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INTRODUCTION 

 

 

Depuis des siècles, les hommes développent des machines pour simplifier 

leur vie.  Le début de cette ère de construction commença avec la découverte de 

machines simples telles que le levier, la roue et la poulie.  De nos jours, ingénieurs et 

scientifiques essayent de développer des machines intelligentes.  Parmi elles, on trouve 

les réseaux de neurones artificiels (RNA). 

 

Les hommes et les animaux sont bien meilleurs et plus rapides pour 

reconnaître des images que le plus avancé des ordinateurs.  Les réseaux de neurones 

artificiels (RNA) tentent d'imiter leur comportement c'est-à-dire apprendre par 

expériences et être ensuite capable de prendre rapidement de bonnes décisions.  Ces 

capacités sont basées sur le fait que nous pouvons reproduire certaines des 

caractéristiques du cerveau humain à l'aide de moyens artificiels.  Un réseau de 

neurones est réalisé par un maillage de noeuds fonctionnels, appelés neurones, et de 

connexions entre eux.  Ils opèrent  collectivement et simultanément sur la plus grande 

partie ou sur toutes les données et entrées.  Nous présenterons dans ce travail le modèle 

le plus couramment utilisé et déterminerons ses nombreuses qualités. 

 

Les réseaux de neurones n'ont malheureusement pas que des avantages.  

Leur taille croît avec la quantité et la complexité des données à traiter. Or le principal 

inconvénient du RNA est lié à sa complexité.  Plus elle est grande, plus le RNA sera 

difficile et coûteux à implémenter physiquement et plus son temps d'apprentissage sera 

grand.  Pour résoudre ce problème, une solution est de prétraiter les données pour 

diminuer leur taille.   

 

Il nous a dès lors été demandé d'analyser trois méthodes de compression 

applicables au traitement par RNA : la méthode de Karhunen-Loève, la méthode LPC 

(Linear Predictive Coding) et la méthode NLPCA (Non Linear Principal Composant 

Analysis).  Nous en avons ajouté une : la méthode LSP (Line Spectral Pair).  Les 

chapitres qui y sont consacrés tenteront de convaincre le lecteur de l'efficacité de ces 

procédés.  Nous déterminerons également comment choisir la méthode à utiliser pour 

un problème de classification posé à un RNA.  Pour ce faire, deux analyses sont 

réalisées.  La première consiste en un développement théorique de la méthode.  La 

seconde, plus importante, est son application à des ensembles de données représentatifs, 

correspondant à des problèmes commerciaux et industriels complexes.  On analysera 
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ensuite les résultats de classification d'un réseau de neurones à partir de ces données 

prétraitées.  Il y aura également des comparaisons avec les résultats sans prétraitement. 

 

Trois problèmes de reconnaissance de formes seront envisagés.  Le premier 

demande à un RNA de reconnaître des phases du sommeil à partir d'enregistrements 

polygraphiques.  Le second est un problème de reconnaissance de caractères manuscrits 

digitalisés.  Le dernier est un problème de distinction de silhouettes de véhicules.  Ces 

données ont été choisies pour mettre en valeur certains prétraitements par rapport aux 

autres.  De plus, l'utilisation d'exemples réels montre que les réseaux de neurones sont 

déjà applicables.  Ce travail prouve leur utilité et leur efficacité au niveau commercial et 

industriel. 

 

Nous espérons vous convaincre de l'utilité des réseaux de neurones et des 

prétraitements et nous vous souhaitons une bonne lecture. 
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CHAPITRE 1 
INTRODUCTION AUX RÉSEAUX DE 
NEURONES 

 

 

1. Introduction 

 

Différents modèles de réseaux de neurones ont déjà été présentés.  Leur 

caractéristique commune est de vouloir imiter certaines des propriétés du cerveau 

humain en reproduisant une partie de ses structures élémentaires. 

 

Dans l'état actuel de nos connaissances dans le domaine de l'intelligence 

artificielle et plus généralement de l'informatique, nous ne disposons pas toujours 

d'algorithmes efficaces pour résoudre des problèmes complexes tels que : 

 

- permettre à un robot de conduire un véhicule dans un environnement 

variable. 

- réaliser la lecture automatique d'un texte manuscrit produit par 

n'importe quelle personne. 

- reconnaître la parole quelle que soit la personne qui parle. 

- reconnaître des visages d'individu indépendamment de l'angle sous 

lequel ils sont présentés. 

- ... 

 

Les ordinateurs sont extrêmement rapides et précis pour exécuter des 

séquences d'instructions qui ont été formulées pour eux.  Malheureusement, les 

problèmes cités nécessitent la considération simultanée d'un très grand nombre de 

contraintes, parfois mal définies.  Il est donc difficile de leur trouver une formulation 

informatique.  De plus, le système de traitement humain de l'information est composé 

de neurones qui  travaillent à des vitesses à peu près un million de fois plus lentes que 

les circuits d'un ordinateur.  Cependant, les humains sont beaucoup plus efficaces pour 

résoudre des problèmes complexes comme ceux mentionnés plus haut.  L'organisation 

du cerveau humain semble donc une des clefs du problème.  Malheureusement, la 

compréhension des systèmes neuraux biologiques n'est pas encore très avancée.  Nous 

devons donc nous limiter à des modèles très simplifiés.  On peut dès lors supposer que 
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cette technique ne pourra que se développer avec l'amélioration de nos connaissances 

sur le cerveau. 

Cette capacité de traitement théorique et les premiers résultats obtenus dans 

la pratique méritent dès lors que l'on s'intéresse aux réseaux de neurones.  Nous 

décrirons donc brièvement un modèle généralement utilisé : le perceptron à plusieurs 

couches.  Nous en déduirons quelques autres avantages des réseaux de neurones par 

rapport à la programmation traditionnelle, mais aussi certains inconvénients.  Cette 

étude permettra de comprendre la nécessité de méthodes de prétraitements et des 

conditions de leur implémentation, sujet de ce travail. 

 

 

2. Historique 

 

La première modélisation d'un neurone date de 1943.  Elle a été présentée 

par McCulloch et Pitts.  L'interconnexion de ces neurones permet le calcul de plusieurs 

fonctions logiques.  En 1949,  Hebb propose le premier mécanisme d'évolution des 

connections, appelées par analogie des synapses.  L'association de ces deux méthodes 

permit à Rosenblatt en 1958 de décrire le premier modèle opérationnel de réseaux de 

neurones : le perceptron.  Celui-ci est capable d'apprendre à calculer un grand nombre 

de fonctions booléennes, mais pas toutes.  Ses  limites théoriques furent mises en 

évidence par Minsky et Papert en 1969.  Depuis 1985, de nouveaux modèles 

mathématiques ont permis de les dépasser.  Cela a donné naissance au perceptron 

multicouches que nous étudierons plus particulièrement. 

 

 

3. Un neurone artificiel 

 

3.1. Le modèle de McCulloch et Pitts 

 

La première définition formelle d'un neurone artificiel basée sur le modèle 

biologique a été formulée par McCulloch et Pitts.  Une représentation en est donnée à la 

figure 1.1a.  Les entrées Xi (i=1, 2, ..., n) sont booléennes (présence ou absence 

d'impulsion à l'instant k).  La sortie est identifiée par le symbole O.  Wi est le poids 

associé à la connexion. La fonction calculée par le neurone est définie comme suit : 
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k1
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1 si iw i
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Notons qu'un poids négatif inhibe une connexion, au contraire d'un poids 

positif qui la renforce.  C'est le choix des valeurs de ces poids qui permettra de réaliser 

la fonction recherchée.  La figure 1.1 montre comment on peut construire des portes 

élémentaires grâce à ces "coefficients synaptiques".  On peut en déduire que ce modèle 

simpliste permet déjà la réalisation d'un ordinateur digital de complexité arbitraire. 
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Figure 1.1 
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3.2. Généralisation 

 

Le précédent modèle a plusieurs inconvénients.  Il est binaire et statique.  

Les coefficients et les seuils  sont fixés définitivement.  Il est assez simple de résoudre 

ces problèmes.  La figure 1.2 représente la nouvelle forme du neurone. 

 

w

w

w

1

2

n

1

2

n
x

x

x

oƒ(w x)t

Synapses

Poids 
multiplicatifs

Noeud 
de calcul

 

Figure 1.2 

 

Chaque neurone consiste en un élément de traitement (processeur) de 

plusieurs entrées et calculant une seule sortie.  Les poids synaptiques sont représentés 

par un vecteur W dont les éléments sont modifiables.  La sortie est calculée par une 

fonction d'activation f.  Différentes fonctions sont envisageables.  Les plus courantes 

sont la fonction sigmoïde et la fonction signe.  Notons que le seuil du modèle de 

McCulloch et Pitts est implicitement représenté par une connexion dont le poids est -1 

et l'entrée .   

 

4. Les réseaux 

 

Une fois la structure d'un neurone établie, la définition d'un réseau est 

immédiate : un réseau de neurones est une interconnexion de neurones telle que leur 

sortie est connectée, avec un poids synaptique, aux entrées d'autres neurones.  Le choix 

des neurones connectés entre eux détermine l'architecture du réseau.  Différents 

modèles existent : multicouches, Hopfield, Kohonen, Boltzmann.  Chacun a ses propres 

techniques d'apprentissage et s'applique plus particulièrement à certains domaines.  
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Disposant d'une bonne méthode d'apprentissage pour les réseaux multicouches et ceux-

ci répondant à nos besoins, nous laisserons le loisir au lecteur intéressé de consulter les 

ouvrages de références pour les autres modèles. 

 

5. La mise à jour des poids 

 

Il existe essentiellement trois modes possibles pour l'évolution de l'état du 

réseau : 

 

a) Mode séquentiel : les neurones réévaluent leur sortie l'un après 

l'autre dans un ordre déterminé. 

b) Mode aléatoire asynchrone : chaque neurone réévalue sa sortie à 

des intervalles de temps aléatoires. 

c) Mode parallèle : tous les neurones réévaluent leur sortie 

périodiquement et simultanément. 

 

 

6. Apprentissage et adaptation 

 

L'apprentissage consiste à trouver le réseau qui fourni la meilleure solution 

au problème qu'il doit résoudre, pour un ensemble de données dites d'apprentissage.  

Cela est réalisé en adaptant, grâce à certaines règles, les vecteurs de poids.  Ce concept 

d'apprentissage n'est vraiment intéressant que si le réseau possède des capacités de 

généralisation, c'est-à-dire qu'il est capable de fournir une bonne solution  pour d'autres 

données. 

 

De nombreuses règles d'adaptation des poids existent : loi de Hebb 

(renforcer une connexion entre deux neurones actifs), règle du Perceptron (modifier les 

poids en fonction de l'erreur entre la sortie souhaitée et celle obtenue), loi delta, de 

Widrow-Hoff, de corrélation, ou encore du type "le gagnant prend tout".  Plus 

généralement, on peut répartir ces méthodes d'adaptation en deux classes : 

 

1) Les apprentissages supervisés ou avec professeur.  Dans cette catégorie, on 

suppose que chaque fois qu'une entrée est appliquée au réseau, la sortie désirée 

est fournie par le professeur.  Celui-ci pourra alors récompenser ou punir le 

réseau selon l'erreur commise en ajustant les poids.  Cette grande classe 
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d'algorithmes peut se subdiviser en trois sous-catégories : auto-association, 

hétéro-association et classification. 

 

2) Les apprentissages non supervisés.  Dans cette catégorie, la réponse désirée est 

inconnue.  Le réseau est alors supposé découvrir lui-même la meilleure 

représentation de l'information fournie. 

 

Il est important de remarquer que c'est l'ensemble des poids ainsi obtenus 

qui détermine le réseau résolvant le problème posé.  La dégradation accidentelle d'un de 

ces poids n'aura en général que peu d'influence sur le résultat final; les autres assurant la 

convergence vers la solution. 

 

 

7. Le Perceptron à plusieurs couches 

 

7.1. Description 

 

Ce type de Perceptron est un réseau multicouches non récurrent.  Sa 

structure est définie par : 

 

a) L'ensemble des neurones du réseau peut être divisé en N≥3 sous-ensembles 

disjoints.  Chacun de ces ensembles s'appelle une couche. 

 

b) Il existe une numérotation de 1 à N de ces couches telle que : 

 

- deux neurones appartenant à des couches différentes ne peuvent être 

directement connectés que si ces deux couches sont adjacentes; c'est-à-dire 

si leur indice diffère d'une unité. 

- la couche 1 s'appelle la couche d'entrée et est la seule dont les neurones ont 

leur état directement influencé par l'environnement.  En réalité, ces 

neurones sont fictifs et se contentent de jouer le rôle d'interface entre le 

réseau et l'environnement. 

- la couche N s'appelle la couche de sortie et est la seule qui fournisse 

directement une réponse à l'environnement. 

- les autres couches sont appelées couches cachées et ne peuvent 

communiquer directement avec l'environnement. 
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- les réseaux non récurrents ne possèdent pas de cycle; c'est-à-dire que les 

connexions se font toujours d'un neurone vers un autre de la couche 

immédiatement supérieure. 

 

Un exemple d'un tel réseau est représenté à la figure 1.3.  Ici, l'information 

progresse de couche en couche en partant de celle d'entrée pour arriver à celle de sortie 

où elle représente alors la réponse fournie par le système à l'environnement. 

Y Y Y1 2 m

I I I1 2 m

Sorties 

 

 

 

 

 

 

Couche 

de sortie

Deuxième 

couche cachée

Première 

couche cachée

Couche 

d'entrée

Entrées
 

Figure 1.3 

 

Il peut être montré que pour n'importe quel problème de classification, il 

existe un réseau non récurrent à trois couches qui résout ce problème.  Cependant, il 

n'est pas sans intérêt d'utiliser un plus grand nombre de couches intermédiaires.  En 

effet, cet accroissement du nombre de couches s'accompagne généralement d'une 
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amélioration des capacités de généralisation, d'une plus grande résistance aux 

dommages et d'une meilleure efficacité quant à la représentation interne construite par 

le réseau pour stocker les données lors de l'apprentissage. 

 

 

7.2. Apprentissage par rétropropagation d'erreurs. 

 

L'algorithme de la rétropropagation d'erreurs est actuellement la procédure 

d'apprentissage la plus utilisée.  Cette popularité est une conséquence des résultats 

généralement bons qu'elle permet d'obtenir pour un grand nombre de problèmes 

différents et cela en réalisant des simulations sur machines séquentielles, en des temps 

raisonnables vis-à-vis de ceux requis par d'autres algorithmes tel que, par exemple, 

celui du recuit simulé.  Cette règle est en fait une généralisation de la loi delta et pour 

cette raison est souvent appelée loi delta généralisée. 

 

Dans cet algorithme, de même que l'on est capable de propager un signal 

provenant des neurones d'entrée, on peut, en suivant le chemin inverse, rétropropager 

l'erreur commise en sortie vers les couches internes et modifier en conséquence les 

poids.  Cette minimisation de l'erreur permet de mémoriser la relation définie entre 

l'entrée et la sortie désirée.  Ce schéma est appliqué à chaque paire entrée-sortie de 

l'ensemble d'apprentissage et recommencé plusieurs fois jusqu'à l'obtention d'une erreur 

globale acceptable.  Le nombre d'itérations nécessaires n'est malheureusement pas 

estimable. 

 

Nous donnons ici une formalisation sommaire de cet algorithme.  Pour un 

exemple à apprendre donné, on note X le vecteur des entrées et Y le vecteur des sorties 

désirées.  Si le réseau comporte n neurones en entrée et m en sortie, on a donc : 

 

X = (X1, X2, …, Xn)   et  Y = (Y1, Y2, …, Ym) 

 

On note S = (S1, S2, …, Sm) le vecteur des sorties obtenues à l'issue de la 

propagation avant de l'exemple X dans le réseau.  On cherche à minimiser l'erreur 

quadratique entre les sorties désirées et les sorties obtenues, cette erreur étant 

considérée comme une fonction des poids des connexions : 

 

E w   Yi  Si 
2

i1

m

  
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La règle de modification des poids à la présentation numéro k de l'exemple 

X est : 

Wij(k) = Wij(k-1) - e(k) . dj . Oj 

 

où di est calculé de proche en proche de la couche de sortie à la couche d'entrée : 

 

(1)  di = 2 . (Si - Yi) . f'(Ii)  pour la couche de sortie 

(2)  di = ∑h dh . Whi . f'(Ii) pour les couches cachées. 

 

où h parcourt les neurones vers lesquels le neurone i envoie une connexion. 

 

f  est une fonction d'activation dérivable (sigmoïde). 

Oj est la sortie du neurone j. 

Ii est l'entrée du neurone i, Ii = ∑j Wij . Oj 

e(k) est le pas du gradient à l'étape k. 

 

Cet algorithme a l'avantage d'être local, c'est-à-dire que la plupart des 

calculs d'apprentissage peuvent être effectués au niveau de chaque neurone 

indépendamment (avec un minimum de contrôle global). 

 

Une règle à respecter pour faciliter la convergence est d'utiliser un ensemble 

d'apprentissage contenant au moins dix fois plus de vecteurs de données, souvent 

appelés patterns, que de synapses dans le réseau. 

 

 

8. Mise en oeuvre 

 

Les réseaux de neurones sont actuellement réalisés de nombreuses manières 

différentes.  Pour ce travail, nous utilisons un simulateur sur un ordinateur séquentiel 

conventionnel.  Cependant, pour obtenir les meilleurs résultats, il est nécessaire de les 

implémenter physiquement en tenant compte qu'ils sont massivement parallèles : 

chaque neurone peut être vu comme un processeur indépendant, aux fonctions très 

simples.  Le problème auquel on est confronté actuellement est celui des connexions.  Il 

est très coûteux de réaliser un circuit à très forte connectivité en VLSI.  Cependant, des 

études montrent que des implémentations électroniques des réseaux sont réalisables et 

prometteuses. 
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En attendant les résultats de ce développement technique, on utilise des 

simulateurs sur des ordinateurs digitaux.  Ces derniers sont généralement dénommés 

neuro-ordinateurs programmables.  Les plus performants étant bien entendu ceux qui 

peuvent travailler en parallèle.  Malgré cela et d'autres améliorations comme des cartes 

accélératrices, ces neuro-ordinateurs ne peuvent rivaliser avec une implémentation 

spécifique. 

 

 

 

9. Conclusions 

 

9.1. Des propriétés 

 

L'intérêt porté aujourd'hui aux réseaux de neurones tient sa justification 

dans les quelques propriétés fascinantes qu'ils possèdent.  Citons les plus importantes : 

le parallélisme, la capacité d'adaptation, la mémoire distribuée, la capacité de 

généralisation et sa facilité de construction. 

 

Le parallélisme se situe à la base de l'architecture des réseaux de neurones 

considérés comme ensembles d'entités élémentaires qui travaillent simultanément.  Le 

parallélisme permet une rapidité de calcul supérieure, mais exige de penser et de poser 

différemment les problèmes à résoudre. 

 

La capacité d'adaptation permet au réseau de tenir compte de nouvelles 

contraintes ou de nouvelles données du monde extérieur.  Cette capacité présente un 

intérêt déterminant pour tous les problèmes évolutifs.  Il faut, pour les résoudre, pouvoir 

tenir compte de situations non encore connues. 

 

Dans les réseaux de neurones, la "mémoire" d'un fait correspond à une carte 

d'activation de l'ensemble des neurones.  Cela permet une meilleure résistance au bruit.  

La perte d'un élément ne correspond pas à la perte d'un fait mémorisé, mais à une 

dégradation, d'autant plus faible qu'il y a de synapses.  De plus, la recherche d'un fait ne 

nécessite pas la connaissance de l'endroit de stockage, le réseau entier se chargeant de le 

restituer. 
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La capacité de généralisation est essentielle.  Elle assure que le réseau 

donnera une bonne solution pour une entrée ne figurant pas dans l'ensemble 

d'apprentissage.  Nombre de problèmes résolus par des experts le sont de façon plus ou 

moins intuitive, ce qui rend difficile l'exposé explicite des connaissances et des règles 

nécessaires à leur solution.  Le réseau adopte une démarche semblable à celle de 

l'expert. 

 

Le principe des réseaux de neurones et leur structure sont assez simples.  La 

simulation informatique ne nécessite qu'un temps de développement assez court. 

 

 

9.2. Des limites 

 

Un des principaux reproches fait aux réseaux de neurones est l'impossibilité 

d'expliquer les résultats qu'ils fournissent.  Les réseaux se présentent comme des boîtes 

noires dont les règles de fonctionnement sont inconnues.  Ils créent eux-mêmes leur 

représentation lors de l'apprentissage.  La qualité de leurs performances ne peut être 

mesurée que par des méthodes statistiques, ce qui amène parfois une certaine méfiance 

de la part des utilisateurs potentiels. 

 

Le second problème a déjà été invoqué : la mise en oeuvre physique.  Les 

réseaux de neurones seront optimums quand ils auront leur propre support.  Différentes 

solutions ont été envisagées pour faciliter ce problème; notamment diminuer le nombre 

de neurones (par complexification de leur structure, par prétraitements…). 

 

 

9.3. Nos prétraitements 

 

Étant donné les qualités des réseaux de neurones, il est intéressant d'essayer 

de supprimer un maximum de leurs défauts.  Nous présenterons dans ce travail 

quelques idées pour diminuer la complexité des réseaux. 

 

Nos prétraitements visent à réduire la taille d'un pattern d'entrée et donc la 

taille du réseau.  L'importance d'une telle démarche découle de ce qui vient d'être dit.  

Outre le fait qu'un réseau avec peu de connexions sera plus facilement implémentable et 

à meilleur marché qu'un réseau complexe, on obtient surtout un gain appréciable de 

traitement.  Un exemple illustrera bien ce point.  Le premier problème que nous avons 
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du manipuler dans ce travail est la classification de signaux physiologiques en 3 classes.  

Initialement, un réseau de 3 couches était utilisé : 100 neurones en entrée, 20 en couche 

cachée et 3 en sortie.  On dispose d'un ensemble d'apprentissage de 5 400 patterns.  

D'après l'algorithme de la rétropropagation, on doit donc évaluer pour chaque pattern 

123 fonctions  lors de la propagation et 2060 lors de la rétropropagation (100 * 20 + 20 

* 3 synapses).  Chaque itération nécessite donc près de 12 millions d'évaluations.  

Celle-ci étant reproduite jusqu'à minimisation de l'erreur.  Aussi puissant que soit notre 

ordinateur séquentiel, la consommation de CPU et de temps a été énorme, inacceptable.  

A l'aide d'un prétraitement, la taille des patterns d'entrée a été ramenée de 100 à 10.  Le 

réseau choisi comprenait 10 neurones en couche d'entrée, 5 en couche cachée et 3 en 

sortie.  Chaque itération de 5 400 patterns ne nécessite plus que 450 000 évaluations.  

De plus, l'apprentissage est facilité car maintenant on dispose d'un ensemble 

d'apprentissage 83 fois plus important que le nombre de synapses.  Le nombre 

d'itérations permettant la convergence en est diminué.  

 

Ce premier chapitre visait à montrer l'intérêt des réseaux de neurones.  On 

déduit également de cette brève présentation, l'importance de prétraitements à réaliser.  

C'est pourquoi quatre méthodes seront décrites et analysées dans les chapitres suivants. 
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CHAPITRE 2 
LES RESSOURCES MISES EN OEUVRE 

 

 
1. Introduction 
 

Il nous a été demandé d'analyser les résultats de trois méthodes de 

compression : Karhunen-Loève,  Linear Predictive code (LPC) et NLPCA.  La partie la 

plus importante de notre travail consistait à tester la qualité de ces prétraitements sur 

différents types et ensembles de données.  Nous avons comparé les capacités de réseaux 

de neurones à reconnaître ces données sans et avec prétraitements.   

 

Ce second chapitre a pour objectif de présenter les ressources mises en 

oeuvre : les données, les programmes et les ordinateurs.  Il contient également les 

principaux résultats concernant la classification des réseaux de neurones sans 

prétraitement.  Chacun des trois chapitres suivants étudiera les qualités d'une méthode 

de compression sur les mêmes ensembles de données. 
 
 
2. Utilisation de SIRENE 
 

Tous nos prétraitements ont pour objectif de fournir des ensembles de 

données utilisables, plus facilement, par un réseau de neurones.  Pour tester la qualité de 

nos compressions, nous devons comparer les résultats du réseau sans et avec 

prétraitements.  Pour obtenir ces résultats, nous avons utilisé le programme SIRENE1. 

Nous disposions de la version 1 release 9.  On trouvera en annexe une présentation des 

menus principaux de ce programme. 

 

La première étape est la définition du réseau; c'est-à-dire son type, le 

nombre de couches, le nombre de neurones par couche, les fonctions des neurones, 

l'algorithme d'apprentissage, les critères de réussite et un ensemble de petits paramètres 

contrôlant l'apprentissage.  La table 2.1 indique un choix que nous avons couramment 

pratiqué.  Ces définitions ne sont pas innées.  C'est le problème des réseaux de 

                                                 
1 SIRENE est un SImulateur de REseaux de NEurones.  Il a été écrit par M. Fombellida dans le cadre de sa 

thèse de doctorat à l'université de Liège, service de Micro-électronique. 
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neurones : on ne peut pas dire à priori quelle est la meilleure configuration.  Nous avons 

donc procédé à différents essais avant d'obtenir de bons résultats (les meilleurs ?).  

 

La seconde étape est la définition des données à traiter.  Nous fournissions 

trois fichiers de données à SIRENE.  Le premier, le plus gros, est le fichier 

d'apprentissage.  Le réseau l'utilise pour modifier ses poids.  Le second, le plus petit, est 

le fichier de validation croisée.  Il suit l'apprentissage et est utilisé par le réseau pour 

détecter un sur-apprentissage  c'est-à-dire le moment où le réseau se spécialiserait trop : 

il étudie les données de l'apprentissage et n'est plus capable de généraliser à d'autres 

exemples.  C'est ce critère qui détermine le meilleur réseau à conserver.  Le dernier 

fichier est un ensemble test; il n'est pas utilisé pour entraîner le réseau.  Après chaque 

étape de mise à jour des poids, il est présenté à l'entrée du réseau et on calcule les 

sorties que l'on obtiendrait si on arrêtait l'apprentissage à ce moment.  Il permet de 

connaître le comportement du réseau pour un fichier de données quelconque (il est clair 

que les résultats sont meilleurs pour le fichier qui a servi à l'apprentissage).  Notons 

qu'il est préférable que les fichiers d'apprentissage et de validation croisée n'aient pas de 

parties communes; cela fausserait le critère de sur-apprentissage. De plus, comme nous 

le montrerons plus loin, il a été parfois nécessaire de prétraiter ces fichiers pour en 

recentrer les données dans l'intervalle [-1,1]. 

 

 

Type de réseau : Perceptron multicouches 

Nombre de couches : 3 

Nombre de neurones : En fonction du problème 

Fonction d'un neurone : Tangente hyperbolique 

Algorithme d'apprentissage : Quasi-Newton 

Critère de succès : Small composite error 

Fonction d'apprentissage : Total sum squared error + min. weights 

Fonction de validation : Classification error (%) (Maximum 

criteria) 

Fonction de test : Classification error (%) (Maximum 

criteria) 

Paramètres : Overlearning detection and backtracking 

Table 2.1 

 

La structure du réseau et les données à traiter connues et placées dans un 

fichier d'instructions, nous pouvions exécuter le programme SIRENE.  Nos simulations 

ont tourné sur différentes machines SUN.  Quatre fichiers sont générés.  Trois 

concernent les résultats de l'apprentissage et le quatrième contient la définition du 



Les ressources mises en oeuvre 
 

 

 

- 17 - 

réseau qui a donné les meilleurs résultats jusqu'à ce moment.  Étant donné le temps 

d'apprentissage le plus souvent très long,  les simulations étaient lancées en tâches de 

fond.  Une fois le job en cours, nous n'avions donc plus de contrôle si ce n'est sa 

suppression radicale.  Il ne restait qu'à espérer que le réseau sauve des (bons) résultats, 

car nous ne pouvions plus l'y forcer.  Nous devions également espérer que la machine 

utilisée ne soit pas réinitialisée, comme cela a été plusieurs fois le cas.  En même temps 

que SIRENE, nous utilisions la commande TIME pour connaître les différents temps 

d'exécution de la simulation.  Il est important de signaler qu'étant donné que nous 

n'étions pas les seuls à utiliser les machines SUN et que SIRENE est gourmand en 

CPU, nos simulations tournaient avec un degré de priorité inférieur (nice).  Le temps 

réel d'exécution en est augmenté. 

 

Enfin, une fois l'apprentissage réalisé, les ensembles de données sont à 

nouveau présenté au réseau et SIRENE calcule les résultats pour chaque pattern; c'est-à-

dire les sorties obtenues, les erreurs sur ces sorties et le résultat de la classification 

(correcte ou incorrecte).  Il reste à analyser ces résultats. 

 

 
3. Le programme 
 
3.1. Présentation 

 

Notre programme est composé de quatre parties.  Trois concernent les 

méthodes de compression et seront développées dans les chapitres respectifs.  La 

quatrième partie est un module de fonctions complémentaires pour SIRENE.  Elles ne 

sont pas indispensables, mais simplifient souvent la vie à l'utilisateur.   Dans ce travail, 

elles étaient d'une grande utilité.  En annexe, nous présentons tous les menus du 

programme. 

 

    +++ OUTILS POUR L'UTILISATION DE SIRENE +++ 

 

    0. Aide 

 

    1. Creation d'un fichier d'instructions type 

    2. Modification du nombre de sorties d'un fichier de donnees 

    3. Utilisation type d'un reseau de SIRENE 
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    4. Analyse des resultats 

 

    9. Retour au menu principal 

 

 

 

3.2. Création d'un fichier d'instructions type 

 

Les paramètres de configuration de la table 2.1 ont toujours donné de bons 

résultats.  Dans notre cas, nous avons utilisé SIRENE plus de quarante fois et la plupart 

du temps avec ces mêmes paramètres.  Pour ne pas les redéfinir à chaque utilisation et 

ne pas devoir passer par les nombreux sous-menus de SIRENE, le sous-progamme 1 

crée un fichier d'instructions type les contenant, ainsi que d'autres données nécessaires à 

la bonne exécution de  SIRENE.  L'utilisateur doit juste entrer le nom des fichiers de 

données.  Le résultat est un fichier texte nommé "sirene.instr".  Pour l'utiliser, il suffit 

de faire une redirection d'entrées : sirene <sirene.instr. 

 

3.3. Modification du nombre de sorties et fichier d'utilisation 

 

Pour utiliser SIRENE, il faut toujours lui fournir un fichier comprenant les 

sorties attendues et les entrées correspondantes.  Le nombre de valeurs de sortie du 

fichier doit correspondre au nombre de sorties du réseau utilisé sous peine d'être ignoré. 

 

Lorsque l'apprentissage du réseau est terminé et qu'on veut l'utiliser pour un 

nouvel ensemble de données, les sorties souhaitées ne sont bien entendu pas 

disponibles, ni nécessaires.  Cependant, le format standard de SIRENE impose de 

trouver dans le fichier une zone sorties correspondant au nombre de neurones de la 

dernière couche du réseau.  Si ce n'est pas le cas, le deuxième sous-menu permet de 

faire du "bourrage" dans le fichier à traiter, de manière à obtenir ce format standard.  Le 

troisième sous-menu apporte un degré de liberté supplémentaire.  L'utilisateur indique 

le nom du réseau et du fichier de données à traiter.  L'utilisation du programme 

provoque la conversion, si nécessaire, du fichier de données dans le format adéquat et la 

création d'un fichier type d'instructions permettant à SIRENE d'utiliser le réseau.  Cette 

fonction a été indispensable pour la méthode de prétraitements NLPCA (cfr. chapitre 5). 

 

3.4. Analyse des résultats 
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Comme nous l'avons dit précédemment, une fois l'apprentissage réalisé, les 

ensembles de données sont à nouveau présenté au réseau et SIRENE calcule les 

résultats pour chaque pattern; c'est-à-dire les sorties obtenues, les erreurs sur ces sorties 

et le résultat de la classification (correcte ou incorrecte). 

 

Le quatrième sous-programme de ce module interprète ces résultats selon le 

critère du maximum.  Pour chaque pattern, le numéro de la sortie maximale du réseau 

correspond à la classe obtenue.  Le numéro de la sortie maximale des sorties souhaitées 

du fichier de données correspond à la classe désirée.  Le premier résultat du programme 

est un tableau reprenant pour chaque classe désirée, le nombre de patterns fournis, la 

classification de SIRENE, c'est-à-dire le nombre de patterns placés dans chaque classe, 

et le pourcentage de classification correcte.  On obtient également le pourcentage global 

de classification correcte, le pourcentage global de classification impossible (plusieurs 

sorties maximales égales ou non respect de critères supplémentaires énoncés après) et le 

pourcentage global de classification incorrecte. 

 

L'utilisateur peut également fournir des critères de décidabilité 

supplémentaires.  Un critère couramment utilisé est la distance minimale.  Si les deux 

plus grandes sorties obtenues du réseau sont trop proches, on considère que le risque de 

classification incorrecte est trop grand et le pattern est considéré comme inclassifiable.  

C'est l'utilisateur qui choisit les distances qu'il considère représentatives.  Un second 

critère est la différence entre la sortie obtenue et la sortie souhaitée.  Si cette différence 

est trop grande, on pourrait considérer que le réseau n'a pas reconnu le pattern et n'a 

donc pas fourni la sortie correspondante ou que le résultat n'est pas réutilisable.  Ici 

encore, c'est l'utilisateur qui indique les différences tolérées.  Pour chaque critère 

supplémentaire, le tableau défini au paragraphe précédent est affiché. 

 
 
4. Les phases du sommeil 
 
4.1. Description du problème 

 

Une application importante des réseaux de neurones est  le traitement des 

signaux physiologiques de sommeil.  Ce problème, plus complexe qu'il n'y paraît de 

prime abord, ne manque certes pas d'intérêt.  En effet, pour une nuit, les enregistrements 

polygraphiques (électro-encéphalogramme, électro-oculogramme et électro-
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myogramme) représentent quelques mille pages et il faut une journée entière à un expert 

pour en extraire le contenu intéressant et le mettre sous une forme utile.  Dans ce 

contexte, la réalisation d'un analyseur automatique fiable représenterait un gain de 

temps considérable et une aide réelle au diagnostic pour un certain nombre de maladies.  

Outre l'aspect éthique d'une telle recherche, il faut noter qu'approximativement une 

personne sur cent est confrontée au problème de l'apnée du sommeil.  On juge donc de 

l'utilité d'une telle recherche. 

 

Cette recherche a été menée par M. Latour dans le cadre du programme 

FIRST.  Il a montré qu'un réseau de neurones de trois couches permet de classifier un 

vecteur de données correspondant à une époque d'analyse en une des trois phases du 

sommeil.  Ce réseau fournit des résultats d'un même niveau de performances que 

d'autres méthodes plus complexes et plus difficiles à mettre en oeuvre. 

 

4.2. Description des données 

 

Dans ce travail, nous avons réutilisé les ensembles de données de 

M. Latour : trois fichiers de trois mille patterns de données et sorties associées.  Une 

époque du sommeil (un pattern) est défini par cent nombres compris entre -1 et 1.  Les 

sorties associées sont trois nombres : une seule sortie est activée et correspond à la 

classe.  Les deux autres sont nulles.  Pour chaque fichier, il y a mille exemples de 

chaque classe. 

 

4.3. Résultats sans compression 

 
Ne disposant pas des résultats complets de M. Latour, nous avons 

recommencé la simulation neurale.  Cela était de toute manière nécessaire pour pouvoir 

comparer ultérieurement aux résultats avec compression, qui ont été obtenus par une 

version plus récente de SIRENE et des conditions d'utilisation différentes.  La 

modification la plus importante est la définition des ensembles de données.  Nous 

disposions, comme dit précédemment, de trois fichiers de taille identique.  M. Latour 

utilisait le premier comme ensemble d'apprentissage et les deux autres comme ensemble 

test.  Dans nos expérimentations, nous avons recomposé les deux premiers, pour obtenir 

un fichier d'apprentissage de 5 400 patterns (1 800 de chaque classe) et un fichier de 

validation croisée de 600 patterns (200 de chaque classe).  Nous avons gardé le 

troisième tel quel pour le test.  Cette redistribution fournit plus d'exemples au réseau 

pour l'apprentissage et donc facilite sa généralisation.  Les phases du sommeil sont le 
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seul ensemble de données pour lequel nous n'avons pas utilisé les paramètres de la table 

2.1.  Nous avons conservé ceux choisis par Monsieur Latour, qui a étudié ce sujet plus 

en détail.  Nous avons dès lors utilisé des fonctions sinus et sigmoïdes pour les 

neurones, 20 neurones en couche cachée, l'algorithme du gradient conjugué de Polak et 

Ribière et la fonction somme des carrés des erreurs pour l'apprentissage. 

 

Le premier fichier retourné par SIRENE décrit, pour chaque itération de 

l'apprentissage, l'évolution du réseau.  C'est ce qui est représenté graphiquement à la 

figure 2.1.  Trois courbes sont présentes : une pour la fonction d'apprentissage (échelle 

de gauche en unité), la fonction de validation (échelle de gauche en unité) et la fonction 

de test (échelle de droite en pourcentage d'erreur).  L'apprentissage s'est arrêté après 

2000 itérations.  Les trois fonctions passent d'abord par une phase de décroissance 

rapide.  Le réseau corrige ses premières erreurs.  Après 1 405 itérations, il a obtenu sa 

meilleure configuration.  Cela est indiqué par le minimum de la courbe de validation.  

Ensuite, il y a sur-apprentissage et les résultats se dégradent.  La fonction 

d'apprentissage passe de 3 787 à 56.  Elle continuera à descendre jusque 25.  La 

fonction de validation débute à 419 et a pour minimum 23.  Le pourcentage d'erreur de 

la fonction test décroît de 65% à 1.7%. 
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Figure 2.1 

 
Pour réaliser les 2 000 itérations, le programme a travaillé pendant 21 jours.  

Plus précisément, le temps écoulé était de 484 heures et 25 minutes et le temps CPU de 

442 heures et 48 minutes.  Nous ne pouvions arrêter l'apprentissage après la 1 405ème 

itération, car nous ne pouvions savoir s'il s'agissait d'un minimum local ou d'un 

minimum global. 

 

Pour le réseau calculé en 1 405 itérations, nous avons obtenu les résultats 

des tables 2.2 et 2.3.  Pour l'ensemble d'apprentissage, 1 789 patterns sur les 1 800 de la 

classe numéro un ont été classifiés correctement; soit 99.4%.  11 patterns ont été mis à 

tort dans la classe deux.  Il n'y a pas eu d'erreur avec la classe trois.  Le principe est le 

même pour les autres classes attendues.  Au total, pour le critère du maximum simple, 

la classification correcte est de 99.7% pour l'ensemble d'apprentissage et un peu moins 

pour l'ensemble de test : 98.3%.  Cela est normal, vu que le réseau est optimisé par et 

pour l'ensemble d'apprentissage. 

 

Commentaire [1]: la différence est le 
temps pour les I/O et pour les autres prg 
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Table 2.2 

 

Table 2.3 

 

On constate ici la réelle capacité des réseaux de neurones à s'adapter à ce 

problème de classification des phases du sommeil.  Une fois l'apprentissage réalisé, ces 

résultats exceptionnels, sont obtenus en moins d'une minute.  Il paraît difficile de faire 

mieux.  Il n'est même pas certain que le spécialiste qui aurait passé sa journée à analyser 

les enregistrements polygraphiques puisse toujours obtenir une aussi bonne 

classification. 

 

Deux critères supplémentaires ont été utilisés lors de l'analyse des résultats.  

Le premier impose que la différence entre les deux plus grandes sorties du réseau soit 

au moins de deux dixièmes.  Le second critère réclame que la différence entre la sortie 

attendue et celle souhaitée soit au maximum de cinq dixièmes.  Ces valeurs ont été 

choisies arbitrairement en tenant compte que les sorties sont comprises entre -1 et 1.  La 

répartition des patterns pour ces deux critères n'étant pas fondamentale, elle n'a pas été 

décrite par un tableau séparé, mais uniquement par les résultats globaux.  Comme on 

Phases du sommeil - Ensemble d'apprentissage  

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 1789 11 0 0 1800 99.4 

2 5 1794 1 0 1800 99.7 

3 1 0 1799 0 1800 99.9 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 99.7% 99.6% 99.4% 

Indécidable : 0% 0.2% 0.3% 

Incorrecte : 0.3% 0.2% 0.3% 

Phases du sommeil - Ensemble de test  

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 969 31 0 0 1000 96.9 

2 0 986 14 0 1000 98.6 

3 0 7 993 0 1000 99.3 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 98.3% 98.1% 98.0 

Indécidable : 0% 0.4% 0.3% 

Incorrecte : 1.7% 1.5% 1.7% 
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peut le voir dans les tables 2.2 et 2.3, ces deux critères n'ont pas joué un grand rôle; les 

résultats sont stables.   

 
5. Les caractères manuscrits de la poste allemande 
 
5.1. Description du problème et des données 

 

Le but recherché ici est la classification d'images de 16 pixels sur 16 comme 

étant un des chiffres 0 à 9.  L'ensemble de données que nous avons reçu comprend 

18 000 chiffres digitalisés en niveau de gris (allant de 0 (blanc) à 256 (noir)) au format 

16 X 16.  Ces chiffres ont été réunis à partir des codes postaux des lettres passant par le 

service postal de l'ex-République Fédérale d'Allemagne. 

 

Les données fournies sont réparties en deux ensembles de données : 

apprentissage et test.  Chacun des deux ensembles est constitué de 10 fichiers 

comprenant chacun 900 représentations d'un chiffre.  Un vecteur chiffre se compose des 

256 pixels de l'image, lue de gauche à droite et de haut en bas.   

 

5.2. Résultats sans compression 

 
La première étape est la création des fichiers de données au format de 

SIRENE.  A chaque caractère, on associe un vecteur de sorties de 10 nombres.  Un seul 

est à un et sa position correspond au chiffre.  Les autres sont à zéro.  Les fichiers 

d'apprentissage sont fusionnés de manière à obtenir un fichier SIRENE d'apprentissage 

de 8 100 patterns (810 pour chaque chiffre) et un fichier SIRENE de validation croisée 

de 900 patterns (90 pour chaque chiffre).  Les fichiers de test sont assemblés, mais deux 

tiers sont supprimés faute de place sur le disque à notre disposition.  Ceci n'a pas de 

conséquence importante, puisque ce fichier n'est pas utilisé pour l'apprentissage. 

 

Nous n'avons pas réalisé la simulation neurale sans compression.  En effet, 

la taille des données et la taille du réseau qu'elles impliquent posent des problèmes.  

Expliquons.  Définissons d'abord le réseau qui serait nécessaire.  Il comprend 256 

entrées et 10 sorties.  Pour déterminer le nombre de neurones en couche cachées, il faut 

faire plusieurs essais, jusqu'à l'obtention de bons résultats.  Selon la règle des 10%, 

idéalement nous devrions avoir : 
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(256 entrées 10 sorties)* nbre_ cachés  nbre_ synapses

nbre_ synapses*10  8100 patterns

 nbre_ cachés  3  
 

Cette règle ne pourra pas être respectée.  Trois neurones ne peuvent généraliser 256 

données en 10 sorties.  Un nombre envisageable de neurones en couche cachée serait 

par exemple 100.  Il y aurait alors 26 600 poids ((256+10)*100) à modifier à chaque 

itération en fonction de seulement 8 100 exemples.  On peut douter de la capacité du 

réseau à s'adapter.  Un tel apprentissage serait long et difficile.  Il faudrait de plus le 

recommencer avec d'autres valeurs que 100 pour améliorer les résultats.  Quand on 

constate le temps qui a été nécessaire à l'apprentissage du réseau, beaucoup plus petit, 

analysant les phases du sommeil, on comprend que cette démarche n'est pas acceptable.  

De plus, les données étaient volumineuses et occupaient toute la place disponible sur le 

disque.  Il n'était pas possible de monopoliser un tel espace disque et une machine SUN 

durant un si grand laps de temps.  Notons pour terminer qu'à notre connaissance, 

personne n'a travaillé sur l'ensemble initial des données.  Tout le monde en a fait des 

compressions par différentes méthodes. 

 
6. Les véhicules 
 
6.1. Description du problème et des données 

 

On cherche à reconnaître une silhouette comme étant celle d'un type de 

véhicule parmi quatre.  On utilise pour cela un ensemble de caractéristiques extraites de 

la silhouette du véhicule vu sous différents angles.  Les quatre types de véhicules sont : 

un bus à impériale, un van chevrolet, une Saab 9000 et une Opel Manta 400.  Il y a 18 

attributs réels par véhicule et 846 représentations sont disponibles. 

 

6.2. Résultats sans compression 

 
Cette fois-ci, nous n'avons pas du préparer les données.  Nous les avons 

reçues directement au format de SIRENE.  Le réseau choisi pour l'apprentissage utilise 

les paramètres de la table 2.1.  Son architecture comprend 18 neurones en entrée, 5 en 

couche cachée et 4 pour les sorties.  C'est la structure qui a donné les meilleurs résultats 

et qui était proposée dans la littérature.  Cependant, les résultats ne sont pas 

exceptionnels.  Cela est essentiellement du au faible nombre de patterns disponibles 
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pour l'apprentissage.  Pour respecter la règle des dix pourcents, le nombre de neurones 

en couche cachée aurait du être inférieur ou égale à 3 (18 * 3 + 3 * 4 <= 846 / 10). 

 

Le graphe 2.2 illustre la phase d'étude du réseau.  Le meilleur réseau est 

obtenu après 59 itérations.  La fonction d'apprentissage passe de 2 870 à 504.  La 

fonction de validation atteint un pourcentage d'erreurs de 16%, lorsque la fonction de 

test reste à 17%.   
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Figure 2.2 

 

1 heure et 29 minutes ont été nécessaires pour réaliser ces 444 itérations.  Il 

y correspond un temps CPU de 1 heure et 22 minutes.  Il faut noter ici encore que le 

meilleur réseau est obtenu bien avant l'arrêt de l'apprentissage.  Les meilleurs résultats 

sont reproduits dans les tables 2.4 et 2.5.   
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Table 2.4 

 

 

Table 2.5 

 

6.3. Comparaisons avec des résultats officiels 

 
Nous pouvons comparer nos résultats avec ceux du projet ESPRIT StatLog.  

Son but est l'évaluation des performances de différents algorithmes de classification 

(statistique, machine intelligente et réseau de neurones) pour des problèmes 

commerciaux et industriels complexes.  Parmi eux, nous trouvons les caractères 

allemands et les véhicules.  La table 2.6 reprend les comparaisons pour le cas des 

véhicules. 

 

Algorithme Type Source Exactitude (%) Temps (sec.) 

   Appr. Test Appr. Test 

Quadra Stat. Strath 91.4 84.9 28 29 

Alloc80 Stat. Leeds 100.0 82.7 30 10 

Véhicules - Ensemble d'apprentissage 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 128 37 2 1 0 168 76.1 

2 26 136 6 0 0 168 80.9 

3 0 2 164 2 0 168 97.6 

4 1 2 1 150 0 154 97.4 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 88% 86.6% 74.4% 

Indécidable : 0% 2.4% 21.6% 

Incorrecte : 12% 11.0% 4.0% 

Véhicules - Ensemble de test 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 18 5 1 0 0 24 75.0 

2 5 16 2 1 0 24 66.6 

3 0 1 23 0 0 24 95.8 

4 0 1 0 23 0 24 95.8 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 83.3% 82.2% 67.8% 

Indécidable : 0% 1.4% 28.7% 

Incorrecte : 16.7% 16.4% 3.5% 
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LogReg Stat. Strath 83.3 80.9 601 5 

Backpropag Neur. Strath 83.2 79.3 14 400 4 

Discriminant Stat. Strath 79.8 78.4 13 5 

SMART Stat. Leeds 93.8 78.3 2 502 1 

C4.5 Mach. Turing 93.5 73.4 174 2 

k-N-N Stat. Leeds 100.0 72.5 164 23 

CART Mach. Granada 76.5 71.6 25 1 

CN2 Mach. Daimler 98.2 70.7 95 1 

AC2 Mach. Isoft - 70.4 5 525 213 

NewID Mach. Daimler 99.0 70.3 20 2 

INDCART Mach. Strath 95.3 70.2 83 1 

Radial Neur. Strath 90.2 69.3 1 700 12 

ITrule Mach. Brainwr - 67.6 985 

Kohonen Neur. Luebeck 88.5 66.0 5 692 50 

Cal5 Mach. Fraunhofer 70.1 64.9 39.6 1 

Castle Stat. Granada 49.5 45.0 3 3 

Bayes Stat. Strath 47.7 44.2 2 1 

Table 2.6 

 

En quatrième position, nous trouvons l'algorithme de rétropropagation.  

C'est le seul qui utilise un réseau de type Perceptron comme nous.  Nous ne disposons 

malheureusement pas d'informations sur la structure utilisée.  Avec le réseau décrit dans 

le paragraphe précédent, nous obtenons de meilleurs résultats (88.1% et 83.1%), en 

encore moins de temps (4 920 secondes pour l'apprentissage et 1 seconde pour le test).  

Nous sommes donc en seconde position.  Nous avons réalisé une autre simulation avec 

un réseau beaucoup plus grand (18-10-4).  Dans ce cas, en 27 660 secondes et 

1 726 itérations, nous n'obtenions pas de meilleurs résultats : classification correcte à 

97.5% pour l'apprentissage, mais 80.4% pour le test.  On constate que le réseau a très 

bien appris son ensemble d'exemples.  Par contre, il n'a pas réussi à les généraliser aussi 

bien à d'autres présentations.  Cela confirme que le nombre d'exemples d'apprentissage 

était trop faible pour ce réseau (658 exemples pour 220 synapses). 

 

 
 
 
 
7. Données corrélées 
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Il ne s'agit pas ici d'un problème de classification.  Cet ensemble de données 

a été créé de toutes pièces pour illustrer la méthode de compression NLPCA.  Nous 

attendrons donc ce chapitre pour le présenter. 

 

 
8. Conclusions 
 

Nous avons présenté les ressources que nous utiliserons tout au long de ce 

travail : les données, les programmes et les ordinateurs.  La séquence d'opérations est 

toujours la même : utilisation de notre programme pour réaliser les prétraitements, 

utilisation de SIRENE pour simuler un réseau de neurones de reconnaissance de formes 

et analyse des résultats.  Pour faciliter ces manipulations, un module d'outils a été écrit. 

 

Nous avons également décrit la classification sans prétraitement des 

ensembles de données à notre disposition.  Les réseaux de neurones ont montré leur 

capacité à s'adapter aux problèmes posés.  Cependant, les temps d'apprentissage qui ont 

été nécessaires sont énormes.  Pour le problème de la reconnaissance des caractères 

manuscrits, nous n'avons même pas pu réaliser une simulation.  Des méthodes doivent 

absolument être développées pour pouvoir utiliser d'importants ensembles de données 

dans des réseaux de neurones.  Les chapitres suivants décrivent de tels procédés.  
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CHAPITRE 3 
LA MÉTHODE DE KARHUNEN-LOÈVE 

 

 

1. Introduction 

 

La méthode de Karhunen-Loève est une technique pour représenter un 

échantillon d'une fonction générée par un processus aléatoire.  Il a été montré qu'elle 

minimisait l'erreur au sens des moindres carrés.  La méthode de Karhunen-Loève extrait 

donc un ensemble de caractéristiques qui est optimal pour représenter un pattern dont la 

source est aléatoire. 

 

Ce chapitre est constitué de trois parties.  La première décrit la méthode de 

Karhunen-Loève.  La seconde présente notre implémentation.  Enfin, la troisième 

comprend les principaux résultats de son application sur nos ensembles de données. 

 

 

2. La méthode 

 

2.1. Description formelle 

 

La méthode de Karhunen-Loève est une méthode d'approximation d'un 

ensemble de fonctions continues de temps par un développement en série.  Soit 

l'ensemble de fonctions i(t ) (i 1,2,, N) , le résultat est une combinaison 

linéaire de fonctions de base,  j (t) ( j  1,2,)  de la forme : 

 

 i (t )   ij j (t )
j1



  (1) 

 

Les fonctions de base sont obtenues par résolution de l'équation suivante : 

 j j (t)  R(t , )  j ( ) d




  (2) 

 

où R(t, )  est la fonction d'autocorrélation des ƒ(t) et est donnée par : 

 

R(t , )  E
i
[ i ( t) f i ( )], (3) 
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où E[.] est la moyenne sur les N fonctions de l'ensemble.  On obtient ensuite les 

coefficients ij par : 

 ij   i (t) j (t) dt




  

 

Dans notre cas, nous voulons transformer un vecteur de données (un 

pattern) en un autre de taille plus petite.  Les éléments d'un vecteur peuvent être vus 

comme un échantillonnage d'une fonction continue.  Le nombre de points d'échantillon, 

n, étant choisi de manière à retenir suffisamment d'informations.  Nous devons donc 

adapter les définitions précédentes au cas discret.  Nos fonctions peuvent alors être 

représentées par les vecteurs colonnes : 

 

Fi 

 i (t1 )

 i ( t2 )

 i ( tn )



















(i  1, 2,, N )  (4) 

 

L'équation (1) devient alors la somme finie 

 

Fi   ij  j
j1

n

  (5) 

où j est la représentation vectorielle de la jème fonction de base : 

 

 j 

 j ( t1 )

 j (t2 )

 j (tn )



















( j  1, 2,, n)  (6) 

 

De même, (2) et (3) sont remplacés par 

 

 j  j  S  j  (7) 

et 

S  E
i
[FiFi

T
], (8) 
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Les équations (7) et (8) montrent que S est une matrice d'autocorrélation et 

que j et j sont les jème valeur propre et vecteur propre de S.  Puisque les fonctions 

de base sont des vecteurs propres, elles sont orthogonales; c'est-à-dire : 

 

 j
T
 i 

1 pour i  j

0 pour i  j





 (9) 

 

Dès lors, les coefficients ij de l'expression peuvent être obtenus par : 

 

 ij   j
T

Fi  (10) 

 

ou, en notation matricielle, 

 

Ai  B
T
Fi  

 

avec 

 

Ai 

 i1

 i2

 in



















et B  12 n  

 

Quand les n fonctions de base sont utilisées, les Fi sont obtenus sans erreur.  

Par contre, si nous en sélectionnons moins, l'expansion de Karhunen-Loève devient une 

approximation.  L'erreur au sens des moindres carrés est calculée directement par : 

 


2
 E

i
Fi   ij j

j1

k












T

Fi   ij j
j1

k


























 (11) 

 

Par (9) et (10), on peut simplifier : 

 


2
  j

T
E
i
[Fi Fi

T
] j

j k1

n

 , (12) 
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et on obtient par (8) que  

 


2
  j

j k1

n

  (13) 

 

Si les vecteurs propres sont rangés par ordre de valeur propre décroissante, on minimise 

ainsi l'erreur moyenne au sens des moindres carrés.  On voit de plus, que plus le nombre 

de vecteurs propres conservés est grand, moins l'erreur sera grande et même nulle si il 

n'y a pas de réduction. 

 

La matrice A ainsi obtenue est l'ensemble des nouveaux patterns d'entrées 

pour le réseau de neurones.  Notons que la matrice B n'est utilisée que pour le calcul de 

A et n'est pas conservée.  A étant une corrélation de B et des patterns originaux, elle 

devrait suffire au réseau de neurones.  Cependant, l'erreur calculée précédemment par 

les formules (11), (12) et (13) ne peut plus être celle liée à l'utilisation du réseau étant 

donné que ces formules utilisent la matrice B.  L'erreur sera mesurée par comparaisons 

avec les résultats obtenus sans prétraitement. 

 

 

2.2. Signification géométrique 

 

Dans cette méthode, on part d'un tableau de données F où chacune des N 

lignes correspond à un individu et chacune des n colonnes correspond à une 

caractéristique. 

 

La première opération réalisée est le recentrage du tableau.  Pour chaque 

caractéristique j, la moyenne mj des N individus est calculée : 

 

m j 
1

N
Fij

i1

N

  

 

On obtient alors le tableau recentré par l'opération suivante : 

 

F ij  Fij m j  
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A chaque ligne i de F , on peut associer le point Pi de coordonnées F ij 

pour 1≤ j ≤ n.  Le résultat est un nuage de N points. 

 

Le but de la méthode est de représenter le plus simplement possible les 

corrélations entre les n caractéristiques.  Pour cela, soit D une droite dans IRn de 

direction u  avec ||u || = 1.  Soit Hi la projection orthogonale de Pi sur D.  On cherche u 

qui minimise : 

 

Hi Pi



i 1

N


2

 

 

O

D

u

H1
H

H

HH

2

3

45

P

P

P
P

P

1

2

3

4

5

 

On a : 

OH i



 (OPi



|u


) u


, 

où 

(OPi



|u


)  F iju j
j1

n

 , 

donc : 

 

OH i

 2

i 1

N

  (OPi



| u


)
2

i 1

N

  
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Les Pi étant donnés, chercher u  qui minimise Hi Pi



i 1

N


2

 est équivalent, 

d'après le théorème de Pythagore, à chercher u  qui maximise OHi

 2

i 1

N

 .  D'après un 

théorème de Courant-Fischer, cela revient à chercher le vecteur propre u 1 

correspondant à la plus grande valeur propre 1 de F T F .  En déterminant les vecteurs 

propres correspondant aux valeurs propres suivantes, on obtient une représentation plus 

complète. 

 

 

3. Le programme 

 

Tous les programmes ont été écrits à l'aide du langage C.  Le code de la 

méthode de Karhunen est fourni en annexe. 

 

L'implémentation est tirée directement de la théorie.  L'exécution comprend 

trois étapes : la recherche des vecteurs propres, la détermination des vecteurs qui 

appartiendront à la matrice de transformation et la phase de compression proprement 

dite. 

 

+++ KARHUNEN - LOEVE +++ 

 

  0. Aide 

 

  1. Vecteurs propres 

  2. Matrice de transformation 

  3. Creation fichier compresse 

 

  9. Retour au menu principal 

 

 

3.1. Vecteurs propres 

 

L'utilisateur a le choix entre calculer la matrice des vecteurs propres 

d'un nouvel ensemble de données, enregistrer une nouvelle matrice ou charger 

une ancienne.  
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3.2. Matrice de transformation 

 

L'utilisateur a les mêmes possibilités : création, enregistrement ou 

chargement.  Pour la création d'une nouvelle matrice de transformation, trois 

critères de sélection du nombre de vecteurs propres à utiliser sont possibles : 

constant, selon les valeurs propres, selon les valeurs propres avec limite 

maximale. 

 

En utilisant chaque fois la matrice de transformation de l'ensemble 

d'apprentissage pour les deux autres ensembles de données, on augmente la 

corrélation entre l'apprentissage et l'utilisation du réseau.  Cela améliore les 

résultats. 

 

3.3. Création du fichier compressé 

 

L'utilisateur peut décider en plus de calculer l'erreur moyenne 

(définie comme précédemment) pour chaque pattern ou globalement.  Il peut 

également demander que les sorties soient comprises dans l'intervalle [-1,1]; ce 

qui est très pratique lors de l'utilisation d'un réseau de neurones dont les 

fonctions habituelles imposent cette condition.  Cette borne est obtenue par 

division des vecteurs propres par une constante adéquate. 

 

 

4. Analyse des phases du sommeil 

 

4.1. Introduction 

 

Les données du sommeil, présentées dans le chapitre 2, sont le premier 

ensemble qui a été prétraité par la méthode de Karhunen.  Nous ne pouvions prédire le 

nombre de vecteurs propres à conserver, c'est-à-dire l'importance de la compression, 

pour conserver une classification valable.  Nous avons donc procédé par essais.  Nous 

présentons ici les deux résultats les plus significatifs : une compression de 100 données 

à 20 et une de 100 à 10. 
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4.2. Compression à 20 

 

 L'ensemble de données initial a été prétraité par Karhunen pour lui donner 

un taille des entrées de 20 au lieu de 100.  A partir de ces données comprimées, un 

nouveau réseau a du réaliser la classification en phases du sommeil.  L'architecture 

choisie emploie les mêmes paramètres que le réseau utilisé sans compression préalable.  

Le réseau comprend 20 neurones en entrée, 9 en couche cachée et 3 en sortie.  Ce choix 

respecte largement la règle des dix pourcents (20 * 3 + 3 * 9 << 8 100 / 10) et a donné 

de bons résultats. 

 

La figure 3.1 décrit l'apprentissage de ce réseau.  Les premières erreurs sont 

rapidement corrigées.  La fonction de validation démarre à la valeur 595 pour atteindre 

très vite, après seulement 651 itérations, son minimum à la valeur 117.  A ce moment, 

la fonction d'apprentissage a diminué de 5 345 à 731 et la fonction de test est passée de 

67% d'erreurs à 11%.  Après la 651ème itération, les résultats se dégradent pour 

l'ensemble de test qui atteint 16% d'erreurs à la fin de la simulation. 

Phases du sommeil : Karhunen 20

Itérations

A
p

p
re

n
ti

s
s
a

g
e
 e

t

v
a

li
d

a
ti

o
n

0

1000

2000

3000

4000

5000

6000

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

0

10

20

30

40

50

60

70
T

e
s
t

Apprentissage

Validation

TestMinimum

651

Figure 3.1 

 

Pour réaliser les 1 550 itérations de cette simulation, un ordinateur a été 

occupé pendant cinq jours : le temps réel est de 109 heures et 31 minutes, mais le temps 
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CPU n'est que de 54 heures et 4 minutes.  Rappelons cependant que les derniers 

résultats sauvés par SIRENE l'ont été bien avant cela.  Ils étaient déjà utilisables à partir 

de l'itération 651. 

 

Pour le réseau optimum, les résultats détaillés sont reproduits dans les 

tables 3.1 et 3.2.  La simulation permet de reconnaître relativement bien et avec une 

même certitude chaque classe de l'ensemble d'apprentissage.  91.2% de classifications 

correctes est un résultat honorable.  On constate de plus, et avec plaisir, que le réseau 

arrive à généraliser sa classification à d'autres exemples qu'il ne connaissait pas.  Dans 

ce cas, il obtient toujours une classification correcte à 89.5%. 

 

Table 3.1 

 

Table 3.2 

 

Ici encore, la classification est aisée.  Les deux critères de décision 

supplémentaires ne modifient pratiquement pas les résultats : les sorties sont nettes. 

 

Phases du sommeil 

Karhunen 20 - Ensemble d'apprentissage  

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 1587 211 2 0 1800 88.2 

2 16 1714 70 0 1800 95.2 

3 9 168 1623 0 1800 90.2 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 91.2% 90.1% 90.5% 

Indécidable : 0% 2.6% 1.5% 

Incorrecte : 8.8% 7.3% 8.0% 

Phases du sommeil 

Karhunen 20 - Ensemble de test 

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 820 180 0 0 1000 82.0 

2 0 963 37 0 1000 96.3 

3 8 91 901 0 1000 90.1 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 89.5% 88.7% 89.0% 

Indécidable : 0% 2.2% 0.8% 

Incorrecte : 10.5% 9.1% 10.2% 
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4.3. Compression à 10 

Une compression à 20 donnant toujours des résultats acceptables, nous 

avons poussé la compression jusqu'à 10 pour en fixer les limites.  Cela permettra de 

plus des comparaisons avec d'autres méthodes de compression qui supportent une telle 

diminution du nombre des caractéristiques. 

 

Les données prétraitées ont été présentées à un nouveau réseau définit 

similairement à ceux des autres analyses des phases du sommeil.  Seule sa structure 

change; il comprend 10 neurones en entrée,  5 en couche cachée et 3 en sortie. 

 

La figure 3.2 représente son apprentissage.  Les résultats sont nettement 

moins bons.  La fonction d'apprentissage part de 4 976 pour atteindre sa valeur finale de 

2 088.  Le réseau n'arrive plus à obtenir de meilleurs résultats et arrête son étude.  La 

fonction de validation, débutant de 552,  permettra de sauver juste avant le meilleur 

réseau qu'elle a trouvé.  Son minimum se situe à l'itération 486 avec une valeur de 236.  

Le pourcentage d'erreurs pour l'ensemble de test s'est stabilisé à 27%. 
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Figure 3.2 

 



La méthode de Karhunen-Loève 
 

 

 

- 40 - 

Ces résultats ont été obtenus beaucoup plus vite.  En temps réel,  ces 492 

itérations ont nécessité 30 heures et 23 minutes.  En temps CPU, cela a demandé 8 

heures et 10 minutes.  Notons ici que même si le réseau obtenu a été sauvé à l'itération 

486,  un réseau sauvé dès l'itération 150 aurait donné des résultats très proches : les 

courbes sont régulières. 

 

Il est intéressant de regarder la classification détaillée du réseau.  Elle est 

présentée dans les tables 3.3 et 3.4.  On constate que le réseau généralise parfaitement 

son apprentissage au fichier test.  Les résultats sont identiques : classification correcte 

d'environ 71% dans les deux cas.  On découvre également la source d'erreurs.  

L'apprentissage a échoué pour la classe deux, alors qu'il est valable pour les autres 

catégories.  Cet échec se propage dès lors à l'ensemble test. 

 

 

Table 3.3 

 

Table 3.4 

Phases du sommeil 

Karhunen 10 - Ensemble d'apprentissage 

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 1551 235 14 0 1800 86.2 

2 1027 652 121 0 1800 36.2 

3 50 130 1620 0 1800 90.0 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 70.8% 58.2% 53.8% 

Indécidable : 0% 20.0% 29.7% 

Incorrecte : 29.2% 21.8% 16.5% 

Phases du sommeil 

Karhunen 10 - Ensemble de test 

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 918 82 0 0 1000 91.8 

2 504 379 117 0 1000 37.9 

3 40 70 890 0 1000 89.0 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 72.9% 59.7% 56.5% 

Indécidable : 0% 19.6% 27.5% 

Incorrecte : 27.1% 20.7% 16.0% 
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Une compression jusqu'à dix par la méthode de Karhunen n'est donc pas 

acceptable.  Le résultat est une incapacité du réseau à reconnaître la classe deux, qu'il 

confond essentiellement avec la classe un.  Une compression jusqu'à vingt entrées 

apparaît comme la limite. 

 

5. Reconnaissance des caractères manuscrits 

 

5.1. Introduction 

 

Pour ce problème, nous avons d'abord du décider de la composition des 

réseaux à essayer.  Avec 8 100 patterns d'apprentissage, cette architecture devait de 

préférence être limitée à 810 synapses; ce qui est peu pour un problème original de 256 

entrées.  Dans la littérature, nous avons trouvé des tentatives de classification de ce 

problème à partir de données réduites à la taille de 40.  Nous avons donc d'abord testé 

cette valeur. 

 

Cela n'a pas abouti.  En effet, nos données originales étaient en nuances de 

gris (valeurs de 0 à 255).  Cependant, notre fonction tangente hyperbolique n'est 

vraiment efficace qu'autour de l'origine.  Plus on s'en éloigne, moins la fonction varie.  

Nous avons donc retraité nos données pour les recentrer dans l'intervalle [-1,1].  Pour 

cela, nous utilisions une fonction de conversion de SIRENE.  Les résultats ont 

directement suivi. 

 

Nous ne nous sommes pas limité à une compression à 40.  Nous avons 

essayé d'aller plus loin, jusque 20.  Nous présentons maintenant en détail ces deux 

simulations.  Nous montrerons ensuite brièvement la différence pour d'autres valeurs 

recentrées ou non et nous terminerons par une comparaison avec les résultats de la 

littérature : le projet StatLog. 

 

5.2. Compression à 40 et recentrage 

 

Comme annoncé, nous avons d'abord réduit nos ensembles de données par 

la méthode de Karhunen et nous les avons ensuite recentrés, grâce à SIRENE, dans 

l'intervalle [-1,1].  Il faut signaler qu'il a été obligatoire d'utiliser la même matrice de 

transformation de Karhunen et de centrage pour les trois fichiers.  Dans le cas contraire, 

l'apprentissage s'arrête après quelques itérations et avec un pourcentage d'erreurs 

énorme. 
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Le réseau créé pour vérifier la capacité de classification après compression, 

comprend 40 neurones en entrée et en sortie, 1 pour chaque classe.  L'importance de la 

couche cachée a été décidée selon le critère des dix pourcents.  Le maximum est dès 

lors de 16 neurones (40 * 16 + 16 * 10 = 800 < 8 100 / 10). Étant donné les excellents 

résultats obtenus, il n'a pas été nécessaire d'essayer d'autres valeurs. 

 

Lors de notre simulation, nous n'avions pas assez d'espace disque pour 

utiliser l'ensemble test de 9 000 patterns au complet.  Nous en avons extrait un tiers.  

Cependant, pour permettre des comparaisons avec le projet StatLog qui emploie le 

fichier entier, nous avons après calculé les résultats détaillés pour les 9 000 patterns de 

test.   

 

L'évolution de l'apprentissage est expliquée par la figure 3.3.  Cela a été très 

rapide.  En 53 itérations, la fonction de validation a atteint le minimum de 8% d'erreurs.  

Pour les 3 000 exemples, la fonction de test indique à ce moment une erreur de 7%.  La 

fonction d'apprentissage est partie de 87 796 pour tomber à 2 046.  Après la 53ème 

itération, les erreurs recommencent à augmenter progressivement.  Après 580 itérations, 

les résultats ne pouvant plus s'améliorer, nous avons décidé d'arrêter nous-mêmes 

l'apprentissage et de libérer l'ordinateur. 
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Une dizaine d'heures ont été nécessaires pour obtenir le meilleur réseau.  

Nous avons arrêté l'apprentissage à la 580ème itération après 87 heures et 20 minutes 

réelles et 86 heures et 31 minutes CPU. 

 

La table 3.5 détaille les résultats de la classification de l'ensemble 

d'apprentissage.  Les pourcentages spécifiques et globaux de classification sont tous 

similaires et très élevés.  Les erreurs sont équitablement réparties dans chaque classe, il 

ne s'agit pas d'un problème de classification de caractères se ressemblant, mais d'une 

limite du réseau.  Avec 96.3% d'exactitude,  on peut parler de réussite. 

Caractères - Karhunen 40 recentré - Ensemble d'apprentissage 

Clas Classe obtenue ∑ % 

se 1 2 3 4 5 6 7 8 9 10 ?   

1 769 4 2 0 4 1 2 3 17 8 0 810 94.9 

2 10 792 0 0 0 0 0 1 2 5 0 810 97.7 

3 0 0 788 5 0 3 1 1 5 7 0 810 97.3 

4 0 0 9 769 0 7 3 1 9 12 0 810 94.9 

5 3 1 0 0 791 1 10 1 2 1 0 810 97.6 

6 1 0 0 13 1 765 6 2 8 14 0 810 94.4 

7 1 0 0 1 3 6 795 0 4 0 0 810 98.1 

8 8 2 1 1 6 2 0 785 2 3 0 810 96.9 

9 1 3 4 1 0 6 9 2 768 16 0 810 94.8 

10 4 0 4 5 7 4 1 2 5 778 0 810 96.0 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 96.3% 95.9% 93.4% 

Indécidable : 0% 1.1% 5.2% 

Incorrecte : 3.7% 3% 1.4% 

 

Caractères - Karhunen 40 recentré - Ensemble de test 

Clas Classe obtenue ∑ % 

se 1 2 3 4 5 6 7 8 9 10 ?   

1 824 24 1 0 7 0 10 4 25 5 0 900 91.6 

2 9 871 0 3 0 1 0 7 3 6 0 900 96.8 

3 2 3 824 12 0 16 6 4 19 14 0 900 91.6 

4 0 0 24 814 0 15 0 10 15 22 0 900 90.4 

5 14 4 2 0 845 2 9 6 11 7 0 900 93.9 

6 5 0 9 24 0 815 17 4 9 17 0 900 90.6 

7 6 0 1 1 9 10 869 0 2 2 0 900 96.6 

8 6 7 3 0 6 2 0 854 15 7 0 900 94.9 

9 5 1 11 3 0 15 13 4 825 23 0 900 91.7 

10 4 8 3 12 8 11 0 14 14 826 0 900 91.8 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 93% 92.1% 89.9% 
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Indécidable : 0% 2.3% 6.7% 

Incorrecte : 7% 5.6% 3.4% 

Table 3.5 et 3.6 

L'ensemble complet de test (9 000 patterns) a été utilisé pour vérifier 

l'exactitude de la classification.  La table 3.6 montre ces résultats.  Ils sont semblables à 

ceux de l'ensemble réduit testé lors de l'apprentissage.  Le pourcentage de classification 

correcte est de 93%.  Les résultats sont précis.  Les deux critères supplémentaires ne 

modifient pas énormément les pourcentages.  Notons qu'en utilisant ces critères, on peut 

diminuer le taux d'erreur en augmentant le taux d'incertitude.  Les éléments non 

classifiables peuvent être donnés à une autre procédure de décision. 

 

5.3. Compression à 20 et recentrage 

 

Les mêmes opérations ont été réalisées pour obtenir 20 valeurs entre -1 et 1 

pour chaque pattern de données.  Ces valeurs ont été présentées à un réseau de 20 

neurones en entrée et 10 en sortie.  Nous avons décidé d'utiliser 16 neurones en couche 

cachée comme pour le réseau précédent.  Le nombre d'exemples disponibles nous le 

permet et cela facilitera la généralisation. 

 

La figure 3.4 décrit l'apprentissage.  Les courbes de validation et de test se 

superposent et décroissent durant une longue période.  La fonction d'apprentissage suit 

la même direction.  Elle part de 94 000 pour atteindre 
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Figure 3.4 

Cet apprentissage a été beaucoup plus long : 1 097 itérations ont été 

nécessaires pour obtenir le meilleur réseau.  Nous avons arrêté volontairement 

l'apprentissage après 1 500 itérations, soit 291 heures et 42 minutes réelles (12 jours) ou 

285 heures et 44 minutes de CPU. Le taux de classification aurait peut-être pu encore 

diminuer de quelques dixièmes de pourcent, mais le temps d'apprentissage, excessif, 

suffit à déclarer cette taille de compression comme inadaptée.  Nous avons donc libéré 

l'ordinateur de cette charge de travail. 

 

Les tables 3.7 et 3.8 reprennent les résultats.  Ici aussi, ils sont excellents.  

La méthode de Karhunen-Loève permet des compressions très importantes.  Pour une 

compression à 20, le pourcentage de classification correcte de l'ensemble de test est de 

91%.  Lorsque le réseau se trompe, la classe deux est plus souvent choisie. 

 

Caractères - Karhunen 20 recentré - Ensemble d'apprentissage 

Clas Classe obtenue ∑ % 

se 1 2 3 4 5 6 7 8 9 10 ?   

1 775 17 2 0 7 0 2 1 3 3 0 810 95.7 

2 6 788 1 0 10 0 0 5 0 0 0 810 97.3 

3 2 22 754 1 2 2 9 3 7 2 6 810 93.1 
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4 0 10 5 777 1 1 0 2 1 12 1 810 95.9 

5 2 17 0 0 775 0 5 2 0 9 0 810 95.7 

6 1 5 0 1 2 791 4 2 0 4 0 810 97.7 

7 1 7 1 0 7 8 783 0 3 0 0 810 96.7 

8 3 17 4 2 7 0 0 774 0 3 0 810 95.6 

9 2 13 6 3 1 6 7 1 759 8 4 810 93.7 

10 2 24 0 9 14 1 1 4 8 742 5 810 91.6 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 95.3% 94.8% 93.1% 

Indécidable : 0.2% 2.6% 5.0% 

Incorrecte : 4.5% 2.6% 1.9% 

Table 3.7 

 

Bien que ces résultats soient excellents, cette taille de compression ne peut 

nous satisfaire.  En effet, notre objectif est de réduire la dimension des vecteurs pour 

accélérer l'apprentissage des réseaux de neurones.  Une compression plus importante 

n'implique pas forcément un temps d'apprentissage plus court.  C'est le cas ici, la taille 

de compression de 40, bien que moins importante, permet un apprentissage plus rapide. 

 

 

 

 

Caractères - Karhunen 20 recentré - Ensemble de test 

Clas Classe obtenue ∑ % 

se 1 2 3 4 5 6 7 8 9 10 ?   

1 269 15 0 0 6 0 0 1 7 0 2 300 89.7 

2 2 292 0 0 1 0 0 2 1 2 0 300 97.3 

3 0 8 271 4 1 1 1 3 2 1 8 300 90.3 

4 0 6 4 276 0 5 0 0 0 5 4 300 92.0 

5 2 10 0 0 271 2 5 1 0 9 0 300 90.3 

6 0 8 0 2 2 283 2 0 1 1 1 300 94.3 

7 2 3 1 0 4 3 286 0 1 0 0 300 95.3 

8 3 8 1 1 3 1 0 277 1 3 2 300 92.3 

9 1 14 5 4 1 2 7 1 260 2 3 300 86.7 

10 2 20 0 7 6 3 2 1 3 254 2 300 84.7 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 91.3% 89.8% 88.9% 

Indécidable : 0.7% 5.4% 7.1% 

Incorrecte : 8.0% 4.8% 4.0% 

Table 3.8 
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5.4. Autres tentatives de compression 

 

Nous présentons ici les résultats globaux obtenus pour d'autres tailles de 

compression.  La table 3.9 reprend pour chacune, le numéro de la meilleure itération, le 

pourcentage de classification correcte pour les deux ensembles de données à ce 

moment,  le nombre d'itérations avant l'arrêt de l'apprentissage et les différents temps 

qui correspondent à la simulation entière.  Ces dernières informations doivent être 

interprétées pour estimer le temps nécessaire à l'obtention des meilleurs résultats.  Pour 

cela, il suffit de savoir que chaque étape nécessite une même durée.  Le temps estimatif 

pour les données comprimées à 40 et recentrées est donc d'environ 8 heures. 

 

 
Méthode Itération Exactitude 

apprentis. 

Exactitude 

test 

Nombre 

itérations 

Temps 

réel 

Temps 

CPU 

40 recentré 53 95.0% 93.0% 580 87h 20' 86h 31' 

30 recentré 2 861 98.1% 94.4% 3 000 400h 44' 394h 08' 

20 recentré 1 097 95.3% 91.3% 1 498 291h 42' 285h 44' 

40 213 46.0% 45.0% 249 40h 21' 38h 09' 

30 131 40.0% 38.0% 134 29h 27' 18h 12' 

Table 3.9 

 

La compression par la méthode de Karhunen à une taille de 40, suivie d'un 

recentrage par SIRENE, donne d'excellents résultats et les meilleurs pour nos essais.  

Les autres tailles recentrées donnent aussi de bons résultats, mais en beaucoup plus de 

temps; ce qui va à l'encontre de notre objectif. 

 

 

5.5. Comparaisons avec des résultats officiels 

 

Dans le cadre du projet ESPRIT StatLog, le problème de classification des 

caractères manuscrits a été traité.  Leurs données ont été préalablement compressées par 

la méthode de Karhunen.  Les caractéristiques ont été ramenées à une taille de 40.  Ces 

données ont alors été présentées aux 19 algorithmes de la table 3.10. 

 

Algorithme Type Source Exactitude (%) Temps (sec.) 

   Appr. Test Appr. Test 

k-N-N Stat. Leeds 100.0 98.0 6 706 

Quadra Stat. Strath 98.7 97.9 930 863 
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Alloc80 Stat. Leeds 100.0 97.6 - 23 279 

Backpropag Neur. Strath 95.9 95.1 129600 2 400 

Radial Neur. Strath 95.2 94.5 1 700 580 

SMART Stat. Leeds 95.7 94.3 174965 58 

Discriminant Stat. Strath 93.0 92.5 87 54 

Castle Stat. Granada 87.4 86.5 4 535 56 053 

NewID Mach. Daimler 100.0 83.8 779 109 

AC2 Mach. Isoft 100.0 83.2 15 155 14 086 

INDCART Mach. Strath 99.7 83.0 3508 47 

CN2 Mach. Daimler 96.4 82.0 2 902 100 

C4.5 Mach. Turing 95.0 82.0 1 437 35 

Bayes Stat. Strath 79.5 77.7 65 76 

Cal5 Mach. Fraunhofer 75.2 66.9 3 053 64 

LogReg Stat. Strath Échec Échec Échec Échec 

ITrule Mach. Brainwr - - - - 

Cart Mach. Granada - - - - 

Kohonen Neur. Luebeck - - - - 

Pour les trois derniers algorithmes, les résultats n'ont pas été communiqués. 

Table 3.10 

 

Nos résultats sont légèrement inférieurs à l'algorithme de la 

rétropropagation, mais restent fort proches.  Nous nous classons en 6ème position sur 

les 20 méthodes.  Les résultats étant proches, nous pouvons considérer notre méthode 

comme compétitive. 

 

6. Reconnaissance des véhicules 
 

6.1. Introduction 

 

Le dernier problème que nous avons traité par Karhunen est celui de la 

reconnaissance des silhouettes de véhicules.    En réalité, avec 18 entrées, ce problème 

n'a pas besoin d'être réduit pour être traité par un réseau de neurones.  Nous ne l'avons 

fait que dans un but de comparaison avec la méthode de prétraitement NLPCA que nous 

verrons plus loin.  Trois tailles de compression ont été tentées : 10, 8 et 4.  Nous allons 

détailler les deux premières : la compression à 10 car elle donne les meilleurs résultats 

et la compression à 8 car nous la comparerons ultérieurement aux résultats de la 

méthode NLPCA.  La compression à 4 sera résumée.  Rappelons que nous possédions 

des résultats de références et qu'ils sont reproduits dans le chapitre 2. 
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6.2. Compression à 10. 

 

Les données réduites de la taille 18 à 10 par Karhunen, ont été présentées à 

un réseau de 10 entrées, 4 sorties et 8 neurones en couche cachée.  Son apprentissage 

est décrit à la figure 3.4.  La fonction d'apprentissage part de 2 941 pour atteindre 590 à 

l'itération 61.  Cette itération correspond au minimum de la fonction d'apprentissage : 

17% d'erreurs.  A ce moment, la fonction test équivaut à 24% d'erreurs.  Comme on 

peut le voir sur le graphique, ces valeurs restent stationnaires après.  Il était inutile de 

poursuivre la simulation jusqu'à l'itération 975.  Le temps réel d'utilisation de 

l'ordinateur a été de 3 heures et 9 minutes et le temps CPU a été de 2 heures et 57 

minutes. 
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Figure 3.4 

 

Les tables 3.11 et 3.12 décrivent les résultats obtenus lors de l'utilisation de 

ce réseau.  Ils sont nettement moins bons que ceux obtenus sans prétraitement, mais 

restent honorables par rapport aux tailles de compression inférieures. 
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Table 3.11 

 

 

 

Table 3.12 

 

 

6.3. Compressions inférieures à 10 

 

Nous détaillons uniquement les résultats de la classification suite à une 

compression à 8, pour permettre une comparaison ultérieure avec la méthode NLPCA.  

Suite à l'application de la méthode de Karhunen, les tables 3.13 et 3.14 indiquent qu'il 

n'y a plus assez d'informations pour permettre au réseau de classer correctement les 

véhicules.  La compression à 10 est une limite pour ce problème.  En dessous, les 

résultats sont très mauvais; c'est pourquoi nous n'entrerons pas plus dans les détails.  

Des informations complémentaires sont reprises dans la table 3.15. 

 

Véhicules - Karhunen 10 - Ensemble d'apprentissage 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 130 31 2 5 0 168 77.3 

2 43 118 4 3 0 168 70.2 

3 0 3 164 1 0 168 97.6 

4 1 2 1 150 0 154 97.4 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 85.7% 83.5% 68.0% 

Indécidable : 0% 4.7% 27.4% 

Incorrecte : 14.3% 11.8% 4.6% 

Véhicules - Karhunen 10 -Ensemble de test 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 16 5 1 2 0 24 66.6 

2 7 14 1 2 0 24 58.3 

3 2 0 22 0 0 24 91.6 

4 0 1 2 21 0 24 87.5 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 76% 73.9% 62.1% 

Indécidable : 0% 3.2% 30.9% 

Incorrecte : 24% 22.9% 7.0% 
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Table 3.13 

 

 

Table 3.14 

 
Réduction 

à 

Itération Exactitude 

apprentis. 

Exactitude 

test 

Nombre 

itérations 

Temps 

réel 

Temps 

CPU 

8 4 48.2% 40.6% 404 1h 07' 1h 00' 

4 7 34.6% 34.1% 249 51' 25' 

Table 3.15 

 

 

 

7. Conclusions 

 
Parmi les méthodes de décorrélation linéaire, une des transformations qui 

préservent l'information de manière optimale est la méthode de Karhunen-Loève.  Les 

Véhicules - Karhunen 8 - Ensemble d'apprentissage 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 73 32 33 30 0 168 43.4 

2 48 53 34 33 0 168 31.5 

3 1 26 117 24 0 168 69.6 

4 0 4 76 74 0 154 48.0 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 48.2% 33.5% 0.1% 

Indécidable : 0% 32.5% 99.8% 

Incorrecte : 51.8% 34.0% 0.1% 

Véhicules - Karhunen 8 - Ensemble de test 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 12 5 3 4 0 24 50.0 

2 8 6 4 6 0 24 25.0 

3 3 6 12 3 0 24 50.0 

4 1 0 14 9 0 24 37.5 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 40.6% 30.2% 0% 

Indécidable : 0% 26.6% 100% 

Incorrecte : 59.4% 43.2% 0% 
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variables caractéristiques, également appelées facteurs, de cette méthode sont des 

combinaisons linéaires des variables originales du problème.  Les coefficients de cette 

transformation linéaire sont tels que si la transformation est appliquée à l'ensemble de 

données et ensuite inversée, il y aura une différence minimale (au sens des moindres 

carrés) entre les données originales et les données reconstruites. 

 

Comme le montre nos essais, les données n'ont pas besoin de remplir 

certaines conditions pour être prétraitées.  La méthode de Karhunen-Loève est valable 

quelle que soit la description des données.  Nos simulations neurales montrent qu'elle 

est une solution à notre problème.  Après prétraitements, les résultats de nos réseaux de 

neurones opérant les classifications sont toujours très fiables, mais avec un temps 

d'obtention nettement inférieur.  Les vecteurs de données ont été réduits 

significativement sans perdre trop d'informations et les réseaux les utilisant ont pu 

diminuer leur complexité.   

 

Bien entendu, les temps de simulation dépendent de l'importance de la 

compression.  Si elle est faible, le réseau disposera de suffisamment de caractéristiques 

pour reconnaître correctement les patterns.  Cependant, le nombre de neurones 

nécessaires impliquera un apprentissage long.  Si la compression est importante, le 

réseau disposera de moins d'informations pour classer les vecteurs et aura un taux 

d'erreurs supérieur.  De plus, bien que sa taille soit plus petite, le temps d'apprentissage 

ne le sera pas forcément.  En effet, les itérations prendront chacune moins de temps, 

mais il en faudra peut-être beaucoup plus pour que le réseau arrive à se créer, c'est-à-

dire à essayer de corriger ses erreurs.  Il faut donc trouver le juste milieu.  

Malheureusement, il n'y a pas de règle pour le découvrir.  L'expérience personnelle est 

importante. 
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CHAPITRE 4 
LA MÉTHODE LPC 

 

 

1. Introduction 

 

La méthode LPC (Linear Predictive Coding) est utilisée pour compresser un 

signal échantillonné de sorte qu'il puisse être stocké sous une forme plus compacte.  La 

forme originale devrait être exactement récupérable à partir de la version compressée.  

La méthode se base sur le fait que s'il y a redondance dans le signal, il est prédicable, 

avec une erreur minimale,  à partir de ses valeurs précédentes et d'un petit nombre de 

coefficients LP.  C'est l'origine du nom de cette méthode. 

 

En réalité, nous n'utiliserons pas la méthode LPC dans sa définition 

première.  Elle ne nous apporterait rien car la compression ne porte pas sur la réduction 

de la taille des patterns, dans ce cas les échantillons du signal, mais dans la réduction de 

la taille des valeurs contenues dans  ces patterns.  Cependant, nous allons montrer que 

les coefficients LP qu'elle utilise et choisis en nombre quelconque, sont idéaux pour 

représenter les signaux. 

 

 

2. La méthode 

 

Les coefficients LPC (Linear Predictive Code) sont en réalité avant tout une 

représentation de la puissance spectrale d'un signal. 

 

Il existe différents estimateurs de la puissance totale d'un signal.  Dans le 

cas discret qui nous intéresse et pour une fonction de temps, elle peut être représentée 

par : 
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c j

2

j 0

N1

 (sum squared amplitude)

1

N
c j

2

j0

N1

 (mean squared amplitude)

 c j

2

j 0

N1

 (time  integral squared amplitude)

 

 

où notre fonction c(t) a été échantillonnée tous les intervalles de temps ∆ pour obtenir 

les N valeurs c0…cN-1. 

 

Dans le domaine fréquentiel, cette estimation peut être obtenue par la 

somme des puissances suivantes : 

 

P( f0 ) 
1

N 2
C0

2

P( fk ) 
1

N 2 Ck

2
 CNk

2  k  1,2,, N
2  1 

P( f N / 2 )
1

N
2 CN / 2

2

 (1) 

 

où les ƒk sont définis pour les fréquences : 

 

fk 
k

N
k  0,1,, N / 2 

 

et les coefficients Ck sont obtenus par la transformée de Fourier : 

 

Ck  c j e
2ijk / N

j 0

N1

 k  0,, N  1 

 

Pour se rendre compte de cette équivalence, il suffit d'appliquer la forme 

discrète du théorème de Parseval qui dit que : 

 

hk

2

k0

N1

 
1

N
Hn

2

n0

N1

  

Commentaire [2]: ce qui correspond à 
l'intervalle significatif de Nyquist 
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où H est la transformée de Fourier de h. 

 

Nous avons obtenu une fonction d'estimation de la puissance spectrale d'un 

processus par transformée de Fourier.  Ce n'est pas la seule méthode, ni forcément la 

meilleure.  En partant de celle-ci, nous en présentons maintenant une autre. 

 

Si nous travaillons dans le plan z, en partant de (1) et en simplifiant les 

notations, par la relation z  e
2if

 l'estimateur FFT peut être écrit : 

 

P( f )  ck z
k

k N /2

N /21


2

 (2) 

 

Ce modèle possède plusieurs noms : "direct method", "moving average 

(MA) model"  et "all-zero model" .  Cette dernière dénomination vient du fait que le 

modèle peut avoir des zéros, mais pas de pôles.  Cela nous amène à proposer une autre 

définition qui aurait les caractéristiques opposées : 

 

P( f ) 
1

bkz k

kM /2

M /2


2 

a0

1 akz
k

k1

M


2

 (3) 

 

Les différences entre les approximations (2) et (3) ne sont pas juste 

cosmétiques.  Ce sont des approximations possédant des caractères très différents.  La 

propriété la plus importante est que l'estimateur (3) peut avoir des pôles, correspondant 

à une puissance spectrale infinie ou a un pic.  A l'inverse, l'estimateur (2), qui ne peut 

avoir que des zéros, ne pourra que donner une approximation des pics par un polynôme.  

L'approximation (3) est appelée : "all-poles model", "maximum entropy method 

(MEM)" ou "autoregressive model (AR)".   

 

Il reste cependant à déterminer les coefficients ai à partir d'un ensemble de 

données, pour pouvoir calculer l'estimation spectrale. 

 

Considérons l'autocorrélation à l'étape j de la fonction échantillonnée ck, 

soit : 
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 j  E
i

cici j  j 3, 2,1,0,1,2,3 (4) 

 

où E
i
  représente la fonction moyenne sur i.  Pour un nombre fini d'échantillons c0 à 

cN, l'estimation la plus naturelle de (4) est : 

 

 j   j 
1

N 1 j
c ici  j

i0

N j

 j  0,, N  (5) 

 

En d'autres termes, à partir de N+1 points de données, on peut estimer l'autocorrélation 

à N+1 différents niveaux. 

 

Le théorème de Wiener-Khinchin dit que : 

 

Corr (g,g) G f 
2

 

 

On peut en déduire que la transformée de Fourier de l'autocorrélation est égale à la 

puissance spectrale.  L'équation qui doit dès lors être satisfaite par les coefficients de 

l'équation (5) est : 

 

a0

1 ak zk

k1

M


2   j z

j

jM

M

  (6) 

 

Il faut noter que M, le nombre de coefficients dans l'approximation à 

gauche du signe, peut être n'importe quel entier, supérieur, inférieur ou égal à N, le 

nombre total d'autocorrélations disponibles.  M est appelé : "ordre" ou "nombre de 

pôles d'approximation". 

 

Quelle que soit la valeur M choisie, la série du membre de gauche définit 

une sorte d'extrapolation de la fonction d'autocorrélation aux valeurs supérieures à M et 

même supérieures à N; c'est-à-dire plus grand que l'ensemble de données peut 

actuellement mesurer.  Il peut être montré que cette méthode d'extrapolation particulière 

a parmi toutes les autres méthodes d'extrapolation l'entropie maximale; d'où 

l'appellation MEM (Maximum Entropy Method). 
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Étant donné que les coefficients ak représentent très bien l'information et 

qu'ils peuvent être choisis en nombre quelconque, ils sont idéaux pour compresser les 

données de signaux. 

 

Revenons au calcul des termes ak.  Il faut pour cela résoudre le système (6).  

Les termes d'autocorrélations sont calculables à partir de la fonction à représenter. Bien 

que cela ne soit pas évident à première vue, l'équation (6) implique un ensemble linéaire 

de relations entre les termes d'autocorrélations et les coefficients a0 et ak.  En fait, les 

coefficients doivent satisfaire l'équation matricielle suivante : 

 

 0 1 2  M

1  0 1  M1

 2 1 0  M2

    

M M1 M2  0























1

a1

a2



aM

























a0

0

0



0





















 (7) 

 

La première matrice de (7) est une matrice de Toeplitz symétrique; c'est-à-

dire une dont les éléments sont constants le long de la diagonale.  En choisissant un 

algorithme de résolution efficace de (7), on obtiendra alors les données demandées; 

dans notre cas : une compression préservant un maximum d'informations. 

 

Dans la fin de cette section, nous allons expliquer brièvement pourquoi ces 

coefficients portent le nom de coefficients LPC. 

 

Posons : 

yn  d j yn j  xn
j1

N

  (8) 

 

L'équation (8) est une filtre récursif linéaire prédisant la valeur yn suivante à partir des 

N précédentes valeurs yn-j, j = 1, …, N.  xn est la divergence de la prédiction pour 

l'étape n; c'est-à-dire la quantité qui doit être ajoutée à la valeur prédite pour obtenir la 

valeur correcte de yn.  Si les valeurs prédites sont d'elles-mêmes assez bonnes, alors la 

correction à apporter sera, en moyenne, faible; c'est-à-dire : 

xn

2

n

  yn

2

n

  
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L'idéal étant d'avoir xn  yn  pour tous les n. 

 

Pour avoir utilité du filtre (8), il est nécessaire de trouver de bons 

coefficients prédictifs linéaires (LP) d1, …,dn.    Il apparaît alors qu'il y a une forte 

relation entre la prédiction linéaire et la méthode du maximum d'entropie (MEM).  Les 

coefficients ai calculés par MEM sont les coefficients LP; d'où leur nom. 

 

 

3. Le programme 

 

Le programme est très simple.  Il n'y a pas d'options envisageables.  Une 

fois les noms du fichier à compresser et du fichier résultat connus, ainsi que la taille de 

la compression, les termes d'autocorrélations sont calculés et l'équation matricielle (6) 

est résolue par l'algorithme de Burg qui tire profit du caractère symétrique de la matrice. 

 

 

4. Analyse des phases du sommeil 

 

4.1. Introduction 

 

Avec la méthode de Karhunen, nous avons obtenu un taux de classification 

valable jusqu'à une compression de la taille des entrées à 20.  A priori, puisque la 

méthode LPC est définie pour des signaux, une diminution à 20 semblait envisageable 

pour elle aussi.  Nous ne nous sommes pas limité à cette taille et avons essayé des 

valeurs inférieures.  Les deux prochaines sections décrivent les résultats. 

 

 

4.2. Compression à 20 

 

Les données prétraitées et réduites de la taille 100 à la taille 20 par la 

méthode LPC, ont été présentées à un perceptron.  Celui-ci utilise toujours les mêmes 

paramètres que ceux choisis pour nos autres études des phases du sommeil.  Il 

comprend 20 neurones en entrée, 9 en couche cachée et 3 en sortie.  Il est identique au 

réseau utilisé après prétraitement par Karhunen.  Le nombre d'exemples pour 

l'apprentissage est largement suffisant par rapport à sa taille. 
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La simulation est représentée à la figure 4.1.  L'apprentissage est très rapide.  

141 itérations sont nécessaires pour obtenir la convergence.  La fonction d'apprentissage 

passe de 4 771 à 40.  La fonction de validation chute de 526 à 7.  A ce moment la 

fonction de test indique qu'il n'y a plus classification erronée qu'à moins de 2%. 
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Figure 4.1 

 

 

Un SUN a travaillé pendant 23 heures et 13 minutes pour obtenir ces 141 

itérations.  En temps CPU, cela  n'a pris que 5 heures et 49 minutes.  De plus, notons la 

facilité du réseau à s'adapter; les principales variations se sont produites dans les 20 

premières itérations. 

 

Le meilleur réseau a été sauvé à la fin de la simulation.  Son utilisation nous 

a fourni les résultats des tables 4.1 et 4.2.  L'apprentissage n'aurait pu mieux se passer.  

Pour les exemples, un résultat de 99.7% de classification correcte est exceptionnel.  La 

classe la moins bien reconnue, la classe deux, l'est quand même à 99.5%.  La classe un 

atteint le maximum de 100% de reconnaissance! 
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Table 4.1 

 

Pour l'ensemble de test, les résultats restent exceptionnels : 98.1% de 

classification correcte.  Ils sont bien entendus légèrement inférieurs à ceux des données 

d'apprentissage, mais de peu.  On peut remarquer que les classes un et trois sont 

reconnues parfaitement.  Seule la classe deux donne des résultats inférieurs avec 94.2%.  

Une solution pour tenter de remédier à ce problème serait d'augmenter le nombre 

d'exemples de la classe deux dans les données d'apprentissage. Mais même ainsi, notre 

réseau est fiable. 

 

Table 4.2 

 

Avec un taux de réussite aussi élevé, on n'est pas étonné que les critères 

plus restrictifs de classification (distance et différence) sont inutilisables.  Les résultats 

sont fiables. 

 

 

 

 

Phases du sommeil - LPC 20 - Ensemble d'apprentissage  

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 1800 0 0 0 1800 100.0 

2 0 1791 9 0 1800 99.5 

3 0 7 1793 0 1800 99.6 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 99.7% 99.6% 99.7% 

Indécidable : 0% 0.2% 0.1% 

Incorrecte : 0.3% 0.2% 0.2% 

Phases du sommeil - LPC 20 -Ensemble de test  

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 1000 0 0 0 1000 100.0 

2 1 942 57 0 1000 94.2 

3 0 0 1000 0 1000 100.0 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 98.1% 98.0% 97.9% 

Indécidable : 0% 0.8% 0.2% 

Incorrecte : 1.9% 1.2% 1.9% 
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4.3. Compression à 10 

 

Étant donné les excellents résultats d'une compression à 20 par la méthode 

LPC, nous avons essayé d'aller plus loin.  Nous avons réduit nos vecteurs initiaux par la 

même méthode jusqu'à la taille 10.  Nous les avons ensuite présentés au même réseau 

que celui utilisé après compression à 10 par Karhunen; c'est-à-dire une architecture de 

10 entrées, 5 neurones en couche cachée et 3 sorties.  Les autres définitions du réseau 

restant semblables à celles utilisées jusqu'à maintenant. 

 

La figure 4.2 décrit l'apprentissage de ce réseau.  Le résultat est surprenant.  

Le réseau est toujours parfaitement capable d'apprendre la différence entre les phases du 

sommeil.  Il y a convergence en 992 itérations.  La fonction d'apprentissage est passée 

de 3 975 à 39.  La fonction de validation, partant de 441, atteint la valeur 8.  Le 

pourcentage d'erreur sur l'ensemble test est de 2.6% à la fin de la simulation. 
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Figure 4.2 

 

Cependant, cette taille de compression n'est pas intéressante selon nos 

critères de temps.  En effet, le réseau a beaucoup plus de mal à apprendre la distinction 
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des classes.  992 itérations ont été nécessaires.  Notre ordinateur a du calculé pendant 

52 heures et 44 minutes.  En temps CPU, les 17 heures et 30 minutes restent énormes 

par rapport aux résultats de la compression à 20.  Remarquons cependant qu'ici aussi, 

une vingtaine d'itérations suffisent déjà à donner un réseau classant très bien l'ensemble 

de test. 

 

Pour le réseau optimum, les résultats détaillées sont repris dans les tables 

4.3 et 4.4.  Les pourcentages de classification correcte pour chaque classe restent 

pratiquement identiques à ceux obtenus pour une compression à 20.  Ils sont toujours 

aussi fiable.  Seule la classe deux se dégrade encore un peu, tout en restant acceptable.  

La structure du réseau ayant changé, on peut supposer que le problème vient bien d'un 

manque d'exemples pour cette classe.  Augmenter leur nombre ne peut qu'améliorer les 

choses. 

 

Table 4.3 

D'autres essais ont été réalisés avec des tailles de compression inférieures.  

Cependant, même avec beaucoup de temps, le réseau n'est plus capable de s'adapter.  La 

réduction à la dimension 10 est une limite. 

 

Table 4.4 

Phases du sommeil - LPC 10 - Ensemble d'apprentissage  

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 1800 0 0 0 1800 100.0 

2 0 1788 12 0 1800 99.3 

3 0 8 1792 0 1800 99.6 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 99.6% 99.6% 99.6% 

Indécidable : 0% 0.1% 0.1% 

Incorrecte : 0.4% 0.3% 0.3% 

Phases du sommeil - LPC 10 - Ensemble de test  

Classe Classe obtenue ∑ % 

désirée 1 2 3 ? /classe correct 

1 1000 0 0 0 1000 100.0 

2 0 923 77 0 1000 92.3 

3 0 1 999 0 1000 99.9 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 97.4% 97.3% 97.1% 

Indécidable : 0% 0.3% 0.3% 

Incorrecte : 2.6% 2.4% 2.6% 
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5. Reconnaissance des caractères manuscrits 
 

5.1. Introduction 

 

Nous nous sommes basé sur les résultats obtenus par la méthode de 

Karhunen et par les algorithmes du projet StatLog.  Notre première simulation a donc 

débuté avec des vecteurs de données réduits à la taille 40.  Peu d'autres essais ont été 

réalisés étant donné les premiers résultats obtenus. 

 

 

5.2. Compression à 40 

 

Une fois les données ramenées à 40 composantes, elles ont été présentées à 

un réseau traditionnel de 3 couches de neurones : 40 en entrée, 16 en couche cachée et 

10 en sortie.  Les paramètres sont à nouveau ceux de la table 2.1.  Ce réseau est 

identique à celui utilisé après compression à 40 par Karhunen. 

 

On voit dans la figure 4.3 la stabilité, mais aussi la limite de l'apprentissage.  

La fonction de validation atteint son minimum à l'itération 1 184 avec la valeur de 22% 

d'erreurs.  La fonction de test indique alors 25%.  La fonction d'apprentissage a eu le 

temps de chuter de 29 687 à 3 360.  Le réseau s'entraîne encore pendant 89 itérations 

avant d'atteindre sa limite.  La fonction d'apprentissage ne peut descendre en dessous de 

3 358. 

 

Ces résultats ont été obtenus après 11 jours de simulation, soit un temps réel 

de 263 heures et 12 minutes et un temps CPU de 170 heures et 31 minutes.  Les courbes 

sont très régulières.  Après 300 itérations, elles sont toutes les trois déjà pratiquement 

parallèles à l'axe des abscisses. 
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Caractères : LPC 40
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Figure 4.3 

 

 

La classification détaillée obtenue à partir du meilleur réseau et reproduite 

dans les tables 4.5 et 4.6, indique que cette compression est uniformément mauvaise 

pour toutes les classes.  La méthode LPC ne donne pas d'aussi bons résultats que pour 

nos ensembles de signaux.  Avec 25% d'erreurs sur un ensemble test, ce réseau n'est pas 

fiable.  Cela n'est pas du à un problème d'incapacité de généralisation, puisque le taux 

d'erreur sur l'ensemble d'apprentissage est sensiblement le même.  Le taux de 

compression est trop élevé. 

 

Remarquons qu'ici les critères de sélection supplémentaires sont plus actifs.  

Le réseau n'a pas réussi à tirer des conclusions très précises de l'ensemble 

d'apprentissage qu'il a du étudier. 
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Caractères - LPC 40 - Ensemble d'apprentissage 

Clas Classe obtenue ∑ % 

se 1 2 3 4 5 6 7 8 9 10 ?   

1 702 23 2 0 25 0 22 2 12 22 0 810 86.7 

2 17 755 2 1 27 0 3 4 1 0 0 810 93.2 

3 66 1 402 47 14 31 111 38 38 62 0 810 49.6 

4 0 0 15 654 0 59 12 6 22 42 0 810 80.7 

5 26 3 6 0 694 10 12 42 4 13 0 810 85.7 

6 2 0 2 45 10 685 6 20 10 30 0 810 84.6 

7 37 2 38 11 14 11 517 9 50 121 0 810 63.8 

8 5 0 24 5 65 57 15 634 2 3 0 810 78.3 

9 18 3 3 36 3 2 30 0 681 34 0 810 84.1 

10 33 0 14 28 34 23 116 11 41 510 0 810 63.0 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 77% 66.7% 58.6% 

Indécidable : 0% 21.8% 34.5% 

Incorrecte : 23% 11.5% 6.9% 

Table 4.5 

 

 

Caractères - LPC 40 - Ensemble de test 

Clas Classe obtenue ∑ % 

se 1 2 3 4 5 6 7 8 9 10 ?   

1 260 9 1 0 9 0 5 1 6 9 0 300 86.7 

2 13 278 0 0 7 0 1 0 1 0 0 300 92.7 

3 22 0 133 21 6 19 49 16 11 23 0 300 44.3 

4 0 0 9 234 0 26 1 5 6 19 0 300 78.0 

5 8 2 4 0 251 2 5 21 3 4 0 300 83.7 

6 0 0 3 26 7 232 2 14 2 14 0 300 77.3 

7 13 1 16 4 8 6 187 4 13 48 0 300 62.3 

8 4 0 6 4 25 19 4 236 0 2 0 300 78.7 

9 11 2 2 8 1 0 7 0 245 24 0 300 81.7 

10 8 0 1 15 9 7 41 8 19 192 0 300 64.0 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 74.9% 64.9% 57.3% 

Indécidable : 0% 22.4% 34.8% 

Incorrecte : 25.1% 12.7% 7.9% 

Table 4.6 

 

 

5.3. Autres tentatives 
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Nous avons étudié deux autres types de compression : la compression à 40 

suivie d'un recentrage et la compression à 30.  Les simulations utilisant ces données 

n'ont pas eu un comportement encourageant; c'est pourquoi nous ne les avons pas laissé 

se terminer.  Nous sommes convaincu que le temps n'aurait pas permis d'améliorer cet 

apprentissage.  Les courbes étaient devenus pratiquement planes.  La table 4.7, indique 

les résultats obtenus lors de l'interruption. 

 
Méthode Itération Exactitude 

apprentis. 

Exactitude 

test 

Nombre 

itérations 

Temps 

réel 

Temps 

CPU 

40 recentré 150  67.0% 151 47h 36' 46h 52' 

30 779   64.0% 782 247h 38' 223h 12' 

Table 4.7 

 

 

 

6. Reconnaissance des véhicules 
 

 

Trois compressions par la méthode LPC ont été essayées pour le problème 

de la reconnaissance des véhicules.  Rappelons qu'avec 18 entrées, le réseau utilisant les 

données originales fournit rapidement les résultats.  Une compression n'est pas 

nécessaire.  Le but de nos tentatives est de mesurer les capacités de la transformation 

LPC et d'établir des comparaisons avec les autres méthodes. 

 

Comme le montre la table 4.8, aucun de nos essais n'a été concluant.  LPC 

n'est pas efficace pour ce type de données.  Une autre méthode est nécessaire si on 

désire réduire la taille du réseau.  Nous n'étudierons donc pas plus en détail ces 

résultats. 

 
Méthode Itération Exactitude 

apprentis. 

Exactitude 

test 

Nombre 

itérations 

Temps 

réel 

Temps 

CPU 

10 87 54.6% 44.7% 331 1h 49' 1h 48' 

8 62 57.3% 54.1% 610 3h 03' 1h 31' 

4 120 48.3% 47.2% 254 28' 26' 

Table 4.8 
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7. Conclusions 
 

Les coefficients LP sont idéaux pour extrapoler des signaux.  Ils possèdent 

cette propriété car ils correspondent à une représentation de la puissance spectrale du 

signal.  Quelques coefficients seulement suffisent à capturer les informations.  De 

nouveau, il n'est pas possible à priori de déterminer le meilleur nombre.  L'expérience 

montre que des vecteurs de taille 1 000 ou 10 000 peuvent être réduits à la taille 10, 20 

ou 50 selon les besoins. 

 

Dans nos problèmes de classification, nous disposions d'un ensemble de 

données de type signal : les analyses du sommeil.  On constate que les résultats que 

nous avons obtenus pour ce problème sont optimaux.  La reconnaissance des caractères 

et des véhicules n'a pas été aussi bonne. 

 

Comme pour le chapitre précédent, nous constatons qu'il faut trouver un 

juste milieu pour l'importance de la compression.  Si elle trop faible, les itérations du 

réseau seront longues.  Si elle est trop forte, le réseau reconnaîtra moins bien et 

réclamera peut-être plus d'itérations pour son apprentissage.  Dans le cadre de la 

reconnaissance des phases du sommeil, des réductions à 20 et à 10 étaient acceptables 

pour la méthode LPC.  Cependant, notre problème de classification préfère la 

compression la moins importante à 20, car elle permet de réduire la complexité du 

réseau ainsi que le nombre d'itérations nécessaires à son apprentissage. 
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CHAPITRE 5 
LA MÉTHODE NLPCA 

 

 

1. Introduction 

 

Dans le chapitre trois, nous avons présenté une méthode de compression 

linéaire : celle de Karhunen-Loève.  Elle consistait en un mapping linéaire d'un vecteur 

de données Y en un vecteur réduit T par une matrice de transformation P : 

 

T  Y P  

 

La différence principale entre la méthode de Karhunen et NLPCA (Non 

Linear Principal Composant Analysis)  est que cette dernière permet des 

transformations non linéaires entre l'espace original et l'espace réduit.  Si des 

corrélations non linéaires existent entre les variables, NLPCA décrira les données avec 

une plus grande précision et/ou avec moins de facteurs que Karhunen, pour autant qu'il 

y ait des données en suffisance pour utiliser ce mapping plus complexe. 

 

Cette dernière remarque est importante.  Notre objectif dans ce travail est 

de réduire la taille des données pour pouvoir utiliser un réseau plus petit et plus facile à 

entraîner.  Comme nous le verrons, la méthode NLPCA a un effet contraire.  Sa mise en 

oeuvre nécessite un réseau de neurones plus complexe que celui utilisé sans 

compression préalable, pour traiter le problème posé.  Cette méthode n'est applicable 

que pour de petits problèmes.  Étant donné sa réputation, nous la décrivons quand 

même. 

 

 

2. La méthode 

 

2.1. Le principe 

 

Dans la méthode NLPCA, les transformations vers l'espace des 

caractéristiques est généralisé pour autoriser les relations non linéaires.  Cela peut être 

représenté par la transformation suivante : 
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T  G(Y )  (1) 

 

où Y est le vecteur de données dont on cherche les caractéristiques, T est le vecteur 

résultat compressé et G = {G1, G2, …, Gƒ} est un vecteur de ƒ fonctions non linéaires 

tel que si Ti est le ième élément de T, 

 

Ti Gi (Y ) (2) 

 

La transformation inverse, restaurant la dimension originale des données, 

est implémentée par un second vecteur de fonctions non linéaires H = {H1, H2, …, 

Hm} : 

 

Yj
'
 H j (T )  (3) 

 

La perte d'information est mesurée par E = Y - Y', et on doit donc chercher 

des fonctions G et H qui minimisent ||E||.  Cela correspond au critère optimal de la 

méthode de Karhunen. 

 

 

2.2. Recherche des vecteurs de fonctions G et H 

 

Pour générer G et H, une approche fonctionnelle de base est utilisée.  

Cybenko, en 1989, a montré que des fonctions de la forme  

 

vk  wjk 2 ( wij1ui  j1)
i1

N1


j1

N2

  (4) 

 

où (x) est une fonction quelconque continue et monotone croissante telle que (x)1 

lorsque x et (x)0 lorsque xsont capables de s'ajuster pour représenter 

n'importe quelle fonction non linéaire v = ƒ(u) et avec un degré de précision arbitraire.  

Une fonction  couramment choisie est la sigmoïde, définie par : 

 

 (x )
1

1 ex  (5) 
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Comme nous l'avons vu au chapitre 1, l'expression (4) correspond à un 

perceptron à trois couches : 

 

- La couche 1, comportant N1 neurones et dont le seul rôle est l'interfaçage entre 

le réseau et l'environnement, est la couche fictive d'entrée. 

- La couche 2, la couche cachée, comporte N2 neurones qui calculent 

o j 2   ( wij1oi1   j1 )
i1

N1

  

 où olm est la sortie du neurone l de la couche m, avec dans ce cas oi1 = ui et 

wijk est le poids de la connexion allant du neurone i de la couche k au neurone j 

de la couche k+1. 

- La couche 3, comportant pour chaque k un neurone calculant la somme de ses 

entrées par 

ok3  wjk 2o j 2
j1

N2

  

 avec dans ce cas vk = ok3, est la couche de sortie. 

 

En pratique, deux modifications sont souvent apportées.  Premièrement, 

plutôt que d'utiliser une fonction linéaire en sortie, on utilise des fonctions  limitant les 

sorties à un certain intervalle fixé et fini.  Deuxièmement, la fonction sigmoïde peut 

changer d'échelle ou être translatée sans perte de généralité pour le réseau.  Ceci est 

utile car les ensembles de données à traiter que l'on rencontre sont souvent centrés.  

Dans ce travail, nous avons dès lors utilisé, pour tous nos apprentissages, la fonction 

tangente hyperbolique qui répond à ces conditions et qui a fait ses preuves. 

 

On peut maintenant facilement définir les fonctions G et H.  Ce sont des 

réseaux tels qu'on vient de les définir.  Définissons G.  Si m est la taille du vecteur 

original Y et f la taille du vecteur T des caractéristiques, N1 vaut m et il y a f neurones 

en sortie (k varie de 1 à f).  Étant donné que la couche cachée est là pour capturer les 

relations non linéaires, pour obtenir f caractéristiques indépendantes, N2 ne doit pas être 

inférieur au nombre f.  La fonction Gk, représentant le kème facteur non linéaire, est 

alors définie par la formule (4).  Le réseau G est représenté à la figure 5.1.a. 
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Figure 5.1 

 

H s'obtient similairement.  La couche d'entrée reçoit les f caractéristiques 

(N1 = f) et dans la couche de sortie, pour retrouver les m Yi originaux, il y a m neurones 

de sortie Y'i.  La couche de "demapping" contient les N2 neurones (N2 > f) à fonctions 

sigmoïdes.  Le réseau type de demapping est présenté à la figure 5.1.b. 

 

La capacité de ces réseaux à s'ajuster à une fonction non linéaire provient de 

la présence de fonctions d'activations non linéaires en couche cachée.  En effet, sans la 

présence de neurones non linéaires en couche cachée, ces réseaux seraient seulement 

capables de produire des combinaisons linéaires des entrées à la sortie, ce qui n'est pas 

suffisant pour notre problème.  

 

Pour pouvoir utiliser les fonctions G et H, deux conditions sont à remplir.  Il 

faut décider du nombre de neurones dans les couches cachées.  Pour éviter les 

ambiguïtés, rebaptisons le N2 du réseau G en M1 (M pour Mapping) et le N2 du réseau 

H en M2.  Malheureusement, il n'y a pas de loi précise permettant de fixer le nombre de 

neurones dans les couches cachées d'un réseau.  Dans notre cas de compression, nous ne 

pourrons que fixer des bornes et une estimation.  Nous devons également découvrir les 

meilleurs coefficients Wijk de la formule (4).  Cela revient à réaliser l'apprentissage de 

nos réseaux. 

2.3. L'apprentissage des réseaux 

 

Commentaire [3]: cette position de 
sigma permet la compression non linéaire 
 
Une autre position ou l'absence de sigma 
implique une relation linéaire 
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Il y a un problème.  En effet, pour réaliser l'apprentissage, on doit fournir au 

réseau des vecteurs d'entrées et les vecteurs de sorties correspondants.  

Malheureusement, dans le cas du réseau G, on connaît les entrées (Yi), mais pas les 

sorties et dans le cas du réseau H, on connaît les sorties souhaitées (Yi), mais pas les 

entrées.  Pour résoudre ce problème, il suffit de se rendre compte que les entrées de H 

sont les sorties de G.  En combinant les deux réseaux, on en obtient un dont les entrées 

et les sorties sont connues.  On peut donc réaliser son apprentissage.  Ce réseau 

correspond à la fonction identité.  Il est représenté à la figure 5.2. 
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Figure 5.2 

 

Le réseau de la figure 5.2 comprend trois couches cachées : la couche de 

mapping de G, la couche centrale dont les sorties correspondent aux caractéristiques T 

et la couche de demapping de H.  La seconde couche cachée  est appelée couche de 

compression à cause de sa dimensionnalité inférieure. 

 

Lors de l'apprentissage, les poids sont modifiés de manière à minimiser la 

différences entre les sorties obtenues Y'i et les sorties attendues Yi pour tous les 

vecteurs présentés.  L'apprentissage est terminé lorsque E, la somme des carrés des 

erreurs, est minimum; c'est-à-dire pour n vecteurs de données : 

 

E  min
w jkl

Yi  Yi
' 

p

2

i1

m


p1

n

  (6) 
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E est le carré de ||matrice d'erreurs||, le critère d'optimalité de la méthode de Karhunen.  

Dès lors, minimiser E durant l'apprentissage résulte en une minimisation de la perte 

d'information au même sens que Karhunen. 

 

Après l'apprentissage, le réseau combiné n'est plus nécessaire et peut être 

désagrégé en deux réseaux : G et H.  G est la fonction d'intérêt.  Les données sont 

propagées à travers G pour projeter les données dans l'espace de dimensionnalité 

inférieur des caractéristiques. 

 

 

2.4. Détermination de la taille des couches 

 

Dans le réseau combiné, il y a m noeuds d'entrées et de sorties et f noeuds 

dans la couche de compression.  Cependant, il n'existe pas de méthode définitive pour 

décider à priori de la dimension des couches de mapping et de demapping (nous les 

appellerons parfois les deux couches de mapping). 

 

Le nombre de noeuds de mapping est lié à la complexité des fonctions 

linéaires qui peuvent être générées par le réseau.  S'il y a trop peu de noeuds de 

mapping, l'ajustement risque d'être faible à cause de la capacité de représentation faible 

du réseau.  Cependant, si ce nombre de noeuds est trop élevé, le réseau risque 

d'apprendre les variations stochastiques des données plutôt que les fonctions sous-

jacentes. 

 

L'approche la plus simple à ce problème consiste dès lors à limiter le 

nombre de poids dans le réseau à une fraction du nombre de contraintes imposées par 

les données.  Pour chaque vecteur de données, une contrainte séparée est imposée par 

chaque noeud de sortie.  Le nombre de paramètres ajustables doit donc être inférieur à 

n*m.  Pour le réseau combiné, en assumant que tous les noeuds ont des bias (le 

paramètre ), le nombre de paramètres ajustables vaut  (m+f+1)*(M1+M2)+m+f.   Ces 

deux constatations impliquent les inégalités uivantes : 

 

m  f 1  M1  M2  m  f  mn

 M1  M2 
m n  f 
m  f  1

 (7) 

 

Commentaire [4]: m*M1+M1*f+f*M2
+M2*m 
= (m+f) (M1+M2) 
= nombre de poids w 
 
M1+f+M2+m 
= nombre de bias 
 
+ -> = (m+f+1) (M1+M2) + m + f 
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Pour un petit nombre de facteurs (f << m et n), cette expression peut être approximée 

par : 

M1  M2  n (8) 

 

De plus, si le nombre de noeuds de mapping ou de demapping autorisé par 

les inégalités (7) et (8) est inférieur à f, alors il n'y a pas assez de données pour 

supporter l'extraction de f facteurs non linéaires, puisque  la couche de compression 

apparaît, par définition, dans la seconde couche cachée du réseau combiné, entre les 

deux couches de mapping. 

 

Rappelons enfin la règle des 10%.  Un apprentissage est facilité s'il y a au 

moins dix fois plus de vecteurs de données que de synapses dans le réseau; c'est-à-dire : 

 

n 10 m  f  M1  M2  (9) 

 

 

2.5. Remarques sur les couches cachées 

 

On a vu qu'un réseau combiné de trois couches cachées permettait la 

construction d'un réseau de compression.  Est-ce que trois couches sont nécessaires ?  

Imaginons que l'on supprime les couches de mapping; ne laissant que la couche de 

compression.  Si les fonctions de cette couche sont linéaires, le réseau correspond en 

fait à la méthode de Karhunen.  Cela a été montré par Sanger en 1989.  Si les fonctions 

sont des sigmoïdes, les fonctions G et H sont fortement restreintes; seules des 

combinaisons linéaires des entrées, compressées par la sigmoïde dans son intervalle de 

variation, peuvent être présentées.  Dès lors, les résultats ne sont pas souvent meilleurs 

que ceux obtenus par la méthode de Karhunen. 

 

La structure à cinq couches dont trois cachées est donc la meilleure. 

 

 

3. Le programme 

 

Comme il vient d'être dit, la méthode NLPCA consiste en l'apprentissage 

d'un réseau de neurones.  Nous avons donc utilisé le simulateur de réseaux de neurones 

de Monsieur Fombellida.  Cependant, différents outils supplémentaires ont été 

nécessaires.  Nous avons donc programmé un module supplémentaire. 
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Le menu général se présente comme suit : 

 

+++ OUTILS POUR LA METHODE DE COMPRESSION NLPCA +++ 

 

0. Aide 

 

1. Conversion des donnees au format NLPCA 

2. Selection des premieres couches d'un reseau 

3. Modification du nombre de sorties d'un fichier de donnees 

4. Utilisation type d'un reseau de SIRENE 

5. Recuperation des sorties d'un reseau 

 

9. Retour au menu principal 

 

3.1. Conversion des données au format NLPCA. 

 

La première étape dans la méthode NLPCA est de construire le réseau 

combiné et de réaliser son apprentissage.  Lorsque sa structure est définie, il faut fournir 

au simulateur un fichier de données tel que, pour chaque pattern, les sorties souhaitées 

soient identiques aux entrées. 

 

Le premier sous-menu réalise la conversion d'un fichier d'apprentissage au 

format standard de SIRENE en un fichier "identité" au même format. 

 

3.2. Sélection des premières couches d'un réseau. 

 

Lorsque l'apprentissage du réseau combiné est terminé, on n'a plus besoin 

que des premières couches, celles qui correspondent au réseau de compression G. 

 

Le second sous-menu transforme le réseau sauvé par SIRENE lors de 

l'apprentissage, de manière à récupérer les X premières couches et obtenir un réseau de 

compression utilisable dans  SIRENE. 

 

3.3. Modification du nombre de sorties et utilisation type 

 

Ces commandes sont déjà présentes dans le module d'outils décrit au 

chapitre deux.  Elles réapparaissent ici, car la méthode NLPCA nécessite plusieurs 
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utilisations du réseau de compression et souvent avec des fichiers de données qui n'ont 

pas à l'origine le bon format. 

 

3.4. Récupération des sorties d'un réseau 

 

Dans notre cas, la méthode NLPCA n'est qu'un prétraitement.  Les vecteurs 

comprimés seront réutilisés par un autre réseau de neurones dans un but à déterminer.  

Il faut donc que ces premiers résultats soient utilisables par SIRENE, c'est-à-dire qu'ils 

soient écrits dans un fichier au format standard. 

 

Le quatrième sous-menu récupère les sorties du réseau de compression à 

partir du fichier "use.txt" généré par SIRENE, ainsi que les sorties souhaitées associées 

aux vecteurs non comprimés.  Le résultat est un fichier standard d'apprentissage. 

 

 

4. Les traitements 

 

La démarche comporte plusieurs étapes : 

 

1. Convertir les fichiers de données au format NLPCA. 

2. Réaliser un apprentissage avec ces données. 

3. Récupérer les premières couches du meilleur réseau obtenu. 

4. Utiliser le nouveau réseau pour les trois ensembles de données. 

5. Récupérer les résultats de "use.txt" et les convertir en fichier de données SIRENE. 

6. Réaliser un apprentissage d'un nouveau réseau avec ces derniers fichiers pour 

résoudre le problème posé. 

7. Analyser les résultats. 

 

 Détaillons ces étapes.  Pour réaliser l'apprentissage du réseau combiné, il 

faut fournir des fichiers de données tels que les vecteurs des sorties souhaitées soient 

identiques aux vecteurs des entrées.  La première étape est donc la conversion de nos 

fichiers originaux à ce format.  Cela est réalisé par la première commande de notre 

programme.   

 

Il suit ensuite l'apprentissage de ce réseau.  L'utilisateur est libre de choisir 

ses paramètres, mais il peut aussi utiliser le fichier type de commandes créé dans le 

module "outils" de notre travail.  
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L'apprentissage réalisé, le réseau combiné n'est plus nécessaire.  On ne doit 

plus conserver que la première moitié : celle qui correspond à la compression.  Cette 

opération est réalisée par la deuxième commande du programme. 

 

Une fois le réseau de compression disponible, on doit l'utiliser pour obtenir 

les vecteurs réduits de données.  Un problème se pose.  Le fichier nécessaire lors de 

cette utilisation doit contenir des vecteurs de sorties comprenant autant de valeurs qu'il 

y a de sorties au réseau.  Cela pour respecter les normes de SIRENE.  Cela n'est en 

général pas le cas, car les fichiers à notre disposition comprennent une valeur de sortie 

par classe et il n'y a pas de rapport entre la taille de la compression (le nombre de sorties 

du réseau) et le nombre de classes.  Il est donc la plupart du temps nécessaire de 

modifier la taille des vecteurs de sorties des fichiers.  On peut le réaliser avec la 

troisième ou la quatrième commande de notre menu.  La quatrième à l'avantage de ne 

faire cette modification que si nécessaire et de fournir un fichier type d'instructions pour 

l'utilisation du réseau.  La simulation peut avoir lieu. 

 

On obtient un fichier "use.txt" comprenant tous les résultats de l'utilisation 

du réseau.  Ce fichier n'est pas un fichier de données pouvant servir à l'apprentissage, la 

validation ou le test.  Pour pouvoir utiliser les vecteurs comprimés dans un réseau de 

neurones, il faut récupérer ces vecteurs dans "use.txt" et les vecteurs des sorties 

attendues correspondantes dans les fichiers de départ.  Le résultat doit être au format de 

SIRENE.  Cette opération est réalisée par la cinquième commande de notre module.  

Ceci clôture la phase de compression. 

 

Il ne reste plus qu'à utiliser nos nouveaux ensembles de données pour 

résoudre le problème posé et à analyser les résultats obtenus. 

 

Comme on peut le voir, il y a beaucoup d'options envisageables.  Il n'était 

pas possible de réaliser une commande unique s'occupant de toute la compression 

NLPCA.  Notre programme laisse toute sa liberté à l'utilisateur, mais lui offre de 

nombreux raccourcis. 

 

Nous pouvons maintenant passer à l'application de cette méthode pour les 

problèmes décrits au chapitre deux. 
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5. Les phases du sommeil et les caractères manuscrits 

 

 
Le but de ce travail est de trouver des méthodes pour diminuer la taille des 

réseaux et accélérer leur apprentissage.  L'algorithme de compression NLPCA nécessite, 

comme on l'a vu, un réseau de neurones d'au moins 5 couches et comportant autant de 

sorties et d'entrées qu'il y a de données dans un vecteur du problème.  Son apprentissage 

est inimaginable pour des vecteurs de données de grande taille. 

 

Pour le problème de la reconnaissance des caractères, la méthode de 

Karhunen a donné de bons résultats pour une taille réduite à 40.  Pour obtenir ce taux de 

compression par NLPCA, il faudrait un réseau comprenant au grand minimum 5 320 

synapses (256 * 10 + 10 * 10 + 10 * 10 + 10 * 256).  Pour respecter la règle des dix 

pourcents, nous devrions également disposer d'au moins 53 200 exemples 

d'apprentissage.  Malheureusement, nous n'en avons que 8 100.  Même si nous 

supposions avoir assez d'exemples, le temps que nécessiterait l'apprentissage d'un tel 

réseau serait phénoménal.  Notons de plus que le problème de classification sans 

prétraitement n'a besoin que d'un réseau plus petit (au minimum de 2 660 synapses).  

C'est le même problème pour les phases du sommeil.  Avec des vecteurs de 100 

données, la méthode NLPCA n'est pas applicable.  Elle nécessite trop de ressources. 

 

 

6. Reconnaissance des véhicules 

 
6.1. Introduction 

 
Le problème de la reconnaissance des véhicules est envisageable par la 

méthode NLPCA.  Avec 18 données par pattern, le réseau combiné à créer reste 

réalisable.  Notons cependant dès maintenant que le peu de patterns disponibles sera 

une limite à son utilisation. 

 

Comme précédemment, les réductions à 10, 8 et 4 ont été envisagées.  Les 

réseaux combinés ont été testés avec différents nombres de neurones en couches 

cachées. 
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6.2. Compression à 10 

 

Nous avons réalisé chacune des étapes décrites dans la section 4.  Pour le 

réseau combiné, nous avons choisi une architecture de cinq couches comprenant par 

ordre de propagation 18, 12, 10, 12 et 18 neurones.  Il y a donc 672 synapses.  Les 

paramètres utilisés sont les mêmes que d'habitude : ceux de la table 2.1.   

 

L'apprentissage du réseau combiné à partir des 658 exemples de l'ensemble 

de données, est illustré par la figure 5.3.  La fonction d'apprentissage débute à 3 103 et 

converge vers la valeur 24.  Cela nécessite 85 itérations.  En ce court laps de temps, la 

fonction de validation atteint un minimum d'erreurs de 26.6%.  La fonction de test 

indique 13.8%.  Le réseau a donc parfaitement réussi à compresser les données 

d'apprentissage, mais n'a pas réussi à généraliser parfaitement ses résultats.  Ce n'est pas 

étonnant, vu le faible nombre d'exemples présentés (658) comparé au nombre de 

synapses (672).  Nous sommes loin de la règle des dix pourcents. 
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NLPCA 12/10 (véhicules)
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Figure 5.3 

 

La phase de compression a nécessité 3 heures et 36 minutes.  En temps 

CPU, cela a pris 1 heure et 42 minutes.  Les courbes ont toujours la même allure que 

d'habitude, mais étant donné le faible nombre d'itérations avant la convergence, on a 

l'impression que les courbes de test et de validation n'ont pas eu le temps d'atteindre 

leur minimum.  Il serait intéressant de recommencer cette simulation avec plus 

d'exemples d'apprentissage. 

 

Une fois les vecteurs réduits récupérés, ils ont été présentés au réseau se 

chargeant de la reconnaissance des véhicules.  Ce réseau comportait 10 neurones en 

entrée, 7 en couche cachée et 4 en sortie.  Les paramètres restent les mêmes.  Cette fois-

ci, on dispose de 658 exemples pour 98 synapses.  L'équilibre se rétablit presque. 

 

La figure 5.4 représente l'étude du réseau.  La fonction de validation atteint 

son minimum très vite : 23% d'erreurs.  24 itérations ont été nécessaires.  Après, elle et 

la fonction de test ne varient presque plus.  La fonction de test indique 22% d'erreurs.  

La fonction d'apprentissage part de 3 037, mais ne converge pas.  À la 24ième itération, 

elle a atteint la valeur de 937. 
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Véhicules : NLPCA 12/10
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Figure 5.4 

 

3 heures et 53 minutes ont été nécessaires pour réaliser cet apprentissage de 

623 itérations.  En temps CPU, la machine a travaillé durant 1 heure et 56 minutes.  

Cependant, après 150 itérations, nous aurions pu conclure avoir les meilleurs résultats 

et arrêter la simulation.  L'apprentissage aurait alors duré moins d'une demi heure en 

temps CPU. 

 

Les tables 5.1 et 5.2 reprennent les résultats détaillés de la classification 

réalisée par ce réseau.  On constate que ce sont les classes une et deux qui détériorent 

les résultats.  Les autres sont très bien reconnues.  Étant donné les mauvaises conditions 

d’apprentissage, nous pouvons considérer que le réseau a atteint correctement son 

objectif.  La compression NLPCA est réussie. 
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Table 5.1 

 

 

Table 5.2 

 

 

 

6.3. Compression à 8 

 

Les résultats d’une réduction à 10 étant acceptables, nous avons examiné la 

compression à 8.  Le réseau combiné NLPCA créé pour cela, comprenait cinq couches 

de 18, 12, 8, 12 et 18 neurones.  Nos 658 exemples doivent donc déterminer un réseau 

de 624 synapses.  La règle des dix pourcents n’est toujours pas respectée. 

 

La figure 5.5 décrit le premier apprentissage.  La fonction d'apprentissage 

converge vers 27.  Lors de l'arrêt de la simulation, les taux d'erreurs de la fonction test 

et de la fonction de validation sont respectivement de 16% et 27%. 

Véhicules - NLPCA 12/10 - Ensemble d'apprentissage 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 88 61 9 10 0 168 52.3 

2 36 113 11 8 0 168 67.2 

3 2 3 162 1 0 168 96.4 

4 1 1 3 149 0 154 96.7 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 78.2% 74.8% 53.4% 

Indécidable : 0% 7.4% 42.2% 

Incorrecte : 21.8% 17.8% 4.4% 

Véhicules - NLPCA 12/10 - Ensemble de test 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 14 7 1 2 0 24 58.3 

2 5 14 3 2 0 24 58.3 

3 1 1 22 0 0 24 91.6 

4 1 1 1 21 0 24 87.5 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 74% 71.4% 48.5% 

Indécidable : 0% 7.5% 43.6% 

Incorrecte : 26% 21.1% 7.9% 



La méthode NLPCA 
 

 

 

- 83 - 

 

NLPCA 12/8 (véhicules)
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Figure 5.5 

 

1 heure et 59 minutes (1 heure et 55 minutes en temps CPU) ont été 

nécessaires pour obtenir ces résultats. 

 

L’ensemble comprimé a été récupéré comme expliqué précédemment et 

fourni au réseau de classification.  Ce dernier était constitué de 10 neurones en entrée, 6 

en couche cachée et 4 en sortie; cela correspond à 84 synapses. Il y a presque assez 

d’exemples pour le second apprentissage. 

 

La figure 5.6  montre que son étude a été plus tumultueuse.  Le meilleur 

réseau a été obtenu à l'itération 360, lorsque la fonction de validation indiquait un taux 

minimum d'erreurs de 20%.  Le taux associé de la fonction test est de 25%  La fonction 

d'apprentissage a eu le temps de décroître de 2 612 à 750.  La non convergence et l'arrêt 

sont déclarés à l'itération 491. 
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Véhicules : NLPCA 12/8
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Figure 5.6 

 

Les résultats détaillés des tables 5.3 et 5.4 ont été obtenus après 1 heure et 

15 minutes de simulation.  Ces tables indiquent que la classe un est mal reconnue, alors 

que les autres le sont facilement.  Les pourcentages globaux indiquant l’exactitude de la 

classification sont inférieurs à ceux d’une compression NLPCA moins importante, mais 

excellents relativement aux autres méthodes de réduction : Karhunen et LPC. 

 

Table 5.3 

 

Véhicules - NLPCA 12/8 - Ensemble d'apprentissage 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 67 92 3 6 0 168 39.8 

2 27 133 5 3 0 168 79.1 

3 1 1 165 1 0 168 98.2 

4 1 4 1 148 0 154 96.1 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 78.3% 63.9% 56.3% 

Indécidable : 0% 26.7% 41.6% 

Incorrecte : 21.7% 9.4% 2.1% 
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Notons aussi l’utilité d’un critère comme la distance.  Ici, les résultats ne 

sont pas nets.  Pour la perfection, il faudrait que les sorties obtenues soient toutes à 0 

excepté une seule à 1.  Le critère de la distance indique qu’il y a environ 27% des 

patterns dont les deux plus grandes sorties sont différentes de moins de deux dixièmes, 

au lieu de 1.  C’était une grande source d’erreurs.  En appliquant ce critère de sélection, 

le taux d’erreurs pour l’apprentissage est tombé de 12.9% et pour le test de 18%.  Une 

autre procédure de décision peut être appliquée à ces patterns écartés. 

 

Table 5.4 

 

6.4. Autres compressions 

 

Nous indiquons maintenant les résultats globaux obtenus pour d’autres 

réseaux NLPCA de compression.  Ils ne sont pas suffisamment significatifs pour faire 

chacun l’objet d’un paragraphe séparé.  La table 5.5 résume nos études.  Deux lignes 

sont associées à chaque tentative : la première décrit l’apprentissage du réseau combiné 

et la seconde celui du réseau de classification. 

 
Réseau Itération Exactitude 

apprentis. 

Exactitude 

test 

Nombre 

itérations 

Temps 

réel 

Temps 

CPU 

18/10/8/10/18 124 2 499 -> 27 88.3% 125 2h 15' 2h 03' 

8/6/4 38 73.5% 72.9% 472 2h 37' 1h 14' 

18/10/4/10/18 2 144 2 189 -> 59  74.5% 3 000 57h 24' 30h 49' 

4/4/4 122 60.2% 64.5% 236 25' 25' 

18/8/4/8/18 1 947 1 846 -> 81  69.2% 2 309 39h 18' 21h 37' 

4/4/4 300 60.7% 60.2% 375 39' 39' 

18/6/4/6/18 650 1 738 -> 96  66.0% 1 418 13h 28' 11h 20' 

4/4/4 169 57.6% 49.6% 229 26' 26' 

Table 5.5 

Véhicules - NLPCA 12/8 - Ensemble de test 

Classe Classe obtenue ∑ % 

désirée 1 2 3 4 ? /classe correct 

1 9 14 0 1 0 24 37.5 

2 4 18 1 1 0 24 75.0 

3 0 1 23 0 0 24 95.8 

4 1 1 0 22 0 24 91.6 

Classification Libre Distance 0.2 Différence 0.5 

Correcte : 75% 64.1% 54.2% 

Indécidable : 0% 28.7% 42.6% 

Incorrecte : 25% 7.2% 3.2% 
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7. Données corrélées 

 

7.1. Présentation 

 

Le problème de la reconnaissance des véhicules a montré les possibilités de 

la méthode NLPCA.  Cependant, comme cet ensemble de données n’était pas 

suffisamment important, les résultats ne sont pas exceptionnels.  C’est pourquoi nous 

présentons maintenant l’utilisation de cette méthode sur un ensemble de données créé 

de toutes pièces de manière à pouvoir être traité efficacement.   

 

Ce problème est un cas d’école très simple.  Des vecteurs de deux variables 

y1 et y2 ont été construits.  Ils ont été obtenus par la règle suivante : 

 

y1  0.9 sin x 

y2  0.9 cos x 





x  0,2  

 

Pour l'ensemble d'apprentissage, 400 valeurs de x ont été choisies 

aléatoirement.  L'ensemble de validation comprend 40 vecteurs et l'ensemble de test 

400. 

 

Notre objectif est de montrer qu'un réseau NLPCA est capable de retenir 

parfaitement ces informations dans un seul neurone. 

 

7.2. Résultats 

 

Quatre réseaux combinés ont été envisagés.  Chacun a un nombre différent 

de neurones en couche de mapping, mais ils utilisent tous les mêmes paramètres 

descriptifs (cfr. table 2.1). Le nombre d'éléments dans le fichier d'apprentissage a été 

choisi pour respecter largement la règle des dix pourcents.  Le plus gros réseau utilisé 

comporte 36 synapses; c'est-à-dire moins que 400 / 10.  Les simulations ont été 

réalisées par SIRENE à partir des trois ensembles de données.  On constate dans la table 

5.6 que le neurone de la couche centrale de compression a chaque fois été capable de 

résumer l'information des deux entrées.  Augmenter le nombre de neurones en couches 

de mapping n'a pas ici amélioré les résultats. 



La méthode NLPCA 
 

 

 

- 87 - 

 
Réseau Itération Exactitude 

apprentis. 

Exactitude 

test 

Nombre 

itérations 

Temps 

réel 

Temps 

CPU 

2-6-1-6-2 78 427 -> 25 98% 80 12' 10' 

2-4-1-4-2 73 571 -> 25 98% 73 37' 7' 

2-3-1-3-2 73 329 -> 26 98% 73 7' 6' 

2-2-1-2-2 39 378 -> 33 100% 64 4' 4' 

Table 5.6 

 

 

8. Conclusions 

 

La méthode NLPCA utilise un réseau de neurones pour trouver les 

caractéristiques non linéaires des données.  Le réseau est d'un type conventionnel à 

propagation : le perceptron.  L'architecture particulière utilisée emploie trois couches 

cachées, incluant une couche intérieure de compression.  Ce réseau effectue un 

apprentissage où l'entrée doit être reproduite à la sortie.  En mettant moins de neurones 

dans la couche de compression que dans la couche d'entrée, le réseau est obligé de 

trouver des valeurs représentatives dans la couche centrale pour réaliser sa fonction : 

reproduire son entrée à la sortie.  Le fait d'utiliser des fonctions de transfert sigmoïdales 

ou linéaires pour les neurones de compression, permet au réseau de tenir compte des 

corrélations non linéaires dans les entrées. 

 

Pour notre objectif de minimisation du temps d'apprentissage, il est clair 

que la méthode de compression NLPCA est totalement inefficace.  Étant donné la 

complexité du réseau nécessaire, la phase de compression est susceptible de prendre 

plus de temps à elle seule que la phase de classification sans compression préalable.  

Cette méthode ne peut dès lors être appliquée qu'à de petits ensembles de données.  De 

plus, pour ceux-ci, le nombre d'exemples pour l'apprentissage doit être suffisamment 

élevé.  Pour obtenir de bons résultats, il faut de préférence respecter la règle des dix 

pourcents.  Cela n'est pas toujours évident vu le nombre élevé de synapses dans un 

réseau combiné NLPCA.  Si toutes ces conditions sont respectées, alors la compression 

NLPCA est intéressante.  Ses résultats devraient être meilleurs que ceux obtenus par la 

méthode de Karhunen, car cette dernière pourrait être implémentée selon le même 

principe, mais en utilisant uniquement des fonctions d'activation linéaires pour les 

neurones.  La méthode NLPCA est une amélioration de la méthode de Karhunen-Loève. 

 



 

 

- 88 - 

CHAPITRE 6 
LA MÉTHODE LSP 

 

 

1. Introduction 

 

Les coefficients LSP (Line Spectral Pair) ont été créés pour représenter les 

signaux de la parole.  Ils sont constitués de paires de valeurs.  Les tailles de 

compression possibles doivent donc également être paires.  Ces paramètres sont une 

autre présentation des coefficients LPC. 

 

On ne nous avait pas demandé d'analyser cette méthode.  Nous en avions 

entendu parler et avons décidé de l'étudier.  Nous ne l'avons cependant pas appliquée 

aux problèmes décrits dans le chapitre deux.  Nous expliquerons pourquoi dans la 

seconde section. 

 

 

2. La méthode 

 

Dans le chapitre 4, nous avons présenté les coefficients LP.  Les coefficients 

LSP ne sont qu'une réécriture de ceux-ci.  Nous avions défini une représentation de la 

puissance spectrale d'un signal par : 

 

P( f ) 
a0

1 ak zk

k1

M


2  (1) 

 

où les ai sont les M coefficients LP à calculer et z  e
2if

. 

 

Si nous définissons maintenant : 

 

Ap z   1 ai z
i

i1

p

  (2) 

 

(1) peut se réécrire 1/|AM(z)|2.   
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Nous pouvons également poser : 

 

P(z 1 )  Ap z 1  z
 p1 Ap (z )

 1 (a1  ap )z 1(ap  a1 )z p  z  p1 

Q(z 1 )  Ap z 1  z
 p1 Ap (z )

 1 (a1  ap )z 1(ap  a1 )z p  z
 p1 

 (3) 

c'est-à-dire deux polynômes de degré p+1.  Ces polynômes ont une propriété 

intéressante.  Il a été démontré que tous leurs zéros se situent sur le disque unitaire et 

alternent.  De plus, si e
i

 est un de leurs zéros, e
 i

 en est un autre.  Remarquons 

aussi que les polynômes P et Q ont respectivement un zéro en 1 et -1. 

 

 

A   (z  ) 
 
P       (z  ) 
 
Q       (z  )

p 

 

p+1 

 

p+1

 i i

-1

-1

-1

 

 

 

 

En calculant les M coefficients LP, on peut construire les coefficients des 

polynômes P et Q.  Les zéros 1 et -1 ne nous intéressent pas.  Quel que soit le signal, 

ces zéros seront présents et n'apportent donc aucune information supplémentaire.  Dans 

l'implémentation, les polynômes P et Q sont factorisés en deux polynômes P' et Q' d'un 

degré inférieur et possédant les mêmes zéros à l'exception de -1 et 1.  En résolvant P' et 

Q', on obtient 2M zéros.  Cependant, on peut en éliminer la moitié : ceux dont la partie 

imaginaire est négative.  En effet, on a vu qu'il y a toujours un e
 i

 correspondant  à 

e
i

 .  Ces zéros ne contiennent aucune information supplémentaire.  A partir des M 

coefficients LP, on a donc obtenu M zéros.  Étant donné que z = cos ()+ i sin (, on 

peut associer à Q, M/2 angles iet à P, M/2 anglesi.  Par définition, leurs valeurs sont 
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comprises dans l'intervalle [0,π].  Mathématiquement, en utilisant les paires (i , i), P 

et Q peuvent être factorisés en : 

 

P(z 1 )  1 z 1  1 2 cos iz
1  z 2 

i1

p/2



Q(z 1 )  1 z1  1 2cosi z
1  z 2 

i 1

p /2



 

 

Il faut remarquer que  

 

Ap z
1 

P z1 Q z1 
2

 

 

dès lors, les paires (i , i) en sont une représentation et peuvent être utilisées en lieu et 

place des coefficients LP.  On les appelle les coefficients LSP (Line Spectral Pair). 

 

 

3. Objections à son implémentation 

 

Cette méthode a été imaginée dans le cadre du codage de la parole.  Ces 

coefficients sont préférés aux paramètres LPC, car ils sont en plus étroite relation avec 

le signal de la parole2.  Dans ce cas, la valeur de p est généralement 4. 

 

Le premier problème que nous avons rencontré en utilisant cette méthode 

est la complexité des calculs.  Pour chaque pattern de l'ensemble de données à traiter, il 

faut résoudre deux équations polynomiales dont le degré est égal à la taille de 

compression.  Pour la reconnaissance des phases du sommeil et une taille de 

compression de 20, nous devions donc résoudre 36 000 équations de degré 20!  De plus, 

il était nécessaire que tous les zéros se trouvent sur le disque unitaire.  

Malheureusement, que cela soit à l'aide de nos programmes ou de programmes 

professionnels tels que Mathematica ou Matlab, il y avait souvent un zéro qui ne 

respectait pas cette condition.  Nous n'obtenions donc pas à chaque fois un vecteur 

réduit entier.  Nous supposons que les erreurs proviennent d'imprécisions de calcul.  

Nous avons essayé de remédier à ce problème avec des spécialistes de Mons, mais sans 

                                                 
2 N. SUGAMURA, F. ITAKURA, "Speech Analysis and Synthesis Methods Developed at ECL in NTT - 

from LPC to LSP -",Speech Communication 5,  Elsevier Science Publishers B.V., North-Holland, 1986. 
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succès.  Ils n'utilisent pas des valeurs de p aussi grandes.  Notons aussi que d'autres 

méthodes de calcul ont été proposées.  Celles qui nous ont été montrées procédaient par 

approximations successives des coefficients.  Cependant, elles nous ont été 

déconseillées, car les algorithmes d'amélioration de ces paramètres dépendent souvent 

des types de signaux.  Notre objectif étant une méthode générale de compression, nous 

avons abandonné cette voie. 

 

Outre ce problème de forme, il y en a un de fond.  Les coefficients LSP sont 

avantageux pour représenter des échantillons de parole.  Nous ne sommes pas 

convaincu que les calculs complexes que nécessite cette méthode, se justifie dans notre 

cas.  En effet, les coefficients LSP sont obtenus par des manipulations des coefficients 

LPC.  À priori, un réseau de neurones ne devrait pas être très sensible à ces 

modifications et devrait même être capable de les représenter.  De plus, à un coefficient 

LPC correspond une paire de coefficients LSP.  Pour représenter la même quantité 

d'informations, il faudra deux fois plus de paramètres.  Le gain apporté par les 

coefficients LSP, s'il existe, ne devrait pas être important.  Rappelons aussi que les 

paramètres LPC donnent déjà d'excellents résultats et qu'il n'est pas évident de pouvoir 

les améliorer. 

 

 

 

4. Conclusions 

 

Nous avons présenté le calcul des coefficients LSP.  Différentes méthodes 

sont possibles pour les obtenir.  Celle que nous avons étudiée transforme les 

coefficients LPC pour obtenir les LSP.  Ces derniers se présentent sous forme de paires 

d'angles compris entre 0 et π. 

 

Nous nous sommes rendus compte de la difficulté de calculer ces 

paramètres.  Cela nécessite énormément de calculs complexes.  De plus, le gain apporté 

par leur utilisation dans un réseau de neurones à la place des coefficients LPC n'est pas 

évident.  Nous sommes convaincus du contraire.  Pour ces raisons, nous n'avons pas 

intégré notre implémentation dans notre programme. 
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CHAPITRE 7 
COMPARAISONS DES MÉTHODES 

 

 

1. Introduction 

 

Dans ce chapitre, nous allons rassembler nos principaux résultats et les 

comparer.  Notre but est de déterminer quand et comment utiliser chaque méthode, pour 

quelles raisons et pour quels résultats. 

 

 

2. Les résultats 

 

La table 7.1 reprend les principaux résultats obtenus dans notre travail.  Ils 

sont classés par ensembles de données et par ordre décroissant de pourcentage de 

classification exacte de l'ensemble test.  Les renseignements qui sont fournis sont : la 

méthode de prétraitement, le nombre minimum d'itérations pour obtenir le meilleur 

réseau, pour celui-ci le pourcentage d'exactitude sur l'ensemble d'apprentissage et sur 

l'ensemble de test, le nombre d'itérations avant l'arrêt de la simulation, le temps réel et 

CPU qu'elle a nécessité, ainsi que le temps CPU estimatif qui a été nécessaire pour 

obtenir la meilleure itération. 

 

Pour analyser ces résultats, nous devons d'abord définir nos critères de 

réussite.  Ce qui nous importe le plus est que pour un fichier de données quelconque 

prétraité, puis présenté au réseau de neurones déjà entraîné, le pourcentage de 

classification correcte soit le plus élevé possible.  Nous avons donc classé les méthodes 

selon leurs résultats pour l'ensemble de test.  Cependant, ce n'est pas le seul facteur à 

étudier.  Notre objectif dans ce travail est de minimiser le temps d'apprentissage des 

réseaux.  Comme on l'a vu, un réseau très petit, c'est-à-dire celui pour lequel on a réalisé 

une compression importante des données, n'est pas forcément plus rapide qu'un réseau 

plus complexe.  La rapidité tient compte de deux facteurs : le temps pour une itération 

et le nombre d'itérations nécessaires.  La compression n'influence directement que le 

temps nécessaire à la réalisation d'une itération.  L'autre facteur ne peut être deviné.  

Pour une compression à 10 par la méthode LPC sur les données du sommeil, le temps 

d'apprentissage du réseau est beaucoup plus long que pour une compression à 20, car il 

faut 992 itérations au lieu de 141 pour y parvenir.  Cela bien que le temps CPU pour 
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une itération soit passé de 2 minutes 47 secondes à 1 minute.  A l'inverse, toujours pour 

les données du sommeil, la méthode de Karhunen nécessite moins d'itérations pour une 

compression plus forte.  On a donc gagné en temps par itération (2 minutes à 1 minute) 

et en nombre d'itérations (651 à 486).  On peut donc conclure qu'on ne doit pas 

forcément essayer d'obtenir la compression la plus forte.  Lors de l'application de la 

méthode LPC sur les données du sommeil, les résultats étaient déjà excellents en qualité 

et en temps pour une compression à 20.  Il paraissait déjà difficile d'obtenir de meilleurs 

résultats selon ces deux critères.  La compression à 10, fourni une qualité de 

classification semblable, mais en un temps beaucoup plus important.  Il n'était pas 

nécessaire de l'envisager. 

 
Méthode Min. Exactitude 

apprentis. 

Exactitude 

test 

Max. Temps 

réel 

Temps 

CPU 

T. CPU 

estim. 

Phases du sommeil 

Sans 1 405 99.7% 98.3% 2 000 484h 25' 442h 48' 311h 04' 

LPC 20 141 99.7% 98.1% 141 23h 13' 5h 49' 5h 49' 

LPC 10 992 99.6% 97.4% 992 52h 44' 17h 30' 17h 30' 

Karhunen 20 651 91.2% 89.5% 1 550 109h 31' 54h 04' 22h 42' 

Karhunen 10 486 70.8% 72.9% 492 30h 23' 8h 10' 8h 04' 

NLPCA > - - > > > > 

Caractères 

Sans > - - > > > > 

Backpropag.1 - 95.9% 95.1% - 36h 00' 

Karhunen 40r 53 96.3% 93.0% 580 87h 20' 86h 31' 7h 54' 

Karhunen 20r 1 097 95.3% 91.3% 1 498 291h 42' 285h 44' 209h 14' 

LPC 40 1 184 77.0% 74.9% 1 280 263h 12' 170h 31' 157h 43' 

NLPCA > - - > > > > 

Véhicules 

Sans 59 88.0% 83.3% 444 1h 29' 1h 22' 10' 

Backpropag.2 - 83.2% 79.3% - 4h 00' 

Karhunen 10 61 85.7% 76.0% 975 3h 09' 2h 57' 11' 

NLPCA 8 462 78.3% 75.0% 598 3h 24' 3h 10' 2h 26' 

NLPCA 10 109 78.2% 74.0% 623 7h 29' 3h 38' 38' 

LPC 8 62 57.3% 54.1% 610 3h 03' 1h 31' 9' 

LPC 10 87 54.6% 44.7% 331 1h 49' 1h 48' 28' 

Karhunen 8 4 48.2% 40.6% 404 1h 07' 1h 00' 1' 
1. Il s'agit des résultats du projet ESPRIT StatLog obtenus par un perceptron sur des données ramenées à 

une taille de 40 par la méthode de Karhunen. 
2. Ce sont les résultats du projet StatLog sans prétraitement. 
> Les résultats sont inconnus, mais sont supposés supérieurs à ceux de la même catégorie. 
- Les résultats sont inconnus. 

Table 7.1. 
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Nos ensembles de données ont illustré parfaitement ce que nous annonçait 

la théorie.  Il est important de remarquer l'ordre des méthodes pour chaque type de 

données.  Pour des signaux comme ceux correspondant aux phases du sommeil, la 

méthode LPC est en tête.  La méthode de Karhunen-Loève suit avec de bons résultats.  

Pour une même taille de compression, la méthode LPC surclasse largement la méthode 

de Karhunen; cela d'autant plus que la compression est forte.  Même pour une 

compression supérieure (10) par LPC, la méthode de Karhunen (20) ne peut se 

défendre, que cela soit en qualité ou en temps nécessaire.  Par contre, si nous ne 

travaillons pas avec des signaux, les performances du LPC sont nettement inférieures.  

Dans le cas des caractères par exemple, Karhunen fournit toujours de bons résultats 

même pour une compression importante.  La réduction LPC est déjà défavorable pour 

une taille de 40, la plus mauvaise après la méthode NLPCA.  Parlons de cette dernière.  

Elle ne peut être appliquée qu'à de petits ensembles de données.  Pour les autres, il est 

certain qu'elle ne peut concurrencer LPC ou Karhunen.  Par contre, pour un ensemble 

de taille réduite comme celui des véhicules, elle se défend.  Si toutes les conditions 

d'apprentissage avaient été remplies, ses résultats auraient été meilleurs.  Un indicateur 

de ce fait est qu'une compression à 8 par NLPCA donne de meilleurs résultats qu'une 

compression moins importante à 10.  On sent l'influence du manque d'exemples lors de 

l'apprentissage.  Dans de meilleures conditions d'utilisation, la méthode de Karhunen 

n'aurait probablement pas gardé la première place.  Il faut rappelé que NLPCA est une 

amélioration par réseau de neurones de la méthode de Karhunen-Loève.  Cependant, 

nous ne pouvons pas modifier le contexte et nous nous contenterons de ces résultats.  

Pour une taille de compression importante, NLPCA montre ses qualités.  Le réseau 

combiné correspondant a pu être optimisé et souffre moins de la carence en exemples.  

À la taille 8, Karhunen et LPC ne peuvent suivre.  En conclusion, la méthode de 

Karhunen est toujours conseillée.   Si les données représentent un signal, LPC fournira 

en général de meilleurs résultats encore.  La méthode NLPCA est très difficile à mettre 

en oeuvre.  Son usage ne devrait être envisagé que pour de petits ensembles de données. 

 

Nous avons comparé nos prétraitements entre eux.  Que valent-ils en 

général ?  Dans le cadre des phases du sommeil, la réussite est éclatante.  Nous 

obtenons le même pourcentage de classification correcte que sans prétraitement, mais 

53 fois plus vite!  Pour les caractères, nous ne pouvons malheureusement pas établir de 

comparaisons.  Cependant, avec 93% de réussite, l'utilisation de la méthode de 

Karhunen est très satisfaisante.  Notons que la qualité de nos résultats est confirmée par 

celle très proche du projet ESPRIT StatLog.  De plus, le temps nécessaire estimatif est 

raisonnable pour un réseau de neurones.  Enfin, pour les véhicules, nos manipulations 
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nous ont fait perdre de la précision, mais les résultats ne sont pas mauvais.  Avec 7.3% 

de différence et les conditions de simulation rencontrées, on peut également conclure à 

la réussite de nos prétraitements.  Ici évidemment, on ne voit pas très bien ce qu'on y a 

gagné.  Les temps de simulation sont faussés par les conditions de traitement et trop 

petits pour être significatifs.  La compression NLPCA est cependant beaucoup plus 

lente. Notons également que nous avons obtenu de meilleurs résultats sans 

prétraitement que le projet StatLog. 

 

 

3. Conclusions 

 

Trois éléments importants ont été dégagés : 

 

• Tout d'abord, selon nos critères d'efficacité et de temps, la compression la plus forte 

possible n'est pas toujours la meilleure.  La vitesse d'apprentissage dépend de deux 

facteurs principaux : le temps pour une itération et le nombre d'itérations nécessaires.  

La compression ne modifie directement que le premier.   

 

• La méthode de Karhunen-Loève donne en général de très bons résultats quel que soit 

le type des données à traiter.  La méthode LPC la surclasse pour des signaux.  

NLPCA ne devrait être envisagé que pour de petits ensembles de données. 

 

• Si le prétraitement est bien choisi, les résultats obtenus sont tout à fait fiables.  La 

perte de qualité est minime.  De plus, les temps de simulation sont fortement 

diminués comme nous le cherchions.  Nous pouvons conseiller ces prétraitements. 

 

Commentaire [5]: pour utiliser 
correctement la methode, il faut plus 
d'exemples  -> les temps de simulation 
augmentent et ne sont plus rentables !!! 
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CONCLUSIONS 
 

Nous avons commencé notre travail par une description des réseaux de 

neurones.  Théoriquement déjà, on découvre ses nombreuses qualités : parallélisme, 

capacité d'adaptation, mémoire distribuée, capacité de généralisation, facilité de 

construction …  La pratique confirme ces premières observations.  Nous avons utilisé 

des réseaux de neurones artificiels pour résoudre plusieurs problèmes complexes, 

commerciaux et industriels.  Les résultats ont été excellents et des comparaisons avec 

d'autres méthodes montre que le RNA est tout à fait compétitif. 

 

Cependant, la théorie laisse également deviner un inconvénient du RNA : la 

complexité de sa structure.  Les RNA seront optimums quand ils auront leur propre 

support et pourront exploiter pleinement le parallélisme.  La taille des réseaux rend 

malheureusement de telles implémentations encore plus difficiles à réaliser.  

Actuellement, des simulateurs sur ordinateurs sont généralement utilisés.  Hélas, pour 

eux aussi, la complexité des réseaux est un gros problème, d'autant plus que les 

simulateurs sont habituellement séquentiels.  Le nombre de calculs nécessaires à 

l'apprentissage d'un réseau devient très vite phénoménal.  Il apparaît dès lors comme 

une priorité de trouver des méthodes pour réduire la complexité des RNA. 

 

Il nous a été demandé d'en analyser trois : Karhunen-Loève, LPC et 

NLPCA.  Nous en avons proposé une quatrième : LSP.  La taille d'un réseau est liée au 

nombre de ses entrées.  Si on peut le diminuer, la complexité du réseau décroît.  Les 4 

méthodes que nous avons étudiées, prétraitent les valeurs fournies aux entrées d'un 

réseau pour obtenir un nouveau pattern de caractéristiques de taille inférieure.  Si cette 

transformation est bien réalisée, un réseau plus petit utilisant ces données sera toujours 

capable de réaliser son apprentissage et de fournir des résultats semblables à ceux 

obtenus par le réseau n'utilisant pas le prétraitement.  Le but principal de notre travail 

était d'étudier les qualités de ce prétraitement pour les méthodes demandées. 

 

Elles ont été utilisées pour résoudre différents problèmes de classification.  

Nous avons été agréablement surpris.  Les résultats ont été excellents et surtout n'ont 

pratiquement pas été dégradés par les prétraitements.  De plus, les temps de simulation 

ont été diminués considérablement.  Nous étions déjà convaincus de l'utilité de ces 

prétraitements et cependant, les résultats ont dépassé nos espérances.  Nous ne pouvons 

que conseiller d'utiliser ces méthodes. 
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Nous devons cependant les distinguer.  Toutes ne sont pas aussi efficaces, 

ou ne le sont que dans certains cas.  La méthode de Karhunen-Loève donne en général 

de très bons résultats quel que soit le type de données à traiter.  La méthode LPC la 

surclasse cependant pour des données de signaux.  NLPCA est très lourd à utiliser et ne 

devrait être envisagé que pour de petits ensembles de données.  Dans de bonnes 

conditions d'utilisation, elle donnera de meilleurs résultats que la méthode de Karhunen.  

La compression par LSP a été abandonnée.  Elle est trop difficile à réaliser et ne devrait 

pas apporter de meilleurs résultats que la méthode LPC sur laquelle elle est basée. 

 

Une dernière remarque concerne l'importance des compressions.  Le réseau 

le plus petit n'est pas forcément le meilleur.  Dans le cadre de nos simulations, il a été 

montré qu'il faut trouver un juste milieu.  Si la compression est faible, le réseau ensuite 

utilisé reste imposant et le gain est minime.  Si la compression est trop forte, le réseau 

n'a plus assez d'informations déterminantes et l'apprentissage peut demander un plus 

grand nombre d'itérations, c'est-à-dire plus de temps.  Malheureusement, il n'y a pas de 

règle permettant de deviner la taille idéale, celle qui allie réduction significative de la 

complexité du réseau  et gain de temps pour son apprentissage.  Avec un peu 

d'expérience, elle est cependant rapidement trouvée. 

 

Ce travail nous a convaincu de l'utilité des réseaux de neurones et des 

prétraitements.  Ces derniers se sont révélés très efficaces et très faciles à réaliser.  Il ne 

faut surtout pas les négliger. 

 



 

 

 

BIBLIOGRAPHIE 
 

 

- Jacek M. ZURADA, "Introduction to Artificial Neural Systems", West Publishing 

Company, 1992. 

- P. LATOUR, "Utilisation des réseaux de neurones artificiels dans la 

reconnaissance de formes en signaux physiologiques", Convention FIRST, région 

wallonne, université de Liège, avril 1990. 

- F. BLAYO, "Réseaux neuronaux", laboratoire de Microinformatique, avril 1992. 

- W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY, W. T. VETTERLING, 

"Numerical Recipes", Cambridge University Press. 

- E. DAVALO, P. NAÏM, "Des réseaux de neurones",  deuxième édition, éditions 

Eyrolles, 1990. 

- F. X. LITT, "Analyse numérique", notes de cours, Faculté des Sciences 

Appliquées, Université de Liège, 1991. 

- J. ETIENNE, "Analyse mathématique", notes de cours, Faculté des Sciences 

Appliquées, Université de Liège, 1986. 

- M. BODESON, "Reconnaissance de mouvements mandibulaires par neurones 

artificiels", travail de fin d'études pour l'obtention du grade de Licencié en 

Informatique, 1991-1992. 

- P. LASCAUX, R. THEODOR, "L'analyse en composantes principales", Analyse 

numérique matricielle appliquée à l'art de l'ingénieur, tome 1. 

- K. FUKUNAGA, W. L. G. KOONTZ, "Application of the Karhunen-Loève 

Expansion to Feature Selection and Ordering", IEEE Transactions, vol. C-19, 

number 4, April 1970. 

- "The Karhunen-Loève Expansion", Spectral Analysis. 

- N. SUGAMURA, F. ITAKURA, "Speech Analysis and Synthesis Methods 

Developed at ECL in NTT - from LPC to LSP -",Speech Communication 5,  

Elsevier Science Publishers B.V., North-Holland, 1986. 

- J. HANCQ, "Automatic scoring of sleep stages with LSP adaptive filtering", 

IEEE Benelux & ProRISC, Proceedings of the Workshop on Circuits, Systems 

and Signal Processing, Houthalen, April 1992. 

- F. W. ZAKI,  "Learning Characteristics of a New Adaptive Line Spectral Pair 

Filter", Mu'tah University, Jordan, Submitted to publication (Signal Processing). 

- M. A. KRAMER, "Nonlinear Principal Component Analysis Using 

Autoassociative Neural Networks", AIChe Journal, Vol. 37, number 2, February 

1991. 



Prétraitement de données en reconnaissance de formes par RNA 
 

 

 

- E. SAUND, "Dimensionality-Reduction Using Connectionist Networks", IEEE 

Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, number 3, 

March 1989. 

- J. MAKHOUL, "Linear Prediction : A Tutorial Review", Proceedings of the 

IEEE, Vol. 63, number 4, April 1975. 

- R. D. KING, R. C. HENERY, A. SUTHERLAND, "A comparative Study of 

Classification Algorithms : Statistical, Machine Learning, and Neural Network 

(Draft)", August 1992. 



 

 

 - A1 - 

Annexe A 
Menus de SIRENE 
 
 

************************************************ 

*                                                           * 

*                                                           * 

*                      SIRENE V1R9                         * 

*              SImulateur de REseaux de NEurones          * 

*                                                           * 

*                      M. Fombellida                       * 

*                      Service de microelectronique        * 

*                      Institut Montefiore                 * 

*                      ULG                                  * 

*                                      October 92           * 

************************************************ 

 

                 ******************* 

                 *    MAIN  MENU      * 

                 ******************* 

 

 

 

 1:Network... 

 2:Patterns... 

 3:Algorithms... 

 4:Learn 

 5:Use 

 6:Statistics... 

 

99:QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

          ********************* 

          *   NETWORK MENU   * 

          ********************* 

 

 

 

 1: New network... 

 2: Edit current network... 

 

 3: Load BIN network file 

 4: Save network in BIN file 
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 5: Load ASCII network file 

 6: Save network in ASCII file 

 

 7: Convert BIN network file in ASCII file 

 8: Convert ASCII network file in BIN file 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

          ************************** 

          *   NEW NETWORK MENU  * 

          ************************** 

 

 

 1: Create a multiple layers perceptron with full connexion 

 2: Create a input-output perceptron with full connexion 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice : 1 

 

 

Number of layers:   

Number of neuron(s) in layer 1:  

Number of neuron(s) in layer 2:  

 

Select the activation functions of the neuron 

 1: Linear 

 2: Sigmoid 

 3: Sine 

 4: Cosine 

 5: Gaussian 

 6: Cosine*Gaussian+Sigmoid 

 7: Sigmoid Prime 

 8: Hyperbolic tangent 

 9: Sigmoid symetric 

Your choice : f=tanh(a*x) 

a:   

 

... 

 

Number of neuron(s) in layer 3:  

 

 

Select the activation functions of the neuron 
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 1: Linear 

 2: Sigmoid 

 3: Sine 

 4: Cosine 

 5: Gaussian 

 6: Cosine*Gaussian+Sigmoid 

 7: Sigmoid Prime 

 8: Hyperbolic tangent 

 9: Sigmoid symetric 

Your choice : f=tanh(a*x) 

a:   

 

... 

____________________________________________________________ 

 

          ********************* 

          *  PATTERNS MENU   * 

          ********************* 

 

 

 

 1: Load patterns file... 

 2: Convert patterns file... 

 3: Create patterns file 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

 

          *************************** 

          *  LOAD PATTERNS MENU   * 

          *************************** 

 

 

 

 1: Load BIN file for learning 

 2: Load BIN file for validation 

 3: Load BIN file for test 

 

 4: Load ASCII file for learning 

 5: Load ASCII file for validation 

 6: Load ASCII file for test 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  



  ANNEXE A : Les menus de SIRENE 

  

 - A4 - 

 

____________________________________________________________ 

 

          ******************************* 

          *  CONVERT PATTERNS MENU   * 

          ******************************* 

 

 

 

 1: Simple file type conversions... 

 2: Preprocessings... 

 3: Analysis of patterns file 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

 

          ****************************************** 

          *  SIMPLE FILE TYPE CONVERSIONS MENU  * 

          ****************************************** 

 

 

 

 1: Convert BIN file in ASCII file 

 2: Convert ASCII file in BIN file 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

          *************************** 

          *  PREPROCESSING  MENU  * 

          *************************** 

 

 

All these preprocessings need the analysis file 

 

 1: Convert BIN file in BIN mean-centered (0,1) file 

 2: Convert BIN file in BIN mean-centered (-0.5,+0.5) file 

 3: Convert BIN file in BIN mean-centered (-1,+1) file 

 4: Convert BIN file in BIN mean-centered input (-1,+1) file 

 5: Convert BIN file in BIN normalized (0,1) file 

 6: Convert BIN file in BIN normalized (-0.5,+0.5) file 

 7: Convert BIN file in BIN normalized (-1,+1) file 
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 8: Convert BIN file in BIN input-decorrelated file 

 9: Convert BIN file in BIN input-divide-by-max file 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

 

          *********************** 

          *  ALGORITHMS MENU * 

          *********************** 

 

 

 1: Learning cost functions 

 2: Validation cost functions 

 3: Test cost functions 

 4: Success criteria 

 5: Optimization algorithms 

 6: Parameters  

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

          ********************************* 

          *   LEARNING COST  FUNCTIONS   * 

          ********************************* 

 

 

 

Select the function to minimize during learning 

 1: Total sum squared error 

 2: Total sum squared error + minimize weights (W^2) 

 3: Total sum squared error + minimize weights (W^2/1+W^2) 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

          ************************************ 

          *   VALIDATION COST  FUNCTIONS    * 

          ************************************ 
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Select the validation cost function 

 1: Total sum squared error 

 2: Classification error (%) (Maximum criteria) 

 3: Classification error (%) (Threshold with margin criteria) 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

          **************************** 

          *   TEST COST  FUNCTIONS    * 

          **************************** 

 

 

 

Select the test cost function 

 1: Total sum squared error 

 2: Classification error (%) (Maximum criteria) 

 3: Classification error (%) (Threshold with margin criteria) 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

 

 

 

          ********************** 

          * SUCCESS CRITERIA  * 

          ********************** 

 

 

 

Select the success criteria of the learning algorithm 

 

 1: Small individual error 

 2: Small composite error 

 3: Sharp threshold 

 4: Threshold with margin 

 

 0: RETURN TO MAIN MENU 

99: QUIT 
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Your choice :  

 

____________________________________________________________ 

 

          *************************************** 

          *   OPTIMIZATION ALGORITHMS MENU  * 

          *************************************** 

 

Select the learning algorithm 

 

Heuristic methods 

 1: Back Propagation with momentum 

 2: Silva-Almeida 

 3: Extended Delta-Bar-Delta 

 4: Extended Quickprop 

 

Non constraint optimization methods 

 5: Gradient + line search (Steepest descent) 

 

 6: Conjugate Gradient (Fletcher-Reeves) + line search 

 7: Conjugate Gradient (Polak-Ribiere) + line search 

 8: Limited memory quasi-Newton + line search 

 9: Quasi-Newton (DFP) + line search 

10: Quasi-Newton (BFGS) + line search 

 

11: Conjugate Gradient (Fletcher-Reeves) with restart + line search 

12: Conjugate Gradient (Polak-Ribiere) with restart + line search 

13: Limited memory quasi-Newton with restart + line search 

14: Quasi-Newton (DFP) with restart + line search 

15: Quasi-Newton (BFGS) with restart + line search 

 

 0: RETURN TO MAIN MENU 

99: QUIT 

 

Your choice :  

 

____________________________________________________________ 

 

 

 

 

 

Current value of the parameters 

------------------------------- 

Success criteria: Individual error = 0.002500 

                  Threshold =         0.000000 

                  Up margin =         0.100000 

                  Down margin =       0.100000 

                  Epoch =             1000 

                  Minimum progress =  0.000001 

Objective function: Gamma =           0.001000 
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Optimization: Learning rate =         1.500000 

              Momentum =              0.900000 

              Mu =                    1.000000 

              Kappa =                 0.010000 

              Kappam =                0.100000 

              Phi =                   0.100000 

              Phim =                  0.500000 

              gl =                    20.000000 

              gm =                    5.000000 

              Theta =                 0.700000 

              Up =                    1.200000 

              Down =                  0.600000 

Statistics: Size =                    100 

Randomize: Weights range =            0.500000 

 

FLAGS 

 

Learning =               1 

 

Pruning =                0 

-> Relearning =          0 

 

Incremental learning =   0 

-> Clamping =            0 

   -> Relearning =       0 

 

Incremental pruning  =   0 

-> Relearning =          0 

 

Overlearning detection = 0 

->Backtracking =         0 

 

Brainwashing =           0 

 

Press RETURN to continue 

Modify: 

 1:Individual error 

 2:Threshold 

 3:Up margin 

 4:Down margin 

 5:Epoch 

 6:Minimum progress 

 

 7:Gamma 

 

 8:Learning rate 

 9:Momentum 

10:Mu 

11:Kappa 

12:Kappam 

13:Phi 
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14:Phim 

15:gl 

16:gm 

17:Theta 

18:Up 

19:Down 

20:Statistic size 

21:Weights range 

 

22:Toggle learning flag 

 

23:Toggle pruning flag 

24:Toggle -> relearning flag 

 

25:Toggle incremental learning flag 

26:Toggle -> clamping flag 

27:Toggle    -> relearning flag 

 

28:Toggle incremental pruning flag 

29:Toggle -> relearning flag 

 

30:Toggle overlearning detection flag 

31:Toggle -> backtracking flag 

 

32:Toggle brainwashing flag 

 

 0:RETURN TO MAIN MENU 

99:QUIT 

 

Your choice :  

 

____________________________________________________________ 
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ANNEXE B 
LES MENUS DU PROGRAMME 
 

 

+++ PRETRAITEMENT DE DONNEES EN RECONNAISSANCE DE FORMES  

        PAR RNA +++ 

 

  0. Aide 

 

  1. Karhunen 

  2. LPC 

  3. NLPCA 

  4. Outils d'aide 

 

  9. Quitter 

 

Choix :  

 

_____________________________________________________________________ 

 

+++ KARHUNEN - LOEVE +++ 

 

  0. Aide 

 

  1. Vecteurs propres 

  2. Matrice de transformation 

  3. Creation fichier compresse 

 

  9. Retour au menu principal 

 

Choix :  

 

_____________________________________________________________________ 

 

+++ VECTEURS PROPRES +++ 

 

  0. Aide 

 

  1. Calcul d'une nouvelle matrice de vecteurs propres 

  2. Chargement d'une ancienne matrice 

  3. Sauvegarde d'une nouvelle matrice 

 

  9. Retour au menu precedent 

 

Choix :  

 

_____________________________________________________________________ 
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+++ CALCUL DES VECTEURS PROPRES +++ 

 

 

Nom du fichier d'apprentissage : +++ Initialisation +++ 

+++ Creation de la matrice d'autocorrelation +++ 

+++ Recherche des vecteurs propres +++ 

Nombre de patterns traites :  

Taille d'un pattern :  

 

--- ENTER --- 

 

_____________________________________________________________________ 

 

+++ MATRICE DE TRANSFORMATION +++ 

 

  0. Aide 

 

  1. Calcul d'une nouvelle matrice de transformation 

  2. Chargement d'une ancienne matrice 

  3. Sauvegarde d'une nouvelle matrice 

 

  9. Retour au menu precedent 

 

Choix :  

 

_____________________________________________________________________ 

 

+++ CALCUL D'UNE MATRICE DE TRANSFORMATION +++ 

 

Choix du nombre de sorties : 

  1. Constant 

  2. Selon importance des valeurs propres 

  3. Selon importance des valeurs propres avec nombre max 

 

Les valeurs propres sont comprises entre |...| et |...| 

 

Choix :  

Nombre de sorties :  

Nombre de sorties souhaitees :  

 

--- ENTER --- 

 

_____________________________________________________________________ 

 

+++ COMPRESSION +++ 

 

  0. Aide 

 

  1. Sans estimation de la perte d'infos 

  2. Avec estimation de la perte d'infos 
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  9. Retour au menu precedent 

 

Choix :  

 

_____________________________________________________________________ 

 

 

+++ CALCUL DES ERREURS +++ 

 

  0. Aide 

 

  1. Erreur pour chaque pattern (fichier) 

  2. Erreur moyenne globale (ecran) 

 

  9. Retour au menu precedent 

 

Choix : +++ COMPRESSION +++ 

 

Nom du fichier a traiter :  

Nom du fichier resultat :  

Erreur moyenne globale :  

 

_____________________________________________________________________ 

 

+++ LINEAR PREDICTION CODE +++ 

 

  0. Aide 

 

  1. Compression 

 

  9. Retour au menu principal 

 

Choix :  

 

_____________________________________________________________________ 

 

+++ OUTILS POUR LA METHODE DE COMPRESSION NLPCA +++ 

 

  0. Aide 

 

  1. Conversion des donnees au format NLPCA 

  2. Selection des premieres couches d'un reseau 

  3. Modification du nombre de sorties d'un fichier de donnees 

  4. Utilisation type d'un reseau de SIRENE 

  5. Recuperation des sorties d'un reseau 

 

  9. Retour au menu principal 

 

Choix :  

 

_____________________________________________________________________ 
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+++ OUTILS POUR L'UILISATION DE SIRENE+++ 

 

  0. Aide 

 

  1. Creation d'un fichier type d'instructions 

  2. Modification du nombre de sorties d'un fichier de donnees 

  3. Utilisation type d'un reseau de SIRENE 

  4. Analyse des resultats 

 

  9. Retour au menu principal 

 

Choix :  

_____________________________________________________________________ 

 

+ CREATION D'UN FICHIER D'INSTRUCTIONS NLPCA TYPE POUR SIRENE + 

 

Le fichier d'instructions est sauve sous le nom 'sirene.instr' dans le repertoire courant 

Attention, un ancien fichier de ce nom sera remplace !! 

Voulez-vous continuer (o/n) ?  

 

Nombre de couches : 3 

Nombre de neurones dans la couche 1 :  

Nombre de neurones dans la couche 2 :  

Nombre de neurones dans la couche 3 :  

 

Nom du fichier d'apprentissage :  

Nom du fichier de validation :  

Nom du fichier de test :  

 

La fonction par defaut des neurones est la 8 (th) avec 1 comme parametre 

L'algorithme d'optimisation choisi est le 10 (Quasi-Newton(BFGS) + line search) 

La fonction d'apprentissage est la 2 (Total sum squared error + minimize weights 

(W^2)) 

La fonction de validation est la 2 (Classification error () (Maximum criteria)) 

La fonction de test est la 2 (Classification error () (Maximum criteria)) 

Creation terminee 

 

--- ENTER --- 

 

_____________________________________________________________________ 

 

A bientot j'espere 
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