SOMMAIRE

INTRODUCTION ...ttt ettt ettt ettt ettt et e aesbe s st eseentensese s eeneensensenseee 1
CHAPITRE 1
INTRODUCTION AUX RESEAUX DE NEURONESooooiviiiiirieeeeeeeseeeeeeeeeesesneen. 3
L. TEPOAUCTION ..cueitiieeiccite e et ettt ettt e nee 3
2. HISTOTIQUE .vveevieieeiieitiecieeie ettt ettt e e ae s aesteeenteesbeessessaessaesseesseesseeessansaensanns 4
3. Un neurone artificielooeeerieieieieieseeee st 4
3.1. Le mode¢le de McCulloch et PittS........cccovvevvieiieiieieniecie e 4
3.2, GENETAlISALION ...ttt sttt 6
4. LS TESCAUX ...uveeuieeieiieieeteete et e et et e bt enteetesaeesaeess bt enteeateenaesseesbeenaeeseenseeeneaseens 6
5. La mise & JOUr des POIASeeeeieieiieieieecee ettt 7
6. Apprentissage et adaptationcceecvvereieciieienieerie ettt 7
7. Le Perceptron a plusieurs COUCNESccuiviirieeierieiecceeeeeee e 8
7.1, DESCIIPHIONvieuiieiiieeteeiieeiieteetee et e et e steeteesbeeeseseaesseeesseesseasseessessaensaensens 8
7.2. Apprentissage par rétropropagation d'eIreurs.ccecververuereerereesennns 10
8. MISE @11 OBUVIEC....c..euiiieieieie ettt ettt et et esbe ettt e it e sbeebeeseeneente st e naeebeebeeneeeneeee 11
9. CONCIUSIONS. ...ttt ettt ettt ettt be et e st et e e sseeteaneesesaeas 12
9.1. DS PIOPIIELESeoneieeiieiieeiieet ettt ettt ettt et enee e nneas 12
9.2, DS HIMILES ...vvieerieiiieeiieeciieeereeeeireeeireesve et eesiaeeeaee e saveesareesasaeseseessseennes 13
9.3. NOS PIErAItCIMENLSeeuveeeiereiereiereeeieeeieseesteeseeseeseseesseesseeenseesesnsennnes 13
CHAPITRE 2
LES RESSOURCES MISES EN OEUVREccoooiiiiiiriiieieeeteeee et 15
L. INEOAUCLION ...ttt ettt ettt ettt e seea 15
2. Utilisation de SIRENEcoiiiiiiiiee e 15
I I o) (0421 10111 1TSS 17
TN R o (TS U 10 o USSP 17
3.2. Création d'un fichier d'InStructions tyPe........cccveeveecververeereeererieneeneens 18
3.3. Modification du nombre de sorties et fichier d'utilisation 18
3.4, Analyse des rESUIALSccuevviiierieriecie et 18
4. Les phases du SOMMEILcceevieriieiiieiieie ettt e e saee v esveesseens 19
4.1. Description du probIEme...........cceviiiiiiieieii e 19
4.2. Description des dONNEESc.eceviruireieieieieeiieieeeee e 20

4.3. Résultats sans COMPIESSIONcc.eeruieruerreereieriiereeeeieeieeseeeseeeneeeeeeeesneeennes 20

5. Les caractéres manuscrits de la poste allemandecoocoeoevieieieiiiiieieieee 23

5.1. Description du probléme et des données...........occeevreeieierieniesierenienens 23

5.2. Résultats Sans COMPIESSION......c..eruiruereririieeetenieetetete st sie e eeeeneeeaeen 23

6. LS VERNICULES....e.viiiiiiiieitiee ettt 24
6.1. Description du probléme et des données............ccoeevervververeerveneeneeniens 24

6.2. Résultats Sans COMPIESSION.......ccueiuierieerreeiiereereerteereereenesreeseeesaeeenens 25

6.3. Comparaisons avec des résultats officiels.........cocoveririereieii i 26

7. DONNEES COITEIEESvenienieieiesie ettt ettt ettt ettt ettt e te st seeebe it eee et et eeeseeane 28
8. CONCIUSIONS. ...ttt ettt ettt ettt sttt e bt et et e e st e seeeeseeneeeneas 28

CHAPITRE 3

LA METHODE DE KARHUNEN-LOEVEccoooouiiriiriirremneesseessesessesessesesessssesssonas 29
L. TETOAUCTION ...ttt e ettt et e 29
2. LamEtOAE ..ot et 29
2.1. Description formellecccvevieiiiniieiiieiecieceee e 29

2.2. Signification EOMETIUEc.eeueemeeeeierieeieetee ettt eteeeeeeee e see e eaee e e 32

I I o) (0 ea 21 00111 1TSS 34
3.1, VECICULS PIOPIES ..eeueeneetietieieeteeteeseeeseeenteenseeneeeneesseesseeansesneesneesseanseens 34

3.2. Matrice de transformation...........ccecverersierciereieniese e 35

3.3. Création du fichier COMPIESSE........cceevverieriieiieieerieeieeie e ere e seee e 35

4. Analyse des phases du SOMMEIL.........ccccveevieciiiiieiieiiieieeie et 35
4.1, INtrOAUCHION ...t 35

4.2, ComPresSion & 20......cceiieuieieieieieie ettt sttt ettt sttt seeeas 36

4.3, Compression & 10......ooiiiiieieieieieie ettt et 38

5. Reconnaissance des caracteres MAanUSCIILSeeeerereeriereerreseeesiesiesieseeeseeeeeenens 40
ST B 12 4L o1 T USSP 40

5.2. Compression & 40 €t TECENTIAZEcveerveeveereereriereeerreereseeseeeseeeseeeneeans 40

5.3. Compression & 20 €t TECENLIAZE . .ecvverveerveerrerreriereeerreereseesresseeseeeseans 43

5.4. Autres tentatives de COMPIESSION......cueervieriierrereeiesireereeeeseesaeesaeesees 45

5.5. Comparaisons avec des résultats officiels.........ccceevevvieiienieniicciecieiens 46

6. Reconnaissance des VENICUIEScccooiiuiiiiieiieit e 47
6.1, INtOAUCHIONeueiietieiieeeee ettt 47

6.2. Compression & 10........ceeiiririieiieeeieee e 47

6.3. Compressions inférieures & 10cooveveeeiiriienienieee e 49

7. CONCIUSIONS......cvviiieieiieeeeeeie ettt et eee e e e e ee e e e e eeaaeeeeeaeeeeeteeeeeraneeeesenaneseenes 50

CHAPITRE 4

LA METHODE LPCoovoomiiiiiniieeiee et st s 52
L. INEEOAUCHION. ...ttt ettt ettt e et e e eebaeebeeesbaeenseaeenseeennes 52
2. LamMENOAE ..oevieeieeiieieeeeee ettt enr e naeraens 52
3. L PrOQIAMIMEcoueveeiieeiieeiie et ettt ettt ettt e et e et e et e sbtesabeesabeesabeesananeennes 57
4. Analyse des phases du SOMMEIL.........ccccveevieciiiiiiiieiiieieeie et 57

4.1, INtrOAUCHIONeeivieiiicie ettt et e beebeeabeerae e 57
4.2, ComPIESSION & 20......ciuiieieeieuieiieiieieieetereeste et ete et eseeee e et et eneeeeseeeas 57
4.3, Compression & 10......coiiieieieieieieie ettt st ae e 60
5. Reconnaissance des caracteres MAanUSCIILSc.eecvereereereeenieereeesiesieeeeeeeeeeeee e 62
5.1 INtrOAUCLIONcuvieieeeie ettt ettt et ssee e e e e ense e 62
5.2. CompPression @ 40........c.ccverierieerieeiieeiienieseereereeaesaesseensaeseresseesseeseens 62
5.3, AULIES tENTATIVES....ievvieeieeeieeiieieeteeieeseeste et esteeesesteesteeseessaesesesseensaenseens 64
6. Reconnaissance des VENICUIESc.ccovieiieiicieiie e 65
7. CONCIUSIONS........uviiiiirierieieete ettt ettt e ettt e e be s eaeeereeeteesteesseesbeessessnesseenseenns 66

CHAPITRE 5

LA METHODE NLPCAoiiiiiiiriiieiieeieeeeeeisesisessssee st 67
L. INEEOAUCTION. .. .ceiiieiieciee ettt ettt e et e et eebaeeteeebaeenseaeenseeennes 67
2. LamMENOAE ..oevieeieeiiecieeeeee ettt ettt enr e naeraens 67

2.1, L PIINCIPE «eevvvenrieeiieerieiieetiesteesteeeeteseeesteeseesbeessesssessseenseesseesseessesseesseensens 67
2.2. Recherche des vecteurs de fonctions G et H.....ooovvevvevieiieieciieciieeee, 68
2.3. L'apprentissage des TESCAUXccerueeueerieruerienteaieieneesieseeeseeseeneeneeneenneas 70
2.4. Détermination de la taille des couches..........ccooeevvieeiiiviiciiiicice, 72
2.5. Remarques sur les couches cach€esceovevievenieineeiiieeieieene, 73
3. L8 PIOZIAMIMIC ...ttt ettt ettt ettt ettt sae ettt se et sbeebe e 73
3.1. Conversion des données au format NLPCA.c.cccoeovevienienieniennns 74
3.2. Sélection des premiéres couches d'un réseau.occerververeenieeceveninnns 74
3.3. Modification du nombre de sorties et utilisation type............cceeverveennns 74
3.4. Récupération des sorties d'un réSeaul..........ceevvrevirierienreeeeeseeneesreenens 75
4, LeS traItCIMENLSveeveieeiieiteeteete e ee et esteesteeaeeaeeteesteessesesseesseessesseesseesseenseenseanseens 75
5. Les phases du sommeil et les caractéres manusCritS..........cooeeeeeeerierierieecieriesieneens 77
6. Reconnaissance des VENICULESc.occuievieiieiieciie et 77
6.1, INIrOAUCHIONevieeiieciieeiee ettt ettt e eere e e reeeabeesbaeearee s 77
6.2. Compression @ 10........cceeierieriieiiieieeieneese et ere e ste s sreseeeseeeseens 78
6.3. COMPIESSION A 8....ovvieieiieiieieeteeieesee e eie e e eseeeteesteebeessaesssesasensaenseens 81

6.4. AULICS COMPIESSIONS ...vvivrirrereereereesesereesseeseeseesesssesseesseessessssessaessenns 83

7. DONNEES COTTELEES ...t ettt et e e e e s ae e e s eaee s e 84

AR TR S (1311715 (o) o DRSSPSR 84
7.2 RESUILALS ...eveiiiiiieieee ettt e e e e s e eaateeeeeeeesnnnee 85
8. CONCIUSIONS.eeiieeeeiieeeeiee et et e e ee e e e e e et e e eeraeeesenaeeeeeanaeeeeennees 85
CHAPITRE 6
LA METHODE LSP.....oeoeeeeeeeeeeeeee e ettt ee e s ee e s e s e eeee s ees s 87
1. INEEOAUCTION. ...ttt e et e e s aa e e s enta e e s enaaeeeeesaaeeeas 87
N -1 10 1S3 1 4 U6 Yo LT 87
3. Objections & SON IMPIEMENTALION.ecueeieieieieieeie ettt 89
A, CONCIUSIONS. ...ceiiiiiuueiieeeee ettt e e e e e ettt et e e e ee s s ae e aeereeesessesaaseeeesesssnasaesseeeesessns 90
CHAPITRE 7
COMPARAISONS DES METHODES ...ttt eese s eeese s eese s eeseeens 91
| T8 e Yo 11 o15 o) s W PR RRRRRRPRRN 91
2 LS TESUILALS ..ottt e et e e s et e e et e e e e e e e eaaeee s 91
3 CONCIUSIONS. ...ttt ettt e e et e e et e e e et e e e s eateeeseaaeeeseaseeessenaaeesanes 94
CONCLUSIONS .ottt et e ettt e e e et e s et e e e seaa e e e esataeeeeseaaeeesaaeeeeas 95
BIBLIOGRAPHIE

ANNEXES
A. Les menus de SIRENE
B. Les menus de notre programme

C. Code source du programme

REMERCIEMENTS

Avant de présenter notre travail, nous tenons a remercier tous ceux qui, de

loin ou de prés, ont participé a sa réalisation.

Nos remerciements vont tout d'abord a Monsieur Destiné qui a patronné ce

travail et a Monsieur Fombellida qui nous a conseillé et guidé.

Nous tenons également a exprimer notre reconnaissance 8 Mme Haesbroeck

pour la relecture minutieuse de notre texte et les conseils qu'elle nous a donnés.

Beaucoup d'autres personnes devraient étre mentionnées ici. Citons entre
autres : notre famille, Gentiane et ses parents, les habitués de la salle IA, ainsi que tous
les utilisateurs du réseau d'ordinateurs qui n'ont pas protesté contre la surcharge de leur

machine durant nos nombreuses simulations neurales.

UNIVERSITE DE LIEGE
Faculté des Sciences Appliquées

PRETRAITEMENT DE DONNEES
EN RECONNAISSANCE DE FORMES
PAR RNA

Travail de fin d'études présenté par
Michaél SCHYNS
en vue de l'obtention du grade de

Licenci¢ en Informatique
Année académique 1992-1993

SOMMAIRE \

INTRODUCTION

CHAPITRE 1

~N O »n b

Introduction aux réseaux de neurones

1. Introduction
2. Historique

. Un neurone artificiel

3.1. Le modele de McCulloch et Pitts

3.2. Généralisation

. Les réseaux
. La mise a jour des poids
. Apprentissage et adaptation

. Le Perceptron a plusieurs couches

7.1. Description
7.2. Apprentissage par rétropropagation d'erreurs

8. Mise en oeuvre

. Conclusions

9.1. Des propriétés
9.2. Des limites

9.3. Nos prétraitements

CHAPITRE 2

Les ressources mises en oeuvre

1. Introduction

2. Utilisation de SIRENE

3. Le programme
3.1. Présentation
3.2. Création d'un fichier d'instructions type
3.3. Modification du nombre de sorties et fichier d'utilisation
3.4. Analyse des résultats

4. Les phases du sommeil
4.1. Description du probléme
4.2. Description des données
4.3. Résultats sans compression

5. Les caractéres de la poste allemande
5.1. Description du probléme et des données
5.2. Résultats sans compression

6. Les véhicules
6.1. Description du probléme et des données
6.2. Résultats sans compression
6.3. Comparaisons avec des résultats officiels

7. Données corrélées

8. Conclusions

CHAPITRE 3

N =

N

La méthode de Karhunen-Loéve

. Introduction
. La méthode
2.1. Description formelle
2.2. Signification géométrique
. Le programme
3.1. Vecteurs propres
3.2. Matrice de transformation
3.3. Création du fichier compressé
. Analyse des phases du sommeil
4.1. Introduction
4.2. Compression a 20
4.3. Compression a 10
. Reconnaissance des caractéres manuscrits
5.1. Introduction
5.2. Compression a 40 et recentrage
5.3. Compression a 20 et recentrage
5.4. Autres tentatives de compression
5.5. Comparaisons avec des résultats officiels
. Reconnaissance des véhicules
6.1. Introduction
6.2. Compression a 10
6.3. Compressions inférieures a 10

. Conclusions

CHAPITRE 4

La méthode LPC
(Linear Predictive Coding)

1. Introduction

2. La méthode

3. Le programme

4. Analyse des phases du sommeil
4.1. Introduction
4.2. Compression a 20
4.3. Compression a 10

5. Reconnaissance des caractéres manuscrits
5.1. Introduction
5.2. Compression a 40
5.3. Autres tentatives

6. Reconnaissance des véhicules

7. Conclusions

CHAPITRE 5

La méthode NLPCA
(NonLinear Principal Component Analysis)

1. Introduction

. La méthode
2.1. Le principe
2.2. Recherche des vecteurs de fonctions G et H
2.3. L'apprentissage des réseaux
2.4. Détermination de la taille des couches
2.5. Remarques sur les couches cachées

. Le programme
3.1. Conversion des données au format NLPCA
3.2. Sélection des premicres couches d'un réseau
3.3. Modification du nombre de sorties et utilisation type
3.4. Récupération des sorties d'un réseau

. Les traitements

. Les phases du sommeil et les caractéres manuscrits

6. Reconnaissance des véhicules

6.1. Introduction

6.2. Compression a 10
6.3. Compression a 8
6.4. Autres compressions

. Données corrélées

7.1. Présentation
7.2. Résultats

. Conclusions

CHAPITRE 6

1. Introduction
2. La méthode

La méthode LSP
(Line Spectral Pair)

3. Objections a son implémentation

4. Conclusions

CHAPITRE 7

Comparaisons des méthodes

1. Introduction

2. Les résultats

3. Conclusions

CONCLUSIONS \

BIBLIOGRAPHIE

ANNEXES

A. Présentation des menus de SIRENE

B. Présentation des menus de notre programme

C. Code source de notre programme

INTRODUCTION

Depuis des siécles, les hommes développent des machines pour simplifier
leur vie. Le début de cette ¢re de construction commenga avec la découverte de
machines simples telles que le levier, la roue et la poulie. De nos jours, ingénieurs et
scientifiques essayent de développer des machines intelligentes. Parmi elles, on trouve

les réseaux de neurones artificiels (RNA).

Les hommes et les animaux sont bien meilleurs et plus rapides pour
reconnaitre des images que le plus avancé des ordinateurs. Les réseaux de neurones
artificiels (RNA) tentent d'imiter leur comportement c'est-a-dire apprendre par
expériences et étre ensuite capable de prendre rapidement de bonnes décisions. Ces
capacités sont basées sur le fait que nous pouvons reproduire certaines des
caractéristiques du cerveau humain a l'aide de moyens artificiels. Un réseau de
neurones est réalisé par un maillage de noeuds fonctionnels, appelés neurones, et de
connexions entre eux. Ils opérent collectivement et simultanément sur la plus grande
partie ou sur toutes les données et entrées. Nous présenterons dans ce travail le modeéle

le plus couramment utilisé et déterminerons ses nombreuses qualités.

Les réseaux de neurones n'ont malheureusement pas que des avantages.
Leur taille croit avec la quantité et la complexité des données a traiter. Or le principal
inconvénient du RNA est lié a sa complexité. Plus elle est grande, plus le RNA sera
difficile et coiteux a implémenter physiquement et plus son temps d'apprentissage sera
grand. Pour résoudre ce probléme, une solution est de prétraiter les données pour

diminuer leur taille.

Il nous a dés lors ét¢ demandé d'analyser trois méthodes de compression
applicables au traitement par RNA : la méthode de Karhunen-Loéve, la méthode LPC
(Linear Predictive Coding) et la méthode NLPCA (Non Linear Principal Composant
Analysis). Nous en avons ajouté une : la méthode LSP (Line Spectral Pair). Les
chapitres qui y sont consacrés tenteront de convaincre le lecteur de l'efficacité de ces
procédés. Nous déterminerons également comment choisir la méthode a utiliser pour
un probléme de classification posé a un RNA. Pour ce faire, deux analyses sont
réalisées. La premicre consiste en un développement théorique de la méthode. La
seconde, plus importante, est son application a des ensembles de données représentatifs,

correspondant a des problémes commerciaux et industriels complexes. On analysera

-1-

Prétraitement de données en reconnaissance de formes par RNA

ensuite les résultats de classification d'un réseau de neurones a partir de ces données

prétraitées. Il y aura également des comparaisons avec les résultats sans prétraitement.

Trois problémes de reconnaissance de formes seront envisagés. Le premier
demande a un RNA de reconnaitre des phases du sommeil a partir d'enregistrements
polygraphiques. Le second est un probléme de reconnaissance de caractéres manuscrits
digitalisés. Le dernier est un probléme de distinction de silhouettes de véhicules. Ces
données ont été choisies pour mettre en valeur certains prétraitements par rapport aux
autres. De plus, I'utilisation d'exemples réels montre que les réseaux de neurones sont
déja applicables. Ce travail prouve leur utilité et leur efficacité au niveau commercial et
industriel.

Nous espérons vous convaincre de l'utilité des réseaux de neurones et des

prétraitements et nous vous souhaitons une bonne lecture.

CHAPITRE 1 ,
INTRODUCTION AUX RESEAUX DE
NEURONES

1. Introduction

Différents modeles de réseaux de neurones ont déja été présentés. Leur
caractéristique commune est de vouloir imiter certaines des propriétés du cerveau

humain en reproduisant une partie de ses structures élémentaires.

Dans I'état actuel de nos connaissances dans le domaine de l'intelligence
artificielle et plus généralement de l'informatique, nous ne disposons pas toujours

d'algorithmes efficaces pour résoudre des problémes complexes tels que :

- permettre a un robot de conduire un véhicule dans un environnement
variable.

- réaliser la lecture automatique d'un texte manuscrit produit par
n'importe quelle personne.

- reconnaitre la parole quelle que soit la personne qui parle.

- reconnaitre des visages d'individu indépendamment de I'angle sous

lequel ils sont présentés.

Les ordinateurs sont extrémement rapides et précis pour exécuter des
séquences d'instructions qui ont ¢été formulées pour eux. Malheurecusement, les
problémes cités nécessitent la considération simultanée d'un trés grand nombre de
contraintes, parfois mal définies. Il est donc difficile de leur trouver une formulation
informatique. De plus, le systéme de traitement humain de l'information est composé
de neurones qui travaillent a des vitesses a peu pres un million de fois plus lentes que
les circuits d'un ordinateur. Cependant, les humains sont beaucoup plus efficaces pour
résoudre des problémes complexes comme ceux mentionnés plus haut. L'organisation
du cerveau humain semble donc une des clefs du probléme. Malheurcusement, la
compréhension des systémes neuraux biologiques n'est pas encore trés avancée. Nous

devons donc nous limiter a des modéeles trés simplifiés. On peut dés lors supposer que

Introduction aux réseaux de neurones

cette technique ne pourra que se développer avec I'amélioration de nos connaissances
sur le cerveau.

Cette capacité de traitement théorique et les premiers résultats obtenus dans
la pratique méritent dés lors que l'on s'intéresse aux réseaux de neurones. Nous
décrirons donc brievement un modele généralement utilisé : le perceptron a plusieurs
couches. Nous en déduirons quelques autres avantages des réseaux de neurones par
rapport a la programmation traditionnelle, mais aussi certains inconvénients. Cette
é¢tude permettra de comprendre la nécessité de méthodes de prétraitements et des

conditions de leur implémentation, sujet de ce travail.

2. Historique

La premiére modélisation d'un neurone date de 1943. Elle a été présentée
par McCulloch et Pitts. L'interconnexion de ces neurones permet le calcul de plusieurs
fonctions logiques. En 1949, Hebb propose le premier mécanisme d'évolution des
connections, appelées par analogie des synapses. L'association de ces deux méthodes
permit a Rosenblatt en 1958 de décrire le premier modéle opérationnel de réseaux de
neurones : le perceptron. Celui-ci est capable d'apprendre a calculer un grand nombre
de fonctions booléennes, mais pas toutes. Ses limites théoriques furent mises en
évidence par Minsky et Papert en 1969. Depuis 1985, de nouveaux modéles
mathématiques ont permis de les dépasser. Cela a donné naissance au perceptron

multicouches que nous étudierons plus particuliérement.

3. Un neurone artificiel
3.1. Le modéle de McCulloch et Pitts

La premicre définition formelle d'un neurone artificiel basée sur le modele
biologique a été formulée par McCulloch et Pitts. Une représentation en est donnée a la
figure 1.1a. Les entrées Xj (i=1, 2, ..., n) sont booléennes (présence ou absence
d'impulsion a l'instant k). La sortie est identifiée par le symbole O. Wj est le poids

associé a la connexion. La fonction calculée par le neurone est définie comme suit :

Ok+1 Jl Sian:WinZT
[0 SiiW:‘X?<T

i=1

Introduction aux réseaux de neurones

Notons qu'un poids négatif inhibe une connexion, au contraire d'un poids

positif qui la renforce. C'est le choix des valeurs de ces poids qui permettra de réaliser

la fonction recherchée. La figure 1.1 montre comment on peut construire des portes

¢lémentaires grace a ces "coefficients synaptiques". On peut en déduire que ce modele

simpliste permet déja la réalisation d'un ordinateur digital de complexité arbitraire.

& st
(NOR)
1

X3
1.1.b
IT
R B el |k
Excitation
(CELLULE
_-1 MEMOIRE)
Inhibition
1.1.d
Figure 1.1

Introduction aux réseaux de neurones

3.2. Généralisation

Le précédent modele a plusieurs inconvénients. Il est binaire et statique.
Les coefficients et les seuils 6 sont fixés définitivement. Il est assez simple de résoudre

ces problémes. La figure 1.2 représente la nouvelle forme du neurone.

W, Synapses
Xl _— 4
W)
Xy ——
‘ —& 0
w2
%, 4
? Noeud
Poids de calcul
multip licatifs
Figure 1.2

Chaque neurone consiste en un élément de traitement (processeur) de
plusieurs entrées et calculant une seule sortie. Les poids synaptiques sont représentés
par un vecteur W dont les ¢léments sont modifiables. La sortie est calculée par une
fonction d'activation f. Différentes fonctions sont envisageables. Les plus courantes
sont la fonction sigmoide et la fonction signe. Notons que le seuil du modele de
McCulloch et Pitts est implicitement représenté par une connexion dont le poids est -1

et 'entrée 0.
4. Les réseaux

Une fois la structure d'un neurone établie, la définition d'un réseau est
immédiate : un réseau de neurones est une interconnexion de neurones telle que leur
sortie est connectée, avec un poids synaptique, aux entrées d'autres neurones. Le choix
des neurones connectés entre eux détermine I'architecture du réseau. Différents
modeles existent : multicouches, Hopfield, Kohonen, Boltzmann. Chacun a ses propres

techniques d'apprentissage et s'applique plus particuliérement a certains domaines.

-6-

Introduction aux réseaux de neurones

Disposant d'une bonne méthode d'apprentissage pour les réseaux multicouches et ceux-
ci répondant a nos besoins, nous laisserons le loisir au lecteur intéressé de consulter les

ouvrages de références pour les autres modeles.
5. La mise a jour des poids

11 existe essentiellement trois modes possibles pour I'évolution de 1'état du

réseau :

a) Mode séquentiel : les neurones réévaluent leur sortie l'un aprés
l'autre dans un ordre déterminé.

b) Mode aléatoire asynchrone : chaque neurone réévalue sa sortie a
des intervalles de temps aléatoires.

c¢) Mode parallele : tous les neurones réévaluent leur sortie

périodiquement et simultanément.

6. Apprentissage et adaptation

L'apprentissage consiste a trouver le réseau qui fourni la meilleure solution
au probléme qu'il doit résoudre, pour un ensemble de données dites d'apprentissage.
Cela est réalisé en adaptant, grace a certaines régles, les vecteurs de poids. Ce concept
d'apprentissage n'est vraiment intéressant que si le réseau posséde des capacités de
généralisation, c'est-a-dire qu'il est capable de fournir une bonne solution pour d'autres

données.

De nombreuses régles d'adaptation des poids existent : loi de Hebb
(renforcer une connexion entre deux neurones actifs), régle du Perceptron (modifier les
poids en fonction de l'erreur entre la sortie souhaitée et celle obtenue), loi delta, de
Widrow-Hoff, de corrélation, ou encore du type "le gagnant prend tout". Plus

généralement, on peut répartir ces méthodes d'adaptation en deux classes :

1) Les apprentissages supervisés ou avec professeur. Dans cette catégorie, on
suppose que chaque fois qu'une entrée est appliquée au réseau, la sortie désirée
est fournie par le professeur. Celui-ci pourra alors récompenser ou punir le

réseau selon l'erreur commise en ajustant les poids. Cette grande classe

Introduction aux réseaux de neurones

d'algorithmes peut se subdiviser en trois sous-catégories : auto-association,

hétéro-association et classification.

2) Les apprentissages non supervisés. Dans cette catégorie, la réponse désirée est
inconnue. Le réseau est alors supposé découvrir lui-méme la meilleure

représentation de I'information fournie.

Il est important de remarquer que c'est I'ensemble des poids ainsi obtenus
qui détermine le réseau résolvant le probléme posé. La dégradation accidentelle d'un de
ces poids n'aura en général que peu d'influence sur le résultat final; les autres assurant la

convergence vers la solution.

7. Le Perceptron a plusieurs couches
7.1. Description

Ce type de Perceptron est un réseau multicouches non récurrent. Sa

structure est définie par :

a) L'ensemble des neurones du réseau peut étre divis€é en N>3 sous-ensembles

disjoints. Chacun de ces ensembles s'appelle une couche.
b) Il existe une numérotation de 1 & N de ces couches telle que :

- deux neurones appartenant a des couches différentes ne peuvent étre
directement connectés que si ces deux couches sont adjacentes; c'est-a-dire
si leur indice différe d'une unité.

- la couche 1 s'appelle la couche d'entrée et est la seule dont les neurones ont
leur état directement influencé par l'environnement. En réalité, ces
neurones sont fictifs et se contentent de jouer le réle d'interface entre le
réseau et 1'environnement.

- la couche N s'appelle la couche de sortie et est la seule qui fournisse
directement une réponse a I'environnement.

- les autres couches sont appelées couches cachées et ne peuvent

communiquer directement avec l'environnement.

Introduction aux réseaux de neurones

- les réseaux non récurrents ne possedent pas de cycle; c'est-a-dire que les
connexions se font toujours d'un neurone vers un autre de la couche

immédiatement supérieure.

Un exemple d'un tel réseau est représenté a la figure 1.3. Ici, l'information
progresse de couche en couche en partant de celle d'entrée pour arriver a celle de sortie

ou elle représente alors la réponse fournie par le systéme a l'environnement.

Yl Y2 Ym Sorties

Couche
de sortie

Deuxiéme
couche cachée

Premiére
couche cachée

Couche
d'entrée

Entrées

Figure 1.3

II peut étre montré que pour n'importe quel probléme de classification, il
existe un réseau non récurrent a trois couches qui résout ce probleme. Cependant, il
n'est pas sans intérét d'utiliser un plus grand nombre de couches intermédiaires. En

effet, cet accroissement du nombre de couches s'accompagne généralement d'une

-9.

Introduction aux réseaux de neurones

amélioration des capacités de généralisation, d'une plus grande résistance aux
dommages et d'une meilleure efficacité quant a la représentation interne construite par

le réseau pour stocker les données lors de l'apprentissage.

7.2. Apprentissage par rétropropagation d'erreurs.

L'algorithme de la rétropropagation d'erreurs est actuellement la procédure
d'apprentissage la plus utilisée. Cette popularité est une conséquence des résultats
généralement bons qu'elle permet d'obtenir pour un grand nombre de problémes
différents et cela en réalisant des simulations sur machines séquentielles, en des temps
raisonnables vis-a-vis de ceux requis par d'autres algorithmes tel que, par exemple,
celui du recuit simulé. Cette régle est en fait une généralisation de la loi delta et pour

cette raison est souvent appelée loi delta généralisée.

Dans cet algorithme, de méme que 1'on est capable de propager un signal
provenant des neurones d'entrée, on peut, en suivant le chemin inverse, rétropropager
l'erreur commise en sortie vers les couches internes et modifier en conséquence les
poids. Cette minimisation de l'erreur permet de mémoriser la relation définie entre
I'entrée et la sortie désirée. Ce schéma est appliqué a chaque paire entrée-sortie de
I'ensemble d'apprentissage et recommencé plusieurs fois jusqu'a I'obtention d'une erreur
globale acceptable. Le nombre d'itérations nécessaires n'est malheureusement pas
estimable.

Nous donnons ici une formalisation sommaire de cet algorithme. Pour un
exemple a apprendre donné, on note X le vecteur des entrées et Y le vecteur des sorties

désirées. Si le réseau comporte n neurones en entrée et m en sortie, on a donc :
X=(X1,X2, ... Xn) et Y=(Y1,Y2, ..., Ym)

On note S = (S1, S2, ..., Sm) le vecteur des sorties obtenues a l'issue de la

propagation avant de I'exemple X dans le réseau. On cherche a minimiser l'erreur
quadratique entre les sorties désirées et les sorties obtenues, cette erreur ¢étant

considérée comme une fonction des poids des connexions :
= 2
)= 3(¥ -5)
i=1

-10 -

Introduction aux réseaux de neurones

La regle de modification des poids a la présentation numéro k de l'exemple
Xest:
Wij(k) = Wij(k-1) - e(k) . dj . Oj

ou dj est calculé de proche en proche de la couche de sortie a la couche d'entrée :

(1) di=2.(Si-Yj).f(j) pour la couche de sortie
(2) di=3h dh - Whj - f{j) pour les couches cachées.

ou h parcourt les neurones vers lesquels le neurone i envoie une connexion.

f est une fonction d'activation dérivable (sigmoide).
Oj est la sortie du neurone j.

[j est I'entrée du neurone i, Ij = }j Wjj . O;

e(k) est le pas du gradient a I'étape k.

Cet algorithme a l'avantage d'étre local, c'est-a-dire que la plupart des
calculs d'apprentissage peuvent é&tre effectués au niveau de chaque neurone

indépendamment (avec un minimum de contréle global).

Une régle a respecter pour faciliter la convergence est d'utiliser un ensemble
d'apprentissage contenant au moins dix fois plus de vecteurs de données, souvent

appelés patterns, que de synapses dans le réseau.

8. Mise en oeuvre

Les réseaux de neurones sont actuellement réalisés de nombreuses maniéres
différentes. Pour ce travail, nous utilisons un simulateur sur un ordinateur séquentiel
conventionnel. Cependant, pour obtenir les meilleurs résultats, il est nécessaire de les
implémenter physiquement en tenant compte qu'ils sont massivement paralléles :
chaque neurone peut étre vu comme un processeur indépendant, aux fonctions trés
simples. Le probléme auquel on est confronté actuellement est celui des connexions. 1l
est trés coliteux de réaliser un circuit a trés forte connectivité en VLSI. Cependant, des
études montrent que des implémentations ¢€lectroniques des réseaux sont réalisables et
prometteuses.

-11 -

Introduction aux réseaux de neurones

En attendant les résultats de ce développement technique, on utilise des
simulateurs sur des ordinateurs digitaux. Ces derniers sont généralement dénommés
neuro-ordinateurs programmables. Les plus performants étant bien entendu ceux qui
peuvent travailler en paralléle. Malgré cela et d'autres améliorations comme des cartes
accélératrices, ces neuro-ordinateurs ne peuvent rivaliser avec une implémentation

spécifique.

9. Conclusions
9.1. Des propriétés

L'intérét porté aujourd'’hui aux réseaux de neurones tient sa justification
dans les quelques propriétés fascinantes qu'ils possedent. Citons les plus importantes :
le parallélisme, la capacité d'adaptation, la mémoire distribuée, la capacité de

généralisation et sa facilité de construction.

Le parallélisme se situe a la base de l'architecture des réseaux de neurones
considérés comme ensembles d'entités élémentaires qui travaillent simultanément. Le
parallélisme permet une rapidité de calcul supérieure, mais exige de penser et de poser

différemment les problémes a résoudre.

La capacité d'adaptation permet au réseau de tenir compte de nouvelles
contraintes ou de nouvelles données du monde extérieur. Cette capacité présente un
intérét déterminant pour tous les problémes évolutifs. II faut, pour les résoudre, pouvoir

tenir compte de situations non encore connues.

Dans les réseaux de neurones, la "mémoire" d'un fait correspond a une carte
d'activation de l'ensemble des neurones. Cela permet une meilleure résistance au bruit.
La perte d'un élément ne correspond pas a la perte d'un fait mémorisé, mais a une
dégradation, d'autant plus faible qu'il y a de synapses. De plus, la recherche d'un fait ne
nécessite pas la connaissance de 1'endroit de stockage, le réseau entier se chargeant de le

restituer.

-12-

Introduction aux réseaux de neurones

La capacit¢ de généralisation est essentielle. Elle assure que le réseau
donnera une bonne solution pour une entrée ne figurant pas dans I'ensemble
d'apprentissage. Nombre de problémes résolus par des experts le sont de fagon plus ou
moins intuitive, ce qui rend difficile 'exposé explicite des connaissances et des régles
nécessaires a leur solution. Le réseau adopte une démarche semblable a celle de

l'expert.

Le principe des réseaux de neurones et leur structure sont assez simples. La

simulation informatique ne nécessite qu'un temps de développement assez court.

9.2. Des limites

Un des principaux reproches fait aux réseaux de neurones est I'impossibilité
d'expliquer les résultats qu'ils fournissent. Les réseaux se présentent comme des boites
noires dont les régles de fonctionnement sont inconnues. Ils créent eux-mémes leur
représentation lors de l'apprentissage. La qualité de leurs performances ne peut étre
mesurée que par des méthodes statistiques, ce qui améne parfois une certaine méfiance

de la part des utilisateurs potentiels.

Le second probléme a déja été invoqué : la mise en oeuvre physique. Les
réseaux de neurones seront optimums quand ils auront leur propre support. Différentes
solutions ont été envisagées pour faciliter ce probléme; notamment diminuer le nombre

de neurones (par complexification de leur structure, par prétraitements...).

9.3. Nos prétraitements

Etant donné les qualités des réseaux de neurones, il est intéressant d'essayer
de supprimer un maximum de leurs défauts. Nous présenterons dans ce travail

quelques idées pour diminuer la complexité des réseaux.

Nos prétraitements visent a réduire la taille d'un pattern d'entrée et donc la
taille du réseau. L'importance d'une telle démarche découle de ce qui vient d'étre dit.
Outre le fait qu'un réseau avec peu de connexions sera plus facilement implémentable et
a meilleur marché qu'un réseau complexe, on obtient surtout un gain appréciable de

traitement. Un exemple illustrera bien ce point. Le premier probléme que nous avons

-13 -

Introduction aux réseaux de neurones

du manipuler dans ce travail est la classification de signaux physiologiques en 3 classes.
Initialement, un réseau de 3 couches était utilisé : 100 neurones en entrée, 20 en couche
cachée et 3 en sortie. On dispose d'un ensemble d'apprentissage de 5 400 patterns.
D'apres l'algorithme de la rétropropagation, on doit donc évaluer pour chaque pattern
123 fonctions lors de la propagation et 2060 lors de la rétropropagation (100 * 20 + 20
* 3 synapses). Chaque itération nécessite donc prés de 12 millions d'évaluations.
Celle-ci étant reproduite jusqu'a minimisation de I'erreur. Aussi puissant que soit notre
ordinateur séquentiel, la consommation de CPU et de temps a été énorme, inacceptable.
A l'aide d'un prétraitement, la taille des patterns d'entrée a été ramenée de 100 & 10. Le
réseau choisi comprenait 10 neurones en couche d'entrée, 5 en couche cachée et 3 en
sortie. Chaque itération de 5 400 patterns ne nécessite plus que 450 000 évaluations.
De plus, l'apprentissage est facilit¢ car maintenant on dispose d'un ensemble
d'apprentissage 83 fois plus important que le nombre de synapses. Le nombre

d'itérations permettant la convergence en est diminué.
Ce premier chapitre visait 8 montrer I'intérét des réseaux de neurones. On

déduit également de cette bréve présentation, l'importance de prétraitements a réaliser.

C'est pourquoi quatre méthodes seront décrites et analysées dans les chapitres suivants.

-14 -

CHAPITRE 2
LES RESSOURCES MISES EN OEUVRE

1. Introduction

Il nous a ét¢ demandé d'analyser les résultats de trois méthodes de
compression : Karhunen-Loéve, Linear Predictive code (LPC) et NLPCA. La partie la
plus importante de notre travail consistait a tester la qualité de ces prétraitements sur
différents types et ensembles de données. Nous avons comparé les capacités de réseaux

de neurones a reconnaitre ces données sans et avec prétraitements.

Ce second chapitre a pour objectif de présenter les ressources mises en
ocuvre : les données, les programmes et les ordinateurs. Il contient également les
principaux résultats concernant la classification des réseaux de neurones sans
prétraitement. Chacun des trois chapitres suivants étudiera les qualités d'une méthode

de compression sur les mémes ensembles de données.

2. Utilisation de SIRENE

Tous nos prétraitements ont pour objectif de fournir des ensembles de
données utilisables, plus facilement, par un réseau de neurones. Pour tester la qualité de
nos compressions, nous devons comparer les résultats du réseau sans et avec
prétraitements. Pour obtenir ces résultats, nous avons utilisé le programme SIRENEL
Nous disposions de la version 1 release 9. On trouvera en annexe une présentation des

menus principaux de ce programme.

La premiére étape est la définition du réseau; c'est-a-dire son type, le
nombre de couches, le nombre de neurones par couche, les fonctions des neurones,
l'algorithme d'apprentissage, les criteéres de réussite et un ensemble de petits parametres
controlant I'apprentissage. La table 2.1 indique un choix que nous avons couramment

pratiqué. Ces définitions ne sont pas innées. C'est le probléme des réseaux de

SIRENE est un SImulateur de REseaux de NEurones. Il a été écrit par M. Fombellida dans le cadre de sa
thése de doctorat a I'université de Liége, service de Micro-électronique.

-15-

Les ressources mises en oeuvre

neurones : on ne peut pas dire a priori quelle est la meilleure configuration. Nous avons

donc procédé a différents essais avant d'obtenir de bons résultats (les meilleurs ?).

La seconde étape est la définition des données a traiter. Nous fournissions
trois fichiers de données a SIRENE. Le premier, le plus gros, est le fichier
d'apprentissage. Le réseau l'utilise pour modifier ses poids. Le second, le plus petit, est
le fichier de validation croisée. Il suit l'apprentissage et est utilisé par le réseau pour
détecter un sur-apprentissage c'est-a-dire le moment ou le réseau se spécialiserait trop :
il étudie les données de l'apprentissage et n'est plus capable de généraliser a d'autres
exemples. Clest ce critére qui détermine le meilleur réseau a conserver. Le dernier
fichier est un ensemble test; il n'est pas utilisé pour entrainer le réseau. Apres chaque
étape de mise a jour des poids, il est présenté a I'entrée du réseau et on calcule les
sorties que 1'on obtiendrait si on arrétait 1'apprentissage a ce moment. Il permet de
connaitre le comportement du réseau pour un fichier de données quelconque (il est clair
que les résultats sont meilleurs pour le fichier qui a servi a l'apprentissage). Notons
qu'il est préférable que les fichiers d'apprentissage et de validation croisée n'aient pas de
parties communes; cela fausserait le critére de sur-apprentissage. De plus, comme nous
le montrerons plus loin, il a été parfois nécessaire de prétraiter ces fichiers pour en

recentrer les données dans l'intervalle [-1,1].

Type de réseau : Perceptron multicouches

Nombre de couches : 3

Nombre de neurones : En fonction du probléme

Fonction d'un neurone : Tangente hyperbolique

Algorithme d'apprentissage : Quasi-Newton

Critere de succes : Small composite error

Fonction d'apprentissage : Total sum squared error + min. weights

Fonction de validation : Classification error (%) (Maximum
criteria)

Fonction de test : Classification error (%) (Maximum
criteria)

Paramétres : Overlearning detection and backtracking

Table 2.1

La structure du réseau et les données a traiter connues et placées dans un
fichier d'instructions, nous pouvions exécuter le programme SIRENE. Nos simulations
ont tourné sur différentes machines SUN. Quatre fichiers sont générés. Trois

concernent les résultats de l'apprentissage et le quatriéme contient la définition du

-16 -

Les ressources mises en oeuvre

réseau qui a donné les meilleurs résultats jusqu'a ce moment. Etant donné le temps
d'apprentissage le plus souvent trés long, les simulations étaient lancées en taches de
fond. Une fois le job en cours, nous n'avions donc plus de contrdle si ce n'est sa
suppression radicale. Il ne restait qu'a espérer que le réseau sauve des (bons) résultats,
car nous ne pouvions plus 1'y forcer. Nous devions également espérer que la machine
utilisée ne soit pas réinitialisée, comme cela a été plusieurs fois le cas. En méme temps
que SIRENE, nous utilisions la commande TIME pour connaitre les différents temps
d'exécution de la simulation. II est important de signaler qu'étant donné que nous
n'étions pas les seuls a utiliser les machines SUN et que SIRENE est gourmand en
CPU, nos simulations tournaient avec un degré de priorité inférieur (nice). Le temps

réel d'exécution en est augmenté.

Enfin, une fois l'apprentissage réalisé, les ensembles de données sont a
nouveau présenté au réseau et SIRENE calcule les résultats pour chaque pattern; c'est-a-
dire les sorties obtenues, les erreurs sur ces sorties et le résultat de la classification

(correcte ou incorrecte). Il reste a analyser ces résultats.

3. Le programme

3.1. Présentation

Notre programme est composé de quatre parties. Trois concernent les
méthodes de compression et seront développées dans les chapitres respectifs. La
quatriéme partie est un module de fonctions complémentaires pour SIRENE. Elles ne
sont pas indispensables, mais simplifient souvent la vie a l'utilisateur. Dans ce travail,
elles étaient d'une grande utilité. En annexe, nous présentons tous les menus du

programme.

+++ OUTILS POUR L'UTILISATION DE SIRENE +++

0. Aide

1. Creation d'un fichier d'instructions type

2. Modification du nombre de sorties d'un fichier de donnees

3. Utilisation type d'un reseau de SIRENE

-17 -

Les ressources mises en oeuvre

4. Analyse des resultats

9. Retour au menu principal

3.2. Création d'un fichier d'instructions type

Les paramétres de configuration de la table 2.1 ont toujours donné de bons
résultats. Dans notre cas, nous avons utilis¢ SIRENE plus de quarante fois et la plupart
du temps avec ces mémes parametres. Pour ne pas les redéfinir a chaque utilisation et
ne pas devoir passer par les nombreux sous-menus de SIRENE, le sous-progamme 1
crée un fichier d'instructions type les contenant, ainsi que d'autres données nécessaires a
la bonne exécution de SIRENE. L'utilisateur doit juste entrer le nom des fichiers de
données. Le résultat est un fichier texte nommé "sirene.instr". Pour I'utiliser, il suffit

de faire une redirection d'entrées : sirene <sirene.instr.
3.3. Modification du nombre de sorties et fichier d'utilisation

Pour utiliser SIRENE, il faut toujours lui fournir un fichier comprenant les
sorties attendues et les entrées correspondantes. Le nombre de valeurs de sortie du

fichier doit correspondre au nombre de sorties du réseau utilisé sous peine d'étre ignoré.

Lorsque l'apprentissage du réseau est terminé et qu'on veut l'utiliser pour un
nouvel ensemble de données, les sorties souhaitées ne sont bien entendu pas
disponibles, ni nécessaires. Cependant, le format standard de SIRENE impose de
trouver dans le fichier une zone sorties correspondant au nombre de neurones de la
derniére couche du réseau. Si ce n'est pas le cas, le deuxiéme sous-menu permet de
faire du "bourrage" dans le fichier a traiter, de maniere a obtenir ce format standard. Le
troisiéme sous-menu apporte un degré de liberté supplémentaire. L'utilisateur indique
le nom du réseau et du fichier de données a traiter. L'utilisation du programme
provoque la conversion, si nécessaire, du fichier de données dans le format adéquat et la
création d'un fichier type d'instructions permettant 8 SIRENE d'utiliser le réseau. Cette

fonction a été indispensable pour la méthode de prétraitements NLPCA (cfr. chapitre 5).

3.4. Analyse des résultats

-18-

Les ressources mises en oeuvre

Comme nous l'avons dit précédemment, une fois l'apprentissage réalisé, les
ensembles de données sont a nouveau présenté au réseau et SIRENE calcule les
résultats pour chaque pattern; c'est-a-dire les sorties obtenues, les erreurs sur ces sorties

et le résultat de la classification (correcte ou incorrecte).

Le quatriéme sous-programme de ce module interprete ces résultats selon le
critéere du maximum. Pour chaque pattern, le numéro de la sortie maximale du réseau
correspond a la classe obtenue. Le numéro de la sortie maximale des sorties souhaitées
du fichier de données correspond a la classe désirée. Le premier résultat du programme
est un tableau reprenant pour chaque classe désirée, le nombre de patterns fournis, la
classification de SIRENE, c'est-a-dire le nombre de patterns placés dans chaque classe,
et le pourcentage de classification correcte. On obtient également le pourcentage global
de classification correcte, le pourcentage global de classification impossible (plusieurs
sorties maximales €gales ou non respect de critéres supplémentaires énoncés apres) et le

pourcentage global de classification incorrecte.

L'utilisateur peut également fournir des criteres de décidabilité
supplémentaires. Un critére couramment utilisé est la distance minimale. Si les deux
plus grandes sorties obtenues du réseau sont trop proches, on considére que le risque de
classification incorrecte est trop grand et le pattern est considéré comme inclassifiable.
C'est l'utilisateur qui choisit les distances qu'il considére représentatives. Un second
critére est la différence entre la sortie obtenue et la sortie souhaitée. Si cette différence
est trop grande, on pourrait considérer que le réseau n'a pas reconnu le pattern et n'a
donc pas fourni la sortie correspondante ou que le résultat n'est pas réutilisable. Ici
encore, c'est l'utilisateur qui indique les différences tolérées. Pour chaque critére

supplémentaire, le tableau défini au paragraphe précédent est affiché.

4. Les phases du sommeil

4.1. Description du probléme

Une application importante des réseaux de neurones est le traitement des
signaux physiologiques de sommeil. Ce probléme, plus complexe qu'il n'y parait de
prime abord, ne manque certes pas d'intérét. En effet, pour une nuit, les enregistrements

polygraphiques (électro-encéphalogramme, électro-oculogramme et électro-

-19-

Les ressources mises en oeuvre

myogramme) représentent quelques mille pages et il faut une journée entiére a un expert
pour en extraire le contenu intéressant et le mettre sous une forme utile. Dans ce
contexte, la réalisation d'un analyseur automatique fiable représenterait un gain de
temps considérable et une aide réelle au diagnostic pour un certain nombre de maladies.
Outre l'aspect éthique d'une telle recherche, il faut noter qu'approximativement une
personne sur cent est confrontée au probléme de 1'apnée du sommeil. On juge donc de

'utilité d'une telle recherche.

Cette recherche a été menée par M. Latour dans le cadre du programme
FIRST. II a montré qu'un réseau de neurones de trois couches permet de classifier un
vecteur de données correspondant a une époque d'analyse en une des trois phases du
sommeil. Ce réseau fournit des résultats d'un méme niveau de performances que

d'autres méthodes plus complexes et plus difficiles & mettre en oeuvre.
4.2. Description des données

Dans ce travail, nous avons réutilis¢é les ensembles de données de
M. Latour : trois fichiers de trois mille patterns de données et sorties associées. Une
époque du sommeil (un pattern) est défini par cent nombres compris entre -1 et 1. Les
sorties associées sont trois nombres : une seule sortie est activée et correspond a la
classe. Les deux autres sont nulles. Pour chaque fichier, il y a mille exemples de

chaque classe.

4.3. Résultats sans compression

Ne disposant pas des résultats complets de M. Latour, nous avons
recommencé la simulation neurale. Cela était de toute maniére nécessaire pour pouvoir
comparer ultérieurement aux résultats avec compression, qui ont été obtenus par une
version plus récente de SIRENE et des conditions d'utilisation différentes. La
modification la plus importante est la définition des ensembles de données. Nous
disposions, comme dit précédemment, de trois fichiers de taille identique. M. Latour
utilisait le premier comme ensemble d'apprentissage et les deux autres comme ensemble
test. Dans nos expérimentations, nous avons recomposé les deux premiers, pour obtenir
un fichier d'apprentissage de 5 400 patterns (1 800 de chaque classe) et un fichier de
validation croisée de 600 patterns (200 de chaque classe). Nous avons gardé le
troisiéme tel quel pour le test. Cette redistribution fournit plus d'exemples au réseau

pour l'apprentissage et donc facilite sa généralisation. Les phases du sommeil sont le

=20 -

Les ressources mises en oeuvre

seul ensemble de données pour lequel nous n'avons pas utilisé les paramétres de la table
2.1. Nous avons conservé ceux choisis par Monsieur Latour, qui a étudié ce sujet plus
en détail. Nous avons des lors utilisé des fonctions sinus et sigmoides pour les
neurones, 20 neurones en couche cachée, 'algorithme du gradient conjugué de Polak et

Ribiére et la fonction somme des carrés des erreurs pour l'apprentissage.

Le premier fichier retourné par SIRENE décrit, pour chaque itération de
l'apprentissage, 1'évolution du réseau. C'est ce qui est représenté graphiquement a la
figure 2.1. Trois courbes sont présentes : une pour la fonction d'apprentissage (échelle
de gauche en unité), la fonction de validation (échelle de gauche en unité) et la fonction
de test (échelle de droite en pourcentage d'erreur). L'apprentissage s'est arrété aprés
2000 itérations. Les trois fonctions passent d'abord par une phase de décroissance
rapide. Le réseau corrige ses premicres erreurs. Apres 1 405 itérations, il a obtenu sa
meilleure configuration. Cela est indiqué par le minimum de la courbe de validation.
Ensuite, il y a sur-apprentissage et les résultats se dégradent. La fonction
d'apprentissage passe de 3 787 a 56. Elle continuera a descendre jusque 25. La
fonction de validation débute a 419 et a pour minimum 23. Le pourcentage d'erreur de
la fonction test décroit de 65% a 1.7%.

-21-

Les ressources mises en oeuvre

Phases du sommeil

4000 - 80
3500 Apprentissage 170
3000 s \Jalidation 160
2 1
>0 Test 50
2000 +40 9
'_
1500 + 30
Minimum
500
0 ; ; :
° 8 8 8 &8 8 8 8 8 8 8
« § © ® & § I © @« 9
— — — — — N
Itérations
Figure 2.1

Pour réaliser les 2 000 itérations, le programme a travaillé pendant 21 jours.
Plus précisément, le temps écoulé était de 484 heures et 25 minutes et le temps CPU de
442 heures et 48 minutes. Nous ne pouvions arréter l'apprentissage aprés la 1 4056me
itération, car nous ne pouvions savoir s'il s'agissait d'un minimum local ou d'un

minimum global.

Pour le réseau calculé en 1 405 itérations, nous avons obtenu les résultats
des tables 2.2 et 2.3. Pour I'ensemble d'apprentissage, 1 789 patterns sur les 1 800 de la
classe numéro un ont été classifiés correctement; soit 99.4%. 11 patterns ont été mis a
tort dans la classe deux. Il n'y a pas eu d'erreur avec la classe trois. Le principe est le
méme pour les autres classes attendues. Au total, pour le critere du maximum simple,
la classification correcte est de 99.7% pour I'ensemble d'apprentissage et un peu moins
pour I'ensemble de test : 98.3%. Cela est normal, vu que le réseau est optimisé par et
pour I'ensemble d'apprentissage.

-22-

Commentaire [1]: la différence est le
temps pour les I/O et pour les autres prg

Les ressources mises en oeuvre

Phases du sommeil - Ensemble d'apprentissage

Classe Classe obtenue > %
désirée 1 2 3 ? /classe | correct
1 1789 11 0 0] 1800 99.4
2 5| 1794 1 0] 1800 99.7
3 1 0o 1799 0] 1800 99.9
Classification Libre Distance 0.2 | Différence 0.5
Correcte : 99.7% 99.6% 99.4%
Indécidable : 0% 0.2% 0.3%
Incorrecte : 0.3% 0.2% 0.3%
Table 2.2

Phases du sommeil - Ensemble de test

Classe Classe obtenue > %

désirée 1 2 3 ? /classe | correct

1 969 31 0 0] 1000 96.9

2 0 986 14 0] 1000 98.6

3 0 7 993 0] 1000 99.3

Classification Libre Distance 0.2 | Différence 0.5
Correcte : 98.3% 98.1% 98.0
Indécidable : 0% 0.4% 0.3%
Incorrecte : 1.7% 1.5% 1.7%

Table 2.3

On constate ici la réelle capacité des réseaux de neurones a s'adapter a ce
probléme de classification des phases du sommeil. Une fois I'apprentissage réalisé, ces
résultats exceptionnels, sont obtenus en moins d'une minute. Il parait difficile de faire
mieux. Il n'est méme pas certain que le spécialiste qui aurait passé sa journée a analyser
les enregistrements polygraphiques puisse toujours obtenir une aussi bonne

classification.

Deux critéres supplémentaires ont été utilisés lors de 1'analyse des résultats.
Le premier impose que la différence entre les deux plus grandes sorties du réseau soit
au moins de deux dixiémes. Le second critére réclame que la différence entre la sortie
attendue et celle souhaitée soit au maximum de cinq dixiémes. Ces valeurs ont été
choisies arbitrairement en tenant compte que les sorties sont comprises entre -1 et 1. La
répartition des patterns pour ces deux critéres n'étant pas fondamentale, elle n'a pas été

décrite par un tableau séparé, mais uniquement par les résultats globaux. Comme on

-23-

Les ressources mises en oeuvre

peut le voir dans les tables 2.2 et 2.3, ces deux criteres n'ont pas joué un grand rdle; les
résultats sont stables.

5. Les caracteres manuscrits de la poste allemande

5.1. Description du probléme et des données

Le but recherché ici est la classification d'images de 16 pixels sur 16 comme
étant un des chiffres 0 a 9. L'ensemble de données que nous avons regu comprend
18 000 chiffres digitalisés en niveau de gris (allant de 0 (blanc) a 256 (noir)) au format
16 X 16. Ces chiffres ont été réunis a partir des codes postaux des lettres passant par le

service postal de 1'ex-République Fédérale d'Allemagne.

Les données fournies sont réparties en deux ensembles de données :
apprentissage et test. Chacun des deux ensembles est constitué de 10 fichiers
comprenant chacun 900 représentations d'un chiffre. Un vecteur chiffre se compose des

256 pixels de I'image, lue de gauche a droite et de haut en bas.

5.2. Résultats sans compression

La premiére étape est la création des fichiers de données au format de
SIRENE. A chaque caractére, on associe un vecteur de sorties de 10 nombres. Un seul
est & un et sa position correspond au chiffre. Les autres sont a zéro. Les fichiers
d'apprentissage sont fusionnés de maniére a obtenir un fichier SIRENE d'apprentissage
de 8 100 patterns (810 pour chaque chiffre) et un fichier SIRENE de validation croisée
de 900 patterns (90 pour chaque chiffre). Les fichiers de test sont assemblés, mais deux
tiers sont supprimés faute de place sur le disque a notre disposition. Ceci n'a pas de

conséquence importante, puisque ce fichier n'est pas utilisé pour 'apprentissage.

Nous n'avons pas réalisé la simulation neurale sans compression. En effet,
la taille des données et la taille du réseau qu'elles impliquent posent des problémes.
Expliquons. Définissons d'abord le réseau qui serait nécessaire. Il comprend 256
entrées et 10 sorties. Pour déterminer le nombre de neurones en couche cachées, il faut
faire plusieurs essais, jusqu'a l'obtention de bons résultats. Selon la reégle des 10%,

idéalement nous devrions avoir :

-24 -

Les ressources mises en oeuvre

(256 entrées +10 sorties)™ nbre_cachés = nbre_synapses
nbre_synapses*10 <8100 patterns

& nbre _cachés <3

Cette régle ne pourra pas étre respectée. Trois neurones ne peuvent généraliser 256
données en 10 sorties. Un nombre envisageable de neurones en couche cachée serait
par exemple 100. Il y aurait alors 26 600 poids ((256+10)*100) a modifier a chaque
itération en fonction de seulement 8§ 100 exemples. On peut douter de la capacité du
réseau a s'adapter. Un tel apprentissage serait long et difficile. Il faudrait de plus le
recommencer avec d'autres valeurs que 100 pour améliorer les résultats. Quand on
constate le temps qui a €té nécessaire a l'apprentissage du réseau, beaucoup plus petit,
analysant les phases du sommeil, on comprend que cette démarche n'est pas acceptable.
De plus, les données étaient volumineuses et occupaient toute la place disponible sur le
disque. Il n'était pas possible de monopoliser un tel espace disque et une machine SUN
durant un si grand laps de temps. Notons pour terminer qu'a notre connaissance,
personne n'a travaillé sur I'ensemble initial des données. Tout le monde en a fait des

compressions par différentes méthodes.
6. Les véhicules

6.1. Description du probléme et des données

On cherche a reconnaitre une silhouette comme étant celle d'un type de
véhicule parmi quatre. On utilise pour cela un ensemble de caractéristiques extraites de
la silhouette du véhicule vu sous différents angles. Les quatre types de véhicules sont :
un bus a impériale, un van chevrolet, une Saab 9000 et une Opel Manta 400. Iy a 18

attributs réels par véhicule et 846 représentations sont disponibles.

6.2. Résultats sans compression

Cette fois-ci, nous n'avons pas du préparer les données. Nous les avons
recues directement au format de SIRENE. Le réseau choisi pour 'apprentissage utilise
les paramétres de la table 2.1. Son architecture comprend 18 neurones en entrée, 5 en
couche cachée et 4 pour les sorties. C'est la structure qui a donné les meilleurs résultats
et qui était proposée dans la littérature. Cependant, les résultats ne sont pas

exceptionnels. Cela est essentiellement du au faible nombre de patterns disponibles

-25-

Les ressources mises en oeuvre

pour l'apprentissage. Pour respecter la régle des dix pourcents, le nombre de neurones

en couche cachée aurait du étre inférieur ou égale a 3 (18 * 3+ 3 * 4 <=846/ 10).

Le graphe 2.2 illustre la phase d'étude du réseau. Le meilleur réseau est
obtenu apreés 59 itérations. La fonction d'apprentissage passe de 2 870 a 504. La
fonction de validation atteint un pourcentage d'erreurs de 16%, lorsque la fonction de
test reste a 17%.

Véhicules
3000
Apprentissage
2500
== \falidation T7
2000 T 60 =
Test 2
+ 50 =
1500 % .
Minimum 1 40 .5
59 =
1000 TM o
®
>
500 T
o T T T T T T T T 0
© Q o o o o o o o
o o 0 o Te) =) ¥5) o
— — N N ™ ™ <
Itérations
Figure 2.2

1 heure et 29 minutes ont été nécessaires pour réaliser ces 444 itérations. Il
y correspond un temps CPU de 1 heure et 22 minutes. Il faut noter ici encore que le
meilleur réseau est obtenu bien avant l'arrét de I'apprentissage. Les meilleurs résultats
sont reproduits dans les tables 2.4 et 2.5.

-26 -

Les ressources mises en oeuvre

Véhicules - Ensemble d'apprentissage
Classe Classe obtenue > %

désirée 1 2 3 4 ? /classe | correct

1 128 37 2 1 0 168 76.1

2 26 136 6 0 0 168 80.9

3 0 2 164 2 0 168 97.6

4 1 2 1 150 0 154 97.4

Classification Libre Distance 0.2 | Différence 0.5
Correcte : 88% 86.6% 74.4%
Indécidable : 0% 2.4% 21.6%
Incorrecte : 12% 11.0% 4.0%

Table 2.4

Véhicules - Ensemble de test
Classe Classe obtenue > %

désirée 1 2 3 4 ? /classe | correct

1 18 5 1 0 0 24 75.0

2 5 16 2 1 0 24 66.6

3 0 1 23 0 0 24 95.8

4 0 1 0 23 0 24 95.8

Classification Libre Distance 0.2 | Différence 0.5
Correcte : 83.3% 82.2% 67.8%
Indécidable : 0% 1.4% 28.7%
Incorrecte : 16.7% 16.4% 3.5%

Table 2.5

6.3. Comparaisons avec des résultats officiels

Nous pouvons comparer nos résultats avec ceux du projet ESPRIT StatLog.
Son but est 1'évaluation des performances de différents algorithmes de classification
(statistique, machine intelligente et réseau de neurones) pour des problémes
commerciaux et industriels complexes. Parmi eux, nous trouvons les caractéres

allemands et les véhicules. La table 2.6 reprend les comparaisons pour le cas des
véhicules.

Algorithme Type Source Exactitude (%) | Temps (sec.)

Appr. Test | Appr. Test
Quadra Stat. Strath 91.4 84.9 28 29
Alloc80 Stat. | Leeds 100.0 82.7 30 10

-27-

Les ressources mises en oeuvre

LogReg Stat. | Strath 83.3 80.9 601 5
Backpropag Neur. | Strath 83.2 79.3| 14 400 4
Discriminant Stat. Strath 79.8 78.4 13 5
SMART Stat. | Leeds 93.8 783 2502 1
C4.5 Mach. | Turing 93.5 73.4 174 2
k-N-N Stat. | Leeds 100.0 72.5 164 23
CART Mach. | Granada 76.5 71.6 25 1
CN2 Mach. |Daimler 98.2 70.7 95 1
AC2 Mach. |Isoft - 70.4| 5525 213
NewlID Mach. |Daimler 99.0 70.3 20 2
INDCART Mach. | Strath 95.3 70.2 83 1
Radial Neur. | Strath 90.2 69.3| 1700 12
ITrule Mach. |Brainwr - 67.6 985

Kohonen Neur. |Luebeck 88.5 66.0 5692 50
Cal5 Mach. | Fraunhofer 70.1 64.9 39.6 1
Castle Stat. Granada 49.5 45.0 3 3
Bayes Stat. Strath 47.7 44.2 2 1

Table 2.6

En quatriéme position, nous trouvons l'algorithme de rétropropagation.
C'est le seul qui utilise un réseau de type Perceptron comme nous. Nous ne disposons
malheureusement pas d'informations sur la structure utilisée. Avec le réseau décrit dans
le paragraphe précédent, nous obtenons de meilleurs résultats (88.1% et 83.1%), en
encore moins de temps (4 920 secondes pour l'apprentissage et 1 seconde pour le test).
Nous sommes donc en seconde position. Nous avons réalisé une autre simulation avec
un réseau beaucoup plus grand (18-10-4). Dans ce cas, en 27 660 secondes et
1 726 itérations, nous n'obtenions pas de meilleurs résultats : classification correcte a
97.5% pour l'apprentissage, mais 80.4% pour le test. On constate que le réseau a trés
bien appris son ensemble d'exemples. Par contre, il n'a pas réussi a les généraliser aussi
bien a d'autres présentations. Cela confirme que le nombre d'exemples d'apprentissage

était trop faible pour ce réseau (658 exemples pour 220 synapses).

7. Données corrélées

-28-

Les ressources mises en oeuvre

II ne s'agit pas ici d'un probléme de classification. Cet ensemble de données
a été créé de toutes piéces pour illustrer la méthode de compression NLPCA. Nous

attendrons donc ce chapitre pour le présenter.

8. Conclusions

Nous avons présenté les ressources que nous utiliserons tout au long de ce
travail : les données, les programmes et les ordinateurs. La séquence d'opérations est
toujours la méme : utilisation de notre programme pour réaliser les prétraitements,
utilisation de SIRENE pour simuler un réseau de neurones de reconnaissance de formes

et analyse des résultats. Pour faciliter ces manipulations, un module d'outils a été écrit.

Nous avons également décrit la classification sans prétraitement des
ensembles de données a notre disposition. Les réseaux de neurones ont montré leur
capacité a s'adapter aux problémes posés. Cependant, les temps d'apprentissage qui ont
été nécessaires sont énormes. Pour le probléme de la reconnaissance des caractéres
manuscrits, nous n'avons méme pas pu réaliser une simulation. Des méthodes doivent
absolument étre développées pour pouvoir utiliser d'importants ensembles de données

dans des réseaux de neurones. Les chapitres suivants décrivent de tels procédés.

-29-

CHAPITRE 3 ‘
LA METHODE DE KARHUNEN-LOEVE

1. Introduction

La méthode de Karhunen-Loéve est une technique pour représenter un
échantillon d'une fonction générée par un processus aléatoire. Il a été montré qu'elle
minimisait l'erreur au sens des moindres carrés. La méthode de Karhunen-Loéve extrait
donc un ensemble de caractéristiques qui est optimal pour représenter un pattern dont la

source est aléatoire.
Ce chapitre est constitué¢ de trois parties. La premicre décrit la méthode de

Karhunen-Loeve. La seconde présente notre implémentation. Enfin, la troisiéme

comprend les principaux résultats de son application sur nos ensembles de données.

2. La méthode
2.1. Description formelle

La méthode de Karhunen-Loéve est une méthode d'approximation d'un

ensemble de fonctions continues de temps par un développement en série. Soit
l'ensemble de fonctions f,(¢) (i=1,2,...,N), le résultat est une combinaison
linéaire de fonctions de base, ¢;(¢) (j=1,2,...) dela forme:

fi(t):Z,aij¢j(t) (1)

Les fonctions de base sont obtenues par résolution de 1'équation suivante :

2,8, =[R(t,7) ¢,() dr @)

ou R(t, 7) est la fonction d'autocorrélation des f(t) et est donnée par :
R(t,)= ELf (01 ,(9)) G

-30-

La méthode de Karhunen-Loéve

ou E[.] est la moyenne sur les N fonctions de l'ensemble. On obtient ensuite les

coefficients aijj par :

;= [f(0)p,(t)

Dans notre cas, nous voulons transformer un vecteur de données (un

pattern) en un autre de taille plus petite. Les éléments d'un vecteur peuvent étre vus

comme un échantillonnage d'une fonction continue. Le nombre de points d'échantillon,

n, étant choisi de manicre a retenir suffisamment d'informations. Nous devons donc

adapter les définitions précédentes au cas discret. Nos fonctions peuvent alors étre

représentées par les vecteurs colonnes :

fi(tl)

p | 8

1

1i(t,)

L'équation (1) devient alors la somme finie

n
b= Z a; ®;
j=1
ou @j est la représentation vectorielle de la jéme fonction de base :

6,(1)
6,6)|
(Dj: . (]21,2,...,71)

4,(t,)

De méme, (2) et (3) sont remplacés par

A, @, =50,
et

S=E[FF;]

-31-

(4)

)

(6)

(7

(®)

La méthode de Karhunen-Loéve

Les équations (7) et (8) montrent que S est une matrice d'autocorrélation et
que Aj et @j sont les jéme valeur propre et vecteur propre de S. Puisque les fonctions

de base sont des vecteurs propres, elles sont orthogonales; c'est-a-dire :

1 pouri=j

olp. = 9
ot {0 pour i # j 2

Des lors, les coefficients ajj de I'expression peuvent étre obtenus par :
= F
a,; =®; r; (10)

ou, en notation matricielle,

4,=B"F,
avee
a;
.
4,=| ?| e B=[0,0,-®,]
(04

Quand les n fonctions de base sont utilisées, les Fi sont obtenus sans erreur.

Par contre, si nous en sélectionnons moins, I'expansion de Karhunen-Loéve devient une

approximation. L'erreur au sens des moindres carrés est calculée directement par :

T
k k
82 :E Fi_zaijq)j Fi_zaijq)j (11)
! j=1 j=1
Par (9) et (10), on peut simplifier :
& =2 O E[FF 0, (12)

J=k+1

-32-

La méthode de Karhunen-Loéve

et on obtient par (8) que

=1 (13)

J=k+1

Si les vecteurs propres sont rangés par ordre de valeur propre décroissante, on minimise
ainsi 'erreur moyenne au sens des moindres carrés. On voit de plus, que plus le nombre
de vecteurs propres conservés est grand, moins l'erreur sera grande et méme nulle si il

n'y a pas de réduction.

La matrice A ainsi obtenue est I'ensemble des nouveaux patterns d'entrées
pour le réseau de neurones. Notons que la matrice B n'est utilisée que pour le calcul de
A et n'est pas conservée. A étant une corrélation de B et des patterns originaux, elle
devrait suffire au réseau de neurones. Cependant, I'erreur calculée précédemment par
les formules (11), (12) et (13) ne peut plus étre celle liée a I'utilisation du réseau étant
donné que ces formules utilisent la matrice B. L'erreur sera mesurée par comparaisons

avec les résultats obtenus sans prétraitement.
2.2. Signification géométrique

Dans cette méthode, on part d'un tableau de données F ou chacune des N
lignes correspond a un individu et chacune des n colonnes correspond a une

caractéristique.

La premiére opération réalisée est le recentrage du tableau. Pour chaque
caractéristique j, la moyenne mj des N individus est calculée :

1
m]:]_vl

Il
—

On obtient alors le tableau recentré par l'opération suivante :

-33-

La méthode de Karhunen-Loéve

A chaque ligne i de F , on peut associer le point Pi de coordonnées F ij

pour 1<j <n. Le résultat est un nuage de N points.

Le but de la méthode est de représenter le plus simplement possible les
corrélations entre les n caractéristiques. Pour cela, soit D une droite dans IR de
direction # avec ||i || = 1. Soit Hj la projection orthogonale de Pj sur D. On cherche u

qui minimise :

Ona:

- > o> >

OH,; =(OP;|lu)u,
ou

> o no_

(OP|u) =2 Fyu;,

Jj=1

donc :

2 N

=> (0P, |u)’

i=1

R
OH,

N
i=1

-34-

La méthode de Karhunen-Loéve

N 2
N
Les Pj étant donnés, chercher # qui minimise Z H.P;| est équivalent,
i=l
N2
d'aprés le théoréme de Pythagore, a chercher # qui maximise Z OH, D'aprés un

i=l
théoréme de Courant-Fischer, cela revient a chercher le vecteur propre 1
correspondant a la plus grande valeur propre A; de F'T F'. En déterminant les vecteurs
propres correspondant aux valeurs propres suivantes, on obtient une représentation plus

compléte.

3. Le programme

Tous les programmes ont été écrits a l'aide du langage C. Le code de la

méthode de Karhunen est fourni en annexe.

L'implémentation est tirée directement de la théorie. L'exécution comprend
trois étapes : la recherche des vecteurs propres, la détermination des vecteurs qui
appartiendront a la matrice de transformation et la phase de compression proprement
dite.

+++ KARHUNEN - LOEVE +++

0. Aide

1. Vecteurs propres

2. Matrice de transformation

3. Creation fichier compresse

9. Retour au menu principal

3.1. Vecteurs propres

L'utilisateur a le choix entre calculer la matrice des vecteurs propres
d'un nouvel ensemble de données, enregistrer une nouvelle matrice ou charger

une ancienne.

-35-

La méthode de Karhunen-Loéve

3.2. Matrice de transformation

L'utilisateur a les mémes possibilités : création, enregistrement ou
chargement. Pour la création d'une nouvelle matrice de transformation, trois
critéres de sélection du nombre de vecteurs propres a utiliser sont possibles :
constant, selon les valeurs propres, selon les valeurs propres avec limite

maximale.

En utilisant chaque fois la matrice de transformation de 1'ensemble
d'apprentissage pour les deux autres ensembles de données, on augmente la
corrélation entre l'apprentissage et l'utilisation du réseau. Cela améliore les

résultats.
3.3. Création du fichier compressé

L'utilisateur peut décider en plus de calculer l'erreur moyenne
(définie comme précédemment) pour chaque pattern ou globalement. 1l peut
également demander que les sorties soient comprises dans l'intervalle [-1,1]; ce
qui est trés pratique lors de l'utilisation d'un réseau de neurones dont les
fonctions habituelles imposent cette condition. Cette borne est obtenue par

division des vecteurs propres par une constante adéquate.

4. Analyse des phases du sommeil
4.1. Introduction

Les données du sommeil, présentées dans le chapitre 2, sont le premier
ensemble qui a été prétraité par la méthode de Karhunen. Nous ne pouvions prédire le
nombre de vecteurs propres a conserver, c'est-a-dire l'importance de la compression,
pour conserver une classification valable. Nous avons donc procédé¢ par essais. Nous
présentons ici les deux résultats les plus significatifs : une compression de 100 données
a20 et une de 100 a 10.

-36-

La méthode de Karhunen-Loéve

4.2. Compression a 20

L'ensemble de données initial a été prétraité par Karhunen pour lui donner
un taille des entrées de 20 au lieu de 100. A partir de ces données comprimeées, un
nouveau réseau a du réaliser la classification en phases du sommeil. L'architecture
choisie emploie les mémes paramétres que le réseau utilisé sans compression préalable.
Le réseau comprend 20 neurones en entrée, 9 en couche cachée et 3 en sortie. Ce choix
respecte largement la régle des dix pourcents (20 * 3 +3 * 9 << 8 100/ 10) et a donné
de bons résultats.

La figure 3.1 décrit l'apprentissage de ce réseau. Les premiéres erreurs sont
rapidement corrigées. La fonction de validation démarre a la valeur 595 pour atteindre
trés vite, apres seulement 651 itérations, son minimum a la valeur 117. A ce moment,
la fonction d'apprentissage a diminué de 5 345 a 731 et la fonction de test est passée de
67% derreurs a 11%. Aprés la 651€Me jtération, les résultats se dégradent pour

I'ensemble de test qui atteint 16% d'erreurs a la fin de la simulation.

Phases du sommeil : Karhunen 20
6000 -
Apprentissage
5000 1 s
“* Validation 1
4000 50
Minimum — Test ta _
3000 =
651 o
T3 F
2000
T 20
1000 + | 1.,
0 T T T T T T T t 1 t t t 0
© o 0o O O O O O 9 9 o o o o o o
S 8 88 B8R 88 8 8 5 8 8 9 3
A «H « - -
Itérations
Figure 3.1

Pour réaliser les 1 550 itérations de cette simulation, un ordinateur a été

occupé pendant cing jours : le temps réel est de 109 heures et 31 minutes, mais le temps

-37-

La méthode de Karhunen-Loéve

CPU n'est que de 54 heures et 4 minutes. Rappelons cependant que les derniers
résultats sauvés par SIRENE l'ont été bien avant cela. Ils étaient déja utilisables a partir
de l'itération 651.

Pour le réseau optimum, les résultats détaillés sont reproduits dans les
tables 3.1 et 3.2. La simulation permet de reconnaitre relativement bien et avec une
méme certitude chaque classe de 1'ensemble d'apprentissage. 91.2% de classifications
correctes est un résultat honorable. On constate de plus, et avec plaisir, que le réseau
arrive a généraliser sa classification a d'autres exemples qu'il ne connaissait pas. Dans

ce cas, il obtient toujours une classification correcte a 89.5%.

Phases du sommeil
Karhunen 20 - Ensemble d'apprentissage
Classe Classe obtenue > %

désirée 1 2 3 ? /classe | correct
1 1587 211 2 0] 1800 88.2
2 16| 1714 70 0] 1800 95.2
3 9 168 1623 0] 1800 90.2
Classification Libre Distance 0.2 | Différence 0.5

Correcte : 91.2% 90.1% 90.5%

Indécidable : 0% 2.6% 1.5%

Incorrecte : 8.8% 7.3% 8.0%

Table 3.1
Phases du sommeil
Karhunen 20 - Ensemble de test
Classe Classe obtenue > %

désirée 1 2 3 ? /classe | correct
1 820 180 0 0] 1000 82.0
2 0 963 37 0] 1000 96.3
3 8 91 901 0] 1000 90.1
Classification Libre Distance 0.2 | Différence 0.5

Correcte : 89.5% 88.7% 89.0%

Indécidable : 0% 2.2% 0.8%

Incorrecte : 10.5% 9.1% 10.2%

Table 3.2

Ici encore, la classification est aisée. Les deux critéres de décision

supplémentaires ne modifient pratiquement pas les résultats : les sorties sont nettes.

-38-

La méthode de Karhunen-Loéve

4.3. Compression a 10

Une compression a 20 donnant toujours des résultats acceptables, nous
avons poussé la compression jusqu'a 10 pour en fixer les limites. Cela permettra de
plus des comparaisons avec d'autres méthodes de compression qui supportent une telle

diminution du nombre des caractéristiques.

Les données prétraitées ont été présentées a un nouveau réseau définit
similairement a ceux des autres analyses des phases du sommeil. Seule sa structure

change; il comprend 10 neurones en entrée, 5 en couche cachée et 3 en sortie.

La figure 3.2 représente son apprentissage. Les résultats sont nettement
moins bons. La fonction d'apprentissage part de 4 976 pour atteindre sa valeur finale de
2 088. Le réseau n'arrive plus a obtenir de meilleurs résultats et arréte son étude. La
fonction de validation, débutant de 552, permettra de sauver juste avant le meilleur
réseau qu'elle a trouvé. Son minimum se situe a l'itération 486 avec une valeur de 236.

Le pourcentage d'erreurs pour 1'ensemble de test s'est stabilisé & 27%.

Phases du sommeil : Karhunen 10

5000
4500 Apprentissage
+ 70
4000 1 “* Validation
3500 A
f r 60
2000 [—— Test Minimum
486 -
2500 é
2000
1500
1000
500
0
© o o o o o o o o o
o n o n o n (@] Yo
— — N N ™ ™ < <
Itérations
Figure 3.2

-39-

La méthode de Karhunen-Loéve

Ces résultats ont été obtenus beaucoup plus vite. En temps réel, ces 492
itérations ont nécessité 30 heures et 23 minutes. En temps CPU, cela a demandé 8
heures et 10 minutes. Notons ici que méme si le réseau obtenu a été sauvé a l'itération
486, un réseau sauvé des l'itération 150 aurait donné des résultats trés proches : les

courbes sont réguliéres.

II est intéressant de regarder la classification détaillée du réseau. Elle est
présentée dans les tables 3.3 et 3.4. On constate que le réseau généralise parfaitement
son apprentissage au fichier test. Les résultats sont identiques : classification correcte
d'environ 71% dans les deux cas. On découvre également la source d'erreurs.
L'apprentissage a échoué pour la classe deux, alors qu'il est valable pour les autres

catégories. Cet échec se propage dés lors a l'ensemble test.

Phases du sommeil
Karhunen 10 - Ensemble d'apprentissage
Classe Classe obtenue > %

désirée 1 2 3 ? /classe | correct
1 1551 235 14 0] 1800 86.2
2| 1027 652 121 0] 1800 36.2
3 50 130 1620 0] 1800 90.0
Classification Libre Distance 0.2 | Différence 0.5

Correcte : 70.8% 58.2% 53.8%

Indécidable : 0% 20.0% 29.7%

Incorrecte : 29.2% 21.8% 16.5%

Table 3.3
Phases du sommeil
Karhunen 10 - Ensemble de test
Classe Classe obtenue > %

désirée 1 2 3 ? /classe | correct
1 918 82 0 0] 1000 91.8
2 504 379 117 0] 1000 37.9
3 40 70 890 0] 1000 89.0
Classification Libre Distance 0.2 | Différence 0.5

Correcte : 72.9% 59.7% 56.5%

Indécidable : 0% 19.6% 27.5%

Incorrecte : 27.1% 20.7% 16.0%

Table 3.4

- 40 -

La méthode de Karhunen-Loéve

Une compression jusqu'a dix par la méthode de Karhunen n'est donc pas
acceptable. Le résultat est une incapacité du réseau a reconnaitre la classe deux, qu'il
confond essentiellement avec la classe un. Une compression jusqu'a vingt entrées

apparait comme la limite.

5. Reconnaissance des caractéres manuscrits
5.1. Introduction

Pour ce probléme, nous avons d'abord du décider de la composition des
réseaux a essayer. Avec 8 100 patterns d'apprentissage, cette architecture devait de
préférence étre limitée a 810 synapses; ce qui est peu pour un probléme original de 256
entrées. Dans la littérature, nous avons trouvé des tentatives de classification de ce
probléme a partir de données réduites a la taille de 40. Nous avons donc d'abord testé

cette valeur.

Cela n'a pas abouti. En effet, nos données originales étaient en nuances de
gris (valeurs de 0 a 255). Cependant, notre fonction tangente hyperbolique n'est
vraiment efficace qu'autour de l'origine. Plus on s'en éloigne, moins la fonction varie.
Nous avons donc retraité nos données pour les recentrer dans l'intervalle [-1,1]. Pour
cela, nous utilisions une fonction de conversion de SIRENE. Les résultats ont

directement suivi.

Nous ne nous sommes pas limité a une compression a 40. Nous avons
essayé d'aller plus loin, jusque 20. Nous présentons maintenant en détail ces deux
simulations. Nous montrerons ensuite briévement la différence pour d'autres valeurs
recentrées ou non et nous terminerons par une comparaison avec les résultats de la

littérature : le projet StatLog.
5.2. Compression a 40 et recentrage

Comme annoncé, nous avons d'abord réduit nos ensembles de données par
la méthode de Karhunen et nous les avons ensuite recentrés, grace a SIRENE, dans
l'intervalle [-1,1]. 1l faut signaler qu'il a été obligatoire d'utiliser la méme matrice de
transformation de Karhunen et de centrage pour les trois fichiers. Dans le cas contraire,
l'apprentissage s'arréte aprés quelques itérations et avec un pourcentage d'erreurs

énorme.

-41 -

La méthode de Karhunen-Loéve

Le réseau créé pour vérifier la capacité de classification aprés compression,
comprend 40 neurones en entrée et en sortie, 1 pour chaque classe. L'importance de la
couche cachée a été décidée selon le critére des dix pourcents. Le maximum est dés
lors de 16 neurones (40 * 16 + 16 * 10 = 800 < 8 100 / 10). Etant donné les excellents

résultats obtenus, il n'a pas été nécessaire d'essayer d'autres valeurs.

Lors de notre simulation, nous n'avions pas assez d'espace disque pour
utiliser 1'ensemble test de 9 000 patterns au complet. Nous en avons extrait un tiers.
Cependant, pour permettre des comparaisons avec le projet StatLog qui emploie le
fichier entier, nous avons apres calculé les résultats détaillés pour les 9 000 patterns de

test.

L'évolution de I'apprentissage est expliquée par la figure 3.3. Cela a été tres
rapide. En 53 itérations, la fonction de validation a atteint le minimum de 8% d'erreurs.
Pour les 3 000 exemples, la fonction de test indique & ce moment une erreur de 7%. La
fonction d'apprentissage est partie de 87 796 pour tomber & 2 046. Aprés la 53éme
itération, les erreurs recommencent & augmenter progressivement. Apres 580 itérations,
les résultats ne pouvant plus s'améliorer, nous avons décidé d'arréter nous-mémes

l'apprentissage et de libérer I'ordinateur.

Caractéres : Karhunen 40 recentré

50
18900 .
Apprentissage 45
16900 0
14900 T * Validation 1
12900 + @
Test T 30 :qf
10900 1 lx ®
c
8900 + Ly 8
- 5
6900 4+ Minimum %
4900 + >
2900 T
900
© 8 9 2 2 2 9 9o 9 o o 9 Q9
o Lo o o o n o [To) o n o
— — N N ™ ™ < < n o (]
Itérations
Figure 3.3

-42 -

La méthode de Karhunen-Loéve

Une dizaine d'heures ont été nécessaires pour obtenir le meilleur réseau.
Nous avons arrété l'apprentissage & la 580€Me jtération aprés 87 heures et 20 minutes
réelles et 86 heures et 31 minutes CPU.

La table 3.5 détaille les résultats de la classification de l'ensemble
d'apprentissage. Les pourcentages spécifiques et globaux de classification sont tous
similaires et trés €levés. Les erreurs sont équitablement réparties dans chaque classe, il
ne s'agit pas d'un probléme de classification de caractéres se ressemblant, mais d'une

limite du réseau. Avec 96.3% d'exactitude, on peut parler de réussite.

Caracteéres - Karhunen 40 recentré - Ensemble d'apprentissage
Clas Classe obtenue >l %
se 1 2 3 4 5 6 7 8 9 10 ?
1] 769 4 2 0 4 1 2 31 17 8 0] 810]94.9
21 10| 792 0 0 0 0 0 1 2 5 0] 810]97.7
3 0 0| 788 5 0 3 1 1 5 7 0] 810]97.3
4 0 0 9| 769 0 7 3 1 91 12 0] 810]|94.9
5 3 1 0 0] 791 1 10 1 2 1 0] 810]97.6
6 1 0 0| 13 1| 765 6 2 8| 14 0] 810|944
7 1 0 0 1 3 6| 795 0 4 0 0] 810]98.1
8 8 2 1 1 6 2 0| 785 2 3 0] 810]96.9
9 1 3 4 1 0 6 9 21 768 | 16 0] 810]94.8
10 4 0 4 5 7 4 1 2 51 778 0] 810]96.0
Classification Libre Distance 0.2 Différence 0.5
Correcte : 96.3% 95.9% 93.4%
Indécidable : 0% 1.1% 5.2%
Incorrecte : 3.7% 3% 1.4%
Caracteéres - Karhunen 40 recentré - Ensemble de test
Clas Classe obtenue >l %
se 1 2 3 4 5 6 7 8 9 10 ?
1] 824 24 1 0 7 0| 10 41 25 5 0] 900]91.6
2 9| 871 0 3 0 1 0 7 3 6 0] 900] 96.8
3 2 3| 824 12 0| 16 6 41 19| 14 0] 900]91.6
4 0 0| 24| 814 0| 15 0| 10| 15| 22 0] 9001 90.4
51 14 4 2 0| 845 2 9 6| 11 7 0] 9001 93.9
6 5 0 9| 24 0| 815(17 4 9 17 0] 9001 90.6
7 6 0 1 1 9] 10| 869 0 2 2 0] 9001] 96.6
8 6 7 3 0 6 2 0| 854| 15 7 0] 900]94.9
9 5 1| 11 3 0| 15| 13 41 825| 23 0] 900] 91.7
10 4 8 31 12 8| 11 0| 14| 14| 826 0] 900]91.8
Classification Libre Distance 0.2 Différence 0.5
Correcte : 93% 92.1% 89.9%

-43 -

La méthode de Karhunen-Loéve

Indécidable : 0% 2.3% 6.7%
Incorrecte : 7% 5.6% 3.4%
Table 3.5 et 3.6

L'ensemble complet de test (9 000 patterns) a été utilisé pour vérifier
I'exactitude de la classification. La table 3.6 montre ces résultats. Ils sont semblables a
ceux de l'ensemble réduit testé lors de l'apprentissage. Le pourcentage de classification
correcte est de 93%. Les résultats sont précis. Les deux critéres supplémentaires ne
modifient pas énormément les pourcentages. Notons qu'en utilisant ces critéres, on peut
diminuer le taux d'erreur en augmentant le taux d'incertitude. Les éléments non

classifiables peuvent étre donnés a une autre procédure de décision.
5.3. Compression a 20 et recentrage

Les mémes opérations ont été réalisées pour obtenir 20 valeurs entre -1 et 1
pour chaque pattern de données. Ces valeurs ont été présentées a un réseau de 20
neurones en entrée et 10 en sortie. Nous avons décidé d'utiliser 16 neurones en couche
cachée comme pour le réseau précédent. Le nombre d'exemples disponibles nous le

permet et cela facilitera la généralisation.
La figure 3.4 décrit I'apprentissage. Les courbes de validation et de test se

superposent et décroissent durant une longue période. La fonction d'apprentissage suit

la méme direction. Elle part de 94 000 pour atteindre

-44 -

La méthode de Karhunen-Loéve

Caractéres : Karhunen 20 recentré

100000 3 %
90000 Apprentissage 80
80000 T N + 70
70000 1 alidation ! s ,
60000 4 Test L, 2
50000 ot
40000 =
30000 %
20000 >
10000
0
888888888 s88s8s8s8
— — — — — —
Itérations
Figure 3.4

Cet apprentissage a été beaucoup plus long : 1097 itérations ont été
nécessaires pour obtenir le meilleur réseau. Nous avons arrété volontairement
l'apprentissage apres 1 500 itérations, soit 291 heures et 42 minutes réelles (12 jours) ou
285 heures et 44 minutes de CPU. Le taux de classification aurait peut-étre pu encore
diminuer de quelques dixiémes de pourcent, mais le temps d'apprentissage, excessif,
suffit a déclarer cette taille de compression comme inadaptée. Nous avons donc libéré

l'ordinateur de cette charge de travail.

Les tables 3.7 et 3.8 reprennent les résultats. Ici aussi, ils sont excellents.
La méthode de Karhunen-Loéve permet des compressions trés importantes. Pour une
compression a 20, le pourcentage de classification correcte de I'ensemble de test est de

91%. Lorsque le réseau se trompe, la classe deux est plus souvent choisie.

Caracteéres - Karhunen 20 recentré - Ensemble d'apprentissage

Clas Classe obtenue | %
se 1 2 3 4 5 6 7 8 9 10 | ?

775 17 2 0 7 0 2 1 3 3 0] 810]95.7

N | —

6| 788 1 0] 10 0 0 5 0 0 810]97.3

(=]

3 2| 22| 754 1 2 2 9 3 7 2 6] 810]93.1

-45 -

La méthode de Karhunen-Loéve

4 0| 10 5| 777 1 1 0 2 1 12 1] 810]95.9

5 21 17 0 0| 775 0 5 2 0 9 0] 810]95.7

6 1 5 0 1 2| 791 4 2 0 4 0] 810]97.7

7 1 7 1 0 7 8| 783 0 3 0 0] 810]96.7

8 31 17 4 2 0 0| 774 0 3 0] 810]95.6

9 21 13 6 3 1 6 7 1| 759 8 41 810 93.7

10 21 24 0 91 14 1 1 4 8| 742 5] 810 91.6

Classification Libre Distance 0.2 Différence 0.5
Correcte : 95.3% 94.8% 93.1%
Indécidable : 0.2% 2.6% 5.0%
Incorrecte : 4.5% 2.6% 1.9%

Table 3.7

Bien que ces résultats soient excellents, cette taille de compression ne peut
nous satisfaire. En effet, notre objectif est de réduire la dimension des vecteurs pour
accélérer l'apprentissage des réseaux de neurones. Une compression plus importante
n'implique pas forcément un temps d'apprentissage plus court. C'est le cas ici, la taille

de compression de 40, bien que moins importante, permet un apprentissage plus rapide.

Caractéres - Karhunen 20 recentré - Ensemble de test
Clas Classe obtenue | %
se 1 2 3 4 5 6 7 8 9 10 ?
1] 269 15 0 0 6 0 0 1 7 0 2| 300| 89.7
2 2| 292 0 0 1 0 0 2 1 2 0] 300]97.3
3 0 8| 271 4 1 1 1 3 2 1 8] 3001]90.3
4 0 6 4| 276 0 5 0 0 0 5 41 300 92.0
5 21 10 0 0] 271 2 5 1 0 9 0] 300]90.3
6 0 8 0 2 2| 283 2 0 1 1 1] 300 94.3
7 2 3 1 0 4 3| 286 0 1 0 0] 300]95.3
8 3 8 1 1 3 1 0| 277 1 3 21 300]92.3
9 1| 14 5 4 1 2 7 1| 260 2 31 300| 86.7
10 21 20 0 7 6 3 2 1 3| 254 2| 300| 84.7
Classification Libre Distance 0.2 Différence 0.5
Correcte : 91.3% 89.8% 88.9%
Indécidable : 0.7% 5.4% 7.1%
Incorrecte : 8.0% 4.8% 4.0%
Table 3.8

- 46 -

La méthode de Karhunen-Loéve

5.4. Autres tentatives de compression

Nous présentons ici les résultats globaux obtenus pour d'autres tailles de
compression. La table 3.9 reprend pour chacune, le numéro de la meilleure itération, le
pourcentage de classification correcte pour les deux ensembles de données a ce
moment, le nombre d'itérations avant l'arrét de l'apprentissage et les différents temps
qui correspondent a la simulation entiére. Ces derniéres informations doivent étre
interprétées pour estimer le temps nécessaire a l'obtention des meilleurs résultats. Pour
cela, il suffit de savoir que chaque étape nécessite une méme durée. Le temps estimatif

pour les données comprimées a 40 et recentrées est donc d'environ 8 heures.

Méthode | Itération | Exactitude | Exactitude | Nombre | Temps | Temps
apprentis. test itérations réel CPU
40 recentré 53 95.0% 93.0% 580 87h20'| 86h31
30 recentré 2 861 98.1% 94.4% 3000| 400h 44'| 394h 08'
20 recentré 1097 95.3% 91.3% 1498 | 291h 42'| 285h 44'
40 213 46.0% 45.0% 249| 40h21'| 38h 09
30 131 40.0% 38.0% 134 29h 27 18h 12'
Table 3.9

La compression par la méthode de Karhunen a une taille de 40, suivie d'un
recentrage par SIRENE, donne d'excellents résultats et les meilleurs pour nos essais.
Les autres tailles recentrées donnent aussi de bons résultats, mais en beaucoup plus de

temps; ce qui va a I'encontre de notre objectif.

5.5. Comparaisons avec des résultats officiels

Dans le cadre du projet ESPRIT StatLog, le probleme de classification des
caractéres manuscrits a été traité. Leurs données ont été préalablement compressées par
la méthode de Karhunen. Les caractéristiques ont été ramenées a une taille de 40. Ces

données ont alors été présentées aux 19 algorithmes de la table 3.10.

Algorithme Type Source Exactitude (%) | Temps (sec.)
Appr. Test | Appr. | Test
k-N-N Stat. | Leeds 100.0 98.0 6 706
Quadra Stat. | Strath 98.7 97.9 930 | 863

-47 -

La méthode de Karhunen-Loéve

Alloc80 Stat. Leeds 100.0 97.6 -| 23279
Backpropag Neur. | Strath 95.9 95.1| 129600 | 2400
Radial Neur. | Strath 95.2 94.5 1700 580
SMART Stat. Leeds 95.7 94.3 | 174965 58
Discriminant Stat. Strath 93.0 92.5 87 54
Castle Stat. Granada 87.4 86.5| 4535| 56053
NewlID Mach. |Daimler 100.0 83.8 779 109
AC2 Mach. |Isoft 100.0 83.2| 15155| 14086
INDCART Mach. | Strath 99.7 83.0 3508 47
CN2 Mach. |Daimler 96.4 82.0] 2902 100
C4.5 Mach. | Turing 95.0 82.0 1437 35
Bayes Stat. | Strath 79.5 77.7 65 76
Cal5 Mach. | Fraunhofer 75.2 66.9| 3053 64
LogReg Stat. | Strath Echec| Echec| Echec| Echec
ITrule Mach. |Brainwr - - - -
Cart Mach. | Granada - - - -
Kohonen Neur. | Luebeck - - - -
Pour les trois derniers algorithmes, les résultats n'ont pas ét¢ communiqués.

Table 3.10

Nos résultats sont Iégérement inférieurs a l'algorithme de Ia
rétropropagation, mais restent fort proches. Nous nous classons en 66M€ position sur
les 20 méthodes. Les résultats étant proches, nous pouvons considérer notre méthode

comme compétitive.
6. Reconnaissance des véhicules
6.1. Introduction

Le dernier probléme que nous avons trait¢ par Karhunen est celui de la
reconnaissance des silhouettes de véhicules. En réalité, avec 18 entrées, ce probleme
n'a pas besoin d'étre réduit pour étre traité par un réseau de neurones. Nous ne l'avons
fait que dans un but de comparaison avec la méthode de prétraitement NLPCA que nous
verrons plus loin. Trois tailles de compression ont été tentées : 10, 8 et 4. Nous allons
détailler les deux premiéres : la compression a 10 car elle donne les meilleurs résultats
et la compression a 8 car nous la comparerons ultérieurement aux résultats de la
méthode NLPCA. La compression a 4 sera résumée. Rappelons que nous possédions

des résultats de références et qu'ils sont reproduits dans le chapitre 2.

-48 -

La méthode de Karhunen-Loéve

6.2. Compression a 10.

Les données réduites de la taille 18 a 10 par Karhunen, ont été présentées a
un réseau de 10 entrées, 4 sorties et 8 neurones en couche cachée. Son apprentissage
est décrit a la figure 3.4. La fonction d'apprentissage part de 2 941 pour atteindre 590 a
l'itération 61. Cette itération correspond au minimum de la fonction d'apprentissage :
17% d'erreurs. A ce moment, la fonction test équivaut a 24% d'erreurs. Comme on
peut le voir sur le graphique, ces valeurs restent stationnaires aprés. Il était inutile de
poursuivre la simulation jusqu'a l'itération 975. Le temps réel d'utilisation de
l'ordinateur a été de 3 heures et 9 minutes et le temps CPU a été de 2 heures et 57
minutes.

Véhicules : Karhunen 10

2000

1800 Apprentissage

1600 B Validation 1L a0
Mimimum +
1 [}
1400 61 Test % g
()
1200 30 Z
o
1000 25 ®
o
®
800 20 S
600 15
400 : T T T T T T T T T T T T T T T T T T 10
© o O O O OO OO OO0 O 0O oo oo o o o
DO MOWOWOWOWWOLWOLWwmOoOILwWmOo W
4 N N OO I T OHHOH O O N~MNMNMOWOWO O
Itérations
Figure 3.4

Les tables 3.11 et 3.12 décrivent les résultats obtenus lors de l'utilisation de
ce réseau. Ils sont nettement moins bons que ceux obtenus sans prétraitement, mais

restent honorables par rapport aux tailles de compression inférieures.

-49 -

La méthode de Karhunen-Loéve

Véhicules - Karhunen 10 - Ensemble d'apprentissage
Classe Classe obtenue > %
désirée 1 2 3 4 ? /classe | correct
1 130 31 2 5 0 168 77.3
2 43 118 4 3 0 168 70.2
3 0 3 164 1 0 168 97.6
4 1 2 1 150 0 154 97.4
Classification Libre Distance 0.2 | Différence 0.5
Correcte : 85.7% 83.5% 68.0%
Indécidable : 0% 4.7% 27.4%
Incorrecte : 14.3% 11.8% 4.6%
Table 3.11

Véhicules - Karhunen 10 -Ensemble de test
Classe Classe obtenue > %

désirée 1 2 3 4 ? /classe | correct

1 16 5 1 2 0 24 66.6

2 7 14 1 2 0 24 58.3

3 2 0 22 0 0 24 91.6

4 0 1 2 21 0 24 87.5

Classification Libre Distance 0.2 | Différence 0.5
Correcte : 76% 73.9% 62.1%
Indécidable : 0% 3.2% 30.9%
Incorrecte : 24% 22.9% 7.0%

Table 3.12

6.3. Compressions inférieures a 10

Nous détaillons uniquement les résultats de la classification suite a une
compression & 8, pour permettre une comparaison ultérieure avec la méthode NLPCA.
Suite a I'application de la méthode de Karhunen, les tables 3.13 et 3.14 indiquent qu'il
n'y a plus assez d'informations pour permettre au réseau de classer correctement les
véhicules. La compression a 10 est une limite pour ce probléme. En dessous, les
résultats sont trés mauvais; c'est pourquoi nous n'entrerons pas plus dans les détails.
Des informations complémentaires sont reprises dans la table 3.15.

-50-

La méthode de Karhunen-Loéve

Véhicules - Karhunen 8 - Ensemble d'apprentissage
Classe Classe obtenue > %
désirée 1 2 3 4 ? /classe | correct
1 73 32 33 30 0 168 434
2 48 53 34 33 0 168 31.5
3 1 26 117 24 0 168 69.6
4 0 4 76 74 0 154 48.0
Classification Libre Distance 0.2 | Différence 0.5
Correcte : 48.2% 33.5% 0.1%
Indécidable : 0% 32.5% 99.8%
Incorrecte : 51.8% 34.0% 0.1%
Table 3.13
Véhicules - Karhunen 8 - Ensemble de test
Classe Classe obtenue > %
désirée 1 2 3 4 ? /classe | correct
1 12 5 3 4 0 24 50.0
2 8 6 4 6 0 24 25.0
3 3 6 12 3 0 24 50.0
4 1 0 14 9 0 24 37.5
Classification Libre Distance 0.2 | Différence 0.5
Correcte : 40.6% 30.2% 0%
Indécidable : 0% 26.6% 100%
Incorrecte : 59.4% 43.2% 0%
Table 3.14
Réduction | Itération | Exactitude | Exactitude | Nombre | Temps | Temps
a apprentis. test itérations réel CPU
8 4 48.2% 40.6% 404 1h 07' 1h 00'
4 7 34.6% 34.1% 249 51 25'

Table 3.15

7. Conclusions

Parmi les méthodes de décorrélation linéaire, une des transformations qui

préservent l'information de maniére optimale est la méthode de Karhunen-Loéve. Les

-51-

La méthode de Karhunen-Loéve

variables caractéristiques, également appelées facteurs, de cette méthode sont des
combinaisons linéaires des variables originales du probléme. Les coefficients de cette
transformation linéaire sont tels que si la transformation est appliquée a 1'ensemble de
données et ensuite inversée, il y aura une différence minimale (au sens des moindres

carrés) entre les données originales et les données reconstruites.

Comme le montre nos essais, les données n'ont pas besoin de remplir
certaines conditions pour étre prétraitées. La méthode de Karhunen-Loéve est valable
quelle que soit la description des données. Nos simulations neurales montrent qu'elle
est une solution a notre probléme. Aprés prétraitements, les résultats de nos réseaux de
neurones opérant les classifications sont toujours trés fiables, mais avec un temps
d'obtention nettement inférieur. Les vecteurs de données ont été réduits
significativement sans perdre trop d'informations et les réseaux les utilisant ont pu

diminuer leur complexité.

Bien entendu, les temps de simulation dépendent de l'importance de la
compression. Si elle est faible, le réseau disposera de suffisamment de caractéristiques
pour reconnaitre correctement les patterns. Cependant, le nombre de neurones
nécessaires impliquera un apprentissage long. Si la compression est importante, le
réseau disposera de moins d'informations pour classer les vecteurs et aura un taux
d'erreurs supérieur. De plus, bien que sa taille soit plus petite, le temps d'apprentissage
ne le sera pas forcément. En effet, les itérations prendront chacune moins de temps,
mais il en faudra peut-étre beaucoup plus pour que le réseau arrive a se créer, c'est-a-
dire a essayer de corriger ses erreurs. Il faut donc trouver le juste milieu.
Malheureusement, il n'y a pas de régle pour le découvrir. L'expérience personnelle est

importante.

-52-

CHAPITRE 4
LA METHODE LPC

1. Introduction

La méthode LPC (Linear Predictive Coding) est utilisée pour compresser un
signal échantillonné de sorte qu'il puisse étre stocké sous une forme plus compacte. La
forme originale devrait étre exactement récupérable a partir de la version compressée.
La méthode se base sur le fait que s'il y a redondance dans le signal, il est prédicable,
avec une erreur minimale, a partir de ses valeurs précédentes et d'un petit nombre de

coefficients LP. C'est l'origine du nom de cette méthode.

En réalité, nous n'utiliserons pas la méthode LPC dans sa définition
premiere. Elle ne nous apporterait rien car la compression ne porte pas sur la réduction
de la taille des patterns, dans ce cas les échantillons du signal, mais dans la réduction de
la taille des valeurs contenues dans ces patterns. Cependant, nous allons montrer que
les coefficients LP qu'elle utilise et choisis en nombre quelconque, sont idéaux pour

représenter les signaux.

2. La méthode

Les coefficients LPC (Linear Predictive Code) sont en réalité avant tout une

représentation de la puissance spectrale d'un signal.
11 existe différents estimateurs de la puissance totale d'un signal. Dans le

cas discret qui nous intéresse et pour une fonction de temps, elle peut étre représentée

par:

-53-

La méthode LPC

N-1
2
Z|cj| (sum squared amplitude)
j=0
1 & e
v Z|cj| (mean squared amplitude)
Jj=0

N-l
A z |cj| (time — integral squared amplitude)
j=0

ou notre fonction c(t) a été échantillonnée tous les intervalles de temps A pour obtenir
les N valeurs cg...cn.1.

Dans le domaine fréquentiel, cette estimation peut étre obtenue par la

somme des puissances suivantes :
1 2
P(fy)= F|Co|
1 2 2 N
Pfy =z el el] k=12..6-) o

1
P(fyn)= F |CN/2|2

ou les fk sont définis pour les fréquences :
fi=— k=0,1,..,N/2

et les coefficients Ck sont obtenus par la transformée de Fourier :

N-1
Co=.c; ™ k=0,.,N-1

j=0
Pour se rendre compte de cette équivalence, il suffit d'appliquer la forme
discréte du théoréme de Parseval qui dit que :
N—

1 1 N-1
Sl =L S
n=0

k=0

-54 -

Commentaire [2]: ce qui correspond &
l'intervalle significatif de Nyquist

La méthode LPC

ou H est la transformée de Fourier de h.

Nous avons obtenu une fonction d'estimation de la puissance spectrale d'un
processus par transformée de Fourier. Ce n'est pas la seule méthode, ni forcément la

meilleure. En partant de celle-ci, nous en présentons maintenant une autre.

Si nous travaillons dans le plan z, en partant de (1) et en simplifiant les

. . 27ifA . ~ P
notations, par la relation z=e¢ ™ Yestimateur FFT peut étre écrit :

N/2-1 2

P(N=| ez @)

k=—N/2

Ce modéle possede plusieurs noms : "direct method", "moving average
(MA) model” et "all-zero model” . Cette derniére dénomination vient du fait que le
modele peut avoir des zéros, mais pas de pdles. Cela nous améne a proposer une autre

définition qui aurait les caractéristiques opposées :

1 a
PNr = 3
Zbkzk l+Zakzk
k=—M/2 k=1

Les différences entre les approximations (2) et (3) ne sont pas juste
cosmétiques. Ce sont des approximations possédant des caractéres trés différents. La
propriété la plus importante est que 1'estimateur (3) peut avoir des pdles, correspondant
a une puissance spectrale infinie ou a un pic. A l'inverse, l'estimateur (2), qui ne peut
avoir que des zéros, ne pourra que donner une approximation des pics par un polynoéme.
L'approximation (3) est appelée : "all-poles model”, "maximum entropy method
(MEM)" ou "autoregressive model (AR)".

Il reste cependant a déterminer les coefficients aj a partir d'un ensemble de

données, pour pouvoir calculer I'estimation spectrale.

Considérons l'autocorrélation a 1'étape j de la fonction échantillonnée ci,

soit :

-55.

La méthode LPC
¢ =Elcci;] j=.—3,-2.-1,0,123... @)

ou E [] représente la fonction moyenne sur i. Pour un nombre fini d'échantillons ¢ a
i

cN, l'estimation la plus naturelle de (4) est :

1 N—j

¢j = ¢—j ZCZCH—]] 0 N (5)

“N+l-

En d'autres termes, a partir de N+1 points de données, on peut estimer 1'autocorrélation

a N+1 différents niveaux.

Le théoréme de Wiener-Khinchin dit que :

Corr(g.8) < [G(f)’

On peut en déduire que la transformée de Fourier de 'autocorrélation est égale a la
puissance spectrale. L'équation qui doit dés lors étre satisfaite par les coefficients de
1'équation (5) est :

Z¢ z ©6)

1+Zak

Il faut noter que M, le nombre de coefficients dans l'approximation a
gauche du signe, peut étre n'importe quel entier, supérieur, inférieur ou égal a N, le
nombre total d'autocorrélations disponibles. M est appelé : "ordre" ou "nombre de

poles d'approximation”.

Quelle que soit la valeur M choisie, la série du membre de gauche définit
une sorte d'extrapolation de la fonction d'autocorrélation aux valeurs supérieures a M et
méme supérieures a N; c'est-a-dire plus grand que l'ensemble de données peut
actuellement mesurer. Il peut étre montré que cette méthode d'extrapolation particuliére
a parmi toutes les autres méthodes d'extrapolation I'entropie maximale; d'ou
l'appellation MEM (Maximum Entropy Method).

-56-

La méthode LPC

Etant donné que les coefficients ak représentent trés bien l'information et

qu'ils peuvent étre choisis en nombre quelconque, ils sont idéaux pour compresser les

données de signaux.

Revenons au calcul des termes ak. 11 faut pour cela résoudre le systéme (6).

Les termes d'autocorrélations sont calculables a partir de la fonction a représenter. Bien
que cela ne soit pas évident a premiére vue, I'équation (6) implique un ensemble linéaire
de relations entre les termes d'autocorrélations et les coefficients ag et a. En fait, les

coefficients doivent satisfaire I'équation matricielle suivante :

Po 9 ¢ Pu 1 a
¢ Po & e 0
9> 9 P o Py a|=]0 (7

Loy Py O - P JLayl LO
La premicre matrice de (7) est une matrice de Toeplitz symétrique; c'est-a-
dire une dont les éléments sont constants le long de la diagonale. En choisissant un

algorithme de résolution efficace de (7), on obtiendra alors les données demandées;

dans notre cas : une compression préservant un maximum d'informations.

Dans la fin de cette section, nous allons expliquer briévement pourquoi ces
coefficients portent le nom de coefficients LPC.

Posons :

N
Vn =Zdjyn—j+xn (8)
Jj=1

L'équation (8) est une filtre récursif linéaire prédisant la valeur yp suivante a partir des
N précédentes valeurs yn-j, j = 1, ..., N. xp est la divergence de la prédiction pour

I'étape n; c'est-a-dire la quantité qui doit étre ajoutée a la valeur prédite pour obtenir la
valeur correcte de yp. Si les valeurs prédites sont d'elles-mémes assez bonnes, alors la

correction a apporter sera, en moyenne, faible; c'est-a-dire :

el << Xl
n n

-57-

La méthode LPC

L'idéal étant d'avoir |xn| << |yn| pour tous les n.

Pour avoir utilit¢ du filtre (8), il est nécessaire de trouver de bons
coefficients prédictifs linéaires (LP) di, ...,dn. Il apparait alors qu'il y a une forte

relation entre la prédiction linéaire et la méthode du maximum d'entropie (MEM). Les
coefficients aj calculés par MEM sont les coefficients LP; d'ou leur nom.

3. Le programme

Le programme est trés simple. Il n'y a pas d'options envisageables. Une
fois les noms du fichier a compresser et du fichier résultat connus, ainsi que la taille de
la compression, les termes d'autocorrélations sont calculés et 1'équation matricielle (6)

est résolue par 'algorithme de Burg qui tire profit du caracteére symétrique de la matrice.

4. Analyse des phases du sommeil
4.1. Introduction

Avec la méthode de Karhunen, nous avons obtenu un taux de classification
valable jusqu'a une compression de la taille des entrées a 20. A priori, puisque la
méthode LPC est définie pour des signaux, une diminution a 20 semblait envisageable
pour elle aussi. Nous ne nous sommes pas limité a cette taille et avons essayé des

valeurs inférieures. Les deux prochaines sections décrivent les résultats.

4.2. Compression a 20

Les données prétraitées et réduites de la taille 100 a la taille 20 par la
méthode LPC, ont été présentées a un perceptron. Celui-ci utilise toujours les mémes
paramétres que ceux choisis pour nos autres études des phases du sommeil. 1l
comprend 20 neurones en entrée, 9 en couche cachée et 3 en sortie. Il est identique au
réseau utilisé aprés prétraitement par Karhunen. Le nombre d'exemples pour

l'apprentissage est largement suffisant par rapport a sa taille.

-58-

La méthode LPC

La simulation est représentée a la figure 4.1. L'apprentissage est trés rapide.
141 itérations sont nécessaires pour obtenir la convergence. La fonction d'apprentissage
passe de 4 771 a 40. La fonction de validation chute de 526 a 7. A ce moment la

fonction de test indique qu'il n'y a plus classification erronée qu'a moins de 2%.

Phases du sommeil : LPC 20
5000 T 70
4500 = Apprentissage 1
4000
3500 Validation 15
3000 T — Test 4 40
2500 T 4
2000 + T3 "
1500 + 12
1000 T Minimum
500 1
0
° 28 83¥I838RL 8883928 °:S
— — — — —
Itérations
Figure 4.1

Un SUN a travaillé pendant 23 heures et 13 minutes pour obtenir ces 141
itérations. En temps CPU, cela n'a pris que 5 heures et 49 minutes. De plus, notons la
facilité du réseau a s'adapter; les principales variations se sont produites dans les 20

premicéres itérations.

Le meilleur réseau a été sauvé a la fin de la simulation. Son utilisation nous
a fourni les résultats des tables 4.1 et 4.2. L'apprentissage n'aurait pu mieux se passer.
Pour les exemples, un résultat de 99.7% de classification correcte est exceptionnel. La
classe la moins bien reconnue, la classe deux, l'est quand méme a 99.5%. La classe un

atteint le maximum de 100% de reconnaissance!

-59.

La méthode LPC

Phases du sommeil - LPC 20 - Ensemble d'apprentissage |
Classe Classe obtenue > %
désirée 1 2 3 ? /classe | correct
1 1800 0 0 0] 1800| 100.0
2 0| 1791 9 0] 1800 99.5
3 0 7] 1793 0] 1800 99.6
Classification Libre Distance 0.2 | Différence 0.5
Correcte : 99.7% 99.6% 99.7%
Indécidable : 0% 0.2% 0.1%
Incorrecte : 0.3% 0.2% 0.2%
Table 4.1

Pour l'ensemble de test, les résultats restent exceptionnels : 98.1% de
classification correcte. Ils sont bien entendus légérement inférieurs a ceux des données
d'apprentissage, mais de peu. On peut remarquer que les classes un et trois sont
reconnues parfaitement. Seule la classe deux donne des résultats inférieurs avec 94.2%.
Une solution pour tenter de remédier a ce probléme serait d'augmenter le nombre

d'exemples de la classe deux dans les données d'apprentissage. Mais méme ainsi, notre
réseau est fiable.

Phases du sommeil - LPC 20 -Ensemble de test
Classe Classe obtenue > %
désirée 1 2 3 ? /classe | correct

1 1000 0 0 0 1000| 100.0

2 1 942 57 0 1000 94.2

3 0 0 1000 0 1000] 100.0

Classification Libre Distance 0.2 | Différence 0.5
Correcte : 98.1% 98.0% 97.9%
Indécidable : 0% 0.8% 0.2%
Incorrecte : 1.9% 1.2% 1.9%

Table 4.2

Avec un taux de réussite aussi élevé, on n'est pas étonné que les critéres

plus restrictifs de classification (distance et différence) sont inutilisables. Les résultats
sont fiables.

- 60 -

La méthode LPC

4.3. Compression a 10

Etant donné les excellents résultats d'une compression a 20 par la méthode
LPC, nous avons essayé d'aller plus loin. Nous avons réduit nos vecteurs initiaux par la
méme méthode jusqu'a la taille 10. Nous les avons ensuite présentés au méme réseau
que celui utilisé aprés compression & 10 par Karhunen; c'est-a-dire une architecture de
10 entrées, 5 neurones en couche cachée et 3 sorties. Les autres définitions du réseau

restant semblables a celles utilisées jusqu'a maintenant.

La figure 4.2 décrit I'apprentissage de ce réseau. Le résultat est surprenant.
Le réseau est toujours parfaitement capable d'apprendre la différence entre les phases du
sommeil. Il y a convergence en 992 itérations. La fonction d'apprentissage est passée
de 3975 a 39. La fonction de validation, partant de 441, atteint la valeur 8. Le
pourcentage d'erreur sur I'ensemble test est de 2.6% a la fin de la simulation.

Phases du sommeil : LPC 10
1000 0
900 Apprentissage 0
800
“ Validation 0
700 1 60
600 Test 1 50
500 T §
T 40
400
300 T %
200 + T2
100 K T 10
0 +—5% ; ; ; ; ; ; e 0
© o o o o o o o o o Mimimum
S 8 8 ¥ 8 8 R 8 8 .,
Itérations
Figure 4.2

Cependant, cette taille de compression n'est pas intéressante selon nos

criteres de temps. En effet, le réseau a beaucoup plus de mal a apprendre la distinction

-61-

La méthode LPC

des classes. 992 itérations ont été nécessaires. Notre ordinateur a du calculé pendant
52 heures et 44 minutes. En temps CPU, les 17 heures et 30 minutes restent énormes
par rapport aux résultats de la compression a 20. Remarquons cependant qu'ici aussi,
une vingtaine d'itérations suffisent déja a donner un réseau classant trés bien 1'ensemble
de test.

Pour le réseau optimum, les résultats détaillées sont repris dans les tables
4.3 et 44. Les pourcentages de classification correcte pour chaque classe restent
pratiquement identiques a ceux obtenus pour une compression a 20. Ils sont toujours
aussi fiable. Seule la classe deux se dégrade encore un peu, tout en restant acceptable.
La structure du réseau ayant changé, on peut supposer que le probléme vient bien d'un

manque d'exemples pour cette classe. Augmenter leur nombre ne peut qu'améliorer les

choses.
Phases du sommeil - LPC 10 - Ensemble d'apprentissage |
Classe Classe obtenue > %
désirée 1 2 3 ? /classe | correct
1 1800 0 0 0] 1800| 100.0
2 0| 1788 12 0 1800 99.3
3 0 8 1792 0] 1800 99.6
Classification Libre Distance 0.2 | Différence 0.5
Correcte : 99.6% 99.6% 99.6%
Indécidable : 0% 0.1% 0.1%
Incorrecte : 0.4% 0.3% 0.3%
Table 4.3

D'autres essais ont été réalisés avec des tailles de compression inférieures.
Cependant, méme avec beaucoup de temps, le réseau n'est plus capable de s'adapter. La

réduction a la dimension 10 est une limite.

Phases du sommeil - LPC 10 - Ensemble de test
Classe Classe obtenue > %
désirée 1 2 3 ? /classe | correct

1 1000 0 0 0 1000| 100.0

2 0 923 77 0 1000 92.3

3 0 1 999 0 1000 99.9

Classification Libre Distance 0.2 | Différence 0.5
Correcte : 97.4% 97.3% 97.1%
Indécidable : 0% 0.3% 0.3%
Incorrecte : 2.6% 2.4% 2.6%

Table 4.4

-62 -

La méthode LPC

5. Reconnaissance des caractéres manuscrits
5.1. Introduction

Nous nous sommes basé sur les résultats obtenus par la méthode de
Karhunen et par les algorithmes du projet StatLog. Notre premicre simulation a donc
débuté avec des vecteurs de données réduits a la taille 40. Peu d'autres essais ont été

réalisés étant donné les premiers résultats obtenus.

5.2. Compression a 40

Une fois les données ramenées a 40 composantes, elles ont été présentées a
un réseau traditionnel de 3 couches de neurones : 40 en entrée, 16 en couche cachée et
10 en sortie. Les paramétres sont & nouveau ceux de la table 2.1. Ce réseau est

identique a celui utilisé aprés compression a 40 par Karhunen.

On voit dans la figure 4.3 la stabilité, mais aussi la limite de I'apprentissage.
La fonction de validation atteint son minimum a l'itération 1 184 avec la valeur de 22%
d'erreurs. La fonction de test indique alors 25%. La fonction d'apprentissage a eu le
temps de chuter de 29 687 a 3 360. Le réseau s'entraine encore pendant 89 itérations
avant d'atteindre sa limite. La fonction d'apprentissage ne peut descendre en dessous de
3 358.

Ces résultats ont été obtenus aprés 11 jours de simulation, soit un temps réel
de 263 heures et 12 minutes et un temps CPU de 170 heures et 31 minutes. Les courbes
sont trés réguliéres. Apres 300 itérations, elles sont toutes les trois déja pratiquement

paralléles a I'axe des abscisses.

-63 -

La méthode LPC

Caractéres : L PC 40

30000 Apprentissage 100
T 90
25000 Validation T 80
T 70
20000 Test & o
1 ©
15000 Minimum 50 S
1184 T4 3
10000 lg 2
3
=1 0
5000 +
T 10
O +—+—+—+—+—+—+++++ + I 1o
© o o o o o o o o o
E§ 3888388888 88
— — —
Itérations
Figure 4.3

La classification détaillée obtenue a partir du meilleur réseau et reproduite

dans les tables 4.5 et 4.6, indique que cette compression est uniformément mauvaise

pour toutes les classes. La méthode LPC ne donne pas d'aussi bons résultats que pour

nos ensembles de signaux. Avec 25% d'erreurs sur un ensemble test, ce réseau n'est pas

fiable. Cela n'est pas du a un probléme d'incapacité de généralisation, puisque le taux

d'erreur sur l'ensemble d'apprentissage est sensiblement le méme.

compression est trop élevé.

Le taux de

Remarquons qu'ici les critéres de sélection supplémentaires sont plus actifs.

Le réseau n'a pas réussi a tirer des conclusions trés précises de I'ensemble

d'apprentissage qu'il a du étudier.

- 64 -

La méthode LPC

Caracteres - LPC 40 - Ensemble d'apprentissage
Clas Classe obtenue >l %
se 1 2 3 4 5 6 7 8 9 10 ?
1] 702 23 2 0| 25 0| 22 20 12 22 0] 8101 86.7
21 17| 755 2 1| 27 0 3 4 1 0 0] 810]93.2
3] 66 1| 402 47| 14| 31| 111| 38| 38| 62 0] 810]49.6
4 0 0| 15| 654 0| 59| 12 6| 22| 42 0] 810 80.7
51 26 3 6 0] 694 10| 12| 42 41 13 0] 8101 85.7
6 2 0 21 45| 10| 685 6| 20| 10| 30 0] 810 84.6
71 37 2| 38| 11 14| 11| 517 9|1 50| 121 0] 810]|63.8
8 5 0| 24 51 65| 57| 15| 634 2 3 0] 810| 78.3
9] 18 3 31 36 3 21 30 0| 681 34 0] 8101 84.1
10] 33 0| 14| 28| 34| 23| 116| 11| 41| 510 0] 810]63.0
Classification Libre Distance 0.2 Différence 0.5
Correcte : 77% 66.7% 58.6%
Indécidable : 0% 21.8% 34.5%
Incorrecte : 23% 11.5% 6.9%
Table 4.5
Caracteéres - LPC 40 - Ensemble de test
Clas Classe obtenue >l %
se 1 2 3 4 5 6 7 8 9 10 ?
1] 260 9 1 0 9 0 5 1 6 9 0] 300 86.7
2] 13| 278 0 0 7 0 1 0 1 0 0] 300]92.7
31 22 0| 133 21 6| 19| 49| 16| 11| 23 0] 300| 44.3
4 0 0 9| 234 0| 26 1 5 6| 19 0] 300] 78.0
5 8 2 4 0] 251 2 51 21 3 4 0] 300 83.7
6 0 0 31 26 7| 232 2| 14 21 14 0] 300|77.3
71 13 1 16 4 8 6| 187 4| 13| 48 0] 300] 62.3
8 4 0 6 4 25| 19 4| 236 0 2 0] 300 78.7
9] 11 2 2 8 1 0 7 0| 245| 24 0] 300]| 81.7
10 8 0 1| 15 9 7| 41 8| 19| 192 0] 300] 64.0
Classification Libre Distance 0.2 Différence 0.5
Correcte : 74.9% 64.9% 57.3%
Indécidable : 0% 22.4% 34.8%
Incorrecte : 25.1% 12.7% 7.9%
Table 4.6

5.3. Autres tentatives

- 65 -

La méthode LPC

Nous avons étudié deux autres types de compression : la compression a 40
suivie d'un recentrage et la compression a 30. Les simulations utilisant ces données
n'ont pas eu un comportement encourageant; c'est pourquoi nous ne les avons pas laissé
se terminer. Nous sommes convaincu que le temps n'aurait pas permis d'améliorer cet

apprentissage. Les courbes étaient devenus pratiquement planes. La table 4.7, indique

les résultats obtenus lors de l'interruption.

Méthode | Itération | Exactitude | Exactitude | Nombre | Temps | Temps
apprentis. test itérations réel CPU
40 recentré 150 67.0% 151 47h36'| 46h 52
30 779 64.0% 782 | 247h 38'| 223h 12’
Table 4.7

6. Reconnaissance des véhicules

Trois compressions par la méthode LPC ont été essayées pour le probléme

de la reconnaissance des véhicules. Rappelons qu'avec 18 entrées, le réseau utilisant les

données originales fournit rapidement les résultats.

Une compression n'est pas

nécessaire. Le but de nos tentatives est de mesurer les capacités de la transformation

LPC et d'établir des comparaisons avec les autres méthodes.

Comme le montre la table 4.8, aucun de nos essais n'a été concluant. LPC

n'est pas efficace pour ce type de données. Une autre méthode est nécessaire si on

désire réduire la taille du réseau.

Nous n'étudierons donc pas plus en détail ces

résultats.
Méthode | Itération | Exactitude | Exactitude | Nombre | Temps | Temps
apprentis. test itérations réel CPU
10 87 54.6% 44.7% 331 1h 49’ 1h 48'
8 62 57.3% 54.1% 610 3h 03' 1h 31
4 120 48.3% 47.2% 254 28' 26'
Table 4.8

- 66 -

La méthode LPC

7. Conclusions

Les coefficients LP sont idéaux pour extrapoler des signaux. Ils possédent
cette propriété car ils correspondent a une représentation de la puissance spectrale du
signal. Quelques coefficients seulement suffisent a capturer les informations. De
nouveau, il n'est pas possible a priori de déterminer le meilleur nombre. L'expérience
montre que des vecteurs de taille 1 000 ou 10 000 peuvent étre réduits a la taille 10, 20

ou 50 selon les besoins.

Dans nos problémes de classification, nous disposions d'un ensemble de
données de type signal : les analyses du sommeil. On constate que les résultats que
nous avons obtenus pour ce probléme sont optimaux. La reconnaissance des caractéres

et des véhicules n'a pas été aussi bonne.

Comme pour le chapitre précédent, nous constatons qu'il faut trouver un
juste milieu pour l'importance de la compression. Si elle trop faible, les itérations du
réseau seront longues. Si elle est trop forte, le réseau reconnaitra moins bien et
réclamera peut-étre plus d'itérations pour son apprentissage. Dans le cadre de la
reconnaissance des phases du sommeil, des réductions a 20 et a 10 étaient acceptables
pour la méthode LPC. Cependant, notre probléme de classification préfére la
compression la moins importante a 20, car elle permet de réduire la complexité du

réseau ainsi que le nombre d'itérations nécessaires a son apprentissage.

-67 -

CHAPITRE 5
LA METHODE NLPCA

1. Introduction

Dans le chapitre trois, nous avons présenté une méthode de compression
linéaire : celle de Karhunen-Loéve. Elle consistait en un mapping liné¢aire d'un vecteur

de données Y en un vecteur réduit T par une matrice de transformation P :

Tr=YP

La différence principale entre la méthode de Karhunen et NLPCA (Non
Linear Principal Composant Analysis) est que cette derniere permet des
transformations non linéaires entre l'espace original et l'espace réduit. Si des
corrélations non linéaires existent entre les variables, NLPCA décrira les données avec
une plus grande précision et/ou avec moins de facteurs que Karhunen, pour autant qu'il

y ait des données en suffisance pour utiliser ce mapping plus complexe.

Cette dernicre remarque est importante. Notre objectif dans ce travail est
de réduire la taille des données pour pouvoir utiliser un réseau plus petit et plus facile a
entrainer. Comme nous le verrons, la méthode NLPCA a un effet contraire. Sa mise en
ocuvre nécessite un réseau de neurones plus complexe que celui utilisé sans
compression préalable, pour traiter le probléme posé. Cette méthode n'est applicable
que pour de petits problémes. Etant donné sa réputation, nous la décrivons quand

méme.

2. La méthode
2.1. Le principe
Dans la méthode NLPCA, les transformations vers l'espace des

caractéristiques est généralisé pour autoriser les relations non linéaires. Cela peut étre

représenté par la transformation suivante :

- 68 -

La méthode NLPCA
T=G(Y) (1)

ou Y est le vecteur de données dont on cherche les caractéristiques, T est le vecteur
résultat compressé et G = {Gy, Gy, ..., Gy} est un vecteur de f fonctions non linéaires

tel que si Tj est le i°Me élément de T,
T, =G,(Y) @)

La transformation inverse, restaurant la dimension originale des données,
est implémentée par un second vecteur de fonctions non linéaires H = {Hy, Hp, ...,

Hp} :

= H,(T) 3)

La perte d'information est mesurée par E =Y - Y, et on doit donc chercher
des fonctions G et H qui minimisent ||E||. Cela correspond au critére optimal de la
méthode de Karhunen.

2.2. Recherche des vecteurs de fonctions G et H

Pour générer G et H, une approche fonctionnelle de base est utilisée.

Cybenko, en 1989, a montré que des fonctions de la forme
Vi _z kZO-(ZWUlu +9 (4)

ou o(x) est une fonction quelconque continue et monotone croissante telle que o(x)—1
lorsque x—0 et o(x)—>0 lorsque x——00, sont capables de s'ajuster pour représenter
n'importe quelle fonction non linéaire v = f(u) et avec un degré de précision arbitraire.

Une fonction 6 couramment choisie est la sigmoide, définie par :

1

T

©)

-69 -

La méthode NLPCA

Comme nous l'avons vu au chapitre 1, I'expression (4) correspond a un

perceptron a trois couches :

- La couche 1, comportant N1 neurones et dont le seul rdle est l'interfacage entre

le réseau et I'environnement, est la couche fictive d'entrée.
- La couche 2, la couche cachée, comporte Ny neurones qui calculent

Ny
0jp = U(szjloil +0;)
i-1

ol o}y, est la sortie du neurone 1 de la couche m, avec dans ce cas 0j] = u; et
wijk est le poids de la connexion allant du neurone i de la couche k au neurone j
de la couche k+1.

- La couche 3, comportant pour chaque k un neurone calculant la somme de ses

entrées par
Ny
O3 = Z Wik20;2
J=

avec dans ce cas vk = 0k3, est la couche de sortie.

En pratique, deux modifications sont souvent apportées. Premiérement,
plutdt que d'utiliser une fonction linéaire en sortie, on utilise des fonctions limitant les
sorties a un certain intervalle fixé et fini. Deuxiémement, la fonction sigmoide peut
changer d'échelle ou étre translatée sans perte de généralité pour le réseau. Ceci est
utile car les ensembles de données a traiter que 1'on rencontre sont souvent centrés.
Dans ce travail, nous avons dés lors utilisé, pour tous nos apprentissages, la fonction

tangente hyperbolique qui répond a ces conditions et qui a fait ses preuves.

On peut maintenant facilement définir les fonctions G et H. Ce sont des
réseaux tels qu'on vient de les définir. Définissons G. Si m est la taille du vecteur
original Y et f la taille du vecteur T des caractéristiques, N1 vaut m et il y a f neurones
en sortie (k varie de 1 a f). Etant donné que la couche cachée est 1 pour capturer les
relations non linéaires, pour obtenir f caractéristiques indépendantes, N> ne doit pas étre

inférieur au nombre f. La fonction Gy, représentant le kéme facteur non linéaire, est

alors définie par la formule (4). Le réseau G est représenté a la figure 5.1.a.

-70 -

La méthode NLPCA

(@) (b)

"mapping" "demapping”

Figure 5.1

H s'obtient similairement. La couche d'entrée recoit les f caractéristiques
(N1 =) et dans la couche de sortie, pour retrouver les m Y originaux, il y a m neurones

de sortie Y';. La couche de "demapping" contient les N, neurones (N, > f) a fonctions

sigmoides. Le réseau type de demapping est présenté a la figure 5.1.b.

La capacité de ces réseaux a s'ajuster a une fonction non linéaire provient de
la présence de fonctions d'activations non linéaires en couche cachée. En effet, sans la
présence de neurones non linéaires en couche cachée, ces réseaux seraient seulement
capables de produire des combinaisons linéaires des entrées a la sortie, ce qui n'est pas

suffisant pour notre probléme. |

Pour pouvoir utiliser les fonctions G et H, deux conditions sont a remplir. Il
faut décider du nombre de neurones dans les couches cachées. Pour éviter les
ambiguités, rebaptisons le N2 du réseau G en M| (M pour Mapping) et le N, du réseau
H en M. Malheureusement, il n'y a pas de loi précise permettant de fixer le nombre de
neurones dans les couches cachées d'un réseau. Dans notre cas de compression, nous ne
pourrons que fixer des bornes et une estimation. Nous devons également découvrir les
meilleurs coefficients Wijjk de la formule (4). Cela revient a réaliser 1'apprentissage de
nos réseaux.

2.3. L'apprentissage des réseaux

-71-

Commentaire [3]: cette position de
sigma permet la compression non linéaire

Une autre position ou I'absence de sigma
implique une relation linéaire

La méthode NLPCA

Il'y a un probléme. En effet, pour réaliser I'apprentissage, on doit fournir au
réseau des vecteurs d'entrées et les vecteurs de sorties correspondants.
Malheureusement, dans le cas du réseau G, on connait les entrées (Y;), mais pas les
sorties et dans le cas du réseau H, on connait les sorties souhaitées (Y;), mais pas les
entrées. Pour résoudre ce probléme, il suffit de se rendre compte que les entrées de H
sont les sorties de G. En combinant les deux réseaux, on en obtient un dont les entrées
et les sorties sont connues. On peut donc réaliser son apprentissage. Ce réseau

correspond a la fonction identité. Il est représenté a la figure 5.2.

Figure 5.2

Le réseau de la figure 5.2 comprend trois couches cachées : la couche de
mapping de G, la couche centrale dont les sorties correspondent aux caractéristiques T
et la couche de demapping de H. La seconde couche cachée est appelée couche de

compression a cause de sa dimensionnalité inférieure.
Lors de l'apprentissage, les poids sont modifiés de maniére a minimiser la
différences entre les sorties obtenues Y'i et les sorties attendues Yi pour tous les

vecteurs présentés. L'apprentissage est terminé lorsque E, la somme des carrés des

erreurs, est minimum; c'est-a-dire pour n vecteurs de données :

E=min >3 (y-) ©)

-72-

La méthode NLPCA

E est le carré de ||matrice d'erreurs|, le critére d'optimalité de la méthode de Karhunen.
Dés lors, minimiser E durant 'apprentissage résulte en une minimisation de la perte

d'information au méme sens que Karhunen.

Apres l'apprentissage, le réseau combiné n'est plus nécessaire et peut étre
désagrégé en deux réseaux : G et H. G est la fonction d'intérét. Les données sont
propagées a travers G pour projeter les données dans l'espace de dimensionnalité

inférieur des caractéristiques.

2.4. Détermination de la taille des couches

Dans le réseau combiné, il y a m noeuds d'entrées et de sorties et f noeuds
dans la couche de compression. Cependant, il n'existe pas de méthode définitive pour
décider a priori de la dimension des couches de mapping et de demapping (nous les

appellerons parfois les deux couches de mapping).

Le nombre de noeuds de mapping est lié a la complexité des fonctions
linéaires qui peuvent étre générées par le réseau. S'il y a trop peu de noeuds de
mapping, l'ajustement risque d'étre faible a cause de la capacité de représentation faible
du réseau. Cependant, si ce nombre de noeuds est trop élevé, le réseau risque
d'apprendre les variations stochastiques des données plutdt que les fonctions sous-

jacentes.

L'approche la plus simple a ce probléme consiste dés lors a limiter le
nombre de poids dans le réseau a une fraction du nombre de contraintes imposées par
les données. Pour chaque vecteur de données, une contrainte séparée est imposée par
chaque noeud de sortie. Le nombre de paramétres ajustables doit donc étre inférieur a
n*m. Pour le réseau combiné, en assumant que tous les noecuds ont des bias (le
paramétre 0), le nombre de paramétres ajustables vaut (m+f+1)*(M+Mp)+m+f. ’ Ces

deux constatations impliquent les inégalités uivantes :

(m+ f+1)XM,+M,)+m+ f<<mn
m(n— f) ™

o M+ M, <<
: ? m+ f+1

-73 -

Commentaire [4]: m*M1+M1*f+f*M2
+M2*m

= (m+f) (M1+M2)

= nombre de poids w

M1+f+M2+m
= nombre de bias

+-> = (m+f+1) (M1+M2) + m + f

La méthode NLPCA

Pour un petit nombre de facteurs (f << m et n), cette expression peut étre approximée

par:

M+ M, <<n ®)

De plus, si le nombre de noeuds de mapping ou de demapping autorisé par
les inégalités (7) et (8) est inférieur a f, alors il n'y a pas assez de données pour
supporter l'extraction de f facteurs non linéaires, puisque la couche de compression
apparait, par définition, dans la seconde couche cachée du réseau combiné, entre les

deux couches de mapping.

Rappelons enfin la régle des 10%. Un apprentissage est facilité s'il y a au

moins dix fois plus de vecteurs de données que de synapses dans le réseau; c'est-a-dire :

n>10(m+)M, + M,) 9)

2.5. Remarques sur les couches cachées

On a vu qu'un réseau combiné de trois couches cachées permettait la
construction d'un réseau de compression. Est-ce que trois couches sont nécessaires ?
Imaginons que l'on supprime les couches de mapping; ne laissant que la couche de
compression. Si les fonctions de cette couche sont linéaires, le réseau correspond en
fait a la méthode de Karhunen. Cela a été montré par Sanger en 1989. Si les fonctions
sont des sigmoides, les fonctions G et H sont fortement restreintes; seules des
combinaisons linéaires des entrées, compressées par la sigmoide dans son intervalle de
variation, peuvent étre présentées. Dés lors, les résultats ne sont pas souvent meilleurs

que ceux obtenus par la méthode de Karhunen.

La structure a cinq couches dont trois cachées est donc la meilleure.

3. Le programme

Comme il vient d'étre dit, la méthode NLPCA consiste en l'apprentissage
d'un réseau de neurones. Nous avons donc utilisé le simulateur de réseaux de neurones
de Monsieur Fombellida. Cependant, différents outils supplémentaires ont été

nécessaires. Nous avons donc programmé un module supplémentaire.

-74 -

La méthode NLPCA

Le menu général se présente comme suit :

+++ OUTILS POUR LA METHODE DE COMPRESSION NLPCA +++

0. Aide

Conversion des donnees au format NLPCA
Selection des premieres couches d'un reseau
Modification du nombre de sorties d'un fichier de donnees

Utilisation type d'un reseau de SIRENE

g w N

Recuperation des sorties d'un reseau

9. Retour au menu principal

3.1. Conversion des données au format NLPCA.

La premiére étape dans la méthode NLPCA est de construire le réseau
combiné et de réaliser son apprentissage. Lorsque sa structure est définie, il faut fournir
au simulateur un fichier de données tel que, pour chaque pattern, les sorties souhaitées

soient identiques aux entrées.

Le premier sous-menu réalise la conversion d'un fichier d'apprentissage au

format standard de SIRENE en un fichier "identité" au méme format.
3.2. Sélection des premieres couches d'un réseau.

Lorsque l'apprentissage du réseau combiné est terminé, on n'a plus besoin

que des premieres couches, celles qui correspondent au réseau de compression G.

Le second sous-menu transforme le réseau sauvé par SIRENE lors de
l'apprentissage, de maniére a récupérer les X premieres couches et obtenir un réseau de

compression utilisable dans SIRENE.
3.3. Modification du nombre de sorties et utilisation type

Ces commandes sont déja présentes dans le module d'outils décrit au

chapitre deux. Elles réapparaissent ici, car la méthode NLPCA nécessite plusieurs

=75 -

La méthode NLPCA

utilisations du réseau de compression et souvent avec des fichiers de données qui n'ont

pas a l'origine le bon format.
3.4. Récupération des sorties d'un réseau

Dans notre cas, la méthode NLPCA n'est qu'un prétraitement. Les vecteurs
comprimés seront réutilisés par un autre réseau de neurones dans un but a déterminer.
11 faut donc que ces premiers résultats soient utilisables par SIRENE, c'est-a-dire qu'ils

soient écrits dans un fichier au format standard.

Le quatrieme sous-menu récupere les sorties du réseau de compression a
partir du fichier "use.txt" généré par SIRENE, ainsi que les sorties souhaitées associées

aux vecteurs non comprimés. Le résultat est un fichier standard d'apprentissage.

4. Les traitements

La démarche comporte plusieurs étapes :

Convertir les fichiers de données au format NLPCA.

Réaliser un apprentissage avec ces données.

Récupérer les premiéres couches du meilleur réseau obtenu.
Utiliser le nouveau réseau pour les trois ensembles de données.

Récupérer les résultats de "use.txt" et les convertir en fichier de données SIRENE.

A o e

Réaliser un apprentissage d'un nouveau réseau avec ces derniers fichiers pour
résoudre le probléme posé.

7. Analyser les résultats.

Détaillons ces étapes. Pour réaliser I'apprentissage du réseau combiné, il
faut fournir des fichiers de données tels que les vecteurs des sorties souhaitées soient
identiques aux vecteurs des entrées. La premicre étape est donc la conversion de nos
fichiers originaux a ce format. Cela est réalisé¢ par la premiére commande de notre

programme.

11 suit ensuite l'apprentissage de ce réseau. L'utilisateur est libre de choisir
ses paramétres, mais il peut aussi utiliser le fichier type de commandes créé dans le
module "outils" de notre travail.

-76 -

La méthode NLPCA

L'apprentissage réalisé, le réseau combiné n'est plus nécessaire. On ne doit
plus conserver que la premiére moitié : celle qui correspond a la compression. Cette

opération est réalisée par la deuxiéme commande du programme.

Une fois le réseau de compression disponible, on doit l'utiliser pour obtenir
les vecteurs réduits de données. Un probléme se pose. Le fichier nécessaire lors de
cette utilisation doit contenir des vecteurs de sorties comprenant autant de valeurs qu'il
y a de sorties au réseau. Cela pour respecter les normes de SIRENE. Cela n'est en
général pas le cas, car les fichiers a notre disposition comprennent une valeur de sortie
par classe et il n'y a pas de rapport entre la taille de la compression (le nombre de sorties
du réseau) et le nombre de classes. Il est donc la plupart du temps nécessaire de
modifier la taille des vecteurs de sorties des fichiers. On peut le réaliser avec la
troisiéme ou la quatriéme commande de notre menu. La quatriéme a I'avantage de ne
faire cette modification que si nécessaire et de fournir un fichier type d'instructions pour

l'utilisation du réseau. La simulation peut avoir lieu.

On obtient un fichier "use.txt" comprenant tous les résultats de 1'utilisation
du réseau. Ce fichier n'est pas un fichier de données pouvant servir a I'apprentissage, la
validation ou le test. Pour pouvoir utiliser les vecteurs comprimés dans un réseau de
neurones, il faut récupérer ces vecteurs dans "use.txt" et les vecteurs des sorties
attendues correspondantes dans les fichiers de départ. Le résultat doit étre au format de
SIRENE. Cette opération est réalisée par la cinquiéme commande de notre module.

Ceci cloture la phase de compression.

Il ne reste plus qu'a utiliser nos nouveaux ensembles de données pour

résoudre le probléme posé et a analyser les résultats obtenus.

Comme on peut le voir, il y a beaucoup d'options envisageables. Il n'était
pas possible de réaliser une commande unique s'occupant de toute la compression
NLPCA. Notre programme laisse toute sa liberté a l'utilisateur, mais Iui offre de

nombreux raccourcis.

Nous pouvons maintenant passer a l'application de cette méthode pour les

problémes décrits au chapitre deux.

-77-

La méthode NLPCA

5. Les phases du sommeil et les caractéres manuscrits

Le but de ce travail est de trouver des méthodes pour diminuer la taille des
réseaux et accélérer leur apprentissage. L'algorithme de compression NLPCA nécessite,
comme on I'a vu, un réseau de neurones d'au moins 5 couches et comportant autant de
sorties et d'entrées qu'il y a de données dans un vecteur du probléme. Son apprentissage

est inimaginable pour des vecteurs de données de grande taille.

Pour le probleme de la reconnaissance des caractéres, la méthode de
Karhunen a donné de bons résultats pour une taille réduite a 40. Pour obtenir ce taux de
compression par NLPCA, il faudrait un réseau comprenant au grand minimum 5 320
synapses (256 * 10 + 10 * 10 + 10 * 10 + 10 * 256). Pour respecter la régle des dix
pourcents, nous devrions également disposer d'au moins 53 200 exemples
d'apprentissage. Malheureusement, nous n'en avons que 8 100. MeéEme si nous
supposions avoir assez d'exemples, le temps que nécessiterait 'apprentissage d'un tel
réseau serait phénoménal. Notons de plus que le probléme de classification sans
prétraitement n'a besoin que d'un réseau plus petit (au minimum de 2 660 synapses).
C'est le méme probléme pour les phases du sommeil. Avec des vecteurs de 100

données, la méthode NLPCA n'est pas applicable. Elle nécessite trop de ressources.

6. Reconnaissance des véhicules
6.1. Introduction

Le probléme de la reconnaissance des véhicules est envisageable par la
méthode NLPCA. Avec 18 données par pattern, le réseau combiné a créer reste
réalisable. Notons cependant dés maintenant que le peu de patterns disponibles sera

une limite a son utilisation.
Comme précédemment, les réductions a 10, 8 et 4 ont été envisagées. Les

réseaux combinés ont été testés avec différents nombres de neurones en couches

cachées.

-78 -

La méthode NLPCA

6.2. Compression a 10

Nous avons réalisé chacune des étapes décrites dans la section 4. Pour le
réseau combiné, nous avons choisi une architecture de cinq couches comprenant par
ordre de propagation 18, 12, 10, 12 et 18 neurones. Il y a donc 672 synapses. Les

paramétres utilisés sont les mémes que d'habitude : ceux de la table 2.1.

L'apprentissage du réseau combiné a partir des 658 exemples de 1'ensemble
de données, est illustré par la figure 5.3. La fonction d'apprentissage débute a 3 103 et
converge vers la valeur 24. Cela nécessite 85 itérations. En ce court laps de temps, la
fonction de validation atteint un minimum d'erreurs de 26.6%. La fonction de test
indique 13.8%. Le réseau a donc parfaitement réussi a compresser les données
d'apprentissage, mais n'a pas réussi a généraliser parfaitement ses résultats. Ce n'est pas
étonnant, vu le faible nombre d'exemples présentés (658) comparé au nombre de

synapses (672). Nous sommes loin de la régle des dix pourcents.

-79-

La méthode NLPCA

NLPCA 12/10 (véhicules)

3500 T T+ 100
Apprentissage + 90
3000 A
. + 80
= Validation
2500 A + 70
T 1 7]
2000 - est 6 2
t5 2
E Minimum
1500 L 10 %
1000 -+ L ey R ;' 30 E
>
+ 20
500 T -
+ 10
0 — } } — — = S T et } 0
© D oW O 1V Q I QO L QW QW O LW QL
I <4 N N OO OO F < OHL WO O© O© I~ N~ 0
Itérations
Figure 5.3

La phase de compression a nécessité 3 heures et 36 minutes. En temps
CPU, cela a pris 1 heure et 42 minutes. Les courbes ont toujours la méme allure que
d'habitude, mais étant donné le faible nombre d'itérations avant la convergence, on a
lI'impression que les courbes de test et de validation n'ont pas eu le temps d'atteindre
leur minimum. Il serait intéressant de recommencer cette simulation avec plus

d'exemples d'apprentissage.

Une fois les vecteurs réduits récupérés, ils ont été présentés au réseau se
chargeant de la reconnaissance des véhicules. Ce réseau comportait 10 neurones en
entrée, 7 en couche cachée et 4 en sortie. Les paramétres restent les mémes. Cette fois-

ci, on dispose de 658 exemples pour 98 synapses. L'équilibre se rétablit presque.

La figure 5.4 représente 1'é¢tude du réseau. La fonction de validation atteint
son minimum trés vite : 23% d'erreurs. 24 itérations ont été nécessaires. Apres, elle et
la fonction de test ne varient presque plus. La fonction de test indique 22% d'erreurs.
La fonction d'apprentissage part de 3 037, mais ne converge pas. A la 24i¢me jtération,

elle a atteint la valeur de 937.

-80 -

La méthode NLPCA

Véhicules : NLPCA 12/10

3500
rentissage
3000 App g
2500 Minimum -
[}
©
c
1500 IS
I
©
1000 3
>
500 + + 10
0 } } } } } } } } } } } } 0
© @ @ © 9 o 92 9o 9o o 9 9o 9o
— — N N ™ ™ n n [Te}
Itérations
Figure 5.4

3 heures et 53 minutes ont €té nécessaires pour réaliser cet apprentissage de
623 itérations. En temps CPU, la machine a travaillé durant 1 heure et 56 minutes.
Cependant, aprés 150 itérations, nous aurions pu conclure avoir les meilleurs résultats
et arréter la simulation. L'apprentissage aurait alors duré moins d'une demi heure en
temps CPU.

Les tables 5.1 et 5.2 reprennent les résultats détaillés de la classification
réalisée par ce réseau. On constate que ce sont les classes une et deux qui détériorent
les résultats. Les autres sont trés bien reconnues. Etant donné les mauvaises conditions
d’apprentissage, nous pouvons considérer que le réseau a atteint correctement son
objectif. La compression NLPCA est réussie.

-81-

La méthode NLPCA

Véhicules - NLPCA 12/10 - Ensemble d'apprentissage
Classe Classe obtenue > %
désirée 1 2 3 4 ? /classe | correct

1 88 61 9 10 0 168 52.3

2 36 113 11 8 0 168 67.2

3 2 3 162 1 0 168 96.4

4 1 1 3 149 0 154 96.7

Classification Libre Distance 0.2 | Différence 0.5
Correcte : 78.2% 74.8% 53.4%
Indécidable : 0% 7.4% 42.2%
Incorrecte : 21.8% 17.8% 4.4%

Table 5.1

Véhicules - NLPCA 12/10 - Ensemble de test
Classe Classe obtenue > %

désirée 1 2 3 4 ? /classe | correct

1 14 7 1 2 0 24 58.3

2 5 14 3 2 0 24 58.3

3 1 1 22 0 0 24 91.6

4 1 1 1 21 0 24 87.5

Classification Libre Distance 0.2 | Différence 0.5
Correcte : 74% 71.4% 48.5%
Indécidable : 0% 7.5% 43.6%
Incorrecte : 26% 21.1% 7.9%

Table 5.2

6.3. Compression a 8

Les résultats d’une réduction a 10 étant acceptables, nous avons examiné la
compression & 8. Le réseau combiné NLPCA créé pour cela, comprenait cing couches
de 18, 12, 8, 12 et 18 neurones. Nos 658 exemples doivent donc déterminer un réseau

de 624 synapses. La régle des dix pourcents n’est toujours pas respectée.

La figure 5.5 décrit le premier apprentissage. La fonction d'apprentissage
converge vers 27. Lors de l'arrét de la simulation, les taux d'erreurs de la fonction test
et de la fonction de validation sont respectivement de 16% et 27%.

-82-

La méthode NLPCA

NLPCA 12/8 (véhicules)

2500 ~ —— Apprentissage T 100
+ 90
2000 Validation 80
®
1500 i)
5]
c
o
1000 =
=
g
500
0 } } } } } } I 1 T T 0
o o o o) o o o o o o
- « ™ < [re] © ~ © o IS
—
Itérations
Figure 5.5

1 heure et 59 minutes (1 heure et 55 minutes en temps CPU) ont été

nécessaires pour obtenir ces résultats.

L’ensemble comprimé a été récupéré comme expliqué précédemment et
fourni au réseau de classification. Ce dernier était constitué de 10 neurones en entrée, 6
en couche cachée et 4 en sortie; cela correspond a 84 synapses. Il y a presque assez

d’exemples pour le second apprentissage.

La figure 5.6 montre que son étude a été plus tumultueuse. Le meilleur
réseau a été obtenu a l'itération 360, lorsque la fonction de validation indiquait un taux
minimum d'erreurs de 20%. Le taux associé¢ de la fonction test est de 25% La fonction
d'apprentissage a eu le temps de décroitre de 2 612 & 750. La non convergence et 'arrét

sont déclarés a 'itération 491.

-83-

La méthode NLPCA

Véhicules : NLPCA 12/8
3000
Apprentissage
2500 .
Validation
+ 50 7
2000 Test 3
Minimum T40 2
1500 360 =
+ 30 T
B
>
1000 1 20
e
500 } } } } } } } } } } } 10
o 8§ © 9 2 2 9 9o 9 9 9 O
¥ 89 3§ § 8§ 8 ¢ ¥ 9%
Itérations
Figure 5.6

Les résultats détaillés des tables 5.3 et 5.4 ont été obtenus aprés 1 heure et
15 minutes de simulation. Ces tables indiquent que la classe un est mal reconnue, alors
que les autres le sont facilement. Les pourcentages globaux indiquant I’exactitude de la
classification sont inférieurs a ceux d’une compression NLPCA moins importante, mais

excellents relativement aux autres méthodes de réduction : Karhunen et LPC.

Véhicules - NLPCA 12/8 - Ensemble d'apprentissage
Classe Classe obtenue > %
désirée 1 2 3 4 ? /classe | correct
1 67 92 3 6 0 168 39.8
2 27 133 5 3 0 168 79.1
3 1 1 165 1 0 168 98.2
4 1 4 1 148 0 154 96.1
Classification Libre Distance 0.2 | Différence 0.5
Correcte : 78.3% 63.9% 56.3%
Indécidable : 0% 26.7% 41.6%
Incorrecte : 21.7% 9.4% 2.1%
Table 5.3

-84 -

La méthode NLPCA

Notons aussi ’utilité d’un critére comme la distance. Ici, les résultats ne
sont pas nets. Pour la perfection, il faudrait que les sorties obtenues soient toutes a 0
excepté une seule a 1. Le critére de la distance indique qu’il y a environ 27% des
patterns dont les deux plus grandes sorties sont différentes de moins de deux dixiémes,
au lieu de 1. C’était une grande source d’erreurs. En appliquant ce critére de sélection,
le taux d’erreurs pour 1’apprentissage est tombé de 12.9% et pour le test de 18%. Une

autre procédure de décision peut étre appliquée a ces patterns écartés.

Véhicules - NLPCA 12/8 - Ensemble de test
Classe Classe obtenue > %
désirée 1 2 3 4 ? /classe | correct
1 9 14 0 1 0 24 37.5
2 4 18 1 1 0 24 75.0
3 0 1 23 0 0 24 95.8
4 1 1 0 22 0 24 91.6
Classification Libre Distance 0.2 | Différence 0.5
Correcte : 75% 64.1% 54.2%
Indécidable : 0% 28.7% 42.6%
Incorrecte : 25% 7.2% 3.2%
Table 5.4

6.4. Autres compressions

Nous indiquons maintenant les résultats globaux obtenus pour d’autres
réseaux NLPCA de compression. IIs ne sont pas suffisamment significatifs pour faire
chacun I’objet d’un paragraphe séparé. La table 5.5 résume nos études. Deux lignes
sont associées a chaque tentative : la premiére décrit 1’apprentissage du réseau combiné

et la seconde celui du réseau de classification.

Réseau Itération | Exactitude | Exactitude | Nombre | Temps | Temps
apprentis. test itérations | réel CPU
18/10/8/10/18 124 2499 ->27 88.3% 125| 2h 1% 2h 03'
8/6/4 38 73.5% 72.9% 472 2h37 1h 14'
18/10/4/10/18 2144| 2189 ->59 74.5% 3000| 57h24'| 30h49
4/4/4 122 60.2% 64.5% 236 25' 25'
18/8/4/8/18 1947] 1846 -> 8l 69.2% 2309| 3%h18'| 21h 37
4/4/4 300 60.7% 60.2% 375 39 39
18/6/4/6/18 650| 1738 ->96 66.0% 1418| 13h28'| 11h20'
4/4/4 169 57.6% 49.6% 229 26' 26'
Table 5.5

-85-

La méthode NLPCA

7. Données corrélées
7.1. Présentation

Le probléme de la reconnaissance des véhicules a montré les possibilités de
la méthode NLPCA. Cependant, comme cet ensemble de données n’était pas
suffisamment important, les résultats ne sont pas exceptionnels. C’est pourquoi nous
présentons maintenant ’utilisation de cette méthode sur un ensemble de données créé

de toutes pic¢ces de maniére a pouvoir étre traité efficacement.

Ce probléme est un cas d’école trés simple. Des vecteurs de deux variables
y1 et y, ont été construits. Ils ont été obtenus par la régle suivante :

¥, =0.9sin(x)
x €[0,2 7]
¥, =0.9 cos(x)
Pour l'ensemble d'apprentissage, 400 valeurs de x ont été choisies
aléatoirement. L'ensemble de validation comprend 40 vecteurs et l'ensemble de test
400.

Notre objectif est de montrer qu'un réseau NLPCA est capable de retenir

parfaitement ces informations dans un seul neurone.
7.2. Résultats

Quatre réseaux combinés ont été envisagés. Chacun a un nombre différent
de neurones en couche de mapping, mais ils utilisent tous les mémes parameétres
descriptifs (cfr. table 2.1). Le nombre d'¢léments dans le fichier d'apprentissage a été
choisi pour respecter largement la régle des dix pourcents. Le plus gros réseau utilisé
comporte 36 synapses; c'est-a-dire moins que 400 / 10. Les simulations ont été
réalisées par SIRENE a partir des trois ensembles de données. On constate dans la table
5.6 que le neurone de la couche centrale de compression a chaque fois été capable de
résumer l'information des deux entrées. Augmenter le nombre de neurones en couches

de mapping n'a pas ici amélior¢ les résultats.

- 86 -

La méthode NLPCA

Réseau Itération | Exactitude | Exactitude | Nombre | Temps | Temps
apprentis. test itérations | réel CPU
2-6-1-6-2 78| 427 ->125 98% 80 12' 10’
2-4-1-4-2 73| 571->25 98% 73 37 7
2-3-1-3-2 73] 329->26 98% 73 7 6'
2-2-1-2-2 39| 378 ->33 100% 64 4 4
Table 5.6

8. Conclusions

La méthode NLPCA utilise un réseau de neurones pour trouver les
caractéristiques non linéaires des données. Le réseau est d'un type conventionnel a
propagation : le perceptron. L'architecture particuliére utilisée emploie trois couches
cachées, incluant une couche intérieure de compression. Ce réseau effectue un
apprentissage ou l'entrée doit étre reproduite a la sortie. En mettant moins de neurones
dans la couche de compression que dans la couche d'entrée, le réseau est obligé de
trouver des valeurs représentatives dans la couche centrale pour réaliser sa fonction :
reproduire son entrée a la sortie. Le fait d'utiliser des fonctions de transfert sigmoidales
ou linéaires pour les neurones de compression, permet au réseau de tenir compte des

corrélations non linéaires dans les entrées.

Pour notre objectif de minimisation du temps d'apprentissage, il est clair
que la méthode de compression NLPCA est totalement inefficace. Etant donné la
complexité du réseau nécessaire, la phase de compression est susceptible de prendre
plus de temps a elle seule que la phase de classification sans compression préalable.
Cette méthode ne peut dés lors étre appliquée qu'a de petits ensembles de données. De
plus, pour ceux-ci, le nombre d'exemples pour l'apprentissage doit étre suffisamment
¢levé. Pour obtenir de bons résultats, il faut de préférence respecter la régle des dix
pourcents. Cela n'est pas toujours évident vu le nombre élevé de synapses dans un
réseau combiné NLPCA. Si toutes ces conditions sont respectées, alors la compression
NLPCA est intéressante. Ses résultats devraient étre meilleurs que ceux obtenus par la
méthode de Karhunen, car cette derniére pourrait étre implémentée selon le méme
principe, mais en utilisant uniquement des fonctions d'activation linéaires pour les

neurones. La méthode NLPCA est une amélioration de la méthode de Karhunen-Loéve.

-87-

CHAPITRE 6
LA METHODE LSP

1. Introduction

Les coefficients LSP (Line Spectral Pair) ont été créés pour représenter les
signaux de la parole. Ils sont constitués de paires de valeurs. Les tailles de
compression possibles doivent donc également étre paires. Ces paramétres sont une

autre présentation des coefficients LPC.

On ne nous avait pas demandé¢ d'analyser cette méthode. Nous en avions
entendu parler et avons décidé de I'étudier. Nous ne 'avons cependant pas appliquée
aux problémes décrits dans le chapitre deux. Nous expliquerons pourquoi dans la

seconde section.

2. La méthode

Dans le chapitre 4, nous avons présenté les coefficients LP. Les coefficients
LSP ne sont qu'une réécriture de ceux-ci. Nous avions défini une représentation de la

puissance spectrale d'un signal par :

P(N)r—— & (M

. . . 2mifA
ou les a; sont les M coefficients LP a calculeret z=¢ i .

Si nous définissons maintenant :
p .
4,(2) =1+ a7 @)
i=1

(1) peut se réécrire 1/|Apm(z)2.

-88-

La méthode LSP

Nous pouvons également poser :
-1 -1 —(p+1
P =4,(z")-2""4,(2)
=1+(a,—a,)z"'+...+(a,—a)z™" — 7z

0z =4,(z" y+rz7"4,(2)

=1+(a,+a,)z"+.. +(a, +a)z" +z7(7*h

3

c'est-a-dire deux polyndmes de degré p+l1. Ces polyndomes ont une propriété

intéressante. 1l a été démontré que tous leurs zéros se situent sur le disque unitaire et
. o ; —i®

alternent. De plus, si e est un de leurs zéros, € ' en est un autre. Remarquons

aussi que les polynomes P et Q ont respectivement un zéro en 1 et -1.

[J
® ®
° ® A @'
0. \o ;
1 1 [m| Pp+1 (Zl)
i © Qu @)
° ®
[]

En calculant les M coefficients LP, on peut construire les coefficients des
polyndmes P et Q. Les zéros 1 et -1 ne nous intéressent pas. Quel que soit le signal,
ces zéros seront présents et n'apportent donc aucune information supplémentaire. Dans
l'implémentation, les polyndmes P et Q sont factorisés en deux polynémes P' et Q' d'un
degré inférieur et possédant les mémes zéros a l'exception de -1 et 1. En résolvant P' et
Q', on obtient 2M zéros. Cependant, on peut en ¢éliminer la moitié : ceux dont la partie
imaginaire est négative. En effet, on a vu qu'il y a toujours un e correspondant a
€' . Ces zéros ne contiennent aucune information supplémentaire. A partir des M
coefficients LP, on a donc obtenu M zéros. Etant donné que z = cos (a) + i sin (at), on
peut associer a Q, M/2 angles 0; et a P, M/2 angles ;. Par définition, leurs valeurs sont

-89 -

La méthode LSP

comprises dans l'intervalle [0,m]. Mathématiquement, en utilisant les paires (®;, 0;), P

et Q peuvent étre factorisés en :
p/2
Pz "= (1 —z!)H(l —2cosmz + z72)
i=1
p/2
oz = (1 +z7!)H (1 ~2cosfz" + 2_2)
i=1

11 faut remarquer que

)0

des lors, les paires (w;, 0;) en sont une représentation et peuvent étre utilisées en lieu et

place des coefficients LP. On les appelle les coefficients LSP (Line Spectral Pair).

3. Objections a son implémentation

Cette méthode a été imaginée dans le cadre du codage de la parole. Ces
coefficients sont préférés aux parameétres LPC, car ils sont en plus étroite relation avec

le signal de la parole2. Dans ce cas, la valeur de p est généralement 4.

Le premier probléme que nous avons rencontré en utilisant cette méthode
est la complexité des calculs. Pour chaque pattern de I'ensemble de données a traiter, il
faut résoudre deux équations polynomiales dont le degré est égal a la taille de
compression. Pour la reconnaissance des phases du sommeil et une taille de
compression de 20, nous devions donc résoudre 36 000 équations de degré 20! De plus,
il était nécessaire que tous les zéros se trouvent sur le disque unitaire.
Malheureusement, que cela soit a l'aide de nos programmes ou de programmes
professionnels tels que Mathematica ou Matlab, il y avait souvent un zéro qui ne
respectait pas cette condition. Nous n'obtenions donc pas a chaque fois un vecteur
réduit entier. Nous supposons que les erreurs proviennent d'imprécisions de calcul.

Nous avons essay¢ de remédier a ce probléme avec des spécialistes de Mons, mais sans

N. SUGAMURA, F. ITAKURA, "Speech Analysis and Synthesis Methods Developed at ECL in NTT -
from LPC to LSP -",Speech Communication 5, Elsevier Science Publishers B.V., North-Holland, 1986.

-90 -

La méthode LSP

succes. IIs n'utilisent pas des valeurs de p aussi grandes. Notons aussi que d'autres
méthodes de calcul ont été proposées. Celles qui nous ont été montrées procédaient par
approximations successives des coefficients. Cependant, elles nous ont été
déconseillées, car les algorithmes d'amélioration de ces paramétres dépendent souvent
des types de signaux. Notre objectif étant une méthode générale de compression, nous

avons abandonné cette voie.

Outre ce probléme de forme, il y en a un de fond. Les coefficients LSP sont
avantageux pour représenter des échantillons de parole. Nous ne sommes pas
convaincu que les calculs complexes que nécessite cette méthode, se justifie dans notre
cas. En effet, les coefficients LSP sont obtenus par des manipulations des coefficients
LPC. A priori, un réseau de neurones ne devrait pas étre trés sensible a ces
modifications et devrait méme étre capable de les représenter. De plus, a un coefficient
LPC correspond une paire de coefficients LSP. Pour représenter la méme quantité
d'informations, il faudra deux fois plus de paramétres. Le gain apporté par les
coefficients LSP, s'il existe, ne devrait pas étre important. Rappelons aussi que les
paramétres LPC donnent déja d'excellents résultats et qu'il n'est pas évident de pouvoir
les améliorer.

4. Conclusions

Nous avons présenté le calcul des coefficients LSP. Différentes méthodes
sont possibles pour les obtenir. Celle que nous avons étudiée transforme les
coefficients LPC pour obtenir les LSP. Ces derniers se présentent sous forme de paires

d'angles compris entre O et 7.

Nous nous sommes rendus compte de la difficulté de calculer ces
paramétres. Cela nécessite énormément de calculs complexes. De plus, le gain apporté
par leur utilisation dans un réseau de neurones a la place des coefficients LPC n'est pas
évident. Nous sommes convaincus du contraire. Pour ces raisons, nous n'avons pas

intégré notre implémentation dans notre programme.

-91-

CHAPITRE 7 ,
COMPARAISONS DES METHODES

1. Introduction

Dans ce chapitre, nous allons rassembler nos principaux résultats et les
comparer. Notre but est de déterminer quand et comment utiliser chaque méthode, pour

quelles raisons et pour quels résultats.

2. Les résultats

La table 7.1 reprend les principaux résultats obtenus dans notre travail. Ils
sont classés par ensembles de données et par ordre décroissant de pourcentage de
classification exacte de l'ensemble test. Les renseignements qui sont fournis sont : la
méthode de prétraitement, le nombre minimum d'itérations pour obtenir le meilleur
réseau, pour celui-ci le pourcentage d'exactitude sur l'ensemble d'apprentissage et sur
I'ensemble de test, le nombre d'itérations avant l'arrét de la simulation, le temps réel et
CPU qu'elle a nécessité, ainsi que le temps CPU estimatif qui a été nécessaire pour

obtenir la meilleure itération.

Pour analyser ces résultats, nous devons d'abord définir nos critéres de
réussite. Ce qui nous importe le plus est que pour un fichier de données quelconque
prétraité, puis présenté au réseau de neurones déja entrainé, le pourcentage de
classification correcte soit le plus élevé possible. Nous avons donc classé les méthodes
selon leurs résultats pour I'ensemble de test. Cependant, ce n'est pas le seul facteur a
étudier. Notre objectif dans ce travail est de minimiser le temps d'apprentissage des
réseaux. Comme on l'a vu, un réseau trés petit, c'est-a-dire celui pour lequel on a réalisé
une compression importante des données, n'est pas forcément plus rapide qu'un réseau
plus complexe. La rapidité tient compte de deux facteurs : le temps pour une itération
et le nombre d'itérations nécessaires. La compression n'influence directement que le
temps nécessaire a la réalisation d'une itération. L'autre facteur ne peut étre deviné.
Pour une compression a 10 par la méthode LPC sur les données du sommeil, le temps
d'apprentissage du réseau est beaucoup plus long que pour une compression a 20, car il

faut 992 itérations au lieu de 141 pour y parvenir. Cela bien que le temps CPU pour

-92.-

Comparaisons des méthodes

une itération soit passé de 2 minutes 47 secondes a 1 minute. A l'inverse, toujours pour
les données du sommeil, la méthode de Karhunen nécessite moins d'itérations pour une
compression plus forte. On a donc gagné en temps par itération (2 minutes a 1 minute)
et en nombre d'itérations (651 a 486). On peut donc conclure qu'on ne doit pas
forcément essayer d'obtenir la compression la plus forte. Lors de I'application de la
méthode LPC sur les données du sommeil, les résultats étaient déja excellents en qualité
et en temps pour une compression a 20. Il paraissait déja difficile d'obtenir de meilleurs
résultats selon ces deux critéres. La compression a 10, fourni une qualité de
classification semblable, mais en un temps beaucoup plus important. Il n'était pas

nécessaire de l'envisager.

Méthode Min. | Exactitude | Exactitude | Max. | Temps | Temps | T. CPU
apprentis. test réel CPU estim.
Phases du sommeil
Sans 1 405 99.7% 98.3% | 2000 | 484h 25' | 442h 48' | 311h 04'
LPC 20 141 99.7% 98.1% | 141| 23h13'| 5h49' 5h 49'
LPC 10 992 99.6% 97.4% | 992| 52h44'| 17h30'| 17h30'
Karhunen 20 651 91.2% 89.5% | 1550)109h31'| 54h 04'| 22h 42
Karhunen 10 486 70.8% 72.9% | 492| 30h23'| 8h10' 8h 04'
NLPCA > - - > > > >
Caracteres
Sans > - - > > | > | >
Backpropag.! - 95.9% 95.1% - 36h 00'
Karhunen 40r 53 96.3% 93.0%| 580| 87h20'| 86h31' 7h 54'
Karhunen 20r | 1097 95.3% 91.3% | 1498 [291h 42'| 285h 44' | 209 14"
LPC 40 1184 77.0% 74.9% | 1280 (263h 12'| 170h 31'| 157h 43'
NLPCA > - - > > > >
Véhicules

Sans 59 88.0% 83.3%| 444| 1h29'| 1h22'] 10'
Backpropag.? - 83.2% 79.3% - 4h 00'
Karhunen 10 61 85.7% 76.0%| 975| 3h09'| 2h57 11
NLPCA 8 462 78.3% 75.0% 598 3h 24’ 3h 10’ 2h 26'
NLPCA 10 109 78.2% 74.0%| 623 7h29'| 3h38 38'
LPC 8 62 57.3% 54.1%| 610 3h03' 1h 31 9
LPC 10 87 54.6% 44.7% | 331 1h 49' 1h 48' 28'
Karhunen 8 4 48.2% 40.6% | 404 1h 07' 1h 00' 1'

1. Il s'agit des résultats du projet ESPRIT StatLog obtenus par un perceptron sur des données ramenées a
une taille de 40 par la méthode de Karhunen.

2. Ce sont les résultats du projet StatLog sans prétraitement.

> Les résultats sont inconnus, mais sont supposés supérieurs a ceux de la méme catégorie.

- Les résultats sont inconnus.

Table 7.1.

-93.-

Comparaisons des méthodes

Nos ensembles de données ont illustré parfaitement ce que nous annongait
la théorie. Il est important de remarquer l'ordre des méthodes pour chaque type de
données. Pour des signaux comme ceux correspondant aux phases du sommeil, la
méthode LPC est en téte. La méthode de Karhunen-Loéve suit avec de bons résultats.
Pour une méme taille de compression, la méthode LPC surclasse largement la méthode
de Karhunen; cela d'autant plus que la compression est forte. Meéme pour une
compression supérieure (10) par LPC, la méthode de Karhunen (20) ne peut se
défendre, que cela soit en qualité ou en temps nécessaire. Par contre, si nous ne
travaillons pas avec des signaux, les performances du LPC sont nettement inférieures.
Dans le cas des caractéres par exemple, Karhunen fournit toujours de bons résultats
méme pour une compression importante. La réduction LPC est déja défavorable pour
une taille de 40, la plus mauvaise apres la méthode NLPCA. Parlons de cette derniére.
Elle ne peut étre appliquée qu'a de petits ensembles de données. Pour les autres, il est
certain qu'elle ne peut concurrencer LPC ou Karhunen. Par contre, pour un ensemble
de taille réduite comme celui des véhicules, elle se défend. Si toutes les conditions
d'apprentissage avaient été remplies, ses résultats auraient été meilleurs. Un indicateur
de ce fait est qu'une compression a 8 par NLPCA donne de meilleurs résultats qu'une
compression moins importante a 10. On sent I'influence du manque d'exemples lors de
l'apprentissage. Dans de meilleures conditions d'utilisation, la méthode de Karhunen
n'aurait probablement pas gardé la premicre place. Il faut rappelé que NLPCA est une
amélioration par réseau de neurones de la méthode de Karhunen-Loeve. Cependant,
nous ne pouvons pas modifier le contexte et nous nous contenterons de ces résultats.
Pour une taille de compression importante, NLPCA montre ses qualités. Le réseau
combiné correspondant a pu €tre optimisé et souffre moins de la carence en exemples.
A la taille 8, Karhunen et LPC ne peuvent suivre. En conclusion, la méthode de
Karhunen est toujours conseillée. Si les données représentent un signal, LPC fournira
en général de meilleurs résultats encore. La méthode NLPCA est trés difficile a mettre

en oeuvre. Son usage ne devrait étre envisagé que pour de petits ensembles de données.

Nous avons comparé nos prétraitements entre eux. Que valent-ils en
général ? Dans le cadre des phases du sommeil, la réussite est éclatante. Nous
obtenons le méme pourcentage de classification correcte que sans prétraitement, mais
53 fois plus vite! Pour les caractéres, nous ne pouvons malheureusement pas établir de
comparaisons. Cependant, avec 93% de réussite, l'utilisation de la méthode de
Karhunen est tres satisfaisante. Notons que la qualité de nos résultats est confirmée par
celle trés proche du projet ESPRIT StatLog. De plus, le temps nécessaire estimatif est

raisonnable pour un réseau de neurones. Enfin, pour les véhicules, nos manipulations

-94 -

Comparaisons des méthodes

nous ont fait perdre de la précision, mais les résultats ne sont pas mauvais. Avec 7.3%
de différence et les conditions de simulation rencontrées, on peut également conclure a
la réussite de nos prétraitements. Ici évidemment, on ne voit pas trés bien ce qu'on y a
gagné.\ Les temps de simulation sont faussés par les conditions de traitement et trop
petits pour étre significatifs. La compression NLPCA est cependant beaucoup plus
lente. Notons également que nous avons obtenu de meilleurs résultats sans

prétraitement que le projet StatLog.

3. Conclusions
Trois éléments importants ont été dégagés :

» Tout d'abord, selon nos critéres d'efficacité et de temps, la compression la plus forte
possible n'est pas toujours la meilleure. La vitesse d'apprentissage dépend de deux
facteurs principaux : le temps pour une itération et le nombre d'itérations nécessaires.

La compression ne modifie directement que le premier.

» La méthode de Karhunen-Loéve donne en général de trés bons résultats quel que soit
le type des données a traiter. La méthode LPC la surclasse pour des signaux.

NLPCA ne devrait étre envisagé que pour de petits ensembles de données.
* Si le prétraitement est bien choisi, les résultats obtenus sont tout a fait fiables. La

perte de qualité est minime. De plus, les temps de simulation sont fortement

diminués comme nous le cherchions. Nous pouvons conseiller ces prétraitements.

-95.

Commentaire [5]: pour utiliser
correctement la methode, il faut plus
d'exemples -> les temps de simulation
augmentent et ne sont plus rentables !!!

CONCLUSIONS

Nous avons commencé notre travail par une description des réseaux de
neurones. Théoriquement déja, on découvre ses nombreuses qualités : parallélisme,
capacité¢ d'adaptation, mémoire distribuée, capacité de généralisation, facilité de
construction ... La pratique confirme ces premieres observations. Nous avons utilisé
des réseaux de neurones artificiels pour résoudre plusieurs problémes complexes,
commerciaux et industriels. Les résultats ont été excellents et des comparaisons avec

d'autres méthodes montre que le RNA est tout a fait compétitif.

Cependant, la théorie laisse également deviner un inconvénient du RNA : la
complexité de sa structure. Les RNA seront optimums quand ils auront leur propre
support et pourront exploiter pleinement le parallélisme. La taille des réseaux rend
malheureusement de telles implémentations encore plus difficiles a réaliser.
Actuellement, des simulateurs sur ordinateurs sont généralement utilisés. Hélas, pour
eux aussi, la complexité des réseaux est un gros probléme, d'autant plus que les
simulateurs sont habituellement séquentiels. Le nombre de calculs nécessaires a
I'apprentissage d'un réseau devient trés vite phénoménal. Il apparait dés lors comme

une priorité de trouver des méthodes pour réduire la complexité des RNA.

Il nous a ét¢ demandé d'en analyser trois : Karhunen-Loéve, LPC et
NLPCA. Nous en avons proposé une quatrieme : LSP. La taille d'un réseau est liée au
nombre de ses entrées. Si on peut le diminuer, la complexité du réseau décroit. Les 4
méthodes que nous avons étudiées, prétraitent les valeurs fournies aux entrées d'un
réseau pour obtenir un nouveau pattern de caractéristiques de taille inférieure. Si cette
transformation est bien réalisée, un réseau plus petit utilisant ces données sera toujours
capable de réaliser son apprentissage et de fournir des résultats semblables a ceux
obtenus par le réseau n'utilisant pas le prétraitement. Le but principal de notre travail

était d'étudier les qualités de ce prétraitement pour les méthodes demandées.

Elles ont été utilisées pour résoudre différents problémes de classification.
Nous avons été agréablement surpris. Les résultats ont été¢ excellents et surtout n'ont
pratiquement pas été dégradés par les prétraitements. De plus, les temps de simulation
ont été diminués considérablement. Nous étions déja convaincus de I'utilité de ces
prétraitements et cependant, les résultats ont dépassé nos espérances. Nous ne pouvons

que conseiller d'utiliser ces méthodes.

- 96 -

Prétraitement de données en reconnaissance de formes par RNA

Nous devons cependant les distinguer. Toutes ne sont pas aussi efficaces,
ou ne le sont que dans certains cas. La méthode de Karhunen-Loéve donne en général
de trés bons résultats quel que soit le type de données a traiter. La méthode LPC la
surclasse cependant pour des données de signaux. NLPCA est trés lourd a utiliser et ne
devrait étre envisagé que pour de petits ensembles de données. Dans de bonnes
conditions d'utilisation, elle donnera de meilleurs résultats que la méthode de Karhunen.
La compression par LSP a été abandonnée. Elle est trop difficile a réaliser et ne devrait

pas apporter de meilleurs résultats que la méthode LPC sur laquelle elle est basée.

Une derniére remarque concerne I'importance des compressions. Le réseau
le plus petit n'est pas forcément le meilleur. Dans le cadre de nos simulations, il a été
montré qu'il faut trouver un juste milieu. Si la compression est faible, le réseau ensuite
utilisé reste imposant et le gain est minime. Si la compression est trop forte, le réseau
n'a plus assez d'informations déterminantes et l'apprentissage peut demander un plus
grand nombre d'itérations, c'est-a-dire plus de temps. Malheureusement, il n'y a pas de
régle permettant de deviner la taille idéale, celle qui allie réduction significative de la
complexité du réseau et gain de temps pour son apprentissage. Avec un peu

d'expérience, elle est cependant rapidement trouvée.
Ce travail nous a convaincu de l'utilit¢ des réseaux de neurones et des

prétraitements. Ces derniers se sont révélés trés efficaces et tres faciles a réaliser. 1l ne

faut surtout pas les négliger.

-97-

BIBLIOGRAPHIE

- Jacek M. ZURADA, "Introduction to Artificial Neural Systems", West Publishing
Company, 1992.

- P. LATOUR, "Utilisation des réseaux de neurones artificiels dans la
reconnaissance de formes en signaux physiologiques", Convention FIRST, région
wallonne, université de Liége, avril 1990.

- F.BLAYO, "Réseaux neuronaux", laboratoire de Microinformatique, avril 1992.

- W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY, W. T. VETTERLING,
"Numerical Recipes", Cambridge University Press.

- E. DAVALO, P. NAIM, "Des réseaux de neurones”, deuxiéme édition, éditions
Eyrolles, 1990.

- F. X. LITT, "Analyse numérique”, notes de cours, Facult¢ des Sciences
Appliquées, Université de Liege, 1991.

- J. ETIENNE, "Analyse mathématique”, notes de cours, Faculté des Sciences
Appliquées, Université de Liege, 1986.

- M. BODESON, "Reconnaissance de mouvements mandibulaires par neurones
artificiels”, travail de fin d'études pour l'obtention du grade de Licencié¢ en
Informatique, 1991-1992.

- P. LASCAUX, R. THEODOR, "L'analyse en composantes principales", Analyse
numérique matricielle appliquée a l'art de 1'ingénieur, tome 1.

- K. FUKUNAGA, W. L. G. KOONTZ, "Application of the Karhunen-Loéve
Expansion to Feature Selection and Ordering”, IEEE Transactions, vol. C-19,
number 4, April 1970.

- "The Karhunen-Loéve Expansion”, Spectral Analysis.

- N. SUGAMURA, F. ITAKURA, "Speech Analysis and Synthesis Methods
Developed at ECL in NTT - from LPC to LSP -",Speech Communication 5,
Elsevier Science Publishers B.V., North-Holland, 1986.

- J. HANCQ, "Automatic scoring of sleep stages with LSP adaptive filtering”,
IEEE Benelux & ProRISC, Proceedings of the Workshop on Circuits, Systems
and Signal Processing, Houthalen, April 1992.

- F. W. ZAKl, "Learning Characteristics of a New Adaptive Line Spectral Pair
Filter”, Mu'tah University, Jordan, Submitted to publication (Signal Processing).

- M. A. KRAMER, "Nonlinear Principal Component Analysis Using
Autoassociative Neural Networks", AIChe Journal, Vol. 37, number 2, February
1991.

Prétraitement de données en reconnaissance de formes par RNA

- E. SAUND, "Dimensionality-Reduction Using Connectionist Networks", IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, number 3,
March 1989.

- J. MAKHOUL, "Linear Prediction : A Tutorial Review", Proceedings of the
IEEE, Vol. 63, number 4, April 1975.

- R. D. KING, R. C. HENERY, A. SUTHERLAND, "A comparative Study of
Classification Algorithms : Statistical, Machine Learning, and Neural Network
(Draft)", August 1992.

Annexe A
Menus de SIRENE

2k o sk sk ok sk sk sk s sk sk sk sk sk sk sk s sk sk sk sk sk sk sk s sk sk sk sk sk sk sk s sk sk skoske sk sk sk skoskokosk sk sk sk sk

* *
* *
* SIRENE V1R9

* SImulateur de REseaux de NEurones

*

* M. Fombellida

* Service de microelectronique

* Institut Montefiore *
* ULG

* October 92

*
*

st 3 s s sk sk ok sk sk ok sk st ke sfe sk sk st sk sk st sk sk stk sk sieske st sk sk stk sk stk sk seokosk stk skokokskok

st sk s s sk s ok sk sk ke sfe s sk stk skoskeok ok

* MAIN MENU *

st sk s o sk s ok sk sk ke sfe s sk stk skoskeok ok

1:Network...
2:Patterns...
3:Algorithms...
4:Learn

5:Use
6:Statistics...

99:QUIT

Your choice :

sfe sk sk sk sk sk sk sk sk sk ske sk sk sk skeoskeoskoskoskoskok

* NETWORK MENU *

sk sk sk sk sk sk st sk sk sk sk sk sk sk sk skeoskoskoskoskok

1: New network...
2: Edit current network...

3: Load BIN network file
4: Save network in BIN file

-Al -

5: Load ASCII network file
6: Save network in ASCII file

7: Convert BIN network file in ASCII file
8: Convert ASCII network file in BIN file

0: RETURN TO MAIN MENU
99: QUIT

Your choice :

ANNEXE A : Les menus de SIRENE

s sk sk s sk sk sk sfe sk ske sk sk sk sk sk sk sk sk skeskeoskoskoskoskosk ok

* NEW NETWORK MENU *

s sk sk sk sk sk sk sk she sk ske sk sk sk sk sk skeoskoskeoskok sk skeskoskosk

1: Create a multiple layers perceptron with full connexion
2: Create a input-output perceptron with full connexion

0: RETURN TO MAIN MENU
99: QUIT

Your choice : 1
Number of layers:
Number of neuron(s) in layer 1:

Number of neuron(s) in layer 2:

Select the activation functions of the neuron

1: Linear

2: Sigmoid

3: Sine

4: Cosine

5: Gaussian

6: Cosine*Gaussian+Sigmoid
7: Sigmoid Prime

8: Hyperbolic tangent

9: Sigmoid symetric
Your choice : f=tanh(a*x)
a:

Number of neuron(s) in layer 3:

Select the activation functions of the neuron

-A2-

B Oo00wa bW —

: Linear

: Sigmoid

: Sine

: Cosine

: Gaussian

: Cosine*Gaussian+Sigmoid
: Sigmoid Prime

: Hyperbolic tangent

: Sigmoid symetric

our choice : f=tanh(a*x)

ANNEXE A : Les menus de SIRENE

1
2
3

0

sfe sk sk sk sk sk sk st sk sk ske sk sk sk skeskeoskeoskoskoskok

* PATTERNS MENU *

sfe sk sk sk sk sk sk sk sk sk ske sk sk sk sk skeoskeoskoskoskok

: Load patterns file...
: Convert patterns file...
: Create patterns file

: RETURN TO MAIN MENU

99: QUIT

Y

our choice :

—_—

6:

0:

sk sk sk sk sk st sk sk sk sk sk sk sk sk sk sk sk sk ki ke skeskoskoskokok

* LOAD PATTERNS MENU *

sk sk sk sk sk st sk sk sk sk sk sk sk sk sk sk sk skoskoske ke skeskoskoskokok

: Load BIN file for learning
: Load BIN file for validation
: Load BIN file for test

: Load ASCII file for learning
: Load ASCII file for validation
Load ASCII file for test

RETURN TO MAIN MENU

99: QUIT

Y

our choice :

-A3 -

ANNEXE A : Les menus de SIRENE

sfe sk ske sk sk sk st st sfe sk ske sk sk sk sk sk sfe sk sk stk sk sk skeoseoskoskosk sk sk sk

* CONVERT PATTERNS MENU *

sfe sk ske sk sk sk st st sfe sk ske sk sk sk sk sk sfe skeoske stk sk skeskeseoskoskoskosk sk sk

1: Simple file type conversions...
2: Preprocessings...
3: Analysis of patterns file

0: RETURN TO MAIN MENU
99: QUIT

Your choice :

sk sk sk sk sk st sk sk sk sk sk sk sk st sk s sk sie sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeoskok skeoskeskoskoskoskok

* SIMPLE FILE TYPE CONVERSIONS MENU *

sk sk sk s sk st sk sfe sk ske sk sk st st sk sk sk sie sk sk ste sk sk sk ske sk sk sk sk sk sk skosieosko sk skeoskeoskoskokoskok

1: Convert BIN file in ASCII file
2: Convert ASCII file in BIN file

0: RETURN TO MAIN MENU
99: QUIT

Your choice :

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskokosk ke skeskoskoskokok

* PREPROCESSING MENU *

sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk skosk ki sk skeskoskoskokok

All these preprocessings need the analysis file

: Convert BIN file in BIN mean-centered (0,1) file

: Convert BIN file in BIN mean-centered (-0.5,+0.5) file

: Convert BIN file in BIN mean-centered (-1,+1) file

: Convert BIN file in BIN mean-centered input (-1,+1) file
: Convert BIN file in BIN normalized (0,1) file

: Convert BIN file in BIN normalized (-0.5,+0.5) file

: Convert BIN file in BIN normalized (-1,+1) file

~N N BN~

-Ad-

ANNEXE A : Les menus de SIRENE

8: Convert BIN file in BIN input-decorrelated file
9: Convert BIN file in BIN input-divide-by-max file
0: RETURN TO MAIN MENU

99: QUIT

Your choice :

sfe sk ske sk sk sk sk st sfe sk ske sk sk sk sk skeoskeoskeoskoskok skeosk

* ALGORITHMS MENU *

s sk ske sk sk sk sk st sfe skeoske sk sk sk skeskeoseoskoskosk sk sk k

1: Learning cost functions
2: Validation cost functions
3: Test cost functions

4: Success criteria

5: Optimization algorithms
6: Parameters

0: RETURN TO MAIN MENU
99: QUIT

Your choice :

sk koo ook ook sk dok sk kokosk ook ok kR kR okok R ok

* LEARNING COST FUNCTIONS *

sk sk sk sk sk st sk sk sk sk sk sk sk st sk sk sk sk sk ki sk sk skoskoskoskoskok ko skoskosk

Select the function to minimize during learning

1: Total sum squared error

2: Total sum squared error + minimize weights (W"2)

3: Total sum squared error + minimize weights (W"2/1+W"2)

0: RETURN TO MAIN MENU
99: QUIT

Your choice :

soskokokok ok sk ok ok ok Rk ko ok sk kR sk Rk kR sk Rk kR ok K

* VALIDATION COST FUNCTIONS *

sk ok ok ok ok sk ok ok ok ok ok sk ok ok sk sk ok ok sk Rk sk ok ok sk sk ok sk Rk koK

- A5 -

Select the validation cost function

1: Total sum squared error

2: Classification error (%) (Maximum criteria)

3: Classification error (%) (Threshold with margin criteria)

0: RETURN TO MAIN MENU
99: QUIT

Your choice :

ANNEXE A : Les menus de SIRENE

sfe sk sk sk sk sk sk sk sfe sk ske sk sk sk sk sk sk sk sk sk sk sk skeskeoskoskoskok

* TEST COST FUNCTIONS *

sfe sk sk sk sk sk sk sk sfe sk ske sk sk sk sk sk sk sk sk sk sk sk skeskoskoskoskok

Select the test cost function

1: Total sum squared error

2: Classification error (%) (Maximum criteria)

3: Classification error (%) (Threshold with margin criteria)

0: RETURN TO MAIN MENU
99: QUIT

Your choice :

sk sk sk sk sk sk sk sk sk sk sk skoske sk skoskoskoskoskoskokok

* SUCCESS CRITERIA *

sk sk sk ok sk sk sk sk s skosk ki sk sk skoskoskoskoskokok

Select the success criteria of the learning algorithm

1: Small individual error

2: Small composite error

3: Sharp threshold

4: Threshold with margin

0: RETURN TO MAIN MENU
99: QUIT

- A6 -

ANNEXE A : Les menus de SIRENE

Your choice :

s sfe ske sk sk sk sk she sfe sk ske sk sk sk sk sk sfe sk ske sk sk sk sk st sfe skeoske sk sk sk skeskeoseoskoskosk sk sk sk

* OPTIMIZATION ALGORITHMS MENU *

sfe sk ske sk sk sk st st sfe sk ske sk sk sk sk sk sfe sk ske sk sk sk sk sk sfe skeoskeoskosk sk skeskeoseoskoskok sk sk sk

Select the learning algorithm

Heuristic methods

1: Back Propagation with momentum
2: Silva-Almeida

3: Extended Delta-Bar-Delta

4: Extended Quickprop

Non constraint optimization methods
5: Gradient + line search (Steepest descent)

6: Conjugate Gradient (Fletcher-Reeves) + line search
7: Conjugate Gradient (Polak-Ribiere) + line search
8: Limited memory quasi-Newton + line search

9: Quasi-Newton (DFP) + line search

10: Quasi-Newton (BFGS) + line search

11: Conjugate Gradient (Fletcher-Reeves) with restart + line search
12: Conjugate Gradient (Polak-Ribiere) with restart + line search
13: Limited memory quasi-Newton with restart + line search

14: Quasi-Newton (DFP) with restart + line search

15: Quasi-Newton (BFGS) with restart + line search

0: RETURN TO MAIN MENU
99: QUIT

Your choice :

Current value of the parameters

Success criteria: Individual error = 0.002500

Threshold = 0.000000
Up margin = 0.100000
Down margin = 0.100000
Epoch = 1000
Minimum progress = 0.000001
Objective function: Gamma = 0.001000

-A7 -

Optimization: Learning rate =
Momentum =
Mu =
Kappa =
Kappam =
Phi=
Phim =
gl=
gm=
Theta =
Up=
Down =
Statistics: Size =
Randomize: Weights range =

FLAGS

Learning = 1
Pruning = 0
-> Relearning = 0

Incremental learning = 0
-> Clamping = 0
-> Relearning= 0

Incremental pruning = 0
-> Relearning = 0

Overlearning detection = 0
->Backtracking = 0

Brainwashing = 0

Press RETURN to continue
Modify:

1:Individual error
2:Threshold

3:Up margin

4:Down margin

5:Epoch

6:Minimum progress

7:Gamma

8:Learning rate
9:Momentum
10:Mu
11:Kappa
12:Kappam
13:Phi

1.500000
0.900000
1.000000
0.010000
0.100000
0.100000
0.500000
20.000000
5.000000
0.700000
1.200000
0.600000
100
0.500000

- A8 -

ANNEXE A : Les menus de SIRENE

14:Phim

15:gl

16:gm

17:Theta

18:Up

19:Down
20:Statistic size
21:Weights range

22:Toggle learning flag

23:Toggle pruning flag
24:Toggle -> relearning flag

25:Toggle incremental learning flag
26:Toggle -> clamping flag
27:Toggle ->relearning flag

28:Toggle incremental pruning flag
29:Toggle -> relearning flag

30:Toggle overlearning detection flag
31:Toggle -> backtracking flag

32:Toggle brainwashing flag

0:RETURN TO MAIN MENU
99:QUIT

Your choice :

ANNEXE A : Les menus de SIRENE

-A9-

ANNEXE B
LES MENUS DU PROGRAMME

+++ PRETRAITEMENT DE DONNEES EN RECONNAISSANCE DE FORMES
PAR RNA +++

0. Aide

1. Karhunen
2.LPC

3. NLPCA

4. Outils d'aide
9. Quitter

Choix :

+++ KARHUNEN - LOEVE +++
0. Aide
1. Vecteurs propres
2. Matrice de transformation
3. Creation fichier compresse

9. Retour au menu principal

Choix :

+++ VECTEURS PROPRES +++
0. Aide
1. Calcul d'une nouvelle matrice de vecteurs propres
2. Chargement d'une ancienne matrice
3. Sauvegarde d'une nouvelle matrice

9. Retour au menu precedent

Choix :

-B1 -

ANNEXE B : Les menus du programme

+++ CALCUL DES VECTEURS PROPRES +++

Nom du fichier d'apprentissage : +++ Initialisation +++
+++ Creation de la matrice d'autocorrelation +++

+++ Recherche des vecteurs propres +++

Nombre de patterns traites :

Taille d'un pattern :

- ENTER ---

+++ MATRICE DE TRANSFORMATION +++
0. Aide
1. Calcul d'une nouvelle matrice de transformation
2. Chargement d'une ancienne matrice
3. Sauvegarde d'une nouvelle matrice

9. Retour au menu precedent

Choix :

+++ CALCUL D'UNE MATRICE DE TRANSFORMATION +++

Choix du nombre de sorties :
1. Constant
2. Selon importance des valeurs propres
3. Selon importance des valeurs propres avec nombre max

Les valeurs propres sont comprises entre |...| et |...|
Choix :
Nombre de sorties :

Nombre de sorties souhaitees :

- ENTER ---

+++ COMPRESSION +++
0. Aide

1. Sans estimation de la perte d'infos
2. Avec estimation de la perte d'infos

-B2 -

ANNEXE B : Les menus du programme

9. Retour au menu precedent

Choix :

+++ CALCUL DES ERREURS +++
0. Aide

1. Erreur pour chaque pattern (fichier)
2. Erreur moyenne globale (ecran)

9. Retour au menu precedent
Choix : +++ COMPRESSION +++
Nom du fichier a traiter :

Nom du fichier resultat :
Erreur moyenne globale :

+++ LINEAR PREDICTION CODE +++
0. Aide
1. Compression
9. Retour au menu principal

Choix :

+++ OUTILS POUR LA METHODE DE COMPRESSION NLPCA +++
0. Aide
1. Conversion des donnees au format NLPCA
2. Selection des premieres couches d'un reseau
3. Modification du nombre de sorties d'un fichier de donnees
4. Utilisation type d'un reseau de SIRENE
5. Recuperation des sorties d'un reseau

9. Retour au menu principal

Choix :

-B3-

ANNEXE B : Les menus du programme

+++ OUTILS POUR L'UILISATION DE SIRENE+++
0. Aide
1. Creation d'un fichier type d'instructions
2. Modification du nombre de sorties d'un fichier de donnees
3. Utilisation type d'un reseau de SIRENE
4. Analyse des resultats

9. Retour au menu principal

Choix :

+ CREATION D'UN FICHIER D'INSTRUCTIONS NLPCA TYPE POUR SIRENE +

Le fichier d'instructions est sauve sous le nom 'sirene.instr' dans le repertoire courant
Attention, un ancien fichier de ce nom sera remplace !!
Voulez-vous continuer (o/n) ?

Nombre de couches : 3

Nombre de neurones dans la couche 1 :
Nombre de neurones dans la couche 2 :
Nombre de neurones dans la couche 3 :

Nom du fichier d'apprentissage :
Nom du fichier de validation :
Nom du fichier de test :

La fonction par defaut des neurones est la 8 (th) avec 1 comme parametre
L'algorithme d'optimisation choisi est le 10 (Quasi-Newton(BFGS) + line search)
La fonction d'apprentissage est la 2 (Total sum squared error + minimize weights
(W"2))

La fonction de validation est la 2 (Classification error () (Maximum criteria))

La fonction de test est la 2 (Classification error () (Maximum criteria))

Creation terminee

- ENTER ---

A bientot j'espere

-B4-

ANNEXE B : Les menus du progr

-B5-

