élevé possible. Nous avons donc classé les méthodes

selon leurs résultats pour l'ensemble de test. Cependant, ce n'est pas le seul facteur à

étudier. Notre objectif dans ce travail est de minimiser le temps d'apprentissage des

réseaux. Comme on l'a vu, un réseau très petit, c'est-à-dire celui pour lequel on a réalisé

une compression importante des données, n'est pas forcément plus rapide qu'un réseau

plus complexe. La rapidité tient compte de deux facteurs : le temps pour une itération

et le nombre d'itérations nécessaires. La compression n'influence directement que le

temps nécessaire à la réalisation d'une itération. L'autre facteur ne peut être deviné.

Pour une compression à 10 par la méthode LPC sur les données du sommeil, le temps

d'apprentissage du réseau est beaucoup plus long que pour une compression à 20, car il

faut 992 itérations au lieu de 141 pour y parvenir. Cela bien que le temps CPU pour

Comparaisons des méthodes

- 93 -

une itération soit passé de 2 minutes 47 secondes à 1 minute. A l'inverse, toujours pour

les données du sommeil, la méthode de Karhunen nécessite moins d'itérations pour une

compression plus forte. On a donc gagné en temps par itération (2 minutes à 1 minute)

et en nombre d'itérations (651 à 486). On peut donc conclure qu'on ne doit pas

forcément essayer d'obtenir la compression la plus forte. Lors de l'application de la

méthode LPC sur les données du sommeil, les résultats étaient déjà excellents en qualité

et en temps pour une compression à 20. Il paraissait déjà difficile d'obtenir de meilleurs

résultats selon ces deux critères. La compression à 10, fourni une qualité de

classification semblable, mais en un temps beaucoup plus important. Il n'était pas

nécessaire de l'envisager.

Méthode Min. Exactitude

apprentis.

Exactitude

test

Max. Temps

réel

Temps

CPU

T. CPU

estim.

Phases du sommeil

Sans 1 405 99.7% 98.3% 2 000 484h 25' 442h 48' 311h 04'

LPC 20 141 99.7% 98.1% 141 23h 13' 5h 49' 5h 49'

LPC 10 992 99.6% 97.4% 992 52h 44' 17h 30' 17h 30'

Karhunen 20 651 91.2% 89.5% 1 550 109h 31' 54h 04' 22h 42'

Karhunen 10 486 70.8% 72.9% 492 30h 23' 8h 10' 8h 04'

NLPCA > - - > > > >

Caractères

Sans > - - > > > >

Backpropag.1 - 95.9% 95.1% - 36h 00'

Karhunen 40r 53 96.3% 93.0% 580 87h 20' 86h 31' 7h 54'

Karhunen 20r 1 097 95.3% 91.3% 1 498 291h 42' 285h 44' 209h 14'

LPC 40 1 184 77.0% 74.9% 1 280 263h 12' 170h 31' 157h 43'

NLPCA > - - > > > >

Véhicules

Sans 59 88.0% 83.3% 444 1h 29' 1h 22' 10'

Backpropag.2 - 83.2% 79.3% - 4h 00'

Karhunen 10 61 85.7% 76.0% 975 3h 09' 2h 57' 11'

NLPCA 8 462 78.3% 75.0% 598 3h 24' 3h 10' 2h 26'

NLPCA 10 109 78.2% 74.0% 623 7h 29' 3h 38' 38'

LPC 8 62 57.3% 54.1% 610 3h 03' 1h 31' 9'

LPC 10 87 54.6% 44.7% 331 1h 49' 1h 48' 28'

Karhunen 8 4 48.2% 40.6% 404 1h 07' 1h 00' 1'
1. Il s'agit des résultats du projet ESPRIT StatLog obtenus par un perceptron sur des données ramenées à

une taille de 40 par la méthode de Karhunen.
2. Ce sont les résultats du projet StatLog sans prétraitement.
> Les résultats sont inconnus, mais sont supposés supérieurs à ceux de la même catégorie.
- Les résultats sont inconnus.

Table 7.1.

Comparaisons des méthodes

- 94 -

Nos ensembles de données ont illustré parfaitement ce que nous annonçait

la théorie. Il est important de remarquer l'ordre des méthodes pour chaque type de

données. Pour des signaux comme ceux correspondant aux phases du sommeil, la

méthode LPC est en tête. La méthode de Karhunen-Loève suit avec de bons résultats.

Pour une même taille de compression, la méthode LPC surclasse largement la méthode

de Karhunen; cela d'autant plus que la compression est forte. Même pour une

compression supérieure (10) par LPC, la méthode de Karhunen (20) ne peut se

défendre, que cela soit en qualité ou en temps nécessaire. Par contre, si nous ne

travaillons pas avec des signaux, les performances du LPC sont nettement inférieures.

Dans le cas des caractères par exemple, Karhunen fournit toujours de bons résultats

même pour une compression importante. La réduction LPC est déjà défavorable pour

une taille de 40, la plus mauvaise après la méthode NLPCA. Parlons de cette dernière.

Elle ne peut être appliquée qu'à de petits ensembles de données. Pour les autres, il est

certain qu'elle ne peut concurrencer LPC ou Karhunen. Par contre, pour un ensemble

de taille réduite comme celui des véhicules, elle se défend. Si toutes les conditions

d'apprentissage avaient été remplies, ses résultats auraient été meilleurs. Un indicateur

de ce fait est qu'une compression à 8 par NLPCA donne de meilleurs résultats qu'une

compression moins importante à 10. On sent l'influence du manque d'exemples lors de

l'apprentissage. Dans de meilleures conditions d'utilisation, la méthode de Karhunen

n'aurait probablement pas gardé la première place. Il faut rappelé que NLPCA est une

amélioration par réseau de neurones de la méthode de Karhunen-Loève. Cependant,

nous ne pouvons pas modifier le contexte et nous nous contenterons de ces résultats.

Pour une taille de compression importante, NLPCA montre ses qualités. Le réseau

combiné correspondant a pu être optimisé et souffre moins de la carence en exemples.

À la taille 8, Karhunen et LPC ne peuvent suivre. En conclusion, la méthode de

Karhunen est toujours conseillée. Si les données représentent un signal, LPC fournira

en général de meilleurs résultats encore. La méthode NLPCA est très difficile à mettre

en oeuvre. Son usage ne devrait être envisagé que pour de petits ensembles de données.

Nous avons comparé nos prétraitements entre eux. Que valent-ils en

général ? Dans le cadre des phases du sommeil, la réussite est éclatante. Nous

obtenons le même pourcentage de classification correcte que sans prétraitement, mais

53 fois plus vite! Pour les caractères, nous ne pouvons malheureusement pas établir de

comparaisons. Cependant, avec 93% de réussite, l'utilisation de la méthode de

Karhunen est très satisfaisante. Notons que la qualité de nos résultats est confirmée par

celle très proche du projet ESPRIT StatLog. De plus, le temps nécessaire estimatif est

raisonnable pour un réseau de neurones. Enfin, pour les véhicules, nos manipulations

Comparaisons des méthodes

- 95 -

nous ont fait perdre de la précision, mais les résultats ne sont pas mauvais. Avec 7.3%

de différence et les conditions de simulation rencontrées, on peut également conclure à

la réussite de nos prétraitements. Ici évidemment, on ne voit pas très bien ce qu'on y a

gagné. Les temps de simulation sont faussés par les conditions de traitement et trop

petits pour être significatifs. La compression NLPCA est cependant beaucoup plus

lente. Notons également que nous avons obtenu de meilleurs résultats sans

prétraitement que le projet StatLog.

3. Conclusions

Trois éléments importants ont été dégagés :

• Tout d'abord, selon nos critères d'efficacité et de temps, la compression la plus forte

possible n'est pas toujours la meilleure. La vitesse d'apprentissage dépend de deux

facteurs principaux : le temps pour une itération et le nombre d'itérations nécessaires.

La compression ne modifie directement que le premier.

• La méthode de Karhunen-Loève donne en général de très bons résultats quel que soit

le type des données à traiter. La méthode LPC la surclasse pour des signaux.

NLPCA ne devrait être envisagé que pour de petits ensembles de données.

• Si le prétraitement est bien choisi, les résultats obtenus sont tout à fait fiables. La

perte de qualité est minime. De plus, les temps de simulation sont fortement

diminués comme nous le cherchions. Nous pouvons conseiller ces prétraitements.

Commentaire [5]: pour utiliser
correctement la methode, il faut plus
d'exemples -> les temps de simulation
augmentent et ne sont plus rentables !!!

- 96 -

CONCLUSIONS

Nous avons commencé notre travail par une description des réseaux de

neurones. Théoriquement déjà, on découvre ses nombreuses qualités : parallélisme,

capacité d'adaptation, mémoire distribuée, capacité de généralisation, facilité de

construction … La pratique confirme ces premières observations. Nous avons utilisé

des réseaux de neurones artificiels pour résoudre plusieurs problèmes complexes,

commerciaux et industriels. Les résultats ont été excellents et des comparaisons avec

d'autres méthodes montre que le RNA est tout à fait compétitif.

Cependant, la théorie laisse également deviner un inconvénient du RNA : la

complexité de sa structure. Les RNA seront optimums quand ils auront leur propre

support et pourront exploiter pleinement le parallélisme. La taille des réseaux rend

malheureusement de telles implémentations encore plus difficiles à réaliser.

Actuellement, des simulateurs sur ordinateurs sont généralement utilisés. Hélas, pour

eux aussi, la complexité des réseaux est un gros problème, d'autant plus que les

simulateurs sont habituellement séquentiels. Le nombre de calculs nécessaires à

l'apprentissage d'un réseau devient très vite phénoménal. Il apparaît dès lors comme

une priorité de trouver des méthodes pour réduire la complexité des RNA.

Il nous a été demandé d'en analyser trois : Karhunen-Loève, LPC et

NLPCA. Nous en avons proposé une quatrième : LSP. La taille d'un réseau est liée au

nombre de ses entrées. Si on peut le diminuer, la complexité du réseau décroît. Les 4

méthodes que nous avons étudiées, prétraitent les valeurs fournies aux entrées d'un

réseau pour obtenir un nouveau pattern de caractéristiques de taille inférieure. Si cette

transformation est bien réalisée, un réseau plus petit utilisant ces données sera toujours

capable de réaliser son apprentissage et de fournir des résultats semblables à ceux

obtenus par le réseau n'utilisant pas le prétraitement. Le but principal de notre travail

était d'étudier les qualités de ce prétraitement pour les méthodes demandées.

Elles ont été utilisées pour résoudre différents problèmes de classification.

Nous avons été agréablement surpris. Les résultats ont été excellents et surtout n'ont

pratiquement pas été dégradés par les prétraitements. De plus, les temps de simulation

ont été diminués considérablement. Nous étions déjà convaincus de l'utilité de ces

prétraitements et cependant, les résultats ont dépassé nos espérances. Nous ne pouvons

que conseiller d'utiliser ces méthodes.

Prétraitement de données en reconnaissance de formes par RNA

- 97 -

Nous devons cependant les distinguer. Toutes ne sont pas aussi efficaces,

ou ne le sont que dans certains cas. La méthode de Karhunen-Loève donne en général

de très bons résultats quel que soit le type de données à traiter. La méthode LPC la

surclasse cependant pour des données de signaux. NLPCA est très lourd à utiliser et ne

devrait être envisagé que pour de petits ensembles de données. Dans de bonnes

conditions d'utilisation, elle donnera de meilleurs résultats que la méthode de Karhunen.

La compression par LSP a été abandonnée. Elle est trop difficile à réaliser et ne devrait

pas apporter de meilleurs résultats que la méthode LPC sur laquelle elle est basée.

Une dernière remarque concerne l'importance des compressions. Le réseau

le plus petit n'est pas forcément le meilleur. Dans le cadre de nos simulations, il a été

montré qu'il faut trouver un juste milieu. Si la compression est faible, le réseau ensuite

utilisé reste imposant et le gain est minime. Si la compression est trop forte, le réseau

n'a plus assez d'informations déterminantes et l'apprentissage peut demander un plus

grand nombre d'itérations, c'est-à-dire plus de temps. Malheureusement, il n'y a pas de

règle permettant de deviner la taille idéale, celle qui allie réduction significative de la

complexité du réseau et gain de temps pour son apprentissage. Avec un peu

d'expérience, elle est cependant rapidement trouvée.

Ce travail nous a convaincu de l'utilité des réseaux de neurones et des

prétraitements. Ces derniers se sont révélés très efficaces et très faciles à réaliser. Il ne

faut surtout pas les négliger.

BIBLIOGRAPHIE

- Jacek M. ZURADA, "Introduction to Artificial Neural Systems", West Publishing

Company, 1992.

- P. LATOUR, "Utilisation des réseaux de neurones artificiels dans la

reconnaissance de formes en signaux physiologiques", Convention FIRST, région

wallonne, université de Liège, avril 1990.

- F. BLAYO, "Réseaux neuronaux", laboratoire de Microinformatique, avril 1992.

- W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY, W. T. VETTERLING,

"Numerical Recipes", Cambridge University Press.

- E. DAVALO, P. NAÏM, "Des réseaux de neurones", deuxième édition, éditions

Eyrolles, 1990.

- F. X. LITT, "Analyse numérique", notes de cours, Faculté des Sciences

Appliquées, Université de Liège, 1991.

- J. ETIENNE, "Analyse mathématique", notes de cours, Faculté des Sciences

Appliquées, Université de Liège, 1986.

- M. BODESON, "Reconnaissance de mouvements mandibulaires par neurones

artificiels", travail de fin d'études pour l'obtention du grade de Licencié en

Informatique, 1991-1992.

- P. LASCAUX, R. THEODOR, "L'analyse en composantes principales", Analyse

numérique matricielle appliquée à l'art de l'ingénieur, tome 1.

- K. FUKUNAGA, W. L. G. KOONTZ, "Application of the Karhunen-Loève

Expansion to Feature Selection and Ordering", IEEE Transactions, vol. C-19,

number 4, April 1970.

- "The Karhunen-Loève Expansion", Spectral Analysis.

- N. SUGAMURA, F. ITAKURA, "Speech Analysis and Synthesis Methods

Developed at ECL in NTT - from LPC to LSP -",Speech Communication 5,

Elsevier Science Publishers B.V., North-Holland, 1986.

- J. HANCQ, "Automatic scoring of sleep stages with LSP adaptive filtering",

IEEE Benelux & ProRISC, Proceedings of the Workshop on Circuits, Systems

and Signal Processing, Houthalen, April 1992.

- F. W. ZAKI, "Learning Characteristics of a New Adaptive Line Spectral Pair

Filter", Mu'tah University, Jordan, Submitted to publication (Signal Processing).

- M. A. KRAMER, "Nonlinear Principal Component Analysis Using

Autoassociative Neural Networks", AIChe Journal, Vol. 37, number 2, February

1991.

Prétraitement de données en reconnaissance de formes par RNA

- E. SAUND, "Dimensionality-Reduction Using Connectionist Networks", IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, number 3,

March 1989.

- J. MAKHOUL, "Linear Prediction : A Tutorial Review", Proceedings of the

IEEE, Vol. 63, number 4, April 1975.

- R. D. KING, R. C. HENERY, A. SUTHERLAND, "A comparative Study of

Classification Algorithms : Statistical, Machine Learning, and Neural Network

(Draft)", August 1992.

 - A1 -

Annexe A
Menus de SIRENE

**

* *

* *

* SIRENE V1R9 *

* SImulateur de REseaux de NEurones *

* *

* M. Fombellida *

* Service de microelectronique *

* Institut Montefiore *

* ULG *

* October 92 *

**

 * MAIN MENU *

 1:Network...

 2:Patterns...

 3:Algorithms...

 4:Learn

 5:Use

 6:Statistics...

99:QUIT

Your choice :

__

 * NETWORK MENU *

 1: New network...

 2: Edit current network...

 3: Load BIN network file

 4: Save network in BIN file

 ANNEXE A : Les menus de SIRENE

 - A2 -

 5: Load ASCII network file

 6: Save network in ASCII file

 7: Convert BIN network file in ASCII file

 8: Convert ASCII network file in BIN file

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

 * NEW NETWORK MENU *

 1: Create a multiple layers perceptron with full connexion

 2: Create a input-output perceptron with full connexion

 0: RETURN TO MAIN MENU

99: QUIT

Your choice : 1

Number of layers:

Number of neuron(s) in layer 1:

Number of neuron(s) in layer 2:

Select the activation functions of the neuron

 1: Linear

 2: Sigmoid

 3: Sine

 4: Cosine

 5: Gaussian

 6: Cosine*Gaussian+Sigmoid

 7: Sigmoid Prime

 8: Hyperbolic tangent

 9: Sigmoid symetric

Your choice : f=tanh(a*x)

a:

...

Number of neuron(s) in layer 3:

Select the activation functions of the neuron

 ANNEXE A : Les menus de SIRENE

 - A3 -

 1: Linear

 2: Sigmoid

 3: Sine

 4: Cosine

 5: Gaussian

 6: Cosine*Gaussian+Sigmoid

 7: Sigmoid Prime

 8: Hyperbolic tangent

 9: Sigmoid symetric

Your choice : f=tanh(a*x)

a:

...

__

 * PATTERNS MENU *

 1: Load patterns file...

 2: Convert patterns file...

 3: Create patterns file

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

 * LOAD PATTERNS MENU *

 1: Load BIN file for learning

 2: Load BIN file for validation

 3: Load BIN file for test

 4: Load ASCII file for learning

 5: Load ASCII file for validation

 6: Load ASCII file for test

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

 ANNEXE A : Les menus de SIRENE

 - A4 -

__

 * CONVERT PATTERNS MENU *

 1: Simple file type conversions...

 2: Preprocessings...

 3: Analysis of patterns file

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

 **

 * SIMPLE FILE TYPE CONVERSIONS MENU *

 **

 1: Convert BIN file in ASCII file

 2: Convert ASCII file in BIN file

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

 * PREPROCESSING MENU *

All these preprocessings need the analysis file

 1: Convert BIN file in BIN mean-centered (0,1) file

 2: Convert BIN file in BIN mean-centered (-0.5,+0.5) file

 3: Convert BIN file in BIN mean-centered (-1,+1) file

 4: Convert BIN file in BIN mean-centered input (-1,+1) file

 5: Convert BIN file in BIN normalized (0,1) file

 6: Convert BIN file in BIN normalized (-0.5,+0.5) file

 7: Convert BIN file in BIN normalized (-1,+1) file

 ANNEXE A : Les menus de SIRENE

 - A5 -

 8: Convert BIN file in BIN input-decorrelated file

 9: Convert BIN file in BIN input-divide-by-max file

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

 * ALGORITHMS MENU *

 1: Learning cost functions

 2: Validation cost functions

 3: Test cost functions

 4: Success criteria

 5: Optimization algorithms

 6: Parameters

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

 * LEARNING COST FUNCTIONS *

Select the function to minimize during learning

 1: Total sum squared error

 2: Total sum squared error + minimize weights (W^2)

 3: Total sum squared error + minimize weights (W^2/1+W^2)

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

 * VALIDATION COST FUNCTIONS *

 ANNEXE A : Les menus de SIRENE

 - A6 -

Select the validation cost function

 1: Total sum squared error

 2: Classification error (%) (Maximum criteria)

 3: Classification error (%) (Threshold with margin criteria)

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

 * TEST COST FUNCTIONS *

Select the test cost function

 1: Total sum squared error

 2: Classification error (%) (Maximum criteria)

 3: Classification error (%) (Threshold with margin criteria)

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

 * SUCCESS CRITERIA *

Select the success criteria of the learning algorithm

 1: Small individual error

 2: Small composite error

 3: Sharp threshold

 4: Threshold with margin

 0: RETURN TO MAIN MENU

99: QUIT

 ANNEXE A : Les menus de SIRENE

 - A7 -

Your choice :

__

 * OPTIMIZATION ALGORITHMS MENU *

Select the learning algorithm

Heuristic methods

 1: Back Propagation with momentum

 2: Silva-Almeida

 3: Extended Delta-Bar-Delta

 4: Extended Quickprop

Non constraint optimization methods

 5: Gradient + line search (Steepest descent)

 6: Conjugate Gradient (Fletcher-Reeves) + line search

 7: Conjugate Gradient (Polak-Ribiere) + line search

 8: Limited memory quasi-Newton + line search

 9: Quasi-Newton (DFP) + line search

10: Quasi-Newton (BFGS) + line search

11: Conjugate Gradient (Fletcher-Reeves) with restart + line search

12: Conjugate Gradient (Polak-Ribiere) with restart + line search

13: Limited memory quasi-Newton with restart + line search

14: Quasi-Newton (DFP) with restart + line search

15: Quasi-Newton (BFGS) with restart + line search

 0: RETURN TO MAIN MENU

99: QUIT

Your choice :

__

Current value of the parameters

Success criteria: Individual error = 0.002500

 Threshold = 0.000000

 Up margin = 0.100000

 Down margin = 0.100000

 Epoch = 1000

 Minimum progress = 0.000001

Objective function: Gamma = 0.001000

 ANNEXE A : Les menus de SIRENE

 - A8 -

Optimization: Learning rate = 1.500000

 Momentum = 0.900000

 Mu = 1.000000

 Kappa = 0.010000

 Kappam = 0.100000

 Phi = 0.100000

 Phim = 0.500000

 gl = 20.000000

 gm = 5.000000

 Theta = 0.700000

 Up = 1.200000

 Down = 0.600000

Statistics: Size = 100

Randomize: Weights range = 0.500000

FLAGS

Learning = 1

Pruning = 0

-> Relearning = 0

Incremental learning = 0

-> Clamping = 0

 -> Relearning = 0

Incremental pruning = 0

-> Relearning = 0

Overlearning detection = 0

->Backtracking = 0

Brainwashing = 0

Press RETURN to continue

Modify:

 1:Individual error

 2:Threshold

 3:Up margin

 4:Down margin

 5:Epoch

 6:Minimum progress

 7:Gamma

 8:Learning rate

 9:Momentum

10:Mu

11:Kappa

12:Kappam

13:Phi

 ANNEXE A : Les menus de SIRENE

 - A9 -

14:Phim

15:gl

16:gm

17:Theta

18:Up

19:Down

20:Statistic size

21:Weights range

22:Toggle learning flag

23:Toggle pruning flag

24:Toggle -> relearning flag

25:Toggle incremental learning flag

26:Toggle -> clamping flag

27:Toggle -> relearning flag

28:Toggle incremental pruning flag

29:Toggle -> relearning flag

30:Toggle overlearning detection flag

31:Toggle -> backtracking flag

32:Toggle brainwashing flag

 0:RETURN TO MAIN MENU

99:QUIT

Your choice :

__

 - B1 -

ANNEXE B
LES MENUS DU PROGRAMME

+++ PRETRAITEMENT DE DONNEES EN RECONNAISSANCE DE FORMES

 PAR RNA +++

 0. Aide

 1. Karhunen

 2. LPC

 3. NLPCA

 4. Outils d'aide

 9. Quitter

Choix :

+++ KARHUNEN - LOEVE +++

 0. Aide

 1. Vecteurs propres

 2. Matrice de transformation

 3. Creation fichier compresse

 9. Retour au menu principal

Choix :

+++ VECTEURS PROPRES +++

 0. Aide

 1. Calcul d'une nouvelle matrice de vecteurs propres

 2. Chargement d'une ancienne matrice

 3. Sauvegarde d'une nouvelle matrice

 9. Retour au menu precedent

Choix :

 ANNEXE B : Les menus du programme

 - B2 -

+++ CALCUL DES VECTEURS PROPRES +++

Nom du fichier d'apprentissage : +++ Initialisation +++

+++ Creation de la matrice d'autocorrelation +++

+++ Recherche des vecteurs propres +++

Nombre de patterns traites :

Taille d'un pattern :

--- ENTER ---

+++ MATRICE DE TRANSFORMATION +++

 0. Aide

 1. Calcul d'une nouvelle matrice de transformation

 2. Chargement d'une ancienne matrice

 3. Sauvegarde d'une nouvelle matrice

 9. Retour au menu precedent

Choix :

+++ CALCUL D'UNE MATRICE DE TRANSFORMATION +++

Choix du nombre de sorties :

 1. Constant

 2. Selon importance des valeurs propres

 3. Selon importance des valeurs propres avec nombre max

Les valeurs propres sont comprises entre |...| et |...|

Choix :

Nombre de sorties :

Nombre de sorties souhaitees :

--- ENTER ---

+++ COMPRESSION +++

 0. Aide

 1. Sans estimation de la perte d'infos

 2. Avec estimation de la perte d'infos

 ANNEXE B : Les menus du programme

 - B3 -

 9. Retour au menu precedent

Choix :

+++ CALCUL DES ERREURS +++

 0. Aide

 1. Erreur pour chaque pattern (fichier)

 2. Erreur moyenne globale (ecran)

 9. Retour au menu precedent

Choix : +++ COMPRESSION +++

Nom du fichier a traiter :

Nom du fichier resultat :

Erreur moyenne globale :

+++ LINEAR PREDICTION CODE +++

 0. Aide

 1. Compression

 9. Retour au menu principal

Choix :

+++ OUTILS POUR LA METHODE DE COMPRESSION NLPCA +++

 0. Aide

 1. Conversion des donnees au format NLPCA

 2. Selection des premieres couches d'un reseau

 3. Modification du nombre de sorties d'un fichier de donnees

 4. Utilisation type d'un reseau de SIRENE

 5. Recuperation des sorties d'un reseau

 9. Retour au menu principal

Choix :

 ANNEXE B : Les menus du programme

 - B4 -

+++ OUTILS POUR L'UILISATION DE SIRENE+++

 0. Aide

 1. Creation d'un fichier type d'instructions

 2. Modification du nombre de sorties d'un fichier de donnees

 3. Utilisation type d'un reseau de SIRENE

 4. Analyse des resultats

 9. Retour au menu principal

Choix :

+ CREATION D'UN FICHIER D'INSTRUCTIONS NLPCA TYPE POUR SIRENE +

Le fichier d'instructions est sauve sous le nom 'sirene.instr' dans le repertoire courant

Attention, un ancien fichier de ce nom sera remplace !!

Voulez-vous continuer (o/n) ?

Nombre de couches : 3

Nombre de neurones dans la couche 1 :

Nombre de neurones dans la couche 2 :

Nombre de neurones dans la couche 3 :

Nom du fichier d'apprentissage :

Nom du fichier de validation :

Nom du fichier de test :

La fonction par defaut des neurones est la 8 (th) avec 1 comme parametre

L'algorithme d'optimisation choisi est le 10 (Quasi-Newton(BFGS) + line search)

La fonction d'apprentissage est la 2 (Total sum squared error + minimize weights

(W^2))

La fonction de validation est la 2 (Classification error () (Maximum criteria))

La fonction de test est la 2 (Classification error () (Maximum criteria))

Creation terminee

--- ENTER ---

A bientot j'espere

 ANNEXE B : Les menus du programme

 - B5 -

