Phenotypic and genetic variability of methane emissions and milk fatty acid contents of Walloon Holstein dairy cows

M.-L. Vanrobays¹, P.B. Kandel¹, H. Soyeurt¹, A. Vanlierde², F. Dehareng², E. Froidmont², & N. Gengler¹

¹ University of Liege, Gembloux Agro-Bio Tech, Department of Agricultural Science – Gembloux, Belgium ² Walloon Agricultural Research Centre – Gembloux, Belgium

Contact: mlvanrobays@ulg.ac.be

Background

- Enteric methane (CH_{4}) emissions of cows
 - **Losses of dietary energy**

Objective: Estimation of phenotypic and genetic variability of CH₄ emissions & FA contents of milk

- - **Contribution to climate change**
- **Growing interest in reducing CH**₄ emissions
- Milk fatty acid (FA) profile is influenced by rumen fermentations

Material & Methods

Data

Prediction of CH₄ emissions & milk FA contents from milk mid-infrared (MIR) spectra

Vanlierde et al., 2013. Advances in Animal Biosciences, 4(2), 433. Soyeurt et al., 2011. Journal of Dairy Science, 94(4), 1657-1667.

- \geq 5 records/cow
- \geq 20 cows/herd
- **161,681 MIR spectra collected between** January 2007 and June 2013

Conclusions

- > SFA & SCFA are higher genetically & phenotypically correlated with MIR CH₄ emissions than UFA & LCFA
- > These correlations reflected indirect link between milk FA & CH₄ emissions through rumen metabolism

Results

Heritabilities of FA and MIR CH₄ emissions

Trait	h ²	Trait	h ²
MIR CH_4 (g/d)	0.11	C18:0 (g/dL of milk)	0.19
C4:0 (g/dL of milk)	0.34	C18:1 <i>cis-9</i> (g/dL of milk)	0.15
C6:0 (g/dL of milk)	0.41	SFA (g/dL of milk)	0.42
C8:0 (g/dL of milk)	0.41	MUFA (g/dL of milk)	0.19
C10:0 (g/dL of milk)	0.40	PUFA (g/dL of milk)	0.30
C12:0 (g/dL of milk)	0.41	UFA (g/dL of milk)	0.20
C14:0 (g/dL of milk)	0.43	SCFA (g/dL of milk)	0.42
C16:0 (g/dL of milk)	0.40	MCFA (g/dL of milk)	0.42
C17:0 (g/dL of milk)	0.36	LCFA (g/dL of milk)	0.17

- From 5 to 305 days in milk (DIM)
- 22,642 first-parity Walloon Holstein cows from 489 herds
- **Pedigree file**
 - **79,736** animals

Model

- **Bivariate random regression test-day** models
 - **Resolved using REMLF90** (Misztal, 2012)
 - MIR CH_4 (g/d) & 1 FA trait

y = Xb + Q (Wh + Zp + Za) + e

where **y** = Vector of observations

b = Vector of fixed effects

→ Herd x test-day

Abbreviations: SFA = Saturated FA ; MUFA = Monounsaturated FA ; PUFA = Polyunsaturated FA ; UFA = Unsaturated FA ; SCFA = Short chain FA ; MCFA = Medium chain FA ; LCFA = Long chain FA

Evolution of genetic and phenotypic correlations between MIR CH_4 (g/d) and individual FA or groups of FA

- → Classes of days in milk
- \rightarrow Gestation stage x lactation stage
- \rightarrow Lactation stage x age at calving x season of calving
- **h** = Vector of herd x year of calving random effects
- **p** = Vector of permanent environmental random effects
- **a** = Vector of additive genetic random effects
- **Q** = Covariate matrix for 2^{nd} order Legendre polynomials
- X, W & Z = Incidence matrices

e= Error

The Ministry of Agriculture of the Walloon Region of Belgium (Service Public de Wallonie – Direction générale de l'Agriculture, des Ressources naturelles et de l'Environnement, Direction de la Recherche) is acknowledged for its financial support through the research project D31-1304. The authors gratefully acknowledge funding from the European Commission, "GreenHouseMilk" project (FP7 Marie Curie ITN).